
Journal of Software Engineering for Robotics 7(1), July 2016, 20-35
ISSN: 2035-3928

A Toolset to Address Variability in Mobile Robotics
Tewfik Ziadi1 Jean-Loup Farges2 Serge Stinckwich3,4,5 Mikal Ziane1,6 Saadia Dhouib7

François Marmoiton8 Nicolas Morette9 Cyril Novales9 Selma Kchir10 Bruno Patin11
1 Sorbonne Universités UPMC, Univ. Paris 06, UMR 7606, LIP6, F-75005, Paris, France

2 ONERA, DCSD, BP 4025 - F-31055 Toulouse Cedex, France
3 Université de Caen Normandie, Caen, France

4 Sorbonne Universités UPMC, Univ. Paris 06, UMI 209, UMMISCO, F-75005, Paris, France
5 IRD, UMI 209, UMMISCO, IRD France Nord, F-93143, Bondy, France

6 Sorbonne Paris Cité, Université Paris Descartes, Paris, France
7 CEA, LIST, Laboratory of Model Driven Engineering for Embedded Systems, Point Courrier 94, Gif-sur-Yvette, F-91191 France

8 Clermont University, Pascal Institute, UMR 6602 du CNRS, F-63171 Aubière, France
9 PRISME, UPRES 4229, Université d’Orléans, France

10 CEA-LIST Institute, Interactive Robotics Laboratory, CEA Saclay – PC 178 - Digiteo MOULON F-91191 Gif-sur-Yvette Cedex, France
11 Dassault Aviation Research and future business, Future aircraft system - 78, Quai Marcel Dassault - Cedex 300 - 92552 Saint Cloud Cedex, France

Abstract—Dealing with variability may be the most serious issue when developing and maintaining robotic systems: it jeopardizes
communication between the stakeholders of a robotic system and interoperability between its components. This paper reports on an
approach and a toolset to improve both communication and interoperability. The approach relies on an ontology of mobile robotics
and on a Domain-Specific Language (DSL) to describe robotic systems with missing parts that are problems that can be completed
by third-party solutions. The domain model of the DSL is derived from the conceptual framework of the ontology. Models of robotic
systems and scenarios can be defined using a graphical modeling environment and code can be generated for open-source as well as
commercial middleware and simulators. A key advantage of the approach is that code can be generated for both simulation platforms
and real-world robots. The validation of the approach is illustrated with a landmark-search case study.

Index Terms—Ontology, Robotics, Domain Specific Languages, Code Generation, Middleware, Simulation

1 INTRODUCTION

Dealing with variability may be the most serious issue when
developing and maintaining mobile robotic systems. Not only
can robots be made of very different kinds of sensors and
actuators but their missions, environments and software archi-
tectures may also be quite varied. Consequently, meaningful
communication between the stakeholders of a robotic system
and interoperability between its components are quite difficult
to achieve.

Robotic middleware solutions have been proposed to pro-
vide some interoperability but only at a rather low level
of abstraction. Several norms and standards have also been
established that provide some common definitions but only
for specific domains.

Regular paper – Manuscript received September 02, 2015; revised June 12,
2016.

• This work was supported by the French research funding agency ANR
(Agence Nationale de la Recherche) from 2009 to 2013.

• Authors retain copyright to their papers and grant JOSER unlimited
rights to publish the paper electronically and in hard copy. Use of the
article is permitted as long as the author(s) and the journal are properly
acknowledged.

What is missing is a common framework to specify robotic
systems using high-level abstractions, including their struc-
tures, behaviors and communication mechanisms. These ab-
stractions must bear several potentially conflicting qualities.
First, to improve communication, they must fit or establish the
vocabulary of mobile robotics. Second, to ease maintenance
and interoperability, they should be as independent as possible
from low-level details including those tied to specific middle-
ware solutions. At the same time, these abstractions must still
have clear operational semantics despite their distance from
low-level details.

Reconciling these potentially conflicting qualities is a very
hard open problem. One possible approach consists in using an
ontology for grounding one or several Domain Specific Lan-
guages (DSLs). Ontologies have become popular to address
both communication and interoperability problems through a
common set of abstractions. They are however not suited to
produce executable systems. DSLs on the other hand have
become popular to both give a syntax and a clear operational
semantic to a set of concepts of a particular domain.

The French PROTEUS project (Robotic platform to facil-
itate transfer between industry and academics) which lasted
from 2009 to 2013, gathered several French industrial and

www.joser.org - c© 2016 by T. Ziadi et al.



T. Ziadi et al./ A Toolset to Address Variability in Mobile Robotics 21

academic teams to propose a common framework for mobile
robotics. This framework experiments the approach discussed
above where an ontology is defined for grounding a DSL for
mobile robotics. In order to make variability issues manage-
able it was decided that the case studies should focus on a
few, possibly a single, well-specified issues. In order to foster
emulation the case studies would provide an environment and
a robotic system with one or several ”holes” that had to be
filled by external providers. The framework provided by the
PROTEUS project is based on the following steps:

• Defining an ontology gathering a set of high-level defini-
tions, interfaces and assumptions that cluster the knowl-
edge provided by users working in the field of robotics
in a handful of semantic notions.

• Grounding a DSL, called RobotML, that allows specify-
ing robotics systems with ”holes” (variation points that
have to be filled).

• Implementing a set of transformations for code gener-
ation from the DSL to several execution or simulation
platforms.

One of the innovation issues proposed by the PROTEUS
project was to consider realistic case studies as a core resource
to define the proposed framework. As will be presented in
Section 5, six mobile-robotics case studies were considered.
Knowledge was elicited by asking case-studies providers to
describe their case study with enough details: high-level ob-
jectives, mission, low-level objectives, environment, a priori
knowledge, actions, experimental site, hardware and software
architectures of the vehicles, simulator, middleware and evalu-
ation metrics. This knowledge is the basis for the development
of the ontology.

The DSL was built based on the knowledge elicited by
the ontology. The ontology is thus used as input for domain
analysis: the first step to making a DSL. As will be discussed
below, the use of an ontology helps defining a DSL whose
concepts are close to the end-users. However, grounding the
DSL with the ontology proved quite difficult to achieve which
is not very surprising as ontologies describes static entities
while our DSL is meant to describe executable systems.

The PROTEUS toolset provides a set of code generators
for different execution or simulation platforms. Several targets
were considered including many robots (ReSSAC, WifiBot,
and R-Trooper), their middleware (RT-MAPS, OROCOS-RTT,
Effibox, and partly ROS) and associated environment simula-
tors (CycabTK and Blender Morse)

The different code generators were implemented using a
transformational approach [1], where each DSL model is
translated into a robotics platform for which an execution
engine already exists.

The structure of the paper is as follows. Section 2 de-
scribes the ontology. This DSL is presented in Section 3. The
RobotML toolset is presented in Section 4.

The next section presents the case studies whose tests aim at
validating the ontology (see section 5.1), the modeling using

RobotML (see section 5.2), the code generation capability (see
section 5.3) and the fact that variability is actually addressed
by the toolset (see section 5.4).

Section 6 presents related work, Section 7 discusses some
limitations and the lessons that were learned and Section 8
concludes.

2 AN ONTOLOGY TO GROUND A ROBOTIC DSL
The development of a DSL first requires gathering knowledge
about the addressed domain in what is referred as the domain
analysis phase [2]. Many notations and formalisms can be used
for domain analysis. In the PROTEUS Project, we relied on
ontologies for the following reasons:

• Ontologies are a mature technology with reliable tools
and well-defined languages and standards that inter-
operate with databases and web technologies.

• Tools (reasoners such as Pellet [3], FaCT++ [4] and
HermiT [5]) can be used to continuously check the overall
correctness of the ontology.

In next sections, we will use the Ontology Web Language
(OWL) [6] to describe the PROTEUS Ontology. The main
OWL concepts are the following:

• Classes define groups of individuals that are together
because they share some properties. Classes are often
organized in specialization hierarchies. The most general
class is named Thing.

• Properties state relationships about individuals.
• Individuals are instances of classes.
• Axioms are the logical expressions of the ontology.
Classes, properties and axioms are gathered in packages.
The ontology was defined iteratively based on the analysis

of the description of the different case studies. An additional
design choice was to limit the expressiveness of the ontology
to Description Logics (DL). Indeed, without this limitation
the tools for checking the consistency of the ontology are
inefficient.

Initially, we considered the possibility to let the ontology
emerge from use and this would probably help a lot to focus
it on the entities that are really useful to the stakeholders of the
case studies. Unfortunately, this idea was quickly dropped as
using the ontology required that the DSL was operational, at
least to build executable code. Moreover, deriving the ontology
directly from the needs of the case studies could lead to
concepts that are not general enough. It was thus decided
to adopt a less iterative approach but rather include different
stakeholders in regular meetings.

2.1 Overall structure of the PROTEUS Ontology
An additional design choice was to structure the PROTEUS
Ontology as a set of packages. Indeed this choice facilitates
collaborative development and maintenance. The division in
packages is primarily done by analyzing generic terms for the



22 Journal of Software Engineering for Robotics 7(1), July 2016

Fig. 1. Import relations of the core ontology packages

considered case studies. In addition and as we will show, more
generic packages are also introduced to facilitate collaborative
development and maintenance.

The identified packages are split into two parts:
• A stable part, that corresponds to the classes, properties

and axioms that represent the main elements to specify
mobile robotics applications. This part is defined in the
core package.

• A part that can be refined and enriched by users bringing
description of their case study using individuals.

With this design choice case study providers can feed the
ontology with new individuals just after the definition of the
associated classes by ontology developers. Consequently the
validation, with the reasoner, of the ontology against case
studies was conducted in parallel with its design. This is
important because a complete consistency checking requires
classes to have individuals.

The core package imports eight packages as illustrated in
Figure 1. The ontology does not rely on external packages such
as a common sense ontology like for instance Cyc [7], or an
upper ontology, as the Suggested Upper Merged Ontology [8].
Indeed, importing an external ontology implies to comply with
its language and to use the associated editing and reasoning
tools. Moreover, only a small part of the imported content
could be relevant for the modeled domain but the reasoner
efficiency, in terms of computation time, would be strongly
impacted by the total size of imported content. The informa-
tion and kernel packages are examples of generic packages that
provide useful upper concepts, while, simulation, environment,
system, robot and mission packages gather specific concepts
that are extracted from the description of the different case
studies.

Categorization criteria were used to define classes in each
package: the relevance of their names for case studies owners
or DSL developers, the possibility to characterize them by
specific properties, disjunctions or points of view and the
expectation of individuals for them. However, a consensus was

Fig. 2. Part of the taxonomy of the kernel package - Arcs
correspond to the has subclass relation

also sought among the case study holders.

2.2 The PROTEUS ontology packages
The Kernel Package includes 55 classes and 73 properties.
Figure 2 presents the basic classes that inherit directly from
the Thing root class.

Class System represents something that has a boundary
and that distinguishes what is inside itself from what is outside
and thus possibly interacts with it. This class is disjoint with
all other classes presented in Figure 2 except with Class
Probe. There are two kinds of systems that are defined in
the ontology as disjoint subclasses of System: Composite
System and Atomic Systems. A property, aggregates,
whose domain is CompositeSystem and range System
provides the semantics for this disjunction. In addition, the
System Class is also specialized by three types of systems:
Physical Object, Software and Model.

An important design choice was to model robots as
Composite Systems but not necessary as agents. Indeed,
from our point of view, only an autonomous robot is also an
agent. This implies defining a more restrictive concept of an
agent than the one of classical upper ontologies. For this, a
specific kind of Interaction, the Action is defined and
an axiom:
Action(?y) PhysicalObject(?x) triggers(?x, ?y) → Agent(?x)
indicates that any physical object that triggers an action is an
agent.

Because robots are dynamical systems, the Classes
Event, Evolution / System Dynamics, Protocol,
Transition, Activity and Time are also introduced.
The semantic for Evolution / System Dynamics is
given by a property, animates, whose domain is Evolution /
System Dynamics and range System. Finally, the need of
validation and locating physical objects in the robotic systems
respectively induces the Probe and the Frame Classes.

Systems are connected together using the concepts of
Port and Connector. These concepts are usually found in
robotics middleware and, even if they are not relevant for the
case study owners, they are very relevant for DSL developers.
In addition, the Interaction and Information Classes
are defined to allow interactions between the different systems.
These interactions are typically exchanges between software



T. Ziadi et al./ A Toolset to Address Variability in Mobile Robotics 23

or hardware components. Two important properties provide
semantics for those exchanges: on the one hand triggers
with domain System and range Interaction and on the
other hand impacts with domain Interaction and range
System. The Information Class is specialized in Data,
i.e. formated information, and Abstraction, i.e. meaning.

The Information Package defines 120 specializations of the
Data and Abstraction Classes presented above. While
specializing, 22 additional properties are defined between data,
between abstractions and between data and abstractions. For
instance, the property is coded in(?x, ?y) is defined between
an Abstraction and a Data. This property is also used
between specializations of Abstraction and Data. For
instance, it is used between Number, i.e. a number in the
mathematical sense of the term, and a Primitive Data,
i.e. a data type of a computer language, or between an
Algorithm and a Source Code.

The Environment Package gathers 24 classes and 17
properties that are used for modeling the environment in which
robots move. For instance, Atmosphere, Water body and
Building Classes are introduced. In addition, different types
of Surfaces are defined, for example Land, Floor and
Water surfaces. Different kinds of Forces are also charac-
terized. This package imports the information Package because
the description of the environment need specific abstractions.

The System Package contains 151 classes and 28
properties used to model specific systems. Robotics
Systems aggregate Drivers and Hardware and
are protected by Security Systems and controlled
by Control Systems. Four basic specializations of
Robotic System are modeled: Sensor System,
Power System, Communication System, and
Actuator System. The corresponding specializations
of Driver and Hardware are also defined. These classes
are further specialized.

The Robot Package includes 15 classes and 7 properties.
Robots aggregate Sensor Systems, Actuator
Systems, Power Systems and Communication
Systems and are classified following autonomy and mobility
points of views. Concerning autonomy, on one hand there
are Unmanned Systems and on the other hand Piloted
Systems. Concerning mobility the categorization was
performed with respect to classes of the environment Package.

The Mission Package models the Mission performed
by robots using 28 classes and 28 properties. Mission
objectives can be formulated as Tasks that can be de-
composed in other tasks until reaching atomic tasks called
Operators. A Plan, with instances of operators, is built
by a Planning System and executed by an Executive
System. These systems can be included in a Mission
Management System. The Mission Package imports the
System Package to ground these three systems. Classes are
also defined in this package for communication in multi-robots
systems and objectives fulfilled by a behavior specified with

a State Machine.
The Simulation Package contains 34 classes and 37

properties that are used for modeling knowledge about
simulation. Simulators are categorized in Hardware
Simulators, Software Simulators and Hybrid
Simulators. Software simulators animate Simulated
Systems and have Software probes for computation of
Metrics. Animated systems can correspond to Physical
Objects and to other objects such as a scene camera.
Physics Engine and Render Engine are also defined.
The package imports the information Package because several
types of sets and data are specific to simulation.

The Experiment Package contains 18 classes and 14
properties that are used to model people performing ex-
periments. Some of those people, Problem Providers,
define Problems and evaluate Solutions to those prob-
lems using Metrics. Those solutions are designed by
other people: Solution Providers. The modeling of
people is grounded on Problem and Solution classes.
A Solution aggregates Software Modules and a
Problem aggregates at least a Robot and a Simulator.
That is the main reason for importing the Robot Package and
the Simulation Package.

3 ROBOTML
The PROTEUS Ontology provides a vocabulary and a taxon-
omy that, together, forms a conceptual framework for defining
the DSL abstract syntax, called RobotML domain model. This
abstract syntax was implemented as a UML profile, i.e. an
extension of the UML Meta-Model. Then, we developed the
graphical concrete syntax as an extension of the Papyrus
modeling tool1.

3.1 From the PROTEUS Ontology to the RobotML
domain Model
The concepts of the PROTEUS Ontology are mapped as
meta-classes of the Robot domain Model. Among the 87
meta-classes of the RobotML domain Model, 60 are directly
obtained from the ontology. This proportion of 69% (60/87),
indicates that the definition of the RobotML domain Model
is strongly oriented by the ontology. However, 385 concepts
among 445 (87%) from the PROTEUS Ontology are not
present in the RobotML domain Model. This mainly includes
ontological concepts from the three packages information,
simulation, experiment and mission. Three principal points can
justify this:

• The concepts from the information package that concern
data are ignored. Indeed UML already has Primitive
DataType and Structured DataType concepts.
On this basis, a library of ROS data message structures
is made available to the users of RobotML.

1. http://www.eclipse.org/papyrus

http://www.eclipse.org/papyrus


24 Journal of Software Engineering for Robotics 7(1), July 2016

Fig. 3. Actuators RobotML DSL concepts coming from
the ontology

• Many concepts from the simulation, experiment and mis-
sion packages are related to abstract robotics concerns
that can not be mapped to software realisation using code
generation.

• While RobotML have been implemented as a UML pro-
file, many ontological concepts are redundant with UML
behavioral concepts, for instance, Activity, Event
and Evolution / System Dynamics. Behavior of
the systems have been implemented using directly the
UML concept of State Machine.

In order to reach an agreed mobile robotic language, it
was necessary to limit ourselves to most fundamental concepts
such as sensors or actuators. At this step, it was not possible
to introduce for instance agreed referential systems and more
to the point, additionally to the ROS messages library, other
common implemented libraries that would be used throughout
the different targets. This issue is not structural and should be
solved with additional work.

The RobotML domain Model is structured differently from
the PROTEUS ontology packages. In fact, RobotML DSL
is intended to be used to design robotic systems structure
and behavior in order to simulate them or to deploy them to
middleware implementations ported on real robots. Clearly the
RobotML DSL use is different from the ontology use which
is primarily to collect and organize knowledge about mobile
robotic systems. That’s why the structure of the RobotML
domain Model reflects more the future use of the DSL than
the structure of the ontology from which it was derived.

The RobotML domain Model is structured around four main
packages:

• The Architecture Package contains the concepts that
help defining and composing a robotic system and the
environment where it evolves. It includes concepts re-
lated to a wide range of hardware components (sensors,
actuators, joints, chassis, mechanical linkage, etc) and
software components (drivers, closed/open-loop control
system, etc). Figure 3 shows concepts related to actuators
coming from the PROTEUS Ontology.

• The Behavior Package contains the concepts for describ-
ing the behavior of robotic systems based on algorithms
or finite state machines. To represent algorithms using
RobotML DSL, we chose to use the ALF language
(Action Language for Foundational UML)2.

• The Communication Package: Communications are de-
fined through the concepts of ports and connectors. A
port formalizes an interaction point of a system. Port is
an abstract concept that is refined through two concepts.
On the one hand, we defined the concept of Data Flow
Port which is related to the publish/subscribe model of
communication. Data Flow Port enables dataflow-
oriented communication between systems, where mes-
sages that flow across ports represent data items. On the
other hand, we defined the concept of Service Port
that supports a request/reply communication paradigm,
where messages that flow across ports represent operation
calls.

• Deployment Package specifies a set of constructs that
can be used to define the assignment of a robotic system
to a target robotic platform that can be a middleware
platform or a simulator. The deployment is important
because it feeds generators with the information on which
platform the system will be executed.

3.2 The graphical modeling environment
After defining the domain model of the RobotML DSL, we
chose to implement the DSL as a UML profile because UML
contains generic metaclasses such as Class and Port that
can be extended with specific concepts from the robotic do-
main having their own semantics. This semantics is consistent
with the one provided by UML generic metaclasses. After-
wards, we developed the graphical modeling environment (see
figure 4) as an extension of Papyrus: the open-source Eclipse
based UML modeling tool. This tool provides customization
features which enables us to develop the RobotML modeling
environment in an agile and iterative approach.

4 CODE GENERATION

As defined by DSL engineering methodology [1], there are
two main approaches to build executable programs from

2. http://www.omg.org/spec/ALF/

http://www.omg.org/spec/ALF/


T. Ziadi et al./ A Toolset to Address Variability in Mobile Robotics 25

Fig. 4. RobotML graphical modeling environment

DSL models: transformation and interpretation. The former
translates a DSL model into a language for which an execution
engine on a given target platform already exists. In the latter
case, we need to build a new execution engine which loads the
DSL models and executes it directly. In the mobile robotics
domain, we believe that the transformation approach is more
adapted for code generation. This can be justified by two
points:

• Building a new execution engine for robotics models is
very complex, in particularly where DSL programs are
specified as models, as in the case of the RobotML DSL.

• There are a diversity of robotic platforms and middleware
that propose a set of abstractions and mechanisms to
execute robotics programs. Therefore, targeting these
platforms using code generation can help reusing their
abstractions and mechanisms.

In the context of the RobotML DSL, code generation
concerns translating RobotML models to the different targets
platforms. This includes open-source and commercial middle-
ware platforms (OROCOS-RTT [9], RTMaps3[10] and Effi-
box4 [11]) and two open-source simulator platforms (Blender
Morse [12] and CycabTK5). The reader not familiar with one
or several middleware implementations can find additional
information in the Appendix.

To implement code generation from RobotML models, a set
of requirements were identified:

• The link between the simulator and the middleware and
between the middleware and the target platform must
be easily configured: the switch from the simulator to
the target platform must require only a configuration of
sensors and actuators.

• Code generated for different target platforms must inter-
operate with each other.

In this section, we present RobotML code generators for
several robotics simulators and middleware platforms.

3. http://intempora.com/products/rtmaps-software/overview.html
4. http://effistore.effidence.com/
5. http://cycabtk.gforge.inria.fr/

TABLE 1
Correspondence between on the one hand UML or

RobotML and on the other hand OROCOS-RTT

UML or RobotML OROCOS-RTT
Robotic System Task Context

Attribute from UML Attribute
Primitive DataType from UML C++ types
Structured DataType from UML Data structure

Interface from UML Abstract class
Interface Operation from UML Virtual Method

Operation from UML Operation
Parameter Parameter

Data Flow Port direction {In} Input Port
Data Flow Port direction {Out} Output Port

Service Port {Provided} this->provides
(Operation)

Service Port {Required} this->requires
(OperationCaller)

4.1 General principles
During code generation, RobotML models are translated into
text artifacts (source files, configuration files, state machines
code, etc.)

As mentioned in the previous section, a deployment plan
is defined at the modeling level to assign a robotic system
to a targeted robotic platform. In the deployment plan, the
hardware components and the robot’s modeled environment
may be assigned to a simulator while software components
are assigned to a middleware platform. That deployment plan
constitutes the input point of RobotML code generators.

The code generator of each platform, either middleware or
simulator, relies on its own transformation rules to translate
its assigned elements into the model and their properties into
their corresponding code using Acceleo tool6. Acceleo allows
to define model-to-text transformations and supports modeling
standards like UML, XMI, etc. The syntax implemented by
Acceleo is template-based where each template uses:

1) queries to take information from the input models and
2) conditions and loops to combine them and generate

code.
In order to ensure interoperability between generated code for
different target platforms, a common data exchange protocol
was introduced. Since the bus communication notion is not
defined in the RobotML domain Model and considering that
RobotML target platforms have been integrated as ROS [13]
stacks, we have taken into account ROS topics during code
generation.

4.2 Generation to middleware
Transformation rules link concepts, from UML and from the
packages architecture, behavior and communication of the
RobotML domain model, to middleware concepts. Table 1

6. http://www.eclipse.org/acceleo/

http://intempora.com/products/rtmaps-software/overview.html
http://effistore.effidence.com/
http://cycabtk.gforge.inria.fr/
http://www.eclipse.org/acceleo/


26 Journal of Software Engineering for Robotics 7(1), July 2016

shows for instance, an extract of the mapping between on
one hand UML and RobotML concepts and on the other hand
OROCOS-RTT concepts.

The OROCOS-RTT code generator takes as input a
RobotML model and provides:

• OROCOS-RTT components,
• Interfaces which define a set of abstract operations,
• Data Structures representing user defined data types,
• A OROCOS-RTT Program Script file configuring com-

munication between components,
• RTT-LUA components which load the state machines

describing the behavior of components,
• LUA state machines implemented using the rFSM pack-

age where states, transitions, events, effects and guards
are explicitly specified.

The OROCOS-RTT code generator aims at providing an
executable application. To do so, a set of artifacts are also
generated including a makefile, a Cmakelists.txt where the
components to be loaded are specified and a manifest.xml file
which specifies which libraries have to be imported.

Some limitations exist when code generation is done to a
target middleware platform. The most important ones are:

• In OROCOS-RTT and RTMaps, only Atomic
Systems can embed executable code. Composite
Systems do not have their own implementation. When
starting the execution of an application, we considered
that the whole diagram would be flattened which means
all the Composite Systems would be removed and
replaced by their content, and this recursively. In the
end, only Atomic Systems would remain on the
diagram.

• In RTMaps, RobotML Service Ports are not sup-
ported and will probably never be.

• In Effibox, which is not a component-based middleware
platform, an application is a monolithic C++ code re-
sponding to dated events. Translating RobotML models
into Effibox code consists in generating a skeleton of a
directly compilable application including the subscription
code to the various selected sensors and the imple-
mentation of modeled state machines. Concerning the
communication aspect, Effibox interfaces are used.

4.3 Encountered difficulties
Different code generators were defined considering robots
(ReSSAC, WifiBot, R-Trooper, etc.), their middleware plat-
forms (RT-MAPS, OROCOS-RTT, Effibox, and partly ROS,
) and associated environment simulators (CycabTK, Blender
Morse). It was extremely difficult to create a stable basis
simultaneously for all these components. Their necessary
packaging led to an unforeseen workload. In particular the
generation for Blender Morse is not available mainly because
the input format of the Blender Morse version supported by
Blender Morse developers changed during the course of the

project. It was partly managed but there was nevertheless a
lack of support. Compatibility of new versions of middleware
or simulator with their previous input formats should be
ensured by their developers in order to facilitate development
of higher level tools.

5 VALIDATION WITH CASE STUDIES

As mentioned before, the following case studies were used to
validate the PROTEUS toolset:

• Air scenario: An UAV inspects the environment in order
to find the best place to land,

• Military unmanned aerial vehicles scenario: unmanned
combat aerial vehicles perform a deep strike mission,

• Indoor scenario: a small ground robot climbs stairs in
order to assess a building,

• Air ground scenario: a ground robot and an helicopter
drone patrol in an area searching for intruders and then
follow the first intruder detected,

• Landmark search scenario: this case study is used in this
paper to illustrate the toolset validation process and is
detailed in this section.

• Urban scenario: a taxi robot transports customers.
In this section, we illustrate the validation process with the

case study concerning landmark search.
This case study deals with structured outdoor exploration

and object searching. A Nexter Robotics Wifibot7 robot has to
move autonomously in an unknown environment in order to
find a landmark.

This is a differential 4-wheel-drive robot: The two wheels
of each side move at the same speed. Its dimensions are
30x35x30 cm3 for about 5kg.

It is equipped with 4 infrared proximetric sensors, a WiFi
communication board, a Hokuyo laser range finder (scanning
over 270◦ every 0.25◦ and up to 30m, at a frequency of 40Hz),
a Unibrain FireWire camera, a Haicom GPS, a VectorNav IMU
and odometers.

The environment is structured with non-homogeneous
ground (concrete, macadam, grass, etc.) that has only one level
and no slope above 5%. There is no trap, no hole, no stairs, no
water, nor wireframe obstacles. Geometrical obstacles clutter
the area (concrete, wood, steel, plastic, etc.). Three successive
scenarios were considered for this case study:

• Explore and Find: The robot is put in the input/output
area and the run begins. The robot must avoid obstacles
and find the landmark in minimal time. A computer moni-
tors the robot by WiFi, without any action. It only records
and prints all the data required to compute the evaluation
metrics (including the map). It also prints the messages
coming from the robot. No additional communication is
allowed. The scenario ends when the robot stops at less

7. http://wifibot.com/

http://wifibot.com/


T. Ziadi et al./ A Toolset to Address Variability in Mobile Robotics 27

TABLE 2
Case studies used to validate the ontology

Case Study Number of individuals
for ontology validation

Urban 30
Unmanned aerial 33
Indoor 15
Air ground 47
Landmark search 55

than 5m from the landmark and sends a picture of it along
with a ”mission terminated” message.

• Explore, Find and Come back. This scenario is similar
to the previous one, but the robot has to come back to its
input area after sending a picture of the landmark.

• Explore, Share/Organize, Find and Come back. In this
variation of the previous scenario, two robots cooperate.
It ends when the last robot comes back to the input area.
This scenario encourages data sharing between the robots
to minimize time.

5.1 Ontology validation

The validation objectives for the ontology are to check its
consistency and completeness regarding the case studies. In
order to fill those objectives, individuals are created and linked
using properties in order to describe the different parts of each
case study. As shown in Table 2 180 individuals of 5 among
6 case studies are used for validating the ontology.

The consistency is checked by running the reasoner after the
introduction of each new individual. When an inconsistency
is found by the reasoner an analysis is performed in order to
decide if it is the result of an erroneous use of the ontology
or if there is a consistency problem in the ontology.

The completeness is checked by assessing the specificity of
the classes of the ontology that can be assigned to each new
individual. If those classes are not specific enough, additional
specializations are needed in the ontology.

With respect to the taxonomy presented in Figure 2, the in-
dividuals populate the ontology as presented in top of Table 3.
It is noticeable that no individuals of the classes Connector,
Port and Protocol are used for the description of the
case studies. This reflects on the one hand that even if those
concepts are obvious for architecture description language
developers they are not naturally used for the description
of robotic case studies and on the other hand that those
concepts were added to the ontology lately. Another remark
is that polymorphism is used on the one hand for Event
and Interaction and on the other hand for Probe and
System. For the second case, may be the ontology could be
improved by stating that Probe is not a basic class but some
specific kind or use of a Sensor System. However, for the
first case it is clear that it is a correct use of polymorphism

TABLE 3
Validation coverage, as inferred by the reasoner, of basic

classes and of direct sub-classes of the class System

Basic class Number of
individuals

Activity 6
Event 1
Event and Interaction 1
Evolution 4
Frame 2
Information 19
Interaction 27
Probe and System 8
System 111
Transition 1
Direct sub-class of the class System
Physical Object 39
Composite System 26
Software 19
Composite System and Physical Object 12
Software and Model 11
Software and Atomic System 4
Software and Model and Atomic System 4
Physical Object and Atomic System 2
Model 1
Atomic System 1

because internal events are not interactions and continuous
interactions are not events. The last remark this that more
that one half of individuals belong to the class System.
This validate the basic design choice to center the ontology
around this concept and to consider robots as Composite
Systems.

The validation results indicate that the presence of disjoint
classes together with polymorphism induces some consistency
risks. This is the case for the System Class of the ontology.
Indeed, there are different views for systems, for instance:

• A functional view with Classes Motion Planning
System, Platform Management System, etc.

• An implementation view with Classes Software,
Physical Object, etc.

• A compositional view with classes Atomic System
and Composite System,

and in some views there are disjunctions. For instance a
Software cannot be a Physical Object. The individu-
als created for all the case studies validate the concepts linked
to the different specializations corresponding to the different
views of the class System because their introduction in the
ontology does not produce an inconsistency. The bottom of
Table 3 presents the coverage of the validation for the classes
inheriting directly from the Class System. It can be observed
that, despite the fact that most individuals belong to a single
class at that level of the class hierarchy, polymorphism is used
for modeling case studies. The main usage is for considering
physical objects either composite or atomic. Another relevant
usage is for indicating some software that it is the model of
itself. Another remark is the relatively low number of inferred



28 Journal of Software Engineering for Robotics 7(1), July 2016

TABLE 4
Individuals members of the class Software (individual

name given in the first column) that are also members of
another class (class name given in the first line); a yes

indicates that the individual belongs to the class

Individual Motion Platform Mission Security
Planning Management Management System
System System System

Navigator no yes no no
Path Planning yes no no no
Global Planning no no yes no
Proximity Map. no no no yes
Localization no yes no no
Local Mapping yes no no no

individuals for the class Atomic System. Working with an
open-world assumption, it is possible for the reasoner to infer
individuals for the class Composite System because those
individuals aggregate other individuals but it is impossible
for the reasoner to infer individual for the class Atomic
System from absence of aggregation. Going deeper into the
hierarchy of classes, table 4 presents for the illustrating case
study some individuals from the Software class that are
also specific kind of systems in a functional view. Those
individuals contribute to the validation of the final version of
the ontology because they produced inconsistencies only in its
earlier versions.

Moreover the differences between classes are the result of
their properties and of axioms involving those properties. For
instance the difference between an Atomic System and
a Composite System is that the latter aggregates other
systems. Those axioms can also be a source of inconsistencies.
The aggregation property is validated by generating hierarchies
of individuals relevant for the case studies and checking
consistency with the reasoner. For the landmark search case
study examples of individuals used to test the aggregation
property are:

• The odometry system that aggregates an odometer driver
and four odometers.

• The left engine system that aggregates the left engine
drive and two wheel motors.

An important result with respect to the aggregation property, is
that common sense indicates that it could be transitive and that
a Composite System aggregates at least two Systems.
However, this kind of statement does not comply with DL
restrictions and made the reasoner unable to analyze the
ontology. Thus, for the validated version of the ontology either
the transitivity or the cardinality constraint has to be removed.
The choice has been to keep the cardinality constraint on
aggregation property.

Fig. 5. Wifibot control architecture modeled with RobotML

5.2 RobotML modeling validation
The validation objectives for RobotML are to check its con-
sistency, completeness and usability for code generation. In
order to fill those objectives, models are designed for urban,
air, and landmark search case studies.

For the landmark search case study, the control architecture
of the Wifibot has been modeled. It is a multi level architecture
including the actuators and sensors of the robot as well as
the reactive and deliberative algorithms which control the
robot. This model contributes to assess that, from a control
architecture point of view, RobotML is quite complete.

In order to model this architecture with RobotML (see
Figure 5), we have divided the functionalities in two parts: per-
ception part (systems drawn as orange boxes) corresponding
to functionalities related to sensor data processing and maps
building, and action part (systems drawn as purple boxes)
corresponding to functionalities related to decision making and
control of the robot’s actuators. This decomposition is a choice
of the robotic architecture designers in order to fit their own
needs, but it is not imposed. This shows some flexibility of
the DSL.

In the perception part (orange boxes), P1 Sensors system
models the links with the odometer, range finder, camera, GPS
and the IMU of the Wifibot. The P2 Proximity system which
draws proximity maps of the surrounding areas near the robot
is shown in Figure 6. P3 Local and P4 Global model the
algorithms in charge with the building of local and global maps
respectively. Typically this part of the model represents the
transformation of the data acquired by the sensors into more
complex representation modes such as local and global maps.
This transformation is performed integrating and crossing the
various sensor information in space and time.

In the action part (purple boxes), we have the A1 Servoings
system which models the link between the actuators of the
robot and the software part of the robot. The A2 Pilot
system generates set points in order to control the robot
wheels velocities. A3 Navigation system, shown in Figure 7,
generates trajectories for the A2 system, taking into account



T. Ziadi et al./ A Toolset to Address Variability in Mobile Robotics 29

Fig. 6. The P2 Proximity box from the perception part of
the Wifibot architecture

the constraints of the environment (given by P3 system)
and following a global path provided by the A4 PathPlanner
system. Lastly the A5 MissionGenerator system controls the
current mission of the robot (explore, find or come back).
This part of the model corresponds to the decision part of the
architecture, upper level (A4 and A5) corresponding to more
deliberative part whereas lower levels (A1 and A2) model
the reactive parts of the robot (such as emergency avoiding
maneuvers), A3 being the key transition part between reactive
and deliberative behavior of the architecture.

Besides the landmark search model, two other case studies
were modeled using RobotML. Table 5 shows the number of
RobotML modeling artifacts for the three case studies. More
specifically, we list:

• the number of packages used to structure each model,
• the number of components (sensors, actuators, software

systems, etc) that were defined to model the whole case
study,

• the number of user defined data types that were necessary
to model the data flow communications between the
components, it is worthy to note that RobotML language
offers a library of data types that was inspired from ROS
common messages,

• the number of graphical diagrams that were created for
each case study.

The consistency verification of RobotML models was per-
formed through validation rules implementing the semantics of
the RobotML Metamodel. Examples of validation rules are:

• A DataFlow Port has to be typed by a DataType,
• A Service Port has to be typed by an Interface,
• An input port has to be connected to only one output

port,
• a component can not contain itself (no recursion).

Concerning completeness, modeling of the PROTEUS case

TABLE 5
Case studies modeling with RobotML: number of

modeling artifacts

user defined
Use Case packages components data types diagrams

Landmark search 8 29 7 11
Air 1 16 9 12

Urban 14 41 16 18

studies has shown that RobotML contains the necessary con-
cepts to model autonomous and mobile robotic applications.
Moreover, all components of the use cases models have direct
interpretation in terms of middleware, indicating the ability
to generate code on the basis of a RobotML model. For
the usability validation of RobotML, the graphical modeling
diagrams (i.e, structural and behavioral diagrams) defined in
the toolset were sufficient to model all the use cases.

5.3 Code generation validation
The validation objective for code generation is to check that
the generated code is consistent with the RobotML model.
Addition or omission with respect to the model shall be
minimized. Validation of code generation has been conducted
on 3 case studies: Air, urban and landmark search scenarios.

For the landmark search case study, automatic generation
from RobotML on 2 middleware (RTMaps8 and Effibox) has
been performed and tests have been conducted in order to
validate these generations, both on simulators and on the real
robot. In order to perform these tests, we used simplified
models of the architecture of the Wifibot compared to the one
presented in Figure 5. The simplified model for the real robot
includes systems A1, A2, P1 and P2. It allows obstacle avoid-
ance behaviors. The simplified model for simulation includes
also systems A3 and P3. It allows local map building and
robot navigation. In this section we describe more precisely
what was generated for each middleware.

For Effibox, each systemresults of the model which is
allocated to Effibox in the deployment plan of RobotML
creates source files in the Effibox generated files repository. An
awp configuration executable is also created. The user can then
launch this executable to configure the ports of the sensors of
the application and define for each sensor if the sensor is a real
one or a virtual sensor on a simulator. The generated source
files are a skeleton of the robot architecture, with protected
areas where the user can add its own robotics algorithms.

For RTMaps, a diagram corresponding to the modeled
architecture is automatically generated when the deployment
plan is launched in the RobotML interface. In this diagram one
component (called package) by sub-system of the RobotML
model is generated, and all those component are automatically

8. https://intempora.com/products/rtmaps.html

https://intempora.com/products/rtmaps.html


30 Journal of Software Engineering for Robotics 7(1), July 2016

Fig. 7. The A3 Navigator box from the action part of the
Wifibot architecture

linked on the diagram with the right datatypes according
to the RobotML model. Moreover macro components are
created for the sensors and actuators on the model, in order
to automatically integrate the conversion component between
the datatypes used by RTMaps and those used by ROS
(ROS datatypes being used as a bridge between middleware
datatypes and and the 2 simulators). Once the packages are
completed with the desired algorithms, the diagram can be
turned on to launch the application.

5.4 Validating the ability to address variability
The main validation achievement was the capability to build
effective running solutions for the different case studies:

• The urban case study was demonstrated with a Vipalab
robot using the PAVIN platform;

• The air case study provided its users the capabilities to
demonstrate capabilities in a real flying robot namely the
ReSSAC in the Caylus environment;

• The indoor case study provided a Cameleon Robot to
demonstrate capabilities to maneuverer in stairs;

• The landmark search case study provides education with
a way to introduce robotics and complex systems.

Besides this ability to address various case studies, the
ability to address variability inside each case study has been
demonstrated. For instance for the illustrative case study, 3D
modeling design of the Wifibot and navigation environment
has been done during the project. These models have been
designed with the 3D drawing software Blender and have been
integrated with 2 simulators of the project: Blender Morse and
CycabTK.

For the Blender Morse simulator (see figure 8), Python files
are used to load the environment, the robot, the sensors with
their respective positions and orientations in the scene. The
simulation is launched with a wifibot.py file where a range
finder, a gyroscope, a camera and actuators can be associated
with the robot. Concerning the control part of the robot, an
actuator can be added taking into account the linear and

Fig. 8. Navigation simulation of the Wifibot by Blender
Morse simulation engine

angular velocities of the robot by two 3-component vectors
(Vx, Vy, Vz) (wx, wy, wz). For the communication with
RTMaps, we use a component ROSTopicSubscriber to make
the bridge between the information sent on the ROS node and
the middleware.

For CycabTK, the modeling of the robot and of the environ-
ment is the same as those used on Blender Morse. The only
difference is that the mgEngine simulator take decomposed
Blender files as an entry. The simulator launches the simulation
by taking into account the elements contained in the reposi-
tories (scripts, textures, meshes, materials). The component
allowing communication with ROS and then RTMaps is the
same as the one used for Blender Morse.

The interaction, between on the one hand the Blender Morse
and CycabTK simulators and on the other hand the RTMaps
and Effibox middleware, works as intended, using ROS as a
bridge to share the data. We have been able to test the same
navigation algorithm on each of the simulators.

We have tested and validated simulations between the pairs
of following middleware; RTMaps and Effibox, and simulation
engines; Blender Morse and CycabTK. All those simulations
are generated from a single RobotML model presented in
Figure 5. This model describes a control loop with a two
sensors: laser range finders and odometers.

As shown in Figure 7, the information from those sensors is
taken into account by a simple navigation algorithm in order
to generate a trajectory for the robot.

Simulator generators are less mature than the middleware
ones. They are working correctly only if RobotML com-
ponents have their matching components in the simulators.
This type of generation has not been used for the landmark
search scenario. However the generation of the RobotML
model to 2 middleware solutions has been validated, and
cross validation between two middleware platforms and two
simulators, on generated files coming from the same model



T. Ziadi et al./ A Toolset to Address Variability in Mobile Robotics 31

has been successful.

6 RELATED WORK
Managing variability is identified by the robotics community
as one of the main challenges for the development of robotic
systems [14].

Robotic middleware solutions [15] have been proposed to
provide some interoperability throughout the introduction of
some abstract sensors and actuators. For instance, ROS [13]
introduces generic messages datatypes shared by common
sensors or actuators. By using these messages, a robotic
application does not depend on a particular specification of
sensors or actuators but only depends on this introduced
abstraction. However and with the emergence of many mid-
dleware solutions (at least, fifteen middleware solutions are
presented in [15]), the proposed abstractions become very
specific to each middleware. Consequently, it is more and more
difficult for roboticists to maintain their robotics systems and
to manage the variability throughout the different kinds of
middleware.

RobotML does not introduce new middleware and tries to
remain neutral regarding the choice of middleware. From the
RobotML DSL it is possible to generate code to specific
middleware. The drawback is that one needs to provide a
new code generator every time new middleware is used.
Moreover, code generators should be updated when changes in
middleware occur. As we have already reported, we also did
some experiments on how to integrate different middleware
solutions at the same time by using a common ROS as a
common message bus. But this integration is only done at
the syntactic level and more work is needed to have a deeper
semantic integration.

Robotics ontologies can be seen as another way to manage
the variability among the robotic community.

As highlighted in [16], various robotic ontologies have been
designed with different purposes. They range from the testing
of decisional autonomy of robots [17], to the description of
control architectures [18] [19] [20] of the robot navigation
and action in different environments [21] [22] or specific
robotics applications such as search-and-rescue missions [23]
or mobile manipulation and service robots9. More recently,
a core ontology has been developed for providing a common
ground for further ontology development [24] [25] [26]. More-
over, Brugali [27], [28] proposed to use feature models to
specify the concepts of robotics. In addition to concepts of the
domain, feature models allow also specifying the variability
at the domain level. As underlined by [29], there are some
similarities between ontologies and features models. However,
feature models is more useful to specify the variability in the
perspective to implement software product lines.

The main originality of RobotML ontology, with respect to
the existing robotic ontologies, is first at all that it is built

9. http://www.robot-standards.eu/

around the concept of system (in the sense of system theory
or DEVS [30]).

Compared to existing ontologies, the RobotML ontology
was built quite differently.

For example, in [24] a consensus is searched among a quite
large group of specialists keeping a high level of abstraction,
an upper ontology is used and the language used (SUO-
KIF) implements second order logic. No use of reasoner and
individuals to validate the result is reported.

In our case, the ontology was written from scratch, a
relatively small group of experts was involved but they were
explicitly asked to provide case studies to design and validate
the ontology. The language was restricted to implementation of
DL allowing a systematic consistency check using a reasoner.

Just to illustrate some differences between [24] and our
work: in the first one, a robot is an agent and a device
that has robot parts. In our case, a robot is a composite
system but only an autonomous robot is also an agent. [24]
distinguish five levels of autonomy from fully autonomous
robot to automated robot. Oddly, those classes are not sub-
classes of robot but relations between robots and processes.
Moreover those relations are differentiated one from the others
only by their names bringing no semantic at all. It seems that
our ontology can lead to clearer and more explicit models for
important robotic concepts than in [24].

Finally, Domain-Specific Modelling Languages (DSMLs)
are also an alternative way to manage the variability and com-
plexity of robotics systems. A complete and a recent survey on
existing DSMLs for robotics in presented by Nordmann et al.
[31]. All these DSMLs address differents needs in variability
(see for example the VML and SmartTCL DSML defined in
the SmartSoft project [32]), but tend to allow more flexible
transformation and code generation, especially in the context
of many different robotics middleware solutions.

The RobotML DSL was built iteratively after an ontology,
without any specific middleware in mind. Because of that,
the RobotML DSML is very system-oriented and define a
robotic application as as set of interconnected hierarchical
components.

7 DISCUSSION

Some obvious limitations to code generation are induced
by middleware capabilities: RobotML models may have a
hierarchy of systems and different types of ports that are not
supported by some middleware platforms. The consequences
for the user are:

• a poor readability of the generated code when the mid-
dleware does not support the hierarchy or is not based on
components,

• the necessity to take into account in the model the
capabilities of the target middleware or to choose the
target middleware according to the capabilities required
by the model.

http://www.robot-standards.eu/


32 Journal of Software Engineering for Robotics 7(1), July 2016

While both RobotML and the ontology can be substantially
improved, lessons have been learned:

• An ontology should ideally be developed iteratively
with frequent and numerous tests of its ability to grasp
operational needs. Such a process would however be
extremely long and expensive. The ontology developed
here addresses only mobile robotic. The extension to
other domains such as medical or manufacturing robotics
is a challenge that requires a large number of resources.
Moreover, cleaning the ontology by deleting useless
concepts would require observing for a long time the
additions in the part of the ontology that can be modified.

• The robotic ontology should ideally be available on the
web for addition of individuals by users of the robotic
community contributing with robotic problems or solu-
tions. The simple solution provided here raised intrusion
issues. A more secure web publication method for OWL
files shall be studied.

• Grounding the DSL with the ontology proved quite
difficult to achieve. This is not surprising as ontologies
describes static entities while our DSL is meant to de-
scribe executable systems. For instance, for each entity
of the ontology there was a choice to discard it, to put it
into the DSL or into a support library.

• Keeping or not keeping in the ontology the concepts that
are not directly part of the DSL is an open question.
On the one hand those concepts are not useful in the
perspective of code generation, on the other hand they
seem useful to understand the concepts manipulated by
the DSL. Criteria for cleaning the ontology taking into
account the resulting DSL should be defined.

• Code generation from the DSL to the execution or
simulation platforms are fragile to changes of the DSL,
the target platform or the ontology. Obvious redundancies
between the code generation transformations have been
captured by common low-level transformations but this is
too superficial so that not enough effort is factored out.

• A tool should be added to the toolset in order to allow the
synchronization of a model written using the DSL with its
corresponding set of individuals in the ontology. A user
models a new robotic system by editing an OWL file and
by using the RobotML graphical modeling environment.
Ideally, the copy of common elements from the ontology
to RobotML or from RobotML to the ontology should be
automated.

Finally, maybe the most interesting lesson to draw from the
PROTEUS attempt is that while high level abstractions that are
produced in a top-down manner may be quite useful if they
are standardized, they are quite difficult to define. The reason
is that a consensus is extremely difficult to reach between
experts.

A bottom-up approach should thus also be explored which
would produce intermediate-level abstractions from concrete

projects. Making each project’s assumptions explicit and or-
ganizing them into a constantly evolving ecosystem may lead
to more easily individually reusable abstractions. The main dif-
ference with a DL compliant ontology would be that no single
viewpoint is assumed. The drawback of such an approach is
that consistency when combining several abstractions would
be more difficult to reach.

8 CONCLUSION

The PROTEUS project was an ambitious attempt to address
one of the most difficult issues of robotics: its huge variability.
The idea was to define both an ontology – a set of very high-
level abstractions on top of those provided by middleware
solutions – and a DSL to easily define robotics systems.

Six case studies were used by French robotic teams to
ground and to validate this approach. One of them has been
described and used to illustrate the validation in this paper.
The results are contrasted yet encouraging. Code genera-
tion was only completely achieved for the OROCOS-RTT
and RTMaps targets. However, using the DSL for the other
middleware proved to be useful to define the architecture
of the system. The complete RobotML toolset (ontology,
DSL and code generators) is available as an open-source
software on GitHub, https://github.com/orgs/RobotML/, and
Eclipse Foundation git repositories, http://git.eclipse.org/c/
papyrus/org.eclipse.papyrus-robotml.git.

As far as the coordination is concerned the way to routine
modeling activity in the robotic field was reached. Nev-
ertheless, the work presented in this paper has paved the
way towards this direction. The toolset created needs to be
consolidated and adopted at large by the community through
several types of actions:

• the technical platform needs to be industrialized, the
RobotML components need to be packaged and associ-
ated support should be provided;

• the built ontology is missing high level robotics decision
making. This needs to be addressed;

• the ontology defined needs to be standardized or normal-
ized in order to penetrate the different communities.

Performing those actions should lead to an improved design
practice in the robotic community.

APPENDIX

The purpose of this appendix is to provide additional infor-
mations about target middleware that are considered for code
generation. Indeed, the PROTEUS toolset implemented three
code generators respectively for OROCOS-RTT, RTMaps, and
Effibox.

A common function for the middleware is the abstraction
of the operating system and the management of, on the
one hand, communication between elements, corresponding
to Software and Atomic Systems classes of the DSL

https://github.com/orgs/RobotML/
http://git.eclipse.org/c/papyrus/org.eclipse.papyrus-robotml.git
http://git.eclipse.org/c/papyrus/org.eclipse.papyrus-robotml.git


T. Ziadi et al./ A Toolset to Address Variability in Mobile Robotics 33

and defined or configured by the user, and, on the other hand,
dynamic of those elements. This function is performed respec-
tively by the real-time toolkit and the deployment component
for OROCOS-RTT, an execution engine for RTMaps and the
heart module for Effibox.

The communication between Atomic Systems can be
specified either by ports, for OROCOS-RTT Atomic
Systems exchanging data, events or services and for RTMaps
Atomic Systems exchanging only data, or by a subscrip-
tion mechanism, for Effibox Atomic Systems exchanging
only data. To exchange data, data ports should be connected
to each other. For consistent data types, an output port can
be connected to several input ports and an input port can
be connected to a single output port. The communication
graph between Atomic Systems can be either limited only
by consistency of data types or interfaces or can depend
also on types of Atomic Systems. For OROCOS-RTT
and RTMaps Atomic Systems are components while for
Effibox an Atomic System is either a driver module,
responsible for the communication with an external entity like
a sensor, a software, a computer, etc. or a brik module, a
piece of software written by the user and corresponding to
an application algorithm. There is a particular driver module
for each communication bus (IEEE, CAN network, Ethernet
network, Serial ports, etc.). For Effibox communication is only
allowed between driver modules and brik modules leading to
specific communication graphs.

For the three middleware, Atomic Systems can be devel-
oped or chosen in libraries. However, for Effibox the libraries
include only driver modules.

OROCOS-RTT and RTMaps components have properties,
i.e. variables that can be read from a file and therefore can
be used to store values such as configuration parameters or
persistent data, allowing to configure them. They also have
actions that can be triggered. For OROCOS-RTT an action
can be implemented as a function, as a script or as a state
machine while for RTMaps it results in a specific function call.
In terms of control of component activities, OROCOS-RTT
have four available policies: Non periodic, periodic, sequential
and slave. For RTMaps, each component executes in its own
thread a loop in which it waits for and retrieve data on its
inputs, then process it and finally output the results on its
outputs. In terms of data ports there are some differences:

• For OROCOS-RTT data ports can be configured to use
a FIFO buffer or not. Also, they can be write-only,
read-only or read-write and are accessed in real-time
in a thread-safe fashion that uses a mutual exclusion
procedure. Data ports can also be configured to trigger
the activity of a component or to execute a function upon
reception of data.

• For RTMaps each output has a circular buffer, containing
samples of data produced. Connected inputs register on
this buffer and can read data. Several input behaviors are
available. The FIFO behavior returns the oldest data that

has not been processed or waits for a new sample. The last
or next behavior retrieves the most recent unprocessed
sample or waits for a new sample. The wait for next
behavior waits for new data. The sampling behavior
returns immediately the most recent sample available.
The never skipping behavior is like the FIFO one but
the downstream component blocks an upstream one in
case the buffer is filled.

A specificity of OROCOS-RTT is to have in each compo-
nent an execution engine block. It is executed according to the
activity of the component and implements the processing of
the scripts, commands, events and state machines associated
to the component.

RTMaps and Effibox date accurately each sensor data
gathered. This permits to the user to replay all the recorded
sensor data at the desired speed. In order to replay exactly the
sensor data in the same way that they were recorded (order
of sensor data reception and interval time between two sensor
data). For Effibox the date of each sensor data corresponds
to the reception date of the data by Effibox during recording.
RTMaps time stamping associates two times with each data:
The timestamp that is definitively set by the most upstream
producer and the time of issue that is the date at which the
sample was output from the last component it went through.

RTMaps has specific features for distributed applications:
clocks of instances are synchronized using either an IP based
master-slave scheme or an external time source in a component
for each instance. Exchange of data between instances is done
using specific components.

REFERENCES
[1] M. Völter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. L.

Kats, E. Visser, and G. Wachsmuth, DSL Engineering - Designing,
Implementing and Using Domain-Specific Languages. dslbook.org,
2013. [Online]. Available: http://www.dslbook.org 1, 4

[2] A. van Deursen, P. Klint, and J. Visser, “Domain-specific languages: An
annotated bibliography,” SIGPLAN Not., vol. 35, no. 6, pp. 26–36, Jun.
2000. [Online]. Available: http://doi.acm.org/10.1145/352029.352035 2

[3] B. Parsia and E. Sirin, “Pellet: An OWL DL reasoner,” in Third
International Semantic Web Conference-Poster, vol. 18, 2004. 2

[4] D. Tsarkov and I. Horrocks, “FaCT++ description logic reasoner: System
description,” in Automated reasoning. Springer, 2006, pp. 292–297. 2

[5] R. Shearer, B. Motik, and I. Horrocks, “HermiT: A highly-efficient OWL
reasoner.” in OWLED, vol. 432, 2008, p. 91. 2

[6] D. L. McGuinness, F. Van Harmelen et al., “OWL web ontology
language overview,” W3C recommendation, vol. 10, no. 10, p. 2004,
2004. 2

[7] C. Matuszek, J. Cabral, M. J. Witbrock, and J. DeOliveira, “An intro-
duction to the syntax and content of Cyc,” in AAAI Spring Symposium:
Formalizing and Compiling Background Knowledge and Its Applications
to Knowledge Representation and Question Answering. Citeseer, 2006,
pp. 44–49. 2.1

[8] I. Niles and A. Pease, “Towards a standard upper ontology,” in Proceed-
ings of the international conference on Formal Ontology in Information
Systems-Volume 2001. ACM, 2001, pp. 2–9. 2.1

[9] H. Bruyninckx, “Open robot control software: the OROCOS project,”
in Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on, vol. 3, May 2001, pp. 2523–2528 vol.3. 4

[10] N. du Lac, C. Delaunay, and G. Michel, “RTMaps - real time, multi-
sensor, advanced prototyping software,” in 3rd National Conference on
Control Architectures of Robots, 2008. 4

http://www.dslbook.org
http://doi.acm.org/10.1145/352029.352035


34 Journal of Software Engineering for Robotics 7(1), July 2016

[11] C. Tessier, C. Cariou, C. Debain, F. Chausse, R. Chapuis, and C. Rousset,
“A real-time, multi-sensor architecture for fusion of delayed observa-
tions: application to vehicle localization,” in Intelligent Transportation
Systems Conference, 2006. ITSC ’06. IEEE, Sept 2006, pp. 1316–1321.
4

[12] G. Echeverria, S. Lemaignan, A. Degroote, S. Lacroix, M. Karg, P. Koch,
C. Lesire, and S. Stinckwich, “Simulating complex robotic scenarios
with MORSE,” in SIMPAR, 2012, pp. 197–208. 4

[13] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009. 4.1, 6

[14] A. Lotz, J. F. Inglés-Romero, C. Vicente-Chicote, and C. Schlegel,
“Managing run-time variability in robotics software by modeling
functional and non-functional behavior,” in Enterprise, Business-
Process and Information Systems Modeling - 14th International
Conference, BPMDS 2013, 18th International Conference, EMMSAD
2013, Held at CAiSE 2013, Valencia, Spain, June 17-18, 2013.
Proceedings. Springer, 2013, pp. 441–455. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-38484-4 31 6

[15] N. Mohamed, J. Al-jaroodi, and I. Jawhar, “Middleware for robotics: A
survey,” in In IEEE International Conference on Robotics, Automation,
and Mechatronics (RAM 2008), 2008, pp. 736–742. 6

[16] S. Dhouib, N. Du Lac, J.-L. Farges, S. Gerard, M. Hemaissia-Jeannin,
J. Lahera-Perez, S. Millet, B. Patin, S. Stinckwich et al., “Control
architecture concepts and properties of an ontology devoted to
exchanges in mobile robotics,” in 6th National Conference on Control
Architectures of Robots, 2011. [Online]. Available: http://www.lirmm.
fr/gtcar/webcar/CAR2011/files/2011/05/submission15.pdf 6

[17] P. Deplanques, “Vers le test de l’autonomie des robots: une ontologie
de la robotique,” Ph.D. dissertation, 1996. 6

[18] F. M. Casas and L. A. Garcı́a, “OCOA: An Open, Modular, Ontology
Based Autonomous Robotic Agent Architecture,” in Artificial Intelli-
gence: Methodology, Systems, and Applications. Springer, 2002, pp.
173–182. 6

[19] W. Hwang, J. Park, H. Suh, H. Kim, and I. H. Suh, “Ontology-
based framework of robot context modeling and reasoning for object
recognition,” in Fuzzy Systems and Knowledge Discovery. Springer,
2006, pp. 596–606. 6

[20] M. Tenorth and M. Beetz, “KnowRob—knowledge processing for au-
tonomous personal robots,” in Intelligent Robots and Systems, 2009.
IROS 2009. IEEE/RSJ International Conference on. IEEE, 2009, pp.
4261–4266. 6

[21] A. Chella, M. Cossentino, R. Pirrone, and A. Ruisi, “Modeling ontolo-
gies for robotic environments,” in Proceedings of the 14th international
conference on Software engineering and knowledge engineering. ACM,
2002, pp. 77–80. 6

[22] J. Bateman and S. Farrar, “Modelling models of robot navigation using
formal spatial ontology,” in Spatial Cognition IV. Reasoning, Action,
Interaction. Springer, 2005, pp. 366–389. 6

[23] C. Schlenoff and E. Messina, “A robot ontology for urban search and
rescue,” in Proceedings of the 2005 ACM workshop on Research in
knowledge representation for autonomous systems. ACM, 2005, pp.
27–34. 6

[24] “IEEE Standard Ontologies for Robotics and Automation.” [Online].
Available: http://dx.doi.org/10.1109/ieeestd.2015.7084073 6

[25] C. Schlenoff, E. Prestes, R. Madhavan, P. Goncalves, H. Li, S. Bal-
akirsky, T. Kramer, and E. Miguelanez, “An IEEE standard ontology
for robotics and automation,” in Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on. IEEE, 2012, pp. 1337–
1342. 6

[26] E. Prestes, J. L. Carbonera, S. R. Fiorini, V. A. Jorge, M. Abel,
R. Madhavan, A. Locoro, P. Goncalves, M. E. Barreto, M. Habib et al.,
“Towards a core ontology for robotics and automation,” Robotics and
Autonomous Systems, vol. 61, no. 11, pp. 1193–1204, 2013. 6

[27] L. Gherardi and D. Brugali, “Modeling and Reusing Robotic Software
Architectures: the HyperFlex toolchain,” in IEEE International Confer-
ence on Robotics and Automation (ICRA 2014). Hong Kong, China:
IEEE, May 31 - June 5 2014. 6

[28] D. Brugali and M. Valota, “Software Variability Composition and
Abstraction in Robot Control Systems,” in Proc. of the 16th International
Conference on Computational Science and Applications (ICCSA 2016),

O. Gervasi and et al., Eds. Beijing, China: Springer, July 4-7 2016,
pp. 358–373. 6

[29] K. Czarnecki, C. H. P. Kim, and K. T. Kalleberg, “Feature models are
views on ontologies,” in Software Product Lines, 10th International
Conference, SPLC 2006, Baltimore, Maryland, USA, August 21-24,
2006, Proceedings. IEEE Computer Society, 2006, pp. 41–51.
[Online]. Available: http://dx.doi.org/10.1109/SPLINE.2006.1691576 6

[30] B. P. Zeigler, “Devs representation of dynamical systems: Event-based
intelligent control,” Proceedings of the IEEE, vol. 77, no. 1, pp. 72–80,
1989. 6

[31] A. Nordmann, N. Hochgeschwender, D. Wigand, and S. Wrede, “A
survey on domain-specific modeling and languages in robotics,” Journal
of Software Engineering for Robotics, 2016. 6

[32] C. Schlegel, A. Lotz, M. Lutz, D. Stampfer, J. F. Inglés-Romero,
and C. Vicente-Chicote, “Model-driven software systems engineering
in robotics: covering the complete life-cycle of a robot,” Journal IT -
Information Technology: Methods and Applications of Informatics and
Information Technology, vol. 98, pp. 57–85, 2015. 6

Jean-Loup Farges was born in Clamart,
France, in 1956. In 1978 he received a degree in
electric engineering from ENSEEIHT, Toulouse,
France, and a M.S. degree in automatic con-
trol from Paul Sabatier University in Toulouse.
He received his Ph.D. from ISAE, Toulouse, in
1983. He has since been working as a Research
Scientist for Onera, the French Aerospace Lab.
Initially, his main area of interest was road traffic
control. Since 2003 his research focuses on
planning and execution control for autonomous

aerospace vehicles and on optimization in air traffic control.

Serge Stinckwich is an associate professor
(maı̂tre de conférences) at Université de Caen
Normandy and a researcher at UMMISCO, a
joint research unit team from IRD and Université
Pierre and Marie Curie. He received a Ph.D.
from University of Savoy in 1994. His main re-
search area of interest is modelling and simu-
lation of complex system with domain-specific
languages and tools, applied to rescue robotics,
crisis management and epidemiology.

Mikal Ziane is an associate professor (maı̂tre de
conférences HDR) at Université Paris Descartes
and a researcher at Laboratoire d’Informatique
de Paris 6 (LIP6), Université Pierre et Marie
Curie (UPMC). He received a Ph.D. from UPMC
in 1992. His main research topic is building
knowledgeable assistant tools. This requires
identifying programming knowledge and find-
ing efficient and convenient ways to include it
into assistant tools. Part of this knowledge can
be represented using program transformations,

transformation strategies or constraints (e.g. coupling constraints).

http://dx.doi.org/10.1007/978-3-642-38484-4_31
http://www.lirmm.fr/gtcar/webcar/CAR2011/files/2011/05/submission15.pdf
http://www.lirmm.fr/gtcar/webcar/CAR2011/files/2011/05/submission15.pdf
http://dx.doi.org/10.1109/ieeestd.2015.7084073
http://dx.doi.org/10.1109/SPLINE.2006.1691576


T. Ziadi et al./ A Toolset to Address Variability in Mobile Robotics 35

Selma Kchir graduated in 2010 from the Uni-
versity of Montpellier 2 with a master’s degree
in Software Engineering. She then started a
Ph.D. in software engineering for robotics at
Université Pierre et Marie Curie (UPMC). Her
thesis focused on facilitating the development of
robotics applications through software engineer-
ing technologies. She received her Ph.D. in 2014
and joined the Interactive Robotics Laboratory of
CEA-LIST. Her current research focuses on soft-
ware architecture and design of robotics applica-

tions for industrial, healthcare and hazardous environments (humanoid
robotics, manipulation, mobile robotics, aerial robotics).

Bruno Patin was born in Saint Quentin, France
in 1961. In 1983, he achieved a master degree in
theoretical physics from Paul Sabatier university
(Toulouse, France) and, in 1986, a degree in
Electronic from ENSERG (Grenoble, France).
From 1987 to 1998, he was in charge in Dassault
Aviation of creating and managing the on ground
electromagnetic test facilities. Since 1998, he is
working on all aspects linked to autonomy of the
unmanned platform for the same company. It has
led him to promote a thesis and an European

project in the field of visual servoing as well as to lead the ANR
PROTEUS project that helped to create the knowledge underlying this
paper. He is now involved in many committees trying to break the
regulatory barrier that limit the use of drones in France and Europe.

Cyril Novales received an Engineer diploma in
Electronics from ISIM Institute (Montpellier) in
1989, and a Ph.D. degree in 1994 in robotics
from the University of Montpellier II (France).
From 1995 to 1997, he worked on autonomous
vehicles in INRIA of Grenoble. In 1997, he joined
the University of Orleans (France), where he is
associate professor in the laboratory PRISME
(previously LVR). Since this date, he has been
involved in the design and the development of
mobile robots and medical robots. He worked on

teleoperated robotics project (OTELO, TERESA), and more recently on
PROSIT and PROTEUS national projects, focusing on architectures for
tele-operated or/and autonomous robots.

Tewfik Ziadi is an associate professor (maı̂tre
de conférences) at Université Pierre et Marie
Curie (UPMC) and a researcher at Laboratoire
d’Informatique de Paris 6 (LIP6). He received a
Ph.D. from University of Rennnes 1 in 2005. His
main research area of interest is related to soft-
ware product lines engineering. This includes
variability management and the extraction of
variability from existing legacy artefacts.

Nicolas Morette holds a post-doc position in the
Laboratoire PRISME of the University of Orleans
(France). He received a Ph.D. in robotics of the
University of Orleans in 2009. He worked on
the PROTEUS project in the same laboratory
(robotic development platform) and on medi-
cal robotics projects (needle guiding for local
anesthesia and teleoperated echography). His
main research focus is on navigation for mobile
robots, trajectory generation using direct kine-
matics model and predictive control approaches.

Saadia Dhouib received her Ph.D. degree from
University of South Brittany (France) in 2010 and
graduated before from the National School of
Computer Sciences (ENSI-Tunis) as a Computer
Science engineer. She is currently a research
engineer at the CEA LIST. She is working on
modeling and analysis of complex systems. She
was involved in several research projects: PRO-
TEUS a project on robotic modeling and trans-
formations for end-users and scientific commu-
nities, EP-IT a French research project on mod-

eling and simulation of smart grids, and she is currently involved in the
French research project ROMEO2 on humanoid robots.

François Marmoiton received his Ph.D. degree
from the University of Clermont Ferrand II in
2000. From 2000 to 2002, he worked on im-
age compression as associate professor in the
laboratory IRCOM-SIC of Poitiers. Since 2002,
he is research engineer at CNRS in Institut
Pascal laboratory (Clermont Ferrand University).
He works on the developement of mobile robots
like driverless shuttles, based on multisensors
perception systems.


	Introduction
	An ontology to ground a robotic DSL
	Overall structure of the PROTEUS Ontology
	The PROTEUS ontology packages

	RobotML
	From the PROTEUS Ontology to the RobotML domain Model
	The graphical modeling environment

	Code generation
	General principles
	Generation to middleware
	Encountered difficulties

	Validation with case studies
	Ontology validation
	RobotML modeling validation
	Code generation validation
	Validating the ability to address variability

	Related Work
	Discussion
	conclusion
	References
	Biographies
	Jean-Loup Farges
	Serge Stinckwich
	Mikal Ziane
	Tewfik Ziadi
	Selma Kchir
	Bruno Patin
	Cyril Novales
	Nicolas Morette
	Saadia Dhouib
	François Marmoiton


