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Abstract—Developing reusable software is hard; systematically developing high quality reusable software components is even harder.
Separating computational components from application–dependent functionalities is a key principle for building reusable robotic
systems. This work introduces an approach where coordinating logic can be transparently inserted into a reusable component, along
with data transforms unanticipated by the component author. Firstly, it proposes the Port Monitor Object which extends a component
port’s functionality with monitoring and event generation using runtime scripting languages. Secondly, the Port Arbitrator and its
application to robotics is presented which enhances a port’s capability to arbitrate input data from multiple sources. Lastly, it represents
some applications of these approaches to further improve the reusability and robustness of robotics system.

Index Terms—Coordination, Monitoring, Component-based system design, Humanoid robots

1 INTRODUCTION

Writing a reusable software component requires careful de-
sign. Two important choices to be made are how the com-
ponent expresses its output, and what it expects of its input.
With reusability in mind, there is pressure to be as generic as
possible: to offer everything useful the component “knows”
on the output, and to accept all sorts of variants on the input
side. However, for any particular application, this generality is
decidedly suboptimal. It can result in slow development and
higher bandwidth requirements. The opposite approach is to let
specific applications drive the development of the component;
this may lead to faster development but can seriously limit
component reusability. Indeed the “5C” paradigm [1], which
is gaining popularity in robotics, dictates separation of con-
cerns between Computation, Communication, Coordination,
Configuration and Composition. Following this paradigm we
introduce an approach where coordinating logic can be trans-
parently inserted into a reusable component, along with data
transforms unanticipated by the component author. With this
approach, a robot’s coordination system is no longer limited
to passively receiving reports from far-flung components in
their chosen formats and on their chosen schedule. It can
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now actively change how data is summarized and how it is
communicated. This is achieved by using the component’s
middleware as a hook to load arbitrary coordination logic into
the external-facing interface of components.

1.1 Motivating Example

In order to clarify the main concern and contribution of our
work, we draw a similar example taken from [2]. Figure
1 shows a typical object tracking and reaching scenario, in
which the robot is programmed to detect a moving object,
to follow that object with its gaze, and to reach for it with
its hand. The image data from a pair of stereo cameras are
given to two instances of Object Detector each computing
the 2D position of the object in the camera frames. These
modules feed this information to the 3D Position Estimator
module, which performs the required geometric computations
to calculate the position of the object in the robot frame, and
finally sends those coordinates to the Head Control and Arm
Control modules. The latter control the robot’s head and arm
respectively to look at the object and reach for it.

The overall behavior of the system can be fairly robust if ev-
ery subsystem behaves as intended. However, some failures or
uncertainties in the object detection or 3D position estimation
can cause nondeterministic behavior of the robot. Klotzbucher
et al. [2] characterize this as a typical coordination problem
and propose having a lightweight coordination system using a
state machine. The coordinator reacts to explicit events (e.g.,
events generated by the 3D Position Estimator if the object is
not visible to the robot) and changes the state of the system
so that an appropriate decision can be made, such as stopping
the Arm Control module.
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Fig. 1. Data-flow architecture of an object tracking appli-
cation

To increase the robustness of the coordinator and reusability
of the subsystems (i.e., computational modules), Klotzbucher
et al. also propose the Coordinator–Configurator pattern to sep-
arate the coordinator from the computational module. A pure
coordinator requires to be informed via events about relevant
changes in system state. Required events for the coordinator
can be generated in different ways. One way is to extend the
functionality of computational modules and configure them to
raise the proper events. For example, 3D Position Estimator
can generate different events when the object is not visible
or the certainty of detected object drops below a configurable
threshold. Klotzbucher et al. argue that this approach can be
favorable if the events are computational dependent. On the
other hand, if the constraint is application domain specific
(e.g., a latency in communication between Object Detector
and 3D Position Estimator), this approach severely limits the
reusability of the computational module. Moreover, to reuse
components with different coordination systems (e.g., event
processing in BDI [3]), the events required by the coordinator
should match those generated by the computational modules.
If this is not the case, the subsystem from one side should be
modified.

Another approach is to introduce a separate component
which remains between the computational module and the
coordinator. The component can act as a monitor which com-
municates with the computational module and generates events
for the coordinator. Alternatively, it can be used to translate
existing events into the format which is required by the
coordinator. That, in fact, requires implementing an application
specific (likely not reusable) module and introduces additional
communication and deployment overhead to the system which
may not be acceptable in some distributed applications.

To overcome these shortcomings, we propose an approach
which is a pragmatic compromise between reusability and
performance. In our approach, components’ data flow ports [4]
are extended with scripting programming language capabil-
ity. Using the scripting language, a monitor entity can be
embedded in the output or input ports of components to
monitor data and generate proper events for the coordinator.
The approach allows for computational dependent and appli-
cation specific event generation at the same time, and has
the following definite advantages. First, it does not pollute
the computational module with application specific details.
Depending on the coordination mechanism being used (e.g.,
state machine, BDI-based system [3]), the required events can

be freely generated in the port monitor during application
development time. Second, it also simplifies component im-
plementation, since the developer does not necessarily need
to be concerned with generating all possible events which
can be used in different circumstances. For example, instead
of parameterizing Object Detector to generate a coordina-
tion event (e.g., “certainty_low”, “certainty_high”,
“target_outside_workspace”), the component can
freely output the certainty value (using a separate port or along
with 2D position data) which can be used by the port monitor
to raise the proper events. Moreover, by embedding monitoring
into the port the communication and deployment overhead due
to a separate monitor component is no longer introduced in
the system.

1.2 Contribution and outline
This paper is based on the work presented in [2] and pro-
poses some approaches and guidelines to further improve the
reusability and robustness of robotic systems. More specifi-
cally, it alleviates the problem of coordination and reusable
component development by embedding data monitoring and
arbitration into components’ data flow ports. The contribution
of this work can be divided into three parts. Firstly, it proposes
the Port Monitor Object which extends a component port’s
functionality with monitoring and event generation using a
runtime scripting language. Secondly, the Port Arbitrator and
its application to robotics is presented which extends a port’s
capability to arbitrate input data from multiple sources. Lastly,
it represents some guidelines and further applications of these
approaches to improve the reusability a of computational
component and simplify its implementation.

The rest of this work is structured as follows. Section 2
describes the Port Monitor Object and its implementation
using the YARP [5] framework. The concept of port arbi-
tration, the architecture and its implementation is described
in Section 3. Further potential applications of the proposed
approach are explained in Section 4. Section 5 presents some
of the related works and provides a short discussion of the
proposed approach. In Section 6 we present the conclusion.

2 THE PORT MONITOR OBJECT

One way to inform a coordinator about state changes of
the system is to employ a separate monitor module and
configure it with a set of constraints to generate proper events.
This is shown in Figure 2(a) for coordinating components of
the object tracking example from Section 1.1. The Monitor
component receives data from 3D Position Estimator and
generates status events for Coordinator. To increase reusability
of the composite subsystem in different architectures or with
an alternative coordinator, the Monitor module should offer a
generic way to be configured with the required constraints for
generating events. Although this can be made to work, it can
lead to a nonviable software module. Moreover, the overhead
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Fig. 2. Different ways to provide required events for
coordinator. The boxes indicated with ’M’ represent Port
Monitor Objects attached to the component interfaces.

of communication and deployment should also be considered
in distributed architectures.

Scripting languages have been used for decades to extend
the functionality offered by software components without
needing to rebuild or even tweak the base system. These exten-
sions are dynamically loaded and plugged into the component
at runtime. Using a plug–in system, an alternative approach is
to attach a runtime monitor object to the ports of a module.
This Port Monitor Object is implemented using a scripting
programming language and can be loaded and executed by
ports at runtime.

Figures 2(b) and 2(c) elaborate the concept of the Port
Monitor Object. As shown in Figure 2(b), the port monitor
entity (drawn as a box marked M) is attached to the source
side of connection between 3D Position Estimator and Arm
Control. Using scripting language, users can develop light–
weight code to access and monitor the data which is streamed
out through the port. Computationally relevant events are now
freely generated in the Port Monitor Object in any required
format for the coordinator. Alternatively, one can move the
monitor object to the other side of connection and attach it to
the input port of Arm Control module (Figure 2(c)). In this
way, the connection between 3D Position Estimator and Arm
Control can also be monitored and events can be generated in
case of delay or failure in communication.

2.1 Reference Implementation

To illustrate the applicability of the described approach, we
present an implementation of Port Monitor Objects using
the YARP [5] framework. In YARP, programs communicate
via units called ports. Messages can be sent between ports,
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Fig. 3. The life cycle of the Port Monitor Object.

using the connections between them. Connections are not con-
strained to use the same protocol. The detailed implementation
of individual protocols are encapsulated in plug–ins called
“carriers”. Until recently carriers in YARP have been seen
as essentially passive elements, transmitting data in various
forms but not actively modifying it. But in fact carriers can
be used as hooks that give intimate access to the consumers
and producers of data in a network, inserting arbitrary action
that is local to a component rather than remote from it. This
is the opportunity the Port Monitor Object is building on. A
port monitor is implemented1 as a carrier plug–in which can
be attached to one side of a connection and configured to load
a user’s script. For the time being, only the Lua [6] scripting
language is supported but this approach can be easily extended
to other languages.

Figure 3 illustrates the life cycle of a Port Monitor Object.
A callback function is assigned to each state of the monitor’s
life cycle (except Waiting) which can have a corresponding
implementation in the user’s script. Using these callbacks,
users have full control over the port’s data and can access
it, modify it and decide whether to accept the data or discard
it. Listing 1 represents the callback functions corresponding
to the port monitors’ states in Lua.
PortMonitor.create = function() return true end
PortMonitor.accept = function(rd) return true end
PortMonitor.update = function(rd) return rd end
PortMonitor.trig = function() return end
PortMonitor.destroy = function() end

Listing 1. Port monitor callback functions in Lua

Monitor’s life cycle starts with the Create state where the
PortMonitor.create callback is called. The initialization
of user’s code can be done here. Returning a true value means
that user’s initialization was successful and the monitor object
can start watching data from the port. When data arrives to
the monitor, PortMonitor.accept is called. Using a data
reader handler passed to the function, the user can access
(for reading only) the data, check it and generate events. The
return value of this function indicates whether data should
be delivered (accepted) or discarded. If data is accepted,
PortMonitor.update is called, at which point the user
has access to modify the data.

1. The source code and relevant examples can be found at https://github.
com/robotology/yarp/tree/master/src/carriers/portmonitor carrier

https://github.com/robotology/yarp/tree/master/src/carriers/portmonitor_carrier
https://github.com/robotology/yarp/tree/master/src/carriers/portmonitor_carrier
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A port monitor will usually act as a passive
object [7] in which PortMonitor.accept and
PortMonitor.update callbacks are executed in sequence
as data arrives while buffering guarantees that no messages are
lost during execution. However, one may need to periodically
monitor a connection (within a specific time interval) and,
for example, generates proper events in case of delay in
the communication. For this purpose, a Port Monitor Object
can be configured to call PortMonitor.trig within
desired time intervals. In Section 4.1 we demonstrate how
PortMonitor.trig can be used to monitor delays in the
communication. Finally, PortMonitor.destroy is called
when a Port Monitor Object is detached from the port on
disconnection.

1 PortMonitor.create = function()
2 dispacher = yarp.Port()
3 return dispacher:open("/estimator:event")
4 end
5

6 PortMonitor.accept = function(incoming_data)
7 -- read object_pos from ’incoming_data’
8 if object_pos.certainty < 0.8 then
9 dispacher:write(event("e_certainty_low"))

10 end
11 return true
12 end
13

14 PortMonitor.destroy = function()
15 dispacher:close()
16 end

Listing 2. An example of monitoring data and dispatching
events.
Based on the object tracking example from Figure 2(b), we
show how these callbacks can be used to generate events for
the coordinator when the certainty of 3D Position Estimator
drops below a desired threshold. Listings 4 shows a Lua script
which is loaded by the Port Monitor Object attached to the out-
put port of the estimator module. In PortMonitor.create
a YARP port is created to dispatch events. This allows other
modules (e.g., Coordinator) to receive these events by sub-
scribing to this port. Monitoring data and event generation are
done in PortMonitor.accept. The port’s data is read and
the condition for generating the event is checked. If the cer-
tainty is below the threshold (e.g., 0.8), e_certainty_low
is generated and published using the dispatcher. Finally, in
PortMonitor.destroy, the dispatcher port is closed.

3 THE PORT ARBITRATOR OBJECT

In robotic applications there are cases where making an
immediate decision upon state changes of the system becomes
crucial to the overall behavior of the complex system [8].
In terms of coordination, it can be much simpler and more
efficient to have a reactive decision made quickly rather
than introducing delay in the control loop by making every
minor (and sometimes inessential) state change of the system
explicitly visible to the coordinator.
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Fig. 4. Different ways to select desired data from multiple
sources. The box indicated with ’A’ represents a Port
Arbitrator Object.

Figure 4(a) shows a simplified architecture of an object
tracking application. Template Matching and Particle Filter
modules are configured to recognize a desired object based
on different object detection algorithms. The reason for using
two different modules for the same purpose is that depending
on the environmental condition and how object appears in
the scene, one algorithm performs better than the other. Each
module sends 3D position of the detected object along with
its certainty to the Head Control component. The latter should
receive data from the module which is more confident about
its result. This is again a problem of coordination. Yet, how to
coordinate these competitive modules? It should be clear that
delegating this responsibility to the Head Control is not the
right choice since it strictly limits reusability of the module.

One solution to this problem is to implement a specific
selector which receives data from both detector modules,
chooses the one with higher certainty value and sends it to
Head Control (Figure 4(c)). The drawback of this approach is
that it introduces communication and execution overhead [9]
in executing the Selector and transferring data to and from it.
Finally, the Selector module is hard to be reused in different
applications; unless one makes the selector more generic with
the cost of lower performance.

Another solution is to monitor the output values of each
module and make any changes in the certainty level vis-
ible to a separate Coordinator using proper events (e.g.,
e_certainty_low, e_certainty_ok). The Coordina-
tor is then responsible for contacting all the involved modules
to inquire each to block or deliver their output to Head Control.
This requires extending modules that perform computation and
introduces specific logic to enable or suspend sending output
data. In case modules are allowed to talk to multiple receivers,
this logic should also become aware of the current network
topology (for good reasons this information is usually hidden
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by the middleware). Moreover, proper coordination requires
that a certain amount of messages and acknowledgments are
exchanged between the modules involved in the arbitration
and the Coordinator. This “bureaucracy” introduces latencies,
bandwidth overhead and adds complexity to the application.

For this family of coordination problem, we propose another
approach based on arbitrating data from multiple sources in
the input port of a component. We call this a Port Arbitrator.
The approach can be used in the design of any robotic system
where immediate reaction to changes in the system’s state is
required and these minor changes are not necessarily needed
to be reasoned about by a third-party component. For the
object tracking example, minimizing delays is functionally
more important than making every change of the system’s state
explicitly visible to the coordinator via events (notice that,
although these events are not used by a separate component,
they can be made available to higher level decision makers or
monitors, if required).

Figure 4(b) shows how a Port Arbitrator Object is used in
the object tracking example. The port arbitrator (drawn as a
box marked A) is attached to the input port of Head Control.
The arbitrator is configured with a set of constraints to properly
arbitrate between data arriving from the Template Matching
and Particle Filter modules. As for port monitors, the arbitrator
object can be dynamically loaded and plugged into an input
port. Thus the communication and deployment overhead due
to separate selector or coordinator components are no longer
introduced in the system.

3.1 Internal Architecture of Port Arbitrator

Figure 5 represents the internal architecture of the Port Arbi-
trator Object. The aim of using a port arbitrator is to allow
data from, at most, one connection at a time to be delivered
to an input port. A port arbitrator consists of a set of selection
constraints, an event container and a selector block.

A Port Monitor Object can be attached to each connection
(Ci) going through the port arbitrator. The port monitor can in-
spect the connection and inserts the corresponding events into
a shared container. It can also remove an event (if previously
inserted by itself) from the container2. Normally events remain
valid in the container until they are explicitly removed by the
monitor object. An event can also have a specific lifetime: i.e.
it will be automatically removed from the container when its
lifetime is over. For each connection Ci, there is a selection
constraint written in first order logic as a boolean combination
of symbolic events. Upon the arrival of data from a connection,
the selector evaluates the corresponding constraint and if it is
satisfied, it allows the data to be delivered to the input port;
otherwise the data will be discarded. Clearly a consistency
check on the boolean rules must be performed to guarantee

2. This is similar to the Event–Mask mechanism used in user interface
programming or in operating systems.
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Fig. 5. The architecture of Port Arbitrator object. Straight
lines show the data flow and zigzag lines represent event
flow.

that only a single connection Ci can deliver data at any given
time.

3.2 Representation and Evaluation of Constraints
We refer to the object tracking example from Figure 4(b)
to demonstrate how selection constraints are represented and
how they can be evaluated based on events from a container.
As we have mentioned before, Head Control should receive
data from the detector module which is more confident about
its result. The confidence level is indicated by the certainty
value sent out from the module to Head Control. A monitor
object is attached to each connection. The monitor reads the
certainty value associated with the detected object and inserts
an event into the container when the certainty is above a
desired threshold. The event is removed from the container if
the certainty value drops below the threshold. In our example
connections are named C1 and C2 for Template Matching and
Particle Filter, respectively, whereas the corresponding events
are e_template_ok and e_particle_ok.

To allow data from Template Matching (C1) to be delivered
to Head Control when e_template_ok exists in the event
container we add this rule:

C1 if e_template_ok

A similar constraint should also be set to receive data from
Particle Filter. Suppose now we want to give preference to
data from Particle Filter if both trackers are confident about
their results. This can be achieved by modifying the selection
constraint for C1 (Template Matching) as follow:

C1 if e_template_ok and not e_particle_ok

As we have described for the object tracking example,
constraints can be expressed as boolean combinations of
symbolic events. To evaluate the expression, every symbolic
event is substituted with a boolean value. If the event exists
in the container, it represents a true value in the expression;
otherwise it is evaluated as false.
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3.3 Reference Implementation
Port arbitrator extends the port monitor’s scripting API for
setting constraints and altering events in the container. In
fact, when a Port Monitor Object is attached to an input
port, the user’s script can access the extended API for
arbitration. To illustrate this, we show how this extended
functionality can be used for arbitrating connections in the
object tracking example of Figure 4(b). A monitor object
is attached to each connection of the input port of Head
Control. Each monitor object loads a script in which we set
the constraints described in section 3.2 and it alters the corre-
sponding events by parsing the incoming data and evaluating
the associated certainty value. Listing 5 shows the script for
setting selection constraint and monitoring data from Template
Matching. The selection constraint (i.e., e_template_ok
and not e_particle_ok) is set in the create call-
back using PortMonitor.setConstraint. The cer-
tainty value of the detected object is monitored in the accept
callback. If the certainty is above the desired threshold,
e_template_ok will be added to the container using
PortMonitor.setEvent. Similarly, it will be removed
from the container using PortMonitor.unsetEvent
whenever the certainty value drops below the threshold.

1 PortMonitor.create = function()
2 PortMonitor.setConstraint("e_template_ok and
3 not e_particle_ok")
4 return true
5 end
6

7 PortMonitor.accept = function(incoming_data)
8 -- read object_pos from ’incoming_data’
9 if object_pos.certainty > 0.8 then

10 PortMonitor.setEvent("e_template_ok")
11 else
12 PortMonitor.unsetEvent("e_template_ok")
13 end
14 return true
15 end

Listing 5. Monitoring data from Template Matching and
setting constraint for arbitration.

Setting the selection constraint of Particle Filter and mon-
itoring its data is done in the same way. Notice that each
monitor object can set its own selection constraint and only
alters its own events in the shared container.

4 POTENTIAL APPLICATIONS
We have explained how the Port Monitor Object can be
used for monitoring data and generating events. We have
also shown how this object is extended to instantaneously
arbitrate data from multiple connections. In previous work
we demonstrated that this arbitration mechanism can be ef-
fectively used to implement complex tasks without resorting
to centralized coordinators [10]. The Port Monitor Object has
also been used within the Xperience project [11] to simplify
the design and implementation of a complex application on
the iCub [12] humanoid robot. In this work the iCub was

programmed to remove objects from a table using a set of
functionalities (grasping, pulling objects with a tool and asking
for human assistance). Notably these functionalities were not
designed to be integrated for this specific application. The
Port Monitor Object was therefore a crucial tool to introduce
the transformations required for proper integration and to add
application specific functionalities (i.e. coordination and data
filtering). In the remainder of this paper we show other appli-
cations that illustrate how our approach can further improve
the performance of robotics system and increase component
reusability.

4.1 Monitoring communication for Quality of Ser-
vice
To achieve robust behavior of a robotic application, the behav-
ior of subsystems and communication among them should be
properly monitored. A Port Monitor Object can be attached
to an input port to monitor the connection between the
components and raise proper events in case of latency or
failure in the communication. The events can be used by a
coordinator to control urgent critical situations or monitor the
Quality of Service (QoS) over longer periods. The events
can also be used by an arbitrator to select the component
which instantaneously provides data with least latency. In the
object tracking example from Figure 4(b), choosing between
data from Particle Filter and Template Matching can be done
not only based on confidence level, but also by checking
which one is producing data with lower latency, higher or just
more reliable frequency (i.e. lower jitter). This QoS can vary
due to current bandwidth usage in the network connection
or computational load of the node in which the module is
deployed.

To show how the Port Monitor Object can be used for
monitoring communication frequency, we refer to the example
from Figure 2(c) and report the pseudo-code of the script to
raise an event when data received by Arm Control is delayed
for a specific time.

1 PortMonitor.create = function()
2 PortMonitor.setTrigInterval(0.2)
3 return true
4 end
5

6 PortMonitor.accept = function(incoming_data)
7 received = true
8 return true
9 end

10

11 PortMonitor.trig = function()
12 if received == false then
13 --- raise ’e_qos_not_ok’ event
14 else
15 received = false
16 end
17 end

Listing 6. An example of monitoring communication for
QoS.
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As shown in Listing 6, first we setup a trigger to call
PortMonitor.trig every 200 ms. Whenever data arrives
to the monitor object, a flag (received) is set. On every call
to PortMonitor.trig, the flag is checked and if it has not
been set, the e_qos_not_ok event is generated (for the sake
of brevity, the required code for dispatching events is omitted
from the listing). The flag is also reset in the trig callback for
the next check. In this example, the script only raises an event
regarding delay in the communication. Noticed that the check
performed in this case is overly simplified but this example
can be easily extended in a real application. An interesting
extension is monitoring failure in the communication and
raising proper events using the PortMonitor.destroy
callback.

4.2 Data Guarding and Filtering
Developing reusable software is hard; systematically devel-
oping high quality reusable software components is even
harder [13]. With reusability in mind, there is a risk of over
generalization and increased complexity. In other words, to
build a reusable component, the developer tries to foresee any
future needs and add them as reconfigurable functionalities
to the software. Such a commitment may lead to more
complex computational components which are polluted with
application–dependent functionalities. Imagine that, for the
object tracking example from Figure 1, we want to limit
the operational workspace of the robot’s arm to reach for
the object only in a specific region. One way to achieve
this is to configure the 3D Position Estimator module to
send object’s position if it is within the desired region. The
problem is that the output of the estimator module is also
used by Head Control, therefore this solution also limits the
operational space of the robot’s head. Another approach is
to delegate this responsibility to the Arm Control module by
configuring it to accept the position data if it is within the
desired limits. However, if the Arm Control is concurrently
used by other modules (which need to control the arm in
different workspaces) it should be reconfigured every time it
receives data from a different module.

A more flexible approach is to use a Port Monitor Object
(e.g., in the output port of 3D Position Estimator) and constrain
it to filter the data. This can be done by monitoring data pack-
ets in the PortMonitor.accept callback and rejecting
those that do not satisfy the constraints of the application. In
this way, developers are not forced to include any application–
dependent functionality into their components. Therefore com-
ponents can be reconfigured only with the parameters which
purely affect their computational functionalities.

4.3 Data Transformation
Components exchange data through their ports. To establish
a meaningful communication, components should agree on
the type of information they exchange. Brugali et al. [14]

classify communication as strongly–typed and loosely–typed
and discuss the pros and cons of each category. Strongly–typed
communication is more efficient and easier to debug but at the
same time it limits reusability of the components. In contrast,
loosely-typed communication is more flexible but it requires
more manual programing because interpretation of messages
should be implemented in the components.

Scripting languages due to their text–processing capabilities
have been known to be well suited to the task of data
transformation and munging [15]. The port monitor approach
allows for data modification (PortMonitor.update) us-
ing scripting programming languages. For this reason it is
potentially an ideal place for basic data conversion. One
can attach a Port Monitor Object to an input port of a
component and implement a simple script to take the data and
convert it into the format which is required by the component.
Moreover, using port monitor for loosely–typed data mapping,
we simplify the implementation of the components since the
latter do not need to bear the responsibility of interpreting
information.

4.4 Logging and Performance Monitoring
To analyze the runtime performance of a robotic system, the
behavior of components, their interactions and, in general,
any critical state changes in the system should be moni-
tored over long periods. This is analogous to the Top–Down
passive monitoring in the field of application performance
management [16]. Passive monitoring is usually an appliance
which leverages network port mirroring. The idea of port
monitoring can be applied to record the quality of service
provided by a computational component over time. The only
way components can communicate with the external world
is via their ports. In Section 2 and Section 4.1 we have
clearly shown how the Port Monitor Object can be used to
generate both computational and communicational events that
are locally recorded or sent to a central event logger for off–
line analysis.

5 DISCUSSION

The core concept of port arbitration has some similarities
with the coordination models and languages in the context of
parallel and distributed systems [17]. A coordination model
provides a framework based on global communication ab-
stractions in which the interaction of active and independent
entities can be expressed using a specific language [18]. There
are also some coordination tools which have been explicitly
designed for component–based systems such as Reo [19]
and ToolBus [20]. Our approach aims at facilitating and
simplifying component development by removing not only
coordination–related, but possibly all application–dependent
functionalities from the component implementation.

Concerning the generality of our approach, it is fair to say
that for the port monitor to be effective in all applications the
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components need to expose all data through their ports. To
our knowledge, however, there is no universal solution to this
problem.

The current implementation of the Port Monitor Object
exploits a scripting language to achieve better flexibility, easier
deployment and implementation of the required functionalities.
However the Port Monitor Object can be implemented using
a compiled language if higher performance is required (e.g.,
for real–time processing).

To demonstrate our approach and its potentials we presented
a reference implementation using the YARP framework. How-
ever, the Port Monitor Object can be implemented in other
distributed frameworks, for example by extending existing
connection ports (e.g. topics in ROS [21] or buffered ports
in OROCOS [22]) with the functionalities required to load
code and execute it to parse incoming or outgoing data. This
extension can be easily implemented if the framework provides
a callback mechanism or by actively monitoring a port using
a dedicated thread.

Even though coordination based on port arbitration can
cover a wide variety of robotic applications, we have ex-
perienced certain limitations in the system. First, since ar-
bitration is usually done on the data from unidirectional
connection to an input port, it cannot be easily used in a
service–oriented system where interactions between modules
are bidirectional and done using blocking remote procedure
calls. Moreover, a robotic task might require performing a
sequence of actions synchronized with the internal state of
components. This can be also made using port monitoring
and arbitration, nevertheless, delegating this responsibility to
a dedicated, external component can be preferable in favor of
simplicity and performance.

6 CONCLUSIONS

This article has introduced port data monitoring and arbitra-
tion to alleviate the problem of coordination and facilitate
development of reusable components. We have illustrated
the Port Monitor Object and how it extends a component
port functionality with monitoring and event generation using
runtime scripting languages.

We have shown that our approach allows separating the
computation from application dependent code. This increases
the reusability of the components and it simplifies their
implementation. We have also demonstrated how the Port
Monitor Object can be used to implement data filtering and
transformation, quality of service as well as performance mon-
itoring. Overall this can substantially improve the robustness
of robotics application.

We have illustrated the concept of port arbitration and its
application to robotics. Our approach to port arbitration can
also contribute to improving the performance of a robotic
system when changes to the system’s state can be kept local
to certain components and immediate reaction is required.
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