
Journal of Software Engineering for Robotics 7(1), July 2016, 3-19
ISSN: 2035-3928

The SmartMDSD Toolchain: An Integrated MDSD
Workflow and Integrated Development Environment

(IDE) for Robotics Software
Dennis Stampfer∗ Alex Lotz Matthias Lutz Christian Schlegel

University of Applied Sciences Ulm, Department of Computer Science, Prittwitzstr. 10, 89075 Ulm, Germany.
{stampfer,lotz,lutz,schlegel}@hs-ulm.de.

Abstract—Service robots are complex software-intensive systems that need to fulfill a diversity of tasks in open-ended environments.
In order to deal with their software complexity, one should make use of the latest software systems engineering principles and tools so
that experts and stakeholders can smoothly interact and collaborate.
We argue that there is a lack of approaches addressing the overall integration challenge (i.e. systematic composition) in service robotics
and efforts for integration are underestimated. To address this, one of the recent trends in service robotics is the use of Model-Driven
Software Development (MDSD) approaches and the creation of dedicated Domain-Specific Languages (DSLs). We further argue that
isolated DSLs need to be combined and integrated in order to realize a step change in robotics software development.
We propose the “SmartMDSD Toolchain v2” as an Integrated Development Environment (IDE) for robotics software development.
The SmartMDSD Toolchain combines a set of DSLs and tools in one IDE that guides experts and stakeholders through a formalized
development process. We report on our vision of a robotics business ecosystem and our basic principles to address this vision. We
give a consistent view on the overall development process and its full support in the SmartMDSD Toolchain v2. Finally, we report on
lessons learned during six years of experience in developing tools, methods and DSLs for software development for service robots and
conclude with a user study to assess the benefits of the SmartMDSD Toolchain as reported by the users.

Index Terms—Service Robots, Domain Specific Languages (DSL), System Integration and Composition, Component-Based Software
Engineering, Model Driven Software Development (MDSD)

1 INTRODUCTION

S ERVICE robots are complex software-intensive systems
that need to fulfill tasks in complex environments. In order

to deal with their software complexity, it is necessary to split
the overall problem into sub-problems that can be solved in-
dividually by experts from the particular domain. Component-
based software engineering (CBSE) is widely accepted and
becoming state-of-the-art for service robotics [1].

We use a service-oriented, component-based approach for
our method and envision a robotics business ecosystem where

Regular paper – Manuscript received August 03, 2015; revised February 05,
2016.

• The authors gratefully acknowledge research grants and funding provided
by BMBF (robotics-related research: iserveU/01IM12008B, research
related to the overall workflow and its application beyond robotics:
FIONA/01IS13017C).

• Authors retain copyright to their papers and grant JOSER unlimited
rights to publish the paper electronically and in hard copy. Use of the
article is permitted as long as the author(s) and the journal are properly
acknowledged.

various stakeholders with dedicated expertise network and
collaborate in building robot software. To build this software,
the stakeholders put together and reuse software-components
and other building blocks.

Building software systems at such a level is dependent
on the means of composition, the ability to separate roles
and concerns, and the support by an according development
methodology. We refer to composability as the ability to
combine parts to a whole [2]; in our case combining software
components to a system.

One of the recent trends in service robotics is the use
of Model-Driven Software Development (MDSD) approaches
to provide dedicated Domain-Specific Languages (DSLs) for
isolated problems such as mobile manipulation, reasoning and
planning, and dynamic task coordination [3]. Although we
strongly support this trend, which has provided a valuable
contribution for robotics, we argue that modeling approaches
addressing the overall integration challenge (i.e. systematic
composition) are underrepresented and that efforts are un-
derestimated. The need for systematic software development

www.joser.org - c© 2016 by D. Stampfer, A. Lotz, M. Lutz, C. Schlegel



4 Journal of Software Engineering for Robotics 7(1), July 2016

mechanisms and software engineering approaches in robotics
has been recognized by the Strategic Research Agenda for
Robotics in Europe [4] and was identified as a “make or break”
factor within the European SPARC Robotics initiative and the
Multi-Annual Roadmap [5] for the development of robots.

In this paper, we address the challenge of integrating
individual contributions, from various experts involved in the
overall development workflow while, while maintaining sys-
tem consistency. More precisely, we highlight the challenges
involved in integrating and bridging several DSLs within one
consistent modeling and development environment and report
on our experience in solving these challenges.

Currently, robotics software development uses a variety
of individual and dedicated tools: standard tools (editors,
compilers) and tools tailored to the domain of robotics.
However, isolated toolings and DSLs bring a benefit for an
isolated problem, task or role, but cannot address the entire
system engineering problem. Furthermore, such a collection
of tools and specialized DSLs (each for a specific purpose)
requires an integrated modeling approach that provides tech-
nical workflow-support and supports all involved stakeholders
by guiding them through the formalized (overall) development
process1.

In other domains, such as e.g. automotive [6], the use of
integrated modeling approaches and tools is widely accepted
and have demonstrated their benefit. In robotics, however, such
such modeling approaches and its related tools are not yet
standard or common practice. Without an integrated approach
and supportive toolchain, the overall workflow for robotics
development may exist and be defined in documents, but this
is not sufficient to properly apply and actually live these
processes (i.e. the move from document-driven to model-
driven software development). A toolchain reduces the effort
of handing over and switching between multiple dedicated
modeling tools and can, thanks to DSLs, assist in functions,
views and information that are role-specific for stakeholders
in each step and each sub-domain.

The presented work builds upon the service-oriented
component-based approach SMARTSOFT. While the founda-
tions of SMARTSOFT [7] are still in use today, SMARTSOFT
nowadays is an umbrella term for abstract concepts (such as
a systematic development methodology, best practices [8])
and implementations (reference implementations, a set of
reusable components) to build robotics systems. We propose
the “SmartMDSD Toolchain v2” as an Integrated Development
Environment (IDE) for robotics software development (Fig. 1).
The SmartMDSD Toolchain seamlessly integrates into the
world of SMARTSOFT by realizing the concepts SMARTSOFT,
thereby making them accessible to its users.

1. We think of “process” as the order and connection of steps on a
conceptual level, and “workflow” as the order and connection as it is realized
by a tool. However, as the workflow of the SmartMDSD Toolchain is very
close to the conceptual process, this paper uses “process” and “workflow” as
synonyms.

Fig. 1: The SmartMDSD Toolchain is an Integrated Devel-
opment Environment (IDE) for robotics software development
combining a set of dedicated DSLs in one integrated toolchain
to guide all stakeholders through the robotics development
workflow.

In this paper, we report on the “SmartMDSD Toolchain v2”
in its third major generation. Considering the overall complex-
ity of a complete robotics software development workflow
and tooling, it is impossible to illustrate each relevant part
with all its details in this paper. However, as we believe it is
mandatory to have an integrated modeling environment that
combines dedicated tools, it is equally important to present
research about the relation and global setting between isolated
solutions. As such, the focus of this paper is to contribute a
consistent view on the overall development workflow, how it
is supported by the “SmartMDSD Toolchain v2”, and how
the steps and outcomes of each step are related to each other.
This paper further introduces new specific DSLs (some textual,
some graphical) to address the system design step, system
configuration and deployment. We describe how these new
DSLs and existing DSLs (e.g. SmartTCL) are linked to each
other within the toolchain. Where possible, we refer the reader
to existing publications related to the first generation of the
SmartMDSD Toolchain for more detailed information.

This paper is structured as follows: We first illustrate
the basic principles behind the SMARTSOFT approach and
workflow used to develop service robots and then present
how the SmartMDSD Toolchain supports and guides users
in applying these principles through the workflow. In each
step, we show excerpts of the development of the collaborative
butler scenario [9] where two service robots act as butlers,
open cupboards and operate the coffee machine. Finally,
the paper concludes with a user study and lessons learned
during six years of experience with three generations of the
SmartMDSD Toolchain.



D. Stampfer et al. / The SmartMDSD-Toolchain: An Integrated Development Workflow and Integrated Development Environment (IDE) for Robotics Software 5

2 RELATED WORK

CBSE and MDSD paradigms are applied in various software
intensive domains, such as automotive, cyber-physical and
embedded-systems. The ever-increasing system and develop-
ment complexity as well as the huge amount of configuration
options drive the need for systematic tool support [6], [10].

Recently, several isolated DSLs for robotics (such as
rFSM [11] for task coordination, deployment modeling [12]
and architecture modeling [13]) have been presented, each
solving one particular problem. However, in order to ensure
overall system consistency, these DSLs and models need to
be connected. In contrast, our approach is to integrate several
dedicated DSLs into one consistent modeling and develop-
ment environment which we consider crucial for transforming
knowledge between and providing adequate representations for
the involved roles.

The general lack of systematic integration mechanisms in
robotics software development has been identified by the
European SPARC Robotics initiative in the Strategic Research
Agenda (SRA): “Investment in these technologies is critical to
the timely development of products and services and a key en-
abling factor in the stimulation of a viable robot industry” [4].
The SmartMDSD Toolchain and the ideas behind it directly
contribute to this line of research.

ROS [14] provides infrastructure, algorithms, libraries and
dedicated isolated tools. To the best of our knowledge, ROS
does not provide anything comparable to an IDE which
could support the design, implementation and integration of
ROS nodes. Instead, any preferred general purpose IDE (e.g.
QtCreator) can be used [15]. Design and implementation
agreements are solely the responsibility of the user and are not
tool-supported. Some user-driven initiatives have attempted
to address this, e.g. RIDE [16] and rxDeveloper [17]. RIDE
aims to ”make the creation of ROS controllers from reusable
components as easily as possible” [16]. Yet, the only pro-
vided functionality is to launch and to connect ROS nodes.
Similar, rxDeveloper provides a GUI for modifying launch-
file parameters of running ROS nodes. While this approach
helps in executing the nodes, it does not help in either design
or implementation.

The need for systematic tooling and separation of concerns
is also applied in BRICS within the ”5Cs” [18] and the
BRICS IDE (BRIDE) based on the BRICS Component Model
(BCM) [18]. One of the core motivations behind BRIDE and
BCM is to harmonize over (i.e. to find a common denominator
for) different robotic frameworks. This, however, inevitably
results in an oversimplified component model which discards
important details from the relevant component models. For
instance, the communication between components is defined
on a too generic level, leaving too much freedom. Thus com-
ponent developers can implement conflicting communication
characteristics beyond the models. As a consequence, two
component implementations that conform to the same BCM

model can implement different communication mechanisms
and are thus incompatible to other components. Incompatible
components break reuse and integration via composition with
black-boxes in new architectures. In contrast to BRIDE, the
SmartMDSD Toolchain follows a Freedom from Choice phi-
losophy [19], which provides sufficient details with respect to
service definition, systematic integration and configuration of
components in new systems and deployment to targets.

In alignment to Software Product Lines (SPLs), Hyperflex
(a BRIDE extension) defines application specific reference
architectures based on feature models [13]. In contrast to
application specific reference architectures, the SMARTSOFT
approach is application independent. This is due to its focus
on composability (instead of just configurability) which guar-
antees smooth building block integration based on reusable
service definitions.

Robot Technology (RT) Middleware [20] is based on the
OMG Robot Technology Component (RTC) standard. The
reference implementation OpenRTM-aist includes an Eclipse
IDE. RT-Middleware was one of the leading modeling initia-
tives in robotics around a decade ago and had, at that time,
a significant impact on robotics software development. Com-
pared to recent approaches, RT-Middleware has a rather sim-
plified data-flow-like communication model and the Eclipse-
based tooling lacks state-of-the-art modeling techniques for
structured system integration and deployment.

The PROTEUS project made a significant contribution with
RobotML [21] towards addressing the separation of concerns
on model level by grouping models in packages for communi-
cation, behavior, architecture and deployment. On an abstract
model level, we agree with the ideas behind RobotML. In this
paper, we additionally provide a toolchain comprising fully
integrated model editors, code generators, build infrastructure,
execution environment and other elements.

Although tools for collaborative work (e.g. revision control
for models) exist, this paper focuses on a consistent model
base to which these tools could be applied.

3 TOWARDS A BUSINESS ECOSYSTEM FOR
ROBOTICS

The main question behind our research is how to achieve
a robotics business ecosystem [22] in which various stake-
holders can network and collaborate. In our research, we use
the definition of a “business ecosystem” as introduced by
Moore [23] and Peltoniemi [24]. In our opinion, all stake-
holders have dedicated experience and can contribute software
building blocks using their individual expertise. These building
blocks (open- or closed-source) need to be combined to new
applications just by composing them “as-is” without the need
for detailed inspection. Such an ecosystem might exist on a
small-scale within an organization or company that builds a
collection of standard components for reuse and composition
in different applications. Or, on a larger and more open scale,



6 Journal of Software Engineering for Robotics 7(1), July 2016

this ecosystem might exist as a market of components where
component suppliers provide components and alternatives for
composition (selecting components that meet the demands
of the application) with different functional implementations
(diversity of performance).

The remainder of this section provides a set of basic
principles that we consider as key requirements for developing
the SmartMDSD Toolchain to advance towards the envisioned
robotics business ecosystem.

The exchange of software components in the envisioned
business ecosystem must occur at the proper level of abstrac-
tion for which the definition of reusable services (as e.g. in
SMARTSOFT [8]) is a key element and thus is fundamental
for system design. Services are stable architectural entities,
used to describe different applications. Services define func-
tional boundaries between building blocks and define their
interaction: how (communication semantics) and what (data
structure). Services act as a link between component supplier
and system integrator when composing the application from
components. Services allow the identification of functionality
yet to be covered very early and are the most important
building blocks of the system architecture. Services keep the
architecture flexible (service-level abstraction) and are aggre-
gated to components (component-level abstractions) that can
either provide or require (use) services. As a result, services
ensure ensure system level conformance and guarantee that the
system can be integrated by composition using components as
reusable building blocks.

When searching for patterns and structures that realize
the envisioned ecosystem, the choice involves finding the
Sweet Spot between Freedom of Choice and Freedom from
Choice [19]. Freedom of Choice means not to enforce any
decisions, but has a high price to pay since there is no guidance
with respect to composability and system level conformance.
Alternatively Freedom from Choice provides such guiding
structures, for example at a component level, such that these
components finally conform to system-level agreements. The
sweet spot in between both of the choices relates to supporting
as much freedom as possible while still ensuring guidance [8],
[25].

Separation of roles [26] is necessary for a successful
robotics business ecosystem where stakeholders have mutual
benefits, are able to collaborate and to compete. Separation
of roles reduces risks, efforts and costs since stakeholders no
longer need to be an expert in every field of the application and
every step of the workflow; instead, stakeholders can focus on
their core contribution and role. A toolchain supporting the
ecosystem has to manage the seamless handover from one
role to the next. There has to be a way to explicate variation
points on the level of a model to allow modifications (stepwise
refinement) of building blocks to the needs of the application
without, for example, investigating or even modifying source
code.

Separation of Concerns is a very basic principle in software

engineering [27] and mandatory for robotics. It identifies
concerns and separates them by decoupling. SMARTSOFT and
the SmartMDSD Toolchain, for example, achieve separation
of concerns by gaining control over the component hull,
providing a flexible API inside, and stable communication
semantics outside, of the component [26].

Composability and composition are at the heart of an
ecosystem. Composability [2] is the ability to assemble
components, i.e. to combine parts/software-components to a
whole/system. As such, composability is about finding the
right abstraction and properties for building blocks so that
they can be put together. Composition, as the process of
putting together these building blocks, is equally important as
means of developing an appropriate workflow and technical
foundation.

4 MODEL DRIVEN SOFTWARE DEVELOPMENT
We are convinced that MDSD based on DSLs is the most
suitable technology to realize an integrated toolchain for
robotics and that it is capable of steering robotics towards
the envisioned business ecosystem for robotics software [22],
[28]. It is necessary to provide each involved stakeholder
with sufficient freedom. However, especially when several
stakeholders work on separated problems, it is also necessary
to restrict the design space in some matters in order to allow
for successful handover between the roles so that finally the
individual parts can be put together in the end. Meta-models
explicate structure and guide at the same time (Freedom from
Choice). Code-generators simplify the realization of separation
of concerns to separate user-code from generated code. Non-
expert users will thus gain advantage from expert knowledge
inside generators. Domain Specific Languages (DSL) allow
for tools, both graphical and textual, tailored to a specific task,
view or role.

The SmartMDSD Toolchain is based on Eclipse Modeling
Tools [29] and uses graphical and textual DSLs. It uses UML-
profiles to implement the SMARTSOFT robotics meta-model
SmartMARS [26] and uses PapyrusUML [30] for graphical
modeling. Xtext [31] is used for textual modeling. Additional
assistants, validators, checks and glue-logic create the neces-
sary bridges between the DSLs to achieve the overall work-
flow. The SmartMDSD Toolchain uses graphical modeling,
textual modeling or both by bridging between graphical and
textual models or by embedding them.

In each step of the workflow (Fig. 2), DSLs are used to
create models. The models are used, refined and annotated
and handed over to the next step and/or role. Depending on
the steps and actions, code is being generated that separates
user-implementations from execution containers (component
hulls) and data structures. During integration, the system is
composed of building blocks (components, behaviors) and all
collected artifacts are deployed to the robot for execution. Even
during execution at run-time, the robot uses models or directly
executes them (e.g. behavior).



D. Stampfer et al. / The SmartMDSD-Toolchain: An Integrated Development Workflow and Integrated Development Environment (IDE) for Robotics Software 7

Fig. 2: The internal realization of the SmartMDSD Toolchain. The figure shows artifacts of the toolchain (models and code),
their relationships and their handover (red arrows) through the workflow.

Xtend [32] is used for template-based code generation. The
generation gap pattern [33] is used to realize a clear separation
between generated code originating from the model and code
that is implemented by the user. This is done by putting
generated code and user code into separate files and classes
and linking them by inheritance.

For example, the component developer (cf. Fig. 2) is
responsible for (i) defining the component model and (ii)
providing the internal business logic (i.e. the implementation
of the component). The component model complies with
the formal service definitions as elaborated on later in the
paper. From the component model, two different code artifact-
types are generated according to the generation gap pattern.
The first artifact type represents the base classes related to
model elements and is automatically regenerated each time
the model is changed. The second artifact-type represents the
skeleton classes which are generated only once and not re-
generated. These skeletons are enriched with business logic
by implementations by the component developer. In this way,
models and code are always in sync and changes on code level
do not compromise the component model.

Not to compromise the component model is by purpose,
since changing the component model (e.g. changing services)
should trigger new agreements with all involved roles in the
related development steps. New agreements might involve a
redesign of the according system parts whose overall system-
level conformance can only be ensured on the model level,
through related model-checks, and thus are separated from
code.

5 THE SMARTMDSD TOOLCHAIN

This section describes how the SmartMDSD Toolchain sup-
ports and guides users in applying the principles behind
SMARTSOFT. We first introduce an example use-case which
is continuously refered to in the subsequent subsections. After
introducing the general development workflow of the Smart-
MDSD Toolchain and the connection between the DSLs and
steps, we describe each of them in the development workflow
addressing the exemplary use-case. For a more detailed and
practical example, we refer to our online video-tutorials [9]
showing a complete walk-through through all stages of the
development process and the major functionalities of the
toolchain.

5.1 Exemplary Use-Case

To illustrate the use of the SmartMDSD Toolchain, we show
an excerpt of the development of the collaborative butler
scenario [9] where two service robots act as butlers by
opening cupboards and operating the coffee machine. More
specifically, we address the obstacle avoidance part used in
both robots. Obstacle avoidance is realized using the Curvature
Distance Lookup (CDL) algorithm [34], which is available as
a SMARTSOFT component SmartCdlServer [35].

The CDL algorithm takes a laser scan and the next inter-
mediate waypoint to a target location as input. It calculates
the best combination of translational and rotational velocity to
steer the robot to the waypoint considering the robots kinemat-
ics, dynamics and shape. We will concentrate on the output of
the component, which is the velocity. The component provides
these velocity values to the system using the communication



8 Journal of Software Engineering for Robotics 7(1), July 2016

Fig. 3: The connection between development steps, roles and views and the corresponding DSLs that are utilized in each step
within the overall workflow of the SmartMDSD Toolchain.

object CommNavigationVelocity and the SMARTSOFT send-
pattern [36].

There are several parameters to the CDL algorithm and
component. We will concentrate on how to limit the velocity to
the needs of the application. We will show the development of
the SmartCdlServer component and how it is finally integrated
into the overall system via composition.

5.2 Development Workflow

The realization of the SmartMDSD Toolchain is guided by
the superordinate objectives as described in Section 3. The
overall development workflow (Fig. 3) starts with system
design in which, for example, a general assembly of project
representatives starts to define services by modeling service
definitions. As services are defined with the overall application
in mind, their functional boundaries shape the overall archi-
tecture. These design decisions (service definitions) are taken
as input for component development, focused on technology
implementation, and behavior development, focused on coor-
dination to achieve tasks.

System integration is done by composing (putting together)
software components. Components are selected such that the
services they provide or require match the service definitions
of the architecture from the system design step. Integration
includes configuring components, adding behaviors and de-
ploying them to the robot.

System design, implementation (component and behavior
development) and integration (system composition) are clearly
separated as motivated by the robotics business ecosystem.
The major outcome of system design is the definition of
services. Since these are the stable entities to build the robotics
architecture, they are the foundation for both, component
development and system integration (composition). As such,
alternative components can be provided in the ecosystem

or market of components. For example, the definition of a
localization service can be used to provide alternatives; e.g. a
component providing localization based on laser and another
one providing localization based on GPS.

Changes in services have an impact on functional bound-
aries and thus also have direct influence on the resulting
design. Examples for such changes are the need to change
a communication pattern, a change in the communication
object of a service or a change in the attributes of a com-
munication. Typically, such problems are detected during
integration. Changes in services cannot be made arbitrarily
by the component developers since they would otherwise
break the system architecture in an unauthorized way. Thus,
such changes require the mutual agreement of all involved
stakeholders (e.g. from the general assembly). These changes
are then addressed in system design, going back from system
composition to system design as illustrated in Fig. 3. This part
of the workflow is ensured by links between models and by
the code generation as described in Section 4.

Figure 3 illustrates the relation of development steps within
the overall workflow and shows which DSLs are used within
each step. However, variations of the overall workflow are
possible and depend on the level of reuse; for example,
systems might be developed from scratch with no re-use at
all or systems might be developed reusing all components and
behaviors from an in-house or global ecosystem.

5.3 System Design

During system design, the general assembly (e.g. representa-
tives of the domain) defines communication objects [8] and
services with two according DSLs based on Xtext.

Service definitions are the foundation for later aggregation
of services to components. Services become the central el-
ements and building blocks of the application architecture



D. Stampfer et al. / The SmartMDSD-Toolchain: An Integrated Development Workflow and Integrated Development Environment (IDE) for Robotics Software 9

(a) Service definition model (b) Communication object model (c) Parameter model

Fig. 4: Service definitions, communication objects and component parameters are modeled using a textual DSL. Human readable
documentation is annotated in-line.

and they have an application-driven view and consider the
requirements of the final application. For example, a service
can be defined for navigation commands, for a laser ranger and
for speech input and output. A set of service definitions allows
for building a robot architecture based on these services. De-
pending on the specific needs of the application, components
that provide or require these services can later be integrated by
composition (system integration step). As such, the services
(modeled as service definitions) are the stable architectural
entities and can be used to describe different application ar-
chitectures (architecture instances). Service definitions further
narrow the design space and as such apply Freedom from
Choice for improved composability.

The scope of design will determine whether services are
being defined in a narrow and proprietary way,e.g. targeted
for in-house design of a special-purpose robot, or in a more
generic reusable way, e.g. towards a standard for navigation
for reuse in a component market. This is solely the decision
of the users applying this approach.

A service definition model (Fig. 4a) comprises a commu-
nication object [8] (data structure, Fig. 4b), communication
pattern [36] (semantics to transfer data structure) and addi-
tional properties describing application-related information of
a service (non-technical w.r.t. interaction of components, e.g.
localization accuracy, image resolution, language of speech
interaction, robot motion type) for later refinement by the
component and use during system composition.

Figure 4a shows such a service definition for later use in
the SmartCdlServer component. This service definition selects
a communication pattern (SMARTSOFT send-pattern) and the
communication object CommNavigationVelocity. The commu-
nication object defines the data structure to be transferred.
In this example, the communication object contains values
for translational velocities vX and vY and rotational velocity
omega. The communication object can be reused in different
service definitions. In turn, the service definition can be reused
by different components, e.g. for implementing an alternative
for the SmartCdlServer.

Users describe the model of the services independent of
the implementation (separation of concerns), algorithms or
internal structure of the component that will later provide or

require that service. These models can then be (re)used (e.g.
by a component developer thanks to separation of roles), al-
though the target middleware and component implementation
is not yet decided; that is, the model is implementable with
different kinds of middleware and late-binding of the execution
container is possible.

Service definitions are described once for consistent reuse
in different applications. Service definitions are used to early
identify white spots (services that are not yet provided or re-
quired by components) within the architecture. Service defini-
tions decouple component development, behavior development
and system integration in time and space. They also guarantee
that reusable components fit together during integration, since
one can rely on service definitions.

5.4 Component Development and Implementation

Component development provides a technology-driven view
on a concrete sub-problem and uses a graphical DSL to model
the component hull that meets one or more service definitions
(Fig. 5). Component modeling is based on the SmartMARS
meta-model which is implemented as a UML profile.

Modeled services refer to communication objects from ser-
vice definitions. Variation points are modeled and purposefully
left open for later refinement by configuration using a new
parameter DSL [37] (Fig. 4c) which is implemented in Xtext.
Simplified, the result is similar to explicating variables that
are accessible from outside of the component.

The code generator generates structures and interfaces for
the implementation of user-code, such as implementing al-
gorithms and reusing libraries, as well as a middleware-
independent interface and execution container (Fig. 2). Using
other Eclipse plugins, e.g. CDT, the component developer
can add business logic to the component and implement, for
example, algorithms, glue code or reuse libraries.

Figure 4c, shows a variation point CdlParameter.TRANSVEL
for the range of allowed translational velocity values vmin
and vmax. This variation point definition (parameter) and
the service definition NavigationVelocity with the communica-
tion object CommNavigationVelocity are reused for modeling
the SmartCdlServer component (Fig. 5). Figure 6 shows



10 Journal of Software Engineering for Robotics 7(1), July 2016

Fig. 5: View of a component developer. Services refer to, thereby reusing, communication objects. This screenshot shows the
current public release of the SmartMDSD Toolchain. Here, the service refers to the communication object CommNavigationVe-
locity and communication pattern SmartSend. Our current internal release uses the properties to reference the service definition
NavigationVelocity (see Fig. 4a).

the implementation of the SmartCdlServer component (more
specifically, its CdlTask C++ class) and how to use a service
and variation points from within the component implemen-
tation. In this example: limiting the velocity using CdlPa-
rameter.TRANSVEL and sending it via a send service and
communication object CommNavigationVelocity.

A documentation DSL, implemented with Xtext, is provided
within a documentation view (Fig. 8). The textual DSL can
be used to annotate the graphical component model with
documentation with the purpose of adding semantic doc-
umentation. An extensive human-readable specification and
documentation is generated from the documentation model and
the component model, which is thus consistent and ensures
that all relevant information is up-to-date and available for
later system integration.

A special diagnose service [38] allows embedding a moni-
toring infrastructure into the component for later access (at
run-time) by specialized monitors in order to observe and to
check internal states and configurations of that component.

The output of component development is the component
model and the component implementation. The component
model is used for composition of components in the system
configuration model. The component implementation can be
in the form of source-code or binary.

Thanks to the separation of concerns, the component de-
veloper does not need to think about communication details;
these are hidden within the execution container to be linked
at a later time. Freedom from choice limits the access to
defined services, but the inside view (implementation) is still
flexible. Using the parameter DSL, the component developer
can explicate variation points to be refined in the system
configuration and via behavior execution at run-time. Both
the system configuration and behavior see the components
as black-boxes with explicated variation points thanks to
separation of roles.

5.5 Behavior Development
Software components in a robotic system have to be coor-
dinated (configured, activated and deactivated) to make the
robot perform complex tasks or behaviors [39]. In addition
to an initial configuration, the software components also have
to be configured at run-time to cope with different tasks and
situations originating from the open ended environment in
which the robot operates. Behavior models are used as formal
representations of the desired robot behavior and describe how
to achieve a certain task.

The user textually models behavior using the SmartTCL
DSL and reuses already existing task blocks to model new



D. Stampfer et al. / The SmartMDSD-Toolchain: An Integrated Development Workflow and Integrated Development Environment (IDE) for Robotics Software 11

Fig. 6: The component developer implements and uses the
components’ services while considering the left open variation
points.

behavior blocks (Fig. 7). The DSL extends SmartTCL [39]
and is implemented using Xtext. At some point, the behavioral
model maps into concrete configurations of the software
components using the variation points as defined by the
component developer. For example, the robots velocity-limits
may be adapted according to the situation at run-time, e.g. to
drive faster in long hallways. New variation points concerning
variability in operation are introduced, which will be bound
at run-time. The SmartMDSD Toolchain provides support
via model checks, autocompletion and context-sensitive help
thanks to the direct linking between behavior, component and
system configuration models.

Figure 7 shows an example of a behavior model using
the SmartTCL DSL editor within the toolchain. It uses the
CdlParameter.TRANSVEL variation point to set the values for
vmin and vmax for the SmartCdlServer at run-time.

In this step, the components can be seen as black-boxes,
with left open variation points (separation of roles). The user
is able to focus on task coordination and is relieved from
dealing with low-level processing (separation of concerns).
The behavior blocks are composable and their final expansion
is performed at run-time given the current context and situation
(composability and variability in operation). The reusable task
coordination blocks describe the robot behavior at different
levels of abstraction. Domain experts, who implement new
robotic behaviors, use their knowledge about the application
domain and reuse higher level behavior blocks to implement
new robotic behaviors (separation of roles).

The result of this step are behavior models bound to a
concrete system in the system configuration model that are
later deployed to the robot for execution at run-time.

Fig. 7: Behavior development using the SmartTCL DSL. The
editor assists with error checks and auto completion providing
access to the variation points of the component model as
explicated by the component developer using the parameter
DSL.

5.6 System Configuration

System configuration is an application-driven step that pro-
vides a software-view (Fig. 9) on the application to the
user (system integrator). The main purpose of the system
configuration is to compose the application by re-using and
putting together software building blocks such as components
and behavior models which were previously developed or
come from a 3rd party or ecosystem. The result is the complete
software system ready for deployment modeling and the actual
deployment to the robot.

Components are seen as black-boxes with the internal struc-
ture and implementation hidden since these internal details
are not of interest to the system integrator (separation of
roles). Only the outer view on the hull (services) and the
explicated configurations (variation points) are presented, due
to separation of concerns, but cannot be extended; an example
of applying Freedom from Choice in which only existing
variation points are used.

The user graphically creates instances of components and
initial wirings (Fig. 9) using a DSL based on a UML profile.
Instances allow using the same component multiple times
(e.g. for a front and back laser) with different configurations.
Since components were not necessarily developed with the
concrete application in mind, a component supplier does not
need not to know in what application the component is used.
Therefore, components can be configured by textually editing,
thus refining their variation points using the parameter DSL
from within the graphical model. However, some variation
points are purposefully left open for run-time refinement. As
part of instance configurations, additional files (e.g. map) and
start/stop-scripts (e.g. for daemons) may be associated with
the component instances.

Figure 9 shows how instances of the SmartCdlServer and
other components are composed to the final application.



12 Journal of Software Engineering for Robotics 7(1), July 2016

Fig. 8: The textual documentation DSL (top) as seen from component implementation. This DSL references elements of
the component model (left) in order to annotate these elements with human-readable information about component use and
semantics. Information from the documentation and component model is transformed to a complete documentation (right) for
later system integration which assists the system integrator during composition (Fig. 9, lower left).

The variation point (parameter) CdlParameter.TRANSVEL of
SmartCdlServer can be configured to initial values that match
the application context. At run-time, these values can be
further refined using SmartTCL (cf. Fig. 7).

The SmartMDSD Toolchain assists in choosing the right
components, checking for valid configurations, valid wirings,
compatible components and satisfied services according to ser-
vice definitions before deploying and executing the scenario.

5.7 System Deployment
System deployment comprises mapping of software compo-
nents onto target hardware, transferring files and starting the
application. A deployment model (Fig. 10) provides the view
for system integrators on hardware in terms of processing
units that can run components. The deployment model models
hardware and maps instances of software components onto it.
Deployment is considered to be the handover from design-time
to run-time.

In this example, the deployment model (Fig. 10) deploys
the component instance of SmartCdlServer along with other
instances, such as mapper, planner and laser to a single
computer that runs the component instances.

The deployment model is realized with a graphical DSL
(Fig. 10) using an UML profile and consists of devices
representing computers (SmartDevice) and artifacts refering

to component instances (SmartArtifact). Devices have several
basic properties such as network configuration. The Smart-
MDSD Toolchain is able to deploy to multiple devices. The
toolchain generates the execution container depending on the
middleware, packs all artifacts (such as binaries, behavior
models, additional files and start/stop hooks) and actually
transfers (deploys) them to the robot. Finally, the toolchain
optionally starts the application.

The collection of deployed artifacts includes everything
required to run the application. There is no further dependency
to the SmartMDSD Toolchain and the deployed scenario is
able to run without the toolchain.

The system configuration and the deployment view are
separated (roles and concerns), which allows focussing on
the hardware-view in the deployment step. This step can only
map but not modify the software architecture (Freedom from
Choice).

5.8 Run-Time
At run-time the robot executes component instances and
behavior models. The robot is considered an active role as
it binds left-open variation points to deal with variants and
contingencies of an open-ended environment.

Design-time models are used to adapt the behavior of the
robot with respect to variability in operation and quality [28].



D. Stampfer et al. / The SmartMDSD-Toolchain: An Integrated Development Workflow and Integrated Development Environment (IDE) for Robotics Software 13

Fig. 9: Graphical and textual DSLs are used for system configuration where instances of reusable components can be
created and configured to match the needs of the application. Additional documentation of the component is presented to
the system integrator depending on the context of selection (clicking an element of the system configuration shows the relevant
documentation).

For example, a robot should drive slowly while transporting
coffee, but still fast enough to deliver it hot. The effort spent
in object recognition is another example and depends on the
required classification confidence; which can be low for juice
flavour vs. high for medicine [40].

Monitoring is used to observe the internal states and con-
figurations of component instances at run-time. Monitoring
makes it easy to trace the cause of errors by analyzing the
causal dependencies between components interacting in data-
flow and functional chains.

6 LESSONS LEARNED

The SmartMDSD Toolchain and MDSD approaches in general
require meta-models. However, meta-models require stable
structures and are dependent on precise semantics to be of
value. As such, we agree with E. A. Lee that “the semantics
of a modeling language is the foundation for the models.
Weak foundations result in less useful models.” [19] For our
approach, the underlying SMARTSOFT approach provides such
structures and semantics. However, other approaches (such as
ROS) need to specify these structures and semantics in order

to make them accessible to useful MDSD approaches. For
example, ROS misses clear semantics for topics with respect to
synchronous/asynchronous communication, timings or buffers.

Developing the DSLs and the SmartMDSD Toolchain, ap-
plying MDSD and deciding on user-interface and presentation
of toolings is always a trade-off between several factors. A set
of superordinate objectives as described in Section 3 not only
provides guidance in system design but also provides guidance
for these trade-offs in designing the DSLs and the toolchain.

The SmartMDSD Toolchain provides a powerful IDE for
users. By applying Freedom from Choice, we restrict the
design space purposely to ensure the overall system level
conformance. Since the SmartMDSD Toolchain builds upon
the standard Eclipse world tooling, the developers can still
make use of the tools provided by Eclipse including other
plugins (e.g. CDT) and can use any library or programming
paradigm. It is even possible to use the code generator without
the toolchain or implement components using any other tool.

Based on our experience, MDSD and the use of DSLs
have many times demonstrated potential as tools to enable
the overall vision of a robotics business ecosystem. Whether



14 Journal of Software Engineering for Robotics 7(1), July 2016

Fig. 10: Deployment model. Artifacts represent instances of
software components that can be deployed to one or many
target devices. This model maps software components to
hardware devices.

a graphical or a textual DSL is used - whatever is more
appropriate in the context and role should be preferred. DSLs
should be user-focused, simple, compact and specific for a
particular need or role to allow the user to focus on one specific
task only. The SmartMDSD Toolchain integrates separated
but specific DSLs instead of trying to merge everything into
a single DSL. DSLs should be guided by the domain (sub-
workflow and role) and its requirements. Doing so comprises
e.g. early agreements on contracts between building blocks
(components) and responsibilities (service definitions). Late
modifications of models should trigger the need for mutual
agreements, thus ensuring obligatory workflows through mod-
els and tooling. DSLs should enable documentation within
models in order to provide up-to-date documentation; that
is, use models as documentation or generated documentation
instead of free form text as documentation.

Seamless transition between workflow steps and seamless
access across models are important: access to textual modeling
should be possible from within graphical models, not requiring
to manually open a separate text document, and bidirectional
seamless access within different DSLs to information shared
in other models.

While isolated tools, methods or DSLs can be powerful
for their individual purpose, the real step-change towards
successful software development for robotics lies in the in-
tegration of DSLs or tools into a consistent overall workflow.
Therefore, it is our opinion that robotics should not come
up with yet another isolated tool or more isolated DSLs but
rather address the challenge of fitting them seamlessly into the
overall workflow and tooling.

However, when integrating DSLs or modeling tools, it is
not only about the tooling and glue-code. The models and
DSLs have to come up with the correct structures that allow
for integrating them.

Fig. 11: The SmartMDSD Toolchain has been used by many
partners and projects across several domains and on several
robots.

In the end, it will probably always be possible to break out
of structures. However, the overall goal therefore must be to
provide structures that do not require breaking out but still
ensure system level conformance.

7 RESULTS

Over the last six years, there was a total of 19 public
releases [35] of the SmartMDSD Toolchain under an open
source license. The technical realization of service definitions
and behavior modeling are the most recent extensions of the
toolchain and are not yet within the productive public release.
However, all other parts of the toolchain as described in this
paper are included in the current public releases and were
actively used in our research collaborations. The concept of
service definitions and the overall workflow was applied within
projects as detailed subsequently. To date, 36 components are
publicly available [35]. Including non-public components, we
have about 64 components available for immediate composi-
tion.

We first summarize our observations on the benefits and
experiences of using and applying the SmartMDSD Toolchain
in three research projects, four research collaborations and
other activities that resulted in robots delivering coffee, open-
ing cupboards, playing connect-four, logistics applications and
other scenarios [9]. We then show results of a user study
in ongoing research projects which assessed how real users
perceive the usability and benefit in using the presented work.

7.1 Applications of SmartSoft
Since the early days, the SmartMDSD Toolchain has been used
in different domains for robotics systems engineering (Fig. 11)
and other applications. The toolchain has been “demonstrated



D. Stampfer et al. / The SmartMDSD-Toolchain: An Integrated Development Workflow and Integrated Development Environment (IDE) for Robotics Software 15

in operational environments” (technology readiness level 6
according to [5] as acknowledged in [41]).

Within the research projects ZAFH Servicerobotik [42],
iserveU [43] and FIONA [44], there was a broad range of
users with different levels of experience ranging from no
robotics expertise to highly skilled experts with broad system
knowledge. In all cases, the SMARTSOFT approach provided
valuable guidelines to structure the work within the projects
which was a key contribution towards successful system
architectures, integrations and project demonstrators (videos
at [9]). The SmartMDSD Toolchain provided easy access to
the structures of SMARTSOFT.

Within the research project FIONA, SMARTSOFT and the
toolchain structured the path towards a project-internal ecosys-
tem with 22 software components provided by nine project
partners distributed across Europe. These 22 components, that
include several alternatives such as five alternative solutions
for localization, allow the composition of over 60 variants
of the final project demonstrator which was a smartphone
navigator and a navigator for the visually impaired.

Within the research project iserveU, SMARTSOFT and the
toolchain were used as a central integration and software
architecture approach to realize the distributed development
and integration of the outcomes of seven project partners in
Germany. In this project, 14 components were successfully
integrated into one final project demonstrator for hospital
logistics.

SMARTSOFT and the SmartMDSD Toolchain were also
applied in education for lectures and for seven generations
of the Rococup@Home student project. In every generation
of Robocup@Home, a team of five to twelve students worked
towards participating in the German Open competition. Each
team took over the software components and robot platform
of the previous team. Each team added new components and
abilities to conform to the evolving rules of the competition.
This worked, although there was no overlap in team members
and no transfer of knowledge in person. Since the student
participants had no prior robotics knowledge and limited time
besides their lectures, they had to rely on the black-box
approach of components and were able to focus on their
particular extension or task. The SMARTSOFT approach and
the SmartMDSD Toolchain provided the necessary abstraction
and tooling to reuse, compose, modify and continue the
complex robotic system. Notably, one student team was able
to reuse existing components to move to a different robot
platform as detailed in [22].

SMARTSOFT, the toolchain and components are also of-
ficially available for the Robotino platform of Festo Didac-
tic [45] for intralogistics applications.

Especially where complexity is managed by splitting the
overall problem into sub-problems to be solved individually
by experts, collaboration to ensure the smooth transition and
handover between stakeholders can be supported with an
IDE that guides through the development process. This is

valid in activities ranging from laboratory prototypes to in-
house product development to the robotics business ecosystem.
Enhanced tool-support raises the software development from
a document-driven to a model-driven approach, speeds up
the process and leads to lower time to market. Furthermore,
enhanced tool-support as described in this paper improves
the development process by reducing and preventing errors,
thereby improving the robustness of the robot itself.

The collaborative butler scenario, of which a part was used
as an example in this paper, includes two service robots “Kate”
and “Larry”. Using the described approach, 18 of 22 com-
ponents (82%) are the same, re-used “as-is”, between Larry
and Kate [22]. In lines of code using SLOCCount [46], this
makes 42000 lines of user-code and 6700 lines of generated
code identical (85% in total). Only the components for the
specific hardware had to be exchanged (e.g. Pioneer vs Segway
base, Katana vs UR5 manipulator and various types of laser
scanners). Thanks to stable services, other components have
been reused as-is and the overall service-architecture was not
touched.

7.2 User Study
A user study was conducted to evaluate the experience in
using the SmartMDSD Toolchain, in applying the proposed
workflow and to evaluate the perceived benefits among active
users. This section will describe the initial results of this user
study.

We designed a questionnaire totaling 44 questions of which
30 questions related to the core topic, the other questions for
personal background and skills. It took about 20-30 minutes
to answer all questions. Results of the questionnaire were col-
lected anonymously. For each question, the users were asked
to rate a given statement based on their level of agreement.
The questions were designed in five-level Likert [47] items
with answers ranging from ”strongly agree” to ”neutral” to
”strongly disagree” and similar (Fig. 12). The participants
were asked to skip a question, giving no answer, if the question
was not understood.

The user study was conducted with our partners in current
research collaborations. Although there were few participants
(18 responses), the user study can be considered representative
since it is ensured that all participants had spent a good amount
of time working with the proposed tools and methods and
therefore can give a valuable evaluation.

The user study was organized in several sections, starting
by collecting personal experience to set answers in a broader
context. Then, follow-up questions specifically assessed the
experiences and benefits perceived with the concepts in gen-
eral and how the SmartMDSD Toolchain helped in applying
and using these concepts. Most importantly, we asked about
the experience during integration of the project demonstrator
during integration meetings.

Participants: All 18 participants were using SMARTSOFT
and the SmartMDSD Toolchain for the first time within their



16 Journal of Software Engineering for Robotics 7(1), July 2016

Fig. 12: Excerpts of the user study.

research project. About half of them were from industry (45%)
or academia (55%). They work in domains such as embedded
systems, automotive, robotics, artificial intelligence, sensors
and control. Our users are quite experienced with the kind of
system development as undertaken in these research projects:
The majority is very experienced with software engineering
(55%) but have little experience (60% with less than a year)
in using software models or model driven methods. Almost all
participants are familiar with Eclipse-based IDEs (94% with
more than 1-2 years of experience).

When asked about the development methodology and tools
that the participants used prior to the SmartMDSD Toolchain,
we observed that there is a very heterogeneous set of separated
development tools and methods of integration. The user study
revealed that using an integrated IDE for development is
not yet standard and that the integration methodology is
focused on class-based integration. Reuse is made on the level
of libraries, but very few component-based approaches are
applied.

Usability: Most of the participants use the SmartMDSD
Toolchain for developing components (94%). They use the
functionality they expect from IDEs, such as auto-completion,
syntax-checks and warnings on all levels, collected docu-
mentation, role-specific views, execution and debugging of
the robotics application. As such, 82% state they “can work
productively using the toolchain”.

The seamless combination of otherwise separated tools
and the seamless transition including handover of artifacts
(models) between development steps and roles is easy for
most participants (81%). Also, 81% of participants (see Q1
in Fig. 12) agreed that “the toolchain provides the necessary
technical workflow-support and aids all developers along the
concepts of SMARTSOFT by guiding them through the overall
development process.”

The adequateness of textual and graphical modeling is not
easy to find and often a controversial question in MDSD.
When asked about the adequateness of textual and graphical
modeling for the workflow steps in our toolchain (system

design, component modeling, configuration, composition and
deployment modeling), all participants in general observe it
as adequate, although, there is a slight shift towards “more
graphical” modeling.

The participants especially liked the fast development of
working applications. Participants noted: “being able to have
a prototype working in short time” and “Fast project develop-
ment, in all phases, is something [we are] looking for.”

Integration and Composition: SMARTSOFT and the
SmartMDSD Toolchain are a “fundamental contribution to the
composition of software building blocks (components) in order
to effectively build new applications” (94%, see Q2 in Fig. 12).

For most (67%) of the participants, it “was possible to
compose software components to applications without further
inspection or even reading source code. The information
given through the models is determined to be sufficient for
the interface descriptions”. Only 12% disagreed with this
statement.

All participants were able to compose new applications from
existing components. 56% rated this benefit with “high bene-
fit”, 45% as “beneficial”. Asked for the effort for composition,
only two participants felt that the effort is too high.

Benefits: As with many software development approaches,
it takes effort to get used to tools and methods. 56% of the
participants needed several weeks while 33% needed several
days to get used to it. However, the benefit as perceived by
the participants is rewarding: 70% stated that the “initial effort
pays off, especially with larger systems”.

Almost all participants (88%) stated that they “were able
to focus on [their individual] field of expertise and core
contribution to the project”, no one disagreed (Q3 in Fig. 12).
This statement is supported by 88% saying that they “think
that the needs, tasks and responsibilities of [their] specific role
were clear and helpful” (one disagreed) and comments by the
participants such as: “[the approach] helps to draw boundaries
[between roles]”.

The approach presented in this paper clearly “helped to
structure project collaboration towards demonstrators” (93%)



D. Stampfer et al. / The SmartMDSD-Toolchain: An Integrated Development Workflow and Integrated Development Environment (IDE) for Robotics Software 17

Fig. 13: Excerpts of the user study.

and provided guidance for almost all participants (81%).
Participants especially made “benefit of clear definition of
services in system design” (94%) which also successfully
“supported the separation of development in space and time”
(Fig. 13). One participant commented that “that developing
prototypes is easier since you can easily avoid communication
problems that normally arise at the beginning of a project.”

Compared to other approaches, participants noted that they
made less errors in system integration (69%) when using our
toolchain. In case they encountered “errors or problems, it was
easy to identify the specific architectural element that caused
it. The problem or error was fixed within that element alone
without further influencing others” (77%). To correct problems
or errors, “it was easy to identify who (component or partner)
is affected and needs to become active” (94%).

During integration activities, most of the actual problems
that came up were algorithmic issues (41%). Since we know
that 94% of the participants were also component suppliers
who need to implement algorithms, we interpret this as a
confirmation that the participants were able to focus on their
specific role (algorithmic implementation of components).
This is supported by a direct question, where almost all
participants agreed that they were able to focus on their
contribution to the projects (Q3 in Fig. 12). Most participants
rated the effort for integration via composition of components
as low (50%) while only 17% felt that the effort is high.

Weakness: Lower flexibility might be observed as a
weakness when applying Freedom from Choice. However,
participants stated that they “did not feel this as a limitation
but rather a very helpful guidance”. While most agreed with
this statement (44%), some strongly agreed (25%) and only
19% disagreed.

When asked about weaknesses or ideas for improvements,
many answers included tool-documentation in the sense of a
user manual, enhancements for graphical tooling, suggestions
for more intuitive use and hints on some minor bugs. Methods
for structural debugging in the tooling and security capabilities
of the approach were mentioned as possible next steps. Finally,

one user reported about “not [being] friend of Eclipse, since
it is too complex and overloaded”.

Voices: Below are several direct comments from the
participants:

... “A great approach when collaborating with different
partners, from different countries, as it allows us to work
in parallel.”

... “I like the way it is organized in chunks (components).
This is useful in simplifying a complex problem by
providing a higher level of abstraction.”

... “Easy modification and switching of compositions / de-
ployments between different test-runs.”

... “Traditional approach based in libraries/packages may
be seen as more flexible, but implies a great effort
in integration. The approach provided by SMARTSOFT
/ SmartMDSD is clearly more efficient, especially in
collaboration projects.”

... “There is a steep learning curve at the beginning where it
is not much fun to use SMARTSOFT, but after investing
some time it starts to be fun.”

... “The SMARTSOFT ecosystem is a great solution to easily
analyze new services and features, that can be easily
deployed and evaluated.”

... “[SMARTSOFT] can help project people in order to realize
their tasks in communication intensive software systems
in an easy way.”

8 CONCLUSION

Frameworks and methods for robotics software development
can be powerful, but when there is no tool-supported guidance,
these mechanisms can remain unused, reducing development
efficiency, wasting time and money, and in the end, reducing
the capabilities of the robot. The SmartMDSD Toolchain
makes concepts and methods of SMARTSOFT for robotics
development accessible to users.

Based on our work, we are convinced that MDSD, DSLs
and an integrated modeling approach and toolchain can make
the step-change towards a successful business ecosystem for
robotics software. The SmartMDSD Toolchain contributes to
this step-change in general, but within our own activities,
projects and partners, it has already performed this step-change
and helps to actually experience this ecosystem at present with
all its benefits. This statement is confirmed by the presented
user study.

The SmartMDSD Toolchain and a set of reusable software
components is available for download [35]. There have been
19 public releases so far and the toolchain has been “demon-
strated in operational environments” (technology readiness
level 6 according to [5] as acknowledged in [41]). Video-
tutorials demonstrating the SmartMDSD Toolchain and videos
of various scenarios that were developed using the toolchain
are available online [9].



18 Journal of Software Engineering for Robotics 7(1), July 2016

ACKNOWLEDGMENTS
The authors gratefully acknowledge research grants and
funding provided by BMBF (robotics-related research:
iserveU/01IM12008B, research related to the overall workflow
and its application beyond robotics: FIONA/01IS13017C).

The authors thank all participants of the user study who
generously shared their time and provided valuable feedback.

REFERENCES
[1] D. Brugali and A. Shakhimardanov, “Component-based robotic engi-

neering (part ii),” IEEE Robotics Automation Magazine, vol. 17, no. 1,
pp. 100–112, March 2010. 1

[2] M. D. Petty and E. W. Weisel, “A Composability Lexicon,” in Proc.
Spring 2003 Simulation Interoperability Workshop, Orlando, USA,
March 2003, 03S-SIW-023. 1, 3

[3] A. Nordmann, N. Hochgeschwender, and S. Wrede, “A survey on
domain-specific languages in robotics,” in Simulation, Modeling, and
Programming for Autonomous Robots, ser. Lecture Notes in Computer
Science, D. Brugali, J. Broenink, T. Kroeger, and B. MacDonald,
Eds. Springer International Publishing, 2014, vol. 8810, pp. 195–206.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-11900-7 17 1

[4] euRobotics aisbl, “Strategic Research Agenda,” 2013–2014. 1, 2
[5] ——, “Robotics 2020 Multi-Annual Roadmap,” Dec 2015. 1, 7.1, 8
[6] H. Heinecke, M. Rudorfer, P. Hoser, C. Ainhauser, and O. Scheickl,

“Enabling of AUTOSAR system design using Eclipse-based tooling,” in
International Conference: Embedded Real Time Software, 2008. 1, 2

[7] C. Schlegel, “Navigation and Execution for Mobile Robots in Dynamic
Environments: An Integrated Approach,” Ph.D. dissertation, University
of Ulm, 2004. 1

[8] M. Lutz, D. Stampfer, A. Lotz, and C. Schlegel, “Service robot
control architectures for flexible and robust real-world task execution:
Best practices and patterns,” in Informatik 2014, Workshop Roboter-
Kontrollarchitekturen. Stuttgart, Germany, Springer LNI der GI,
September 2014, ISBN 978-3-88579-626-8. [Online]. Available:
http://subs.emis.de/LNI/Proceedings/Proceedings232/article99.html 1,
3, 5.3

[9] Robotics@HS-Ulm, http://www.youtube.com/roboticsathsulm, visited:
Jan. 25th 2016. 1, 5, 5.1, 7, 7.1, 8

[10] J. Thyssen, D. Ratiu, W. Schwitzer, E. Harhurin, M. Feilkas, and
E. Thaden, “A System for Seamless Abstraction Layers for Model-based
Development of Embedded Software,” in Proc. Envision 2020 Workshop,
2010, pp. 137–148. 2

[11] M. Klotzbücher and H. Bruyninckx, “Coordinating Robotic Tasks and
Systems with rFSM Statecharts,” Journal of Software Engineering for
Robotics (JOSER), vol. 3, no. 1, 2012. 2

[12] N. Hochgeschwender, L. Gherardi, A. Shakhirmardanov, G. Kraet-
zschmar, D. Brugali, and H. Bruyninckx, “A model-based approach
to software deployment in robotics,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Nov 2013, pp.
3907–3914. 2

[13] L. Gherardi and D. Brugali, “Modeling and reusing robotic software ar-
chitectures: The hyperflex toolchain,” in IEEE International Conference
on Robotics and Automation (ICRA), May 2014. 2

[14] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009. 2

[15] IDEs in ROS, http://wiki.ros.org/IDEs, visited: Jan. 25th 2016. 2
[16] RIDE, https://code.google.com/p/brown-ros-pkg/wiki/RIDE, visited:

Jan. 25th 2016. 2
[17] rxDeveloper, https://code.google.com/p/rxdeveloper-ros-pkg/, visited:

Jan. 25th 2016. 2
[18] H. Bruyninckx, M. Klotzbücher, N. Hochgeschwender, G. Kraetzschmar,

L. Gherardi, and D. Brugali, “The BRICS component model: a model-
based development paradigm for complex robotics software systems,”
in Proc. of the 28th Annual ACM Symposium on Applied Computing,
ser. SAC ’13. New York, NY, USA: ACM, 2013. 2

[19] E. A. Lee, “Disciplined Heterogeneous Modeling,” in MODELS 2010,
Oslo, Norway, October 2010, invited Keynote Talk. 2, 3, 6

[20] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W.-K. Yoon, “RT-
Component Object Model in RT-Middleware Distributed Component
Middleware for RT (Robot Technology),” in IEEE International Sympo-
sium on Computational Intelligence in Robotics and Automation (CIRA
’05), June 2005, pp. 457 –462. 2

[21] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane, “RobotML,
a Domain-Specific Language to Design, Simulate and Deploy Robotic
Applications,” in 3rd International Conference on Simulation, Modeling
and Programming for Autonomous Robots, SIMPAR, ser. Lecture Notes
in Computer Science, I. Noda, N. Ando, D. Brugali, and J. Kuffner, Eds.
Springer Berlin Heidelberg, November 2012. 2

[22] C. Schlegel, A. Lotz, M. Lutz, D. Stampfer, J. F. Inglés-Romero, and
C. Vicente-Chicote, “Model-Driven Software Systems Engineering in
Robotics: Covering the Complete Life-Cycle of a Robot,” in Informatik
2013, Workshop Roboter-Kontrollarchitekturen. Koblenz, Germany,
Springer LNI der GI, September 2013. 3, 4, 7.1

[23] J. F. Moore, “Predators and Prey: A New Ecology of Competition,”
Harward Business Review, vol. 71, no. 3, pp. 75–83, 1993. 3

[24] M. Peltoniemi and E. Vuori, “Business Ecosystem as the New Approach
to Complex Adaptive Business Environments,” in FeBR 2004 - Frontiers
of e-Business Research 2004, proceedings of eBRF 2004. Tampere
University of Technology and University of Tampere, 2005, pp. 267–
281. 3

[25] C. Schlegel and D. Stampfer, “The SmartMDSD Toolchain: Supporting
dynamic reconfiguration by managing variability in robotics software
development. Tutorial on Managing Software Variability in Robot Con-
trol Systems,” in Robotics: Science and Systems Conference (RSS 2014),
Berkeley, CA, July 2014. 3

[26] C. Schlegel, A. Steck, and A. Lotz, “Robotic software systems: From
code-driven to model-driven software development,” in Robotic Systems
- Applications, Control and Programming, A. Dutta, Ed. InTech, 2012,
ISBN:978-953-307-941-7. 3, 4

[27] E. Dijkstra, A Discipline of Programming. Englewood Cliffs, NJ:
Prentice Hall, 1976. 3

[28] A. Lotz, J. F. Inglés-Romero, D. Stampfer, M. Lutz, C. Vicente-Chicote,
and C. Schlegel, “Towards a Stepwise Variability Management Process
for Complex Systems: A Robotics Perspective,” in International Journal
of Information System Modeling and Design (IJISMD), vol. 5, no. 3. IGI
Global, 2014, pp. 55–74. 4, 5.8

[29] Eclipse Foundation, “Eclipse Modeling Project Website,” http://eclipse.
org/modeling, visited: Jan. 25th 2016. 4

[30] Papyrus UML, 2015, http://www.eclipse.org/papyrus/, visited: Jan. 25th
2016. 4

[31] Eclipse Foundation, “Xtext Website,” http://www.eclipse.org/Xtext/, vis-
ited: Jan. 25th 2016. 4

[32] ——, “Xtend Website,” http://www.eclipse.org/xtend, visited: Jan. 25th
2016. 4

[33] J. Vlissides, “Pattern Hatching: Design Patterns Applied,” ser. The
software patterns series. Addison-Wesley Professional, 1998, ISBN:
9780201432930. 4

[34] C. Schlegel, “Fast local obstacle avoidance under kinematic and dynamic
constraints for a mobile robot,” in Proc. Int. Conf. on Intelligent Robots
and Systems (IROS), Victoria, Canada, 1998, pp. 594–599. 5.1

[35] SmartSoft Website, http://www.servicerobotik-ulm.de. 5.1, 7, 8
[36] C. Schlegel, A. Steck, and A. Lotz, “Model-Driven Software Devel-

opment in Robotics: Communication Patterns as Key for a Robotics
Component Model,” in Introduction to Modern Robotics, D. Chugo and
S. Yokota, Eds. iConcept Press, 2012, ISBN:978-0980733068. 5.1, 5.3

[37] C. Schlegel, A. Lotz, M. Lutz, and D. Stampfer, “Supporting Separation
of Roles in the SmartMDSD-Toolchain: Three Examples of Integrated
DSLs,” in (invited talk) 5th Int. Workshop on Domain-specific Languages
and Models for Robotic Systems (DSLRob) in conjunction with the
Int. Conf. on Simulation, Modeling, and Programming for Autonomous
Robots (SIMPAR), Bergamo, Italy, October 2014. 5.4

[38] A. Lotz, A. Steck, and C. Schlegel, “Runtime Monitoring of Robotics
Software Components: Increasing Robustness of Service Robotic Sys-
tems,” in 15th International Conference on Advanced Robotics (ICAR),
Tallinn (Estonia), June 2011. 5.4

[39] A. Steck and C. Schlegel, “Managing execution variants in task coor-
dination by exploiting design-time models at run-time,” in IEEE Int.

http://dx.doi.org/10.1007/978-3-319-11900-7_17
http://subs.emis.de/LNI/Proceedings/Proceedings232/article99.html
http://www.youtube.com/roboticsathsulm
http://wiki.ros.org/IDEs
https://code.google.com/p/brown-ros-pkg/wiki/RIDE
https://code.google.com/p/rxdeveloper-ros-pkg/
http://eclipse.org/modeling
http://eclipse.org/modeling
http://www.eclipse.org/papyrus/
http://www.eclipse.org/Xtext/
http://www.eclipse.org/xtend
http://www.servicerobotik-ulm.de


D. Stampfer et al. / The SmartMDSD-Toolchain: An Integrated Development Workflow and Integrated Development Environment (IDE) for Robotics Software 19

Conf. on Intelligent Robots and Systems (IROS), San Francisco, CA,
USA, 2011. 5.5

[40] D. Stampfer, M. Lutz, and C. Schlegel, “Information Driven Sensor
Placement for Robust Active Object Recognition based on Multiple
Views,” in In Proc. IEEE Int. Conf. on Technologies for Practical Robot
Applications (TePRA), Woburn, Massachusetts, USA, 2012, pp. 133–
138. 5.8

[41] “ITEA2 FIONA Project Review: Framework for Indoor and Outdoor
Navigation Assistance,” October 2015, (non-public document). 7.1, 8

[42] ZAFH Autonomous mobile Servicerobots, http://www.
zafh-servicerobotik.de, visited: Jan. 25th 2016. 7.1

[43] Deutsches Zentrum für Luft- und Raumfahrt e.V., “Servicerobotik Pro-
jekte,” http://www.pt-it.pt-dlr.de/de/3046.php, visited: Jan. 25th 2016.
7.1

[44] FIONA - Framework for Indoor and Outdoor Navigation Assistance,
http://www.fiona-project.eu, visited: Jan. 25th 2016. 7.1

[45] FESTO Openrobotino Wiki, http://wiki.openrobotino.org/index.php?
title=Smartsoft, visited: Jan. 25th 2016. 7.1

[46] D. A. Wheeler, “SLOCCount,” http://www.dwheeler.com/sloccount/,
visited: Jan. 25th 2016. 7.1

[47] R. Likert, “A technique for the measurement of attitudes.” Archives of
Psychology, vol. 22, no. 140, pp. 1–55, 1932. 7.2

Dennis Stampfer is a Research Associate at
the University of Applied Sciences Ulm, Ger-
many. He is a member of the service robotics re-
search center (www.servicerobotik-ulm.de) and
involved in the FIONA-Project (Framework for
Indoor and Outdoor Navigation Assistance). His
research interests include information driven ob-
ject recognition and system composition for ser-
vice robotics in a continuous development work-
flow using model-driven software development.
He is a member of IEEE RAS TC-SOFT (Tech-

nical Committee on Software Engineering for Robotics and Automation).
He has studied Computer Engineering and Information Systems in
Ulm where he has received his Master’s degree. He is working on a
cooperative PhD with Technische Universität München (TUM).

Alex Lotz is a Research Associate at the
University of Applied Sciences Ulm, Germany.
He is a member of service robotics research
center (www.servicerobotik-ulm.de) and is in-
volved in a bilateral cooperation with Bosch. He
was, together with Christian Schlegel, finalist
for the 2012 euRobotics Technology Transfer
Award (“Software concepts for service robots
- Model-driven software development”). His re-
search focus is on applying Model Driven Soft-
ware Development methods to cope with the

ever-increasing software complexity as a means towards a successful
Robotics Software Business Ecosystem. He has studied Computer
Engineering and Information Systems in Ulm where he has received his
Master’s degree. He is working on a cooperative PhD with Technische
Universität München (TUM).

Matthias Lutz is a Research Associate at the
University of Applied Sciences Ulm, Germany.
He is a member of the service robotics re-
search center (www.servicerobotik-ulm.de) and
involved in the iserveU-Project (intelligent modu-
lar technologies for service robots in human
environments like hospitals). His research inter-
ests are in the area of system integration for
service robotics as one of the challenges from
laboratory towards real world. He has studied
Computer Engineering and Information Systems

in Ulm where he has received his Master’s degree. He is working on a
cooperative PhD with Technische Universität München (TUM).

Christian Schlegel is professor in the Com-
puter Science Department at the University of
Applied Sciences Ulm, Germany. He is head of
the real-time systems and autonomous mobile
systems lab and head of the service robotics re-
search center (www.servicerobotik-ulm.de). His
research interests are in the area of algorithms
and mechanisms for intelligent systems with a
focus on service robotics. His mission is to fur-
ther alleviate the gap between lab systems and
robust everyday applications. His main research

activity is in the field of model-driven software development for sensori-
motor systems (www.servicerobotik-ulm.de/drupal/?q=node/20). He is
associate editor of JOSER - Journal of Software Engineering for
Robotics. Together with Alex Lotz, he has been finalist for the 2012
euRobotics Technology Transfer Award (“Software concepts for service
robots - Model-driven software development”).

http://www.zafh-servicerobotik.de
http://www.zafh-servicerobotik.de
http://www.pt-it.pt-dlr.de/de/3046.php
http://www.fiona-project.eu
http://wiki.openrobotino.org/index.php?title=Smartsoft
http://wiki.openrobotino.org/index.php?title=Smartsoft
http://www.dwheeler.com/sloccount/

	Introduction
	Related Work
	Towards a Business Ecosystem for Robotics
	Model Driven Software Development
	The SmartMDSD Toolchain
	Exemplary Use-Case
	Development Workflow
	System Design
	Component Development and Implementation
	Behavior Development
	System Configuration
	System Deployment
	Run-Time

	Lessons Learned
	Results
	Applications of SmartSoft
	User Study

	Conclusion
	References
	Biographies
	Dennis Stampfer
	Alex Lotz
	Matthias Lutz
	Christian Schlegel


