
Journal of Software Engineering for Robotics 5(2), September 2014, 1-12
ISSN: 2035-3928

Control Software Architecture for

Cooperative Multiple Unmanned

Aerial Vehicle-Manipulator Systems
Gianluca Antonelli1 Khelifa Baizid 1 Fabrizio Caccavale2

Gerardo Giglio2 Giuseppe Muscio2 Francesco Pierri2
1 Dipartimento di Ingegneria Elettrica e dell’Informazione, Università di Cassino e del Lazio Meridionale, Via Di Biasio 43, 03043 Cassino, Italy

2 Scuola di Ingegneria, Università degli Studi della Basilicata, via dell’Ateneo Lucano, 10, 85100 Potenza, Italy

Abstract—In this paper a Control software Architecture for cooperative multiple unmanned aerial Vehicle-manIpulator Systems (CAVIS)
is presented. In particular, Unmanned Aerial Vehicles (UAVs) equipped with a robotic manipulator eventually involved in a cooperative
object transportation mission are considered. Such robotic systems involve specific constraints given by the interaction of the degrees
of freedom of the arms; for example, obstacle avoidance, joint limits, kinematic singularities need to be properly handled together
with the main objective of controlling the arm’s end-effector to transport the object. To this end, a proper behavioral approach has
been tailored and implemented with the aim to provide modularity and flexibility of use to the architecture. A case study shows the
performance of the proposed software architecture.

Index Terms—Control software architecture, Unmanned aerial vehicle manipulator systems, multi-robot systems, coordination.

1 INTRODUCTION

I N the last two decades multi-robot systems have played
an important role in several robotics applications [1] [2]

[3]. They can be composed by different types of robotic
units, such as aerial, ground or marine vehicles. In particular,
Unmanned Aerial Vehicles (UAVs) can be used in several
domains, such as, e.g., monitoring, aerial mapping, terrain
inspection, traffic surveillance, rescue missions and cadastral
applications [4], [5], [6], [7]. Manipulation capabilities of
aerial robots can be provided by a robotic arm mounted on the
floating base (Unmanned Aerial Vehicle-Manipulator Systems,
UAVMSs) [8]. In addition, systems composed of multiple
UAVMSs can be adopted to carry out more complex missions
such as, e.g., cooperative transportation of large and/or heavy

Regular paper – Manuscript received December 06, 2013; revised Jun 29,
2014.

• This work was supported European Communitys 7th Framework Program
(No.287617) (IP project ARCAS - Aerial Robotics Cooperative Assembly
system).

• Authors retain copyright to their papers and grant JOSER unlimited
rights to publish the paper electronically and in hard copy. Use of the
article is permitted as long as the author(s) and the journal are properly
acknowledged.

• Authors are in alphabetical order.

Figure 1. Application scenario envisioned in the frame-
work of the ARCAS project.

payloads, cooperative assembly of structures in remote and/or
hazardous environments, cooperative inspection and mapping.
A notable example is given by the EU-funded ARCAS (Aerial
Robotics Cooperative Assembly System) project [9], aimed
at developing one of the firsts cooperative free-flying robot
system for assembly and structure construction (Fig. 1).

Since multi-robot systems are employed in a wide range
of applications, the design and implementation of Control
Software Architectures (CSAs) dedicated to such systems is a

www.joser.org - c© 2014 by G. Antonelli, K. Baizid, F. Caccavale, F. Pierri, G. Giglio, G. Muscio



2 Journal of Software Engineering for Robotics 5(2), September 2014

challenging issue, given the complexity and the heterogeneity
of such systems. Indeed, several efforts have been spent on the
design and the development of software/hardware platforms
supporting multi-robot systems, leading to notable results such
as URBI [10], MRDS [11], Player/Stage [12], ROS [13] and
OROCOS [14].

Considering aerial robotics, recently, many software appli-
cations have been developed, such as Hector Quadrotor [15],
ARDron [16] (and the related ARDrone API [17]) for robust
navigation in dynamic environment, TeleKyb [18] for UAV
control. Some works addressed multi-UAV systems, e.g., [5],
[6] and [19], although the presence of a manipulator was not
considered.

Evaluation of the above mentioned software architecture is
not easy, due to the huge variety of application scenarios [20],
[21]. Many of them, certainly, may be considered versatile,
but the implementation of such CSAs might require develop-
ment of new software components, to cope with additional
specifications imposed by particular application scenarios and
robotic systems, such as multi-UAVMSs. On the other hand,
embedding a suitable control methodology in the CSA is a
critical step for systems having a relatively large number of
Degrees Of Freedom (DOFs) to be handled, especially when
safety issues and physical interaction between robots (and/or
with the external environment) have to be considered. More-
over, tuning the control software through a reliable simulation
environment is another issue to be tackled in the design of the
CSA, since there are many dynamic and kinematic constraints
to be considered in the design phase of the controller, see
e.g., [22]. Indeed, the development of reliable and effective
CSAs for these systems that consider all above issues, is a very
challenging topic, which must be well addressed to the earlier
stages of the software design [5], [6], [21]. On the other hand,
task management and mission planning for cooperative multi-
UAVMSs must be taken into account as well [5]. Recently,
several research works adopted concepts such as hierarchical
decomposition of missions planning [23], where the mission
can be decomposed into a set of basic behaviors (i.e., a
library of software functions). When performing complex
tasks, however, combining many simple behaviors might be
necessary.

Therefore, it can be concluded that the current state of the
art in CSAs for multi-robot systems does not provide complete
solutions to cope with all the requirements needed by multiple
UAVMSs. In the following, a Control software Architecture
for cooperative unmanned aerial Vehicle-manIpulator Systems
(CAVIS) is developed. CAVIS is aimed at supporting the de-
sign and the implementation of behavioral control schemes for
multiple UAVMSs. To deal with CSA design complexity, the
concept of decomposition of the system into components has
been applied, which is a critical issue for software architecture
design [24], [25]. In detail, the architecture is based on a
hierarchical arrangement of the main components. Namely,
at the lowest level, a set of basic tasks, named elementary

behaviors, is defined; those are then combined into complex
tasks, named compound behaviors, according to the Null-
Space based Behavioral (NSB) approach [2], [23], [26]. The
developed tasks’ library allows to cover most aerial manip-
ulation scenarios. At a higher abstraction level, compound
behaviors are grouped into actions, while a mission can be
composed by a temporal sequence of actions.

The current version of the CSA has been developed un-
der Matlab/Simulink R© VPL (Visual Programing Language)
and profit from SimMechanics R© for simulation and scene
rendering. A preliminary version of the developed architec-
ture has been ported to the experimental set-up available at
FADA-CATEC in Sevilla [27] by means of the Real Time
Workshop R© [28] [29], and tested experimentally on a single
UAVMS. Some videos of the experiments are available at
http://webuser.unicas.it/lai/robotica/video.html#UAVMS.

The paper is organized as follows: the second section
provides a general description of the proposed software ar-
chitecture; the third section provides a bottom-up description
of the main modules; the fourth section provides an application
example, involving a cooperative transportation of an object by
two UAVMSs; lesson learned and conclusions end the paper.
Finally, some mathematical details of the control algorithms
developed in CAVIS are provided in the Appendix.

2 CAVIS: A GENERAL DESCRIPTION
2.1 Main features
Figure 2 illustrates the main CAVIS’s features, i.e., the
possibility to handle multiple heterogeneous UAVs/UAVMSs,
eventually in a collaborative scenario, by providing a library
of behaviors properly handled. To summarize, the CAVIS
features are:

1) it provides a flexible and modular environment for
UAVMSs applications;

2) it allows to cope with multiple entities, eventually het-
erogeneous and/or cooperative UAVs/UAVMSs;

3) it provides simulation framework for the design and the
tuning of the control software;

4) hardware-in-the-loop tests before porting to the hard-
ware; can be carried out in the same framework used to
develop the controller.

2.2 Definitions and main components
The proposed CSA is composed by several modules (Fig. 3),
briefly described below:
• Interface: it is a Graphical User Interface that allows the

user to input all the mission’s details such as, for example,
the initial and final configuration for the UAVMSs and the
intermediate configurations (see Fig. 4).

• Planner: it generates off-line the plan for a given mission.
• Display: it allows to define and customize all 3D graphic

objects, including the environment objects, UAVs and
manipulators.



G. Antonelli et al./ Control Software Architecture for Cooperative Multiple Unmanned Aerial Vehicle-Manipulator Systems 3

Figure 2. Main features of CAVIS architecture.

Figure 3. CAVIS’s main software components.

• Supervisor: it implements one of the core concepts
handled in this paper, since it provides task selection,
coordination and synchronization.

• Controller: it implements the equations related to the
selected compound behavior according to the Null-Space-
based Behavioral control described in the Appendix. Its
output is the reference velocity for each DOF to be sent
to the low level (dynamic) control.

• Perception: it provides the state of the UAVMSs and
information about the environment. Depending on the
specific case, it can be centralized or partly implemented
on-board each vehicle.

3 BOTTOM-UP DESCRIPTION OF THE COMPO-
NENTS

Each UAVMS has to handle several control objectives simul-
taneously: for example, it has to move the end-effector and, at
same time, to avoid both obstacles and mechanical joint limits.
Each of this control objectives is defined as an elementary be-
havior. Within the framework of Null-Space-based Behavioral

Figure 5. Hierarchical decomposition of Mission, Sub-
mission, Action and Compound behavior.

control, the elementary behaviors may be properly composed
within compound behavior in a priority order. At a higher
abstraction level, a set of compound behaviors can be grouped
in an action, in such a way to represent a basic motion of the
UAVMS. For each vehicle, a sub-mission lists the sequence of
actions to be run. Finally, at the top, the mission represents
the overall goal for the multi-agent system.

Figure 5 represents the hierarchy that describes the rela-
tionship among the above-defined concepts. Notice that the
elementary behaviors are embedded in compound behaviors.

3.1 Elementary behaviors

An elementary behavior is expressed through a function that
relates the system’s DOFs to the variable to be controlled.
The proposed approach handles behaviors at the kinematic
level, according to details given in the Appendix. It is pos-
sible to classify the elementary behaviors according to two
aspects, one related to the DOFs involved, namely: the sole
vehicle, the arm joint-space, the arm end-effector and the
coordination/cooperation of the handled object. The second
classification, based on the type of controlled variables, is in
3 groups: safety behaviors, namely those related to the safety
of the system, functional behaviors, namely behaviors aimed at
assigning a motion to the system, and optimization behaviors,
namely those aimed at optimizing some indices (e.g., robot
manipulability).

In the following, a possible list of elementary behaviors is
provided with a brief description, while the expression of the
task functions can be found in the Appendix. It is worth noting
that this is not an exhaustive overview and new elementary
behaviors can be defined on the basis of the designer’s needs.



4 Journal of Software Engineering for Robotics 5(2), September 2014

Figure 4. Main Matlab/Simulink R© windows.

• Vehicle Position (VP): This elementary behavior acts at
the vehicle level and controls the vehicle position. It is
useful when the arm’s motion is not of concern, since
it is kept in a given home configuration (e.g., folded on
itself).

• Vehicle Yaw (VY): This elementary behavior is aimed at
controlling the yaw angle,

• Vehicle Obstacle Avoidance (VOA): This behavior is
designed to prevent undesired collisions between the
vehicle and obstacles present along the planned path. It
controls the distance between the vehicle center of mass
and the obstacle.

• Mechanical Joint Limit (MJL): Any manipulator exhibits
mechanical limits for the joints mobility. It is appropriate
to define a behavior that keeps the arm’s configuration
far from such limits.

• Robot Manipulability (RM): Dexterity of a robotic ma-
nipulator can be defined in many ways as a function
(manipulability measure) of the joints configuration. This
elementary behavior encodes the chosen manipulability
measure and tries to maximize it.

• Robot Nominal Configuration (RNC): In some cases it is
required to set the robotic arm to a specific configuration,
e.g., the arm folded on itself during take-off and landing.
This behavior is aimed at controlling the arm position in
the joint space.

• End-Effector Position (EEP): This elementary behavior
controls the position of the manipulator end-effector.

• End-Effector Orientation (EEO): This elementary be-
havior controls the orientation of the manipulator end-

effector.
• End-Effector Configuration (EEC): This elementary be-

havior is aimed at controlling the manipulator end-
effector position and orientation, simultaneously.

• Inter-Vehicle Distance (IVD): In order to avoid collisions
between UAVMSs, it is very useful to keep a safety
distance between each couple of UAVMSs.

• Object Configuration (OC): This behavior is aimed at
controlling the motion of an object grasped by two or
more UAVMSs along an assigned trajectory.

• Object Obstacle Avoidance (OOA): In the presence of
obstacles during the cooperative transportation, the whole
UAVMSs team should be able to hold the shared object
and avoid the obstacle. Hence, this behavior controls the
distance between a point of the system and the obstacle.

Figure 6 shows the matrix corresponding to the classifica-
tion by resorting to the above-defined acronyms.

3.2 Compound behaviors

In case that the DOFs of the UAVMS are more than those
required by the task function, the system is kinematically
redundant and the redundant DOFs can be exploited to achieve
additional tasks by resorting to a task-priority approach such
as the NSB control [2], [26].

The elementary behaviors can be arranged in a defined
priority order, according to the needs of the mission to be
accomplished by the multi-UAVMS. The hierarchical combi-
nation of a set of elementary behaviors is defined as compound
behavior (see Fig. 7). The priority order for elementary



G. Antonelli et al./ Control Software Architecture for Cooperative Multiple Unmanned Aerial Vehicle-Manipulator Systems 5

Figure 6. Classifications of some elementary behaviors
according to the main control levels of the robotic system.

Figure 7. A scheme illustrating the relationship between
elementary and compound behaviors.

behaviors depends on practical considerations (e.g., safety
behaviors, as obstacles avoidance, should have always higher
priority) or on a design choice. It is worth noticing that two
compound behaviors can differ only for the priority order of
its elementary behaviors.

An elementary behavior with a not-highest priority can
be achieved only if it is compatible with the higher-priority
ones, i.e., a low-priority behavior is achieved only for those
components not conflicting with the higher-priority ones. A
rigorous analysis of the compatibility issues of elementary
behaviors can be achieved on the basis of the concepts of
Jacobians orthogonality and independency [30].

From the software perspective, each elementary behavior
corresponds to a function. The user only needs to know the list
of compound behaviors with corresponding input-output. The
function of an elementary behavior may be called by several
functions of compound behaviors, thus implementing code re-
use and improve the debugging phase.

Figure 8. Action call syntax implemented in CAVIS.

3.3 Actions
Actions are used to raise the level of abstraction of the
problem description and simplify the communication among
developers. An action is a set of compound behaviors that are
logically related to the current objective. A certain compound
behavior may belong to different actions.

From a practical perspective, the Supervisor first selects
the current action and then, among the compound behaviors
belonging to the action, the proper one to be used in the NSB
equation.

The actions are logically grouped within categories similar
to the ones presented for the elementary behaviors. Thus, there
are actions grouping all the compound behaviors to move the
sole vehicle, actions collecting the compound behaviors related
to the motion of the vehicle and the arm in free space, i.e., with
no interaction nor cooperation, and, finally, actions concerning
the cooperative/coordinated motion.

The output of the action is the desired velocities for the
vehicle and the arm, to be sent to the low level dynamic con-
troller. Its input is the Current State (CS) and the Desired State
(DS), as schematically shown in Fig. 8 (taskID corresponds to
the compound behavior selected by the Supervisor).

3.4 Mission/Sub-mission
Each mission is decomposed into several sub-missions, each
one dedicated to a single UAV/UAVMS. A sub-mission is
composed by a sequence of actions. For example, a mission
that involves two UAVMSs transporting an object is composed
by two sub-missions, each of them includes four successive
actions: move the vehicle toward the bar, pre-grasp, i.e.,
reconfigure the system, grasp, move the object.

The actions of different UAVMSs are synchronized by
means of a semaphore-like mechanism. Those requiring phys-
ical interaction between team-mates need to be executed
simultaneously, otherwise a weak temporal synchronization is
implemented. For example, two team-mates can reach the pre-
grasp configuration independently and the first waits for the



6 Journal of Software Engineering for Robotics 5(2), September 2014

Figure 9. Mission to be executed by two UAVMSs.

second. However, once they have grasped the object to be
transported, there is physical interaction between the cooper-
ating UAVMSs, and thus the actions need to be synchronized
at the higher possible frequency.

Figure 9 shows a mission that is composed by two sub-
missions, each assigned to one UAVMS, where, the action 3
of the second UAVMS (with blue color) has time dependency
to the second action of the first UAVMS.

3.5 Supervisor
The main role of the Supervisor is the execution of the mission
generated by the Planner. During the mission, execution of the
original plan may be changed, according to the actual state of
the robotic team and the environment, by selecting the proper
compound behavior to be performed.

Continuity of the control law must be preserved during the
switching phase as done, e.g., in [31], [32].

In detail, the Supervisor switches among the compound
behaviors according to the following criteria:

(i) the functionality behaviors are considered concluded
if the error, σ̃(t), between the desired final configu-
ration and the actual one, is below a suitable defined
threshold σ̃m;

(ii) the proper safety behaviors are activated when the
distance between the obstacle and the object or a
single UAVMS, d(t), is below a certain safety value
dm;

(iii) the mechanical joint limits of the manipulator are
activated if (at least) one of the joints is close to
violate its upper, q̄, or lower, q, limit. Namely, by
defining a certain threshold, ∆q, the behavior is
activated if q(t) > Q̄ or q(t) < Q, given that
Q̄ = q̄ −∆q, Q = q + ∆q (refer to Appendix for a
complete review);

(iv) to avoid deadlocks, each action has a certain max-
imum duration and it is deactivated after the final
time, tF , is achieved.

For example, if the Supervisor is running the compound
behavior VP, i.e., vehicle position control, it will switch to
VOA+VP, i.e., vehicle obstacle avoidance + vehicle position
control, when an obstacle is detected.

Figure 10 shows the Supervisor flowchart. Each of the
above listed criteria activates a flag indicating that it needs

Figure 10. Flowchart implemented in the Supervisor for
managing actions.

to be handled. A logical choice among safety, mechanical
joint limits and task error influences selection of the compound
behavior to be activated at the each sampling time.

4 CASE STUDY
To test the proposed architecture, a case study has been devel-
oped by considering a system composed of two quadrotors,
each equipped with a 5 DOFs robotic arm. The simulation
model has been developed under Matlab/SimMechanics R©;
in detail, the vehicle parameters are those of the ASCTEC
PELICAN quadrotor, while the arm parameters are those of the
arm currently under development in the PRISMA laboratory
of the University of Naples within the ARCAS project [9].

The objective is to perform a cooperative mission using two
UAVMSs: they are required to approach an object, grasp it
and move it along a desired trajectory. Each UAVMS has to
perform one sub-mission, composed by a sequence of actions
(see Fig. 11):
• Takeoff: Since the goal is to move the vehicle along the
z axis, while keeping the arm still, only the compound
behavior VP is activated.



G. Antonelli et al./ Control Software Architecture for Cooperative Multiple Unmanned Aerial Vehicle-Manipulator Systems 7

Figure 11. The sequence of actions to be managed by
the Supervisor in the transportation scenario.

• Reach the object: Moves the vehicle near the object and,
at the same time, set the arm in a particular configuration;
this action includes the compound behavior VP+RNC,
where, the vehicle position have the higher priority and
the robot nominal configuration is the secondary behavior.

• Reach pre-grasping configuration: Moves the arm toward
the best configuration for grasping (i.e., a configuration
that maximizes the robot manipulability) and move the
end-effector to the grasp position. Therefore, the com-
pound behavior EEC+RM is activated, where, the EEC
has the higher priority.

• Perform the grasp: Closes the grasp tool.
• Transports the object: Transports the object along a

desired trajectory (a linear path). At the beginning the
compound behavior OC is activated (i.e., the goal is
to track the assigned trajectory for the object); then,
during the motion execution, an obstacle obstructs the
object’s path. When the distance between the obstacle
and the object is below a safety value (dm = 1.5
m), the Supervisor switches from OC to OOA+OC, i.e.,
the object obstacle avoidance is executed with highest
priority. Then, when the obstacle has been overcame,
the Supervisor switches back to the compound behavior
OC. During the transportation phase, in case the dis-
tance between the cooperating team-mates is below a
certain threshold, the Supervisor activates the compound
behavior OOA+OC+IVD. In the proposed simulation this
doesn’t happen since the object is relatively long.

• Release the object: Opens the grasping tool to release the
object.

• Reach the station: Drives each UAVMS toward the
base station, the implemented compound behavior is
VP+RNC.

• Landing: For landing the UAVMS, the compound behav-
ior VP is used.

Figure 12 shows some snapshots of the mission. In detail,
Fig. 12(a) shows the approach to the object (the zoom on the

Figure 13. Norm of the vehicle position during the action
”Takeoff”.

(a) vehicle position error (b) joints position error

Figure 14. Task function errors during the action ”Reach
the object”.

bottom left corner shows details of the end-effectors and the
object), Fig. 12(b) shows the arm reconfiguration, Fig. 12(c)
shows the object in motion along the planned trajectory, while
Fig. 12(d) shows the system during obstacle avoidance phase.

Figures 13 to 16 show the task function errors. For the
sake of brevity only figures that refer to the first UAVMS
are reported. Figure 13 reports the time history of the norm
of the vehicle position error during the takeoff phase. Figure
14 shows the task function errors during the action ”Reach
the object”; in detail, in Fig. 14(a) the error related to the
primary behavior (i.e., the norm of the vehicle position error) is
reported, while in Fig. 14(b) the norm of the error between the
desired arm joint positions and the actual ones is reported. It
can be noticed that both task function errors converge to zero;
therefore, both compound behaviors are correctly executed.
Figure 15 shows the performance of the behavior executed
during the pre-grasping; in detail, in Fig. 15(a) the norm of the
position and orientation error of the end-effector are reported,
while in Fig. 15(b) the manipulability index of the robotic arm,
normalized to its maximum allowed value, wmax, is reported.
The manipulability measure has been computed as in [33].

Figure 16 shows the performance obtained during the trans-
portation of the shared object; the trajectory is reported in Fig.
16(a): it can be noticed that, during the obstacle avoidance



8 Journal of Software Engineering for Robotics 5(2), September 2014

(a) (b)

(c) (d)

Figure 12. Some snapshots of the mission of transporting a bar using two UAVMSs.

(a) end-effector position and orienta-
tion error norm

(b) normalized manipulability index

Figure 15. Performance during the action ”Reach pre-
grasping configuration”.

phase, the object goes away from the planned trajectory
(in red) which is reached back after the obstacle has been
overcame; moreover, the safety distance of 1.5 m is kept, as
shown in Fig. 16(b).

A video showing a mission of Coordinated transportation
of a bar using two UAVMSs can be downloaded from this
link http://webuser.unicas.it/lai/robotica/video.html#UAVMS,
where also some preliminary experimental results are pro-
vided. From the aerial station that is located close to the
working area, two UAVMSs take-off, reach a location close
to the bar (object to be transported), grasp and move the bar
toward a working area (building under construction). During
the transportation phase, the programmed path goes through an
obstacle (a building); the system is able to circumnavigate the
building safety and attains the destination. Then, the UAVMSs
release the bar and reach back the station.

(a) planned (red) and actual (blue)
object frame trajectory

(b) distance between the vehicle center
of mass and the obstacle

Figure 16. Object transportation performance.

5 LESSONS LEARNED

From the software perspective, the challenge embedded in
the experimental validation of a complex robotic mission
is significant. Although this activity related to research is
generally not new or original, it is time consuming and prone
to dramatic errors.

Moreover, joint research projects usually involves heteroge-
neous working groups from different countries and different
background (as example the ARCAS project [9] involves 8
Partners of 5 different countries). Thus, it is often necessary
to decompose the overall problem in simpler concepts, easily
manageable from the perspective of producing software in dif-
ferent laboratories by researchers with different backgrounds.
In a sense, it is possible to describe the logical structure of
the software with a bottom-up approach: we first defined the
elementary behaviors and produced a library with well defined



G. Antonelli et al./ Control Software Architecture for Cooperative Multiple Unmanned Aerial Vehicle-Manipulator Systems 9

input-output and the corresponding documentation. On the top
of this we made the same with the compound behaviors where
the atomic information of the elementary behaviors is not
necessary anymore.

In a consequential way we agreed and implemented the
concepts of action, sub-mission and mission with a progressive
higher level of abstraction of the concepts. Thanks to this
modularity each researcher, thus, enters the discussion at his
level of pertinence by ignoring the lower-level concepts.

6 CONCLUSION

In this paper a new Control Software Architecture, CAVIS,
has been presented, aimed at driving missions performed
by cooperative Unmanned Aerial Vehicles Manipulator Sys-
tems (UAVMSs). The main objective of the architecture is
to support a large range of possible cooperative scenarios
using multiple UAVMSs. The architecture is designed around
components that handle the current states of the involved
UAVMSs, and provide basic functionalities. CAVIS imple-
ments the decomposition of the overall control problems in
simpler sub-problems.

Future developments will be focused on the integration of
CAVIS within a ROS environment as well as on extensive
experimental testing.

APPENDIX

Kinematic control
Let us consider a system composed of N UAVMSs. The
motion of each UAVMS can be described by the following
variables:

ζ =

[
xV
q

]
=

pVφV
q

 , (1)

where xV ∈ IR6 represents the pose of the vehicle, given
by the position pV and the orientation (usually expressed
via a roll-pitch-yaw triple of angles) φV = [φV θV ψV ] of
the vehicle, and q ∈ IRnM represents the manipulator joint
position vector, being nM the number of DOFs of the arm.

The kinematic control problem for such a robotic system
is to find a reference value, ζr, to be fed to the vehicle and
arm motion controllers starting from the desired trajectory for
the assigned tasks. Therefore, a kinematic control, usually, is
based on two stages: first, an inverse kinematics algorithm
computes the motion references for the vehicle and joint
variables, then a motion control algorithm is in charge of
tracking the motion references (see figure 17).

Elementary behaviors
A specific elementary behavior assigned to the UAVMS can
be analytically described through a task variable σ∈ IRm to be
controlled. Let f be the configuration-dependent task function,

Figure 17. Scheme of the kinematic control.

representing the relationship between the task variable and the
state vector ζ, defined in (1), i.e.,

σ = f(ζ). (2)

The task Jacobian matrix Jσ ∈ IRm×(6+nM ) can be defined
via the differential relationship

σ̇ =
∂f(ζ)

∂ζ
ζ̇ = Jσ(ζ)ζ̇ . (3)

Let σd is the desired value of the task variable. In order to
compute the reference for the motion controllers from (3), it is
possible to derive a closed-loop inverse kinematics algorithm
[33] as

ζ̇r = J†σ(σ̇d + Λσ̃), (4)

where J†σ = JT
σ

(
JσJ

T
σ

)−1
is a right pseudo-inverse of Jσ ,

Λ is a suitable constant positive-definite matrix of gains and
σ̃ = σd − σ is the task error.

Remark 1: Some DOFs of the system could be not actuated,
as in the case of pitch and roll angles for standard quadrotor-
arm systems. Hence, in order to extend the use of the inverse
kinematics algorithm to this case, the (4) is solved only with
respect to the actuated velocities and only the part of the
Jacobian matrix referred to these velocities is considered.
Further details can be found in [22].

In the following the task functions and the relative Jacobian
matrices of the elementary behaviors reported in Section 3.1
are presented.
• Vehicle Position (VP):

σVP = pV ∈ IR3, JVP = [I3 O3×3+nM
] ∈ IR3×6+nM ,

where Iα and Oα×β are the (α×α) identity matrix and
the null matrix of dimension (α× β), respectively.

• Vehicle Yaw (VY):

σVY = ψV ∈ IR, JVY = [05 1 0nM
] ∈ IR1×6+nM ,

where 0α is the null vector of dimension α.
• Vehicle Obstacle Avoidance (VOA): Let pob ∈ IR3

denote the obstacle position, the task function and the
corresponding Jacobian matrix can be defined as

σVOA =
1

2
‖pV − pob‖2 ∈ IR,

JVOA = (pV − pob)T [I3 O3×3+nM
] ∈ IR3×6+nM .



10 Journal of Software Engineering for Robotics 5(2), September 2014

• Mechanical Joint Limit (MJL): A possible choice of the
task function could be

σMJL =

nM∑
i=1

li(qi)

where

li(qi) =


(q

i
−qi)2

2nM
, if qi ≤ qi,

0, if q
i
< qi ≤ qi,

(qi−qi)
2

2nM
, if qi > qj ,

with qj and q
j

are the lower and upper joint limit
respectively. The task Jacobian is JMJL = [01×6 J l] ∈
IR1×6+nM where

J l =

[
∂l1
∂q1

,
∂l2
∂q2

, . . . ,
∂lnM

∂qnM

]
∈ IRnM .

• Robot Manipulability (RM): To define the task function,
the manipulability measure for robot manipulators de-
fined as w(q) =

√
det(JT

E,V JE,V ) could be adopted,
where JE,V is the Jacobian of the arm with respect to
the vehicle center of mass. The task is fully characterized
by the task function and the Jacobian

σRM = w(q) ∈ IR,

JRM =[O1×6 Jw]∈ IR1×6+nM , Jw=
∂w(q)

∂q
∈ IR1×nM .

• Robot Nominal Configuration (RNC): This behavior can
be described by the task function

σRNC = q ∈ IRnM

with the Jacobian

JRNC = [OnM×6 InM
] ∈ IRn×6+nM .

• End-Effector Position (EEP): The task function is

σEEP = pE ∈ IR3,

where pE is the position vector of the manipulator end-
effector. The corresponding Jacobian JEEP ∈ IR3×6+nM

is the matrix such that ṗE = JEEP ζ̇, whose expression
can be found in [22].

• End-Effector Orientation (EEO): The task function is

σEEO = φE ∈ IR3,

where φE is the orientation vector (expressed in roll-
pitch-yaw angles) of the manipulator end-effector. The
corresponding Jacobian JEEO ∈ IR3×6+nM is the matrix
such that φ̇E = JEEOζ̇, whose expression can be found
in [22].

• End-Effector Configuration (EEC): The task function is
given by

σEEO = xE =

[
pE
φE

]
∈ IR6,

with the Jacobian

JEEC =

[
JEEP
JEEO

]
∈ IR6×6+nM .

• Inter-Vehicle Distance (IVD): This behavior is character-
ized by the task function

σIVij
=

1

2
‖pVi

− pVj
‖2 ∈ IR,

∀ (i, j) ∈ {1, . . . , N} × {1, . . . , N}, i 6= j

and Jacobian
JIV =

[
Jxi Jxj

]
where

Jxi =−Jxj =(pVi
− pVj

)T [I3 O3×3+nM
]∈ IR3×6+nM .

• Object Configuration (OC):
This elementary behavior requires from the planner mod-
ule a desired position (po,d) and a desired orientation
(Ro,d) for a coordinate frame attached to the object (Fo).
In addition to the object motion, the elementary behavior
requires to define also the grasp geometry, namely the
desired relative position (poEi,o) and orientation (Ro

Ei,o)
of each robot end-effector with respect to the object
frame. Notice that the superscript o denotes that the
quantities are referred to the frame Fo.
On the basis of the desired object motion and the desired
grasp geometry, it is possible to compute the desired
trajectories, in terms of position and orientation, for the
robot end-effectors, via{

pEi,d = po,d +Ro,dp
o
Ei,o

REi,d = Ro,dR
o
Ei .

(5)

The desired linear and angular velocities for each robot
can be obtained by deriving the (5), as{
ṗEi,d = ṗo,d − S(Ro,dp

o
Ei,o)ωo,d +Ro,dṗ

o
Ei,o

ωEi,d = ωo,d +Ro,dω
o
Ei,o,

(6)

where S(·) is the (3×3) skew-symmetric matrix operator
performing the cross product [33]. If the robots grasp a
rigid object in a rigid way, the relative variables, poEi,o
and Ro

Ei,o, are to be kept constant, therefore the (6)
becomes{

ṗEi,d = ṗo,d − S(Ro,dp
o
Ei,o)ωo,d

ωEi,d = ωo,d .
(7)

Thus, the OC elementary behavior can be viewed as
the elementary behavior EEC applied to the transporting
robots with desired pose and generalized velocity given
by (5) and (7), respectively.

• Object Obstacle Avoidance (OOA): The task function of
this behavior is defined as

σOOA =
1

2
‖po − pob‖2 ∈ IR,



G. Antonelli et al./ Control Software Architecture for Cooperative Multiple Unmanned Aerial Vehicle-Manipulator Systems 11

where po is the actual position of the origin of Fo and
pob is the (constant) location of an obstacle. The task
Jacobian can be computed as

JOOA = (po − pob)T ∈ IR1×3.

Compound behaviors

By adopting the Null Space-based Behavioral control ap-
proach, the overall system velocity is obtained by properly
merging the velocity vectors computed for each behavior as if
it was acting alone; then, before adding the task contribution
to the overall velocity command, a lower-priority behavior is
projected onto the null space of the higher-priority behaviors.
Hence, the overall system velocity can be computed according
to the following

ζ̇r = ζ̇1 +

Nt∑
k=2

N1,k−1ζ̇k, (8)

N1,k =
(
I − J†1,kJ1,k

)
, (9)

where the subscript k denotes the task priority, Nt is the
number of behaviors to be fulfilled, N1,k is a projector onto
the null space of the augmented Jacobian J1,k defined as

J1,k = [J1J2 · · · Jk]
T (10)

7 CONCLUSION

In this paper a new Control Software Architecture, CAVIS,
has been presented, aimed at driving missions performed
by cooperative Unmanned Aerial Vehicles Manipulator Sys-
tems (UAVMSs). The main objective of the architecture is
to support a large range of possible cooperative scenarios
using multiple UAVMSs. The architecture is designed around
components that handle the current states of the involved
UAVMSs, and provide basic functionalities. CAVIS imple-
ments the decomposition of the overall control problems in
simpler sub-problems.

Future developments will be focused on the integration of
CAVIS within a ROS environment as well as on extensive
experimental testing.

REFERENCES

[1] S. Nestinger and H. Cheng, “Mobile-R: A reconfigurable cooperative
control platform for rapid deployment of multi-robot systems,” in Proc.
IEEE International Conference onRobotics and Automation (ICRA),
2011, pp. 52–57. 1

[2] G. Antonelli, F. Arrichiello, and S. Chiaverini, “The NSB control:
a behavior-based approach for multi-robot systems,” Paladyn
Journal of Behavioral Robotics, vol. 1, no. 1, pp. 48–56,
2010. [Online]. Available: http://webuser.unicas.it/arrichiello/papers/
AntArrChi paladyn2010.pdf 1, 1, 3.2

[3] K. Baizid, C. Ryad, and H. Traveler, “Virat: An advanced multi-
robots platform,” in Proc. Industrial Conference on Electronics and
Applications (ICIEA), 2011, pp. 564–569. 1

[4] Y.-R. Tang and Y. Li, “The software architecture of a reconfigurable
real-time onboard control system for a small UAV helicopter,” in
Proc. 8th International Conference on Ubiquitous Robots and Ambient
Intelligence URAI, 2011, pp. 228–233. 1

[5] J. Gancet, G. Hattenberger, R. Alami, and S. Lacroix, “Task planning
and control for a multi-UAV system: architecture and algorithms,” in
Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems(IROS), 2005, pp. 1017–1022. 1, 1

[6] A. Ortiz, F. Bonnin-Pascual, E. Garcia-Fidalgo, and J. Beltran, “A con-
trol software architecture for autonomous unmanned vehicles inspired
in generic components,” in Proc. 19th Mediterranean Conference on
Control Automation, 2011, pp. 1217–1222. 1, 1

[7] M. Manyoky, P. Theiler, D. Steudler, and H. Eisenbeiss, “Unmanned
aerial vehicle in cadastral applications,” in Conference on Unmanned
Aerial Vehicle in Geomatics, 2011, pp. 1–6. [Online]. Available:
http://www.geometh.ethz.ch/uav g/proceedings/manyoky 1

[8] V. Lippiello and F. Ruggiero, “Exploiting redundancy in cartesian
impedance control of UAVs equipped with a robotic arm,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
October 2012, pp. 3768–377. 1

[9] “ARCAS - Aerial Robotics Cooperative Assembly System,” 20/10/2013.
[Online]. Available: http://www.arcas-project.eu 1, 4, 5

[10] J. C. Baillie, “Towards a universal robotic body interface,” in Proc.
EEE/RAS International Conference on Humanoid Robots, vol. 1, no. 1,
November 2004, pp. 33–51. 1

[11] “Microsoft robotics developer studio,” 09/11/2013. [Online]. Available:
http://www.microsoft.com/robotics/ 1

[12] A. H. Brian P. Gerkey, Richard T. Vaughan, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in Proc. Interna-
tional Conference on Robotics and Automation, 2003. 1

[13] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009. 1

[14] H. Bruyninckx, in Open robot control software: the OROCOS project,
vol. 3, 2001, pp. 2523–2528. 1

[15] J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. von
Stryk, “Comprehensive simulation of quadrotor uavs using ros and
gazebo,” in 3rd Int. Conf. on Simulation, Modeling and Programming
for Autonomous Robots (SIMPAR), vol. 7628, 2012. 1

[16] J. Engel, J. Sturm, and D. Cremers, “Camera-based navigation of a
low-cost quadrocopter,” in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, Oct 2012, pp. 2815–2821. 1

[17] “Ardroneapiref,” 20/05/2014. [Online]. Available: https://projects.
ardrone.org/boards/1/topics/show/5203 1

[18] V. Grabe, M. Riedel, H. Bulthoff, P. Giordano, and A. Franchi,
“The telekyb framework for a modular and extendible ros-based
quadrotor control,” in Mobile Robots (ECMR), 2013 European
Conference on, Sept 2013, pp. 19–25. [Online]. Available: http:
//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6698814 1

[19] S. K. J. Fink, N. Michael and V. Kumar, “Planning and control
for cooperative manipulation and transportation with aerial robots,”
International Journal of Robotics Research, vol. 30, no. 3, 2010. 1

[20] “Robot standards and reference architecture,” 09/11/2013. [Online].
Available: http://wiki.robot-standards.org/index.php/Main Page 1

[21] A. Oreback and H. I. Christensen, “Evaluation of architectures for
mobile robotics,” Autonomous Robots, vol. 14, no. 1, pp. 33–49, January
2003. [Online]. Available: http://link.springer.com/article/10.1023/A:
1020975419546 1

[22] G. Arleo, F. Caccavale, G. Muscio, and F. Pierri, “Control of quadrotor
aerial vehicles equipped with a robotic arm,” in Proc. 21st Mediter-
ranean Conference on Control Automation (MED), 2013, pp. 1174–
1180. 1, 1, 6

[23] F. Keith, N. Mansard, S. Miossec, and A. Kheddar, “Optimization of
tasks warping and scheduling for smooth sequencing of robotic actions,”
in Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2009, pp. 1609–1614. 1

[24] I. Nesnas, A. Wright, M. Bajracharya, R. Simmons, and T. Estlin,
“CLARAty and challenges of developing interoperable robotic soft-
ware,” in Proc. IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), vol. 3, 2003, pp. 2428–2435 vol.3. 1

http://webuser.unicas.it/arrichiello/papers/AntArrChi_paladyn2010.pdf
http://webuser.unicas.it/arrichiello/papers/AntArrChi_paladyn2010.pdf
http://www.geometh.ethz.ch/uav_g/proceedings/manyoky
http://www.arcas-project.eu
http://www.microsoft.com/robotics/
https://projects.ardrone.org/boards/1/topics/show/5203
https://projects.ardrone.org/boards/1/topics/show/5203
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6698814
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6698814
http://wiki.robot-standards.org/index.php/Main_Page
http://link.springer.com/article/10.1023/A:1020975419546
http://link.springer.com/article/10.1023/A:1020975419546


12 Journal of Software Engineering for Robotics 5(2), September 2014

[25] T. Kaupp, A. Brooks, B. Upcroft, and A. Makarenko, “Building a
software architecture for a human-robot team using the orca framework,”
in Proc. IEEE International Conference on Robotics and Automation
(ICRA), 2007, pp. 3736–3741. 1

[26] G. Antonelli, F. Arrichiello, and S. Chiaverini, “Experiments of
formation control with multirobot systems using the null-space-based
behavioral control,” IEEE Transactions on Control Systems Technology,
vol. 17, no. 5, pp. 1173–1182, September 2009. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4814533 1, 3.2

[27] “Centro Aanzado de Tecnologias Aeroespaciales,” 07/05/2014. [Online].
Available: http://www.catec.com.es/ 1

[28] R. Grepl, “Adaption of mathworks real-time workshop for an un-
supported embedded platform,” in Mechatronics (ICM), 2011 IEEE
International Conference on, April 2011, pp. 881 – 886. 1

[29] O. Netland and A. Skavhaug, “Adaption of mathworks real-time work-
shop for an unsupported embedded platform,” in Software Engineering
and Advanced Applications (SEAA), 2010 36th EUROMICRO Confer-
ence on, Sept 2010, pp. 425–430. 1

[30] G. Antonelli, “Stability analysis for prioritized closed-loop inverse
kinematic algorithms for redundant robotic system,” IEEE Transactions
on Robotics, vol. 25, pp. 985–994, 2009. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04814683 3.2

[31] N. Mansard and F. Chaumette, “Task sequencing for high-level sensor-
based control,” IEEE Transactions on Robotics and Automation, vol. 23,
no. 1, pp. 60–72, 2007. 3.5

[32] J. Lee, N. Mansard, and J. Park, “Intermediate desired value
approach for task transition of robots in kinematic control,” Robotics,
IEEE Transactions on, vol. 28, no. 6, pp. 1260–1277, Dec.
2012. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=6334480 3.5

[33] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: modelling,
planning and control. Springer Verlag, 2009. 4, 6, 6

Gianluca Antonelli is an Associate Professor at
the “University of Cassino and Southern Lazio”.
His research interests include marine and indus-
trial robotics, multi-agent systems, identification.
He has published 34 international journal papers
and more than 90 conference papers, he is au-
thor of the book “Underwater Robots” (Springer-
Verlag, 2003, 2006, 2014) and co-authored the
chapter “Underwater Robotics” for the Springer
Handbook of Robotics, (Springer-Verlag, 2008,
2015). He has been scientific responsible of the

STREP Co3AUVs, Associate Editor for the IP project ECHORD and
researcher for the IPs ARCAS and EUROC. He served both as indepen-
dent expert and reviewer for the European FP calls several times since
2006. He is chair of the IEEE RAS Chapter of the IEEE-Italy section, he
has been Chair of the IEEE Robotics and Automation Society (RAS)
Technical Committee in Marine Robotics. He served in the Editorial
Board of the IEEE Transactions on Robotics, IEEE Transactions on
Control Systems Technology, Springer Journal of Intelligent Service
Robotics, he is Editor for the RAS Conference Editorial Board.

Khelifa Baizid received his B. Sc. and Engineer-
ing degrees in mechanical engineering from the
University of M’hamed Bougara of Boumerds
(Algeria) in 2001 and 2004 respectively. In 2007,
he received his Magister degree from the Poly-
technic Military School, Algiers. He prepared his
PhDs degree (2010) in Robotics at the Italian In-
stitute of Technology with collaboration with the
University of Genova, Italy. He was a postdoc-
toral researcher at Italian Institute of Technology
in 2011, and at Brno University of Technology in

2012, Czech Rep. Currently, he is a research assistant in the DIEI at
University of Cassino and Southern Lazio.

Fabrizio Caccavale received the Laurea degree
and the Ph.D. degree in Electronic Engineering
from the University of Naples in 1993 and 1997,
respectively. From 1999 to 2001 he has been
Assistant Professor at the Department of Com-
puter and Systems Engineering of the University
of Naples. He is currently Associate Professor
at the School of Engineering of the University
of Basilicata. His research interests include ma-
nipulator inverse kinematics techniques, coop-
erative robot manipulation, fault diagnosis and

nonlinear control of mechanical systems. He has published more than
100 journal and conference papers. He is co-author of the book “Control
and Monitoring of Chemical Batch Reactors” (Springer, 2011), co-
editor of the book “Fault Diagnosis for Mechatronic Systems: Recent
Advances” (Springer, 2002) and co-author of the chapter “Cooperative
Manipulators” for the Springer Handbook of Robotics, (Springer, 2008).
He has been in the program committee of several international confer-
ences and workshops. He has served as Associate Editor of the journals
Robotica and IEEE Transactions on Control Systems Technology. He is
Senior Member of IEEE.

Gerardo Giglio received the Bachelor degree
in 2007 and the Master degree cum laude in
2011, both in Mechanical Engineering, from the
University of Basilicata. From January to De-
cember 2013 he was a contract researcher at
the School of Engineering of the University of
Basilicata. Since January 2014 he is a Ph.D. stu-
dent in Innovation Engineering and Sustainable
Development from the School of Engineering of
the University of Basilicata. His main research
interests are focused on dynamic simulation of

robotic systems and aerial robotics.

Giuseppe Muscio received the Bachelor de-
gree cum laude in 2006 and the Master degree
cum laude in 2010, both in Mechanical Engi-
neering. In February 2014 received the Ph.D.
degree in Industrial and Innovation Engineer-
ing from the School of Engineering of Univer-
sity of Basilicata, with a thesis, titled ”Model-
ing and control of multi-arm systems equipped
with robotic hands”, funded by the Italian Space
Agency (ASI). From October 2012 through April
2013 he had been visiting scholar at Computer

Science Departement of the Rensselaer Polytechnic Institute, Troy, New
York. Since November 2013 he is with the Revoind Industriale. His
research activity is focused on control of dual arm/hand dexterous
manipulators.

Francesco Pierri received the Laurea Degree
cum laude in Mechanical Engineering and the
Ph.D. degree in Environmental Engineering from
the University of Basilicata in 2003 and 2007,
respectively. From March to September 2006
he has been a visiting scholar at the Depart-
ment of Automatic Control of the Lund University,
Sweden. Since December 2008 he is Assistant
Professor at the School of Engineering of the
University of Basilicata. His research interests
include process control, fault diagnosis and fault

tolerant control for nonlinear systems, and robotics. He is co-author
of more than 30 journal and conference papers and co-author of the
book “Control and Monitoring of Chemical Batch Reactors” (Springer,
2011). He is associate editor of the International Journal of Robotics
and Automation. He is Member of IEEE since 2004.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4814533
http://www.catec.com.es/
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04814683
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6334480
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6334480

	Introduction
	CAVIS: a general description
	Main features
	Definitions and main components

	Bottom-up description of the components
	Elementary behaviors
	Compound behaviors
	Actions
	Mission/Sub-mission
	Supervisor

	Case study
	Lessons learned
	Conclusion
	Conclusion
	References
	Biographies
	Gianluca Antonelli
	Khelifa Baizid
	Fabrizio Caccavale
	Gerardo Giglio
	Giuseppe Muscio
	Francesco Pierri


