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Abstract

In this work we exploit agglomeration based h-multigrid preconditioners to

speed-up the iterative solution of discontinuous Galerkin discretizations of the

Stokes and Navier-Stokes equations. As a distinctive feature h-coarsened mesh

sequences are generated by recursive agglomeration of a fine grid, admitting

arbitrarily unstructured grids of complex domains, and agglomeration based

discontinuous Galerkin discretizations are employed to deal with agglomerated

elements of coarse levels. Both the expense of building coarse grid operators and

the performance of the resulting multigrid iteration are investigated. For the

sake of e�ciency coarse grid operators are inherited through element-by-element

L
2 projections, avoiding the cost of numerical integration over agglomerated el-

ements. Specific care is devoted to the projection of viscous terms discretized

by means of the BR2 dG method. We demonstrate that enforcing the correct

amount of stabilization on coarse grids levels is mandatory for achieving uni-

form convergence with respect to the number of levels. The numerical solution

of steady and unsteady, linear and non-linear problems is considered tackling

challenging 2D test cases and 3D real life computations on parallel architectures.
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1. Introduction

Discontinuous Galerkin (dG) methods have proved to be e↵ective in the CFD

field allowing to simulate complex physics in complex domains while guarantee-

ing accuracy and robustness. Although very popular for compressible fluid flow

simulations, their adoption by incompressible fluid flow practitioners is still lim-

ited due to di�culties involved in the numerical solution of the Incompressible

Navier-Stokes (INS) equations. On the one hand explicit and decoupled time

integration strategies (e.g. Pressure Poisson Equation segregated methods) com-

plicate the achievement of high-order pressure accuracy, thereby reducing the

appeal of high-order accurate spatial discretizations. On the other hand fully

implicit fully coupled velocity-pressure spatial discretisations result in systems

of Di↵erential Algebraic Equations (DAEs) that are very expensive to solve

due to the indefiniteness of the resulting system matrices, their poor spectral

properties, and the saddle point nature of the problem [1].

In this work, in order to speed up the numerical solutions of coupled variables

dG discretizations of incompressible flow problems, we consider h-multigrid so-

lution strategies on h-coarsened mesh sequences generated by recursive agglom-

eration of a fine grid. h-multigrid is very attractive from the e�ciency viewpoint

in the sense that the number of arithmetic operations needed to solve a discrete

problem is proportional to the number of degrees of freedom. Convergence fac-

tors, that is the average residual decrease at each multigrid iteration, can be

made h-independent and small.
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In the context of dG discretizations p-multigrid has been fruitfully applied

in practical applications see e.g. [2, 3, 4, 5], while the theoretical and practical

investigation of h- and hp-multigrid is more recent. In 2003 Gopalakrishnan

and Kanschat [6] analyzed a V-cycle preconditioner for di↵usion and advection-

di↵usion problems. Multigrid algorithms for dG discretizations of elliptic prob-

lems were considered by Brenner et al. [7], who proved uniform convergence

with respect to the number of levels for F-,V- and W-cycle on graded meshes,

and Antonietti et al. [8], who provided similar results for W-cycle h-,p- and

hp-multigrid. While the previous works employed h-refined mesh sequences,

Prill et al. [9] considered smoothed aggregation to build coarse problems for

h-multigrid dG solvers. The issue of developing optimal solvers for Composite

discontinuous Galerkin Methods, first developed and analyzed Antonietti et al.

[10] was considered by Antonietti et al. [11, 12]. More recently Antonietti et al.

[13] analysed multigrid strategies for Interior Penalty dG discretizations over

agglomerated elements meshes, while Wallra↵ and Leicht [14] and Wallra↵ et

al. [15] applied an agglomeration based h-multigrid solver to dG discretizations

of the compressible Reynolds Averaged Navier-Stokes (RANS) equations.

h-coarsening by agglomeration leads to unprecedented flexibility in the def-

inition of the coarse meshes. Starting from a fine grid, a coarse mesh can be

generated on the fly clustering together a number of mesh elements. The pro-

cess can be repeated at will in a recursive manner resulting in a nested mesh

sequence. Note that the generation of a sequence of nested grids by recursive

refinement of a coarse mesh, e.g. by means of element subdivision techniques,

might require to improve the rough approximation of the computational domain

provided by the coarse mesh. While coarsening by agglomeration is flexible

enough to account for complex 3D domains, physical frame dG discretizations

allows to handle polyhedral elements of very general shape [16, 17, 18, 19, 20].
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Nevertheless, as a consequence of the lack of e�cient quadrature rules for ag-

glomerated elements, numerical integration of bilinear and trilinear forms might

lead to excessive matrix assembly costs, see Bassi et al. [17].

The present investigation focuses on e�ciency of building coarse grid opera-

tors for dG discretizations of incompressible flow problems and e↵ectiveness of

the multigrid V-cycle iteration. In particular, we introduce a strategy for inher-

iting the BR2 dG formulation of [21], which provides optimal convergence prop-

erties and does not require numerical integration during assembly of coarse grid

operators. Besides the BR2 formulation, here employed for the discretization of

the viscous terms, inherited multigrid can be fruitfully employed for the discrete

divergence and the discrete gradient operators, and also for the discretization of

the non-linear convective flux terms appearing in the Navier-Stokes equations.

The material is organized as follows. In Section 2 we introduce agglomeration

based dG discretization over h-coarsened mesh sequences. Section 3 is dedicated

to presenting dG discretizations of incompressible flow problems: i) the incom-

pressible Navier-Stokes equations spatial and temporal discretization in Section

3.1 and 3.2, respectively; ii) the discretization of the steady Stokes problem in

Section 3.3; iii) the BR2 dG formulation in Section 3.4. The ingredients of the

h-multigrid iteration are described in Section 4: i) the V-cycle in Section 4.1;

ii) intergrid transfer operators in Section 4.2; iii) inherited coarse grid operators

in Section 4.3. Section 5 briefly comments on the use of the h-multigrid V-cycle

iteration as a preconditioner for iterative solvers and introduces block precon-

ditioners for the Stokes problem. Performance gain assessment as compared

to state-of-the-art iterative and direct solvers is conducted in Section 6. We

consider i) elliptic problems in Section 6.1; ii) linear Stokes problems in Section

6.2; iii) non-linear incompressible flow problems in Section 6.3.
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2. Agglomeration based dG discretizations

2.1. Coarsening by agglomeration

Let ⌦ be a bounded connected open domain. Consider a (possibly non

conforming) mesh T0 of ⌦ composed of (possibly curved) elements  2 T0 such

that (i) for any  2 T0, there exists a reference polygon b and a polynomial

mapping   : b !  such that  =  (b). (ii) quadrature rules of arbitrary

order are available on the reference polygon b. The set of reference polygons

includes but is not limited to triangular and quadrilateral reference elements in

2D, tetrahedral, hexahedral, pyramidal and prismatic reference elements in 3D.

Starting from T0 we can define a sequence of coarsened meshes {T`}`=0,...,L

by agglomeration, see Figure 1. For the sake of notation we denote by `

any element  2 T` whose diameter is h, and we denote the mesh size of

T`, ` = 0, ..., L, by h` = max2T`(h). Agglomeration generates a hierarchic

sequence of nested grids, in particular for any T`, ` = 0, ..., L � 1, we suppose

that

• T`+1 is a disjoint partition of ⌦ obtained clustering together the elements

of T`;

• every  2 T`+1 is an open bounded connected subset of ⌦ and there exists

K
`+1
`
⇢ T` such that

`+1 =
[

2K
`+1
`

`. (1)

The card (K`+1
`

) cells clustered into the agglomerated element `+1 are

referred to as sub-elements.

• for every  2 T` there exists K`

0 ⇢ T0 such that

` =
[

2K
`
0

0.
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This can be obtained by applying (1) recursively and formalizes the fact

that agglomerated elements on any mesh level ` can be expressed as a

composition of elements belonging to the finer mesh T0.

TL

T0

T`

T`+1

0`+1

`+1

`

0

`

�`

�`+1

Figure 1: Left, example of a five levels (L = 4) h-coarsened mesh sequence. Right, two mesh

elements `+1,0
`+1 2 T`+1 sharing a face �l+1 and two mesh elements `,0

` 2 K`+1
` ⇢ T`

sharing a face �l.

Clearly the coarsening steepness h`+1/h` is influenced by the number of sub-

elements composing aggregate elements as well as by the aspect ratio of agglom-

erated elements, see Figure 1. In this work all the mesh sequences are generated

setting card(K) = 4, 8 in two and three space dimensions, respectively, where

the agglomeration rate card(K) is a strict upper bound for the number of sub-

elements, so that card (K)  card(K), 8 2 {T`}
L

`=1. The sequence of coarse

meshes are generated by means of the library MGridGen [22], which allows to

fix card(K) and relies on optimization algorithms in order to ensure overall good

quality of the agglomerated elements. Note that, while the typical coarsening
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steepness h`+1/h` = 2 can be obtained on regular Cartesian grids by regrouping

4 quadrilateral elements (2D case) or 8 hexahedral elements (3D case) sharing

a node, on general unstructured grids leaving card (K) unbounded from below

gives room for more aggressive aspect ratio optimizations.

To complete the definition of agglomerated grids we introduce inter-element

boundaries where to define trace operators and fluxes of the dG discretization.

• Faces of an element  2 T0 are defined as a portion of @0 such that

there exists a (hyperplanar) face b� of the corresponding reference element

b such that � is the image of b� through the mapping  .

• Faces of an agglomerated element  2 T`, ` = 1, ..., L, are defined as a

portion of @ such that either � = @\@⌦ or there exists 0
2 T`, 0

6= ,

such that � = @ \ @
0.

Mesh faces are collected in the sets F`, ` = 0, ..., L. As mesh elements are

composed by sub-elements, every face � 2 F`+1 is composed by sub-faces, also

called facets, which belong to the set F`. Moreover, for every face � we introduce

the set ⌃`+1
`
⇢ F` collecting the facets partitioning �`+1, i.e.,

�`+1 =
[

�2⌃`+1
`

�`,

and applying the definition recursively we get

�` =
[

�2⌃`
0

�0,

where ⌃`

0 ⇢ F0.

We introduce the set of boundary mesh faces � 2 F
b
`

such that � ⇢ @⌦

and let F i
`

def
= F` \ F

b
`
denote the set of internal faces. Moreover, for any mesh
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element  2 T`, the set

F

def
= {� 2 F` |� ⇢ @}, (2)

collects the mesh faces composing the boundary of . The maximum number

of mesh faces composing the boundary of mesh elements is denoted by

N@`

def
= max

2T`

(card (F)) . (3)

For any mesh face � 2 F` we define the set

T�
def
= { 2 T` |� ⇢ @}. (4)

T� regroups the two mesh elements ,0 sharing � if � 2 F
i
`
while it consists of

a single mesh element if � 2 F
b
`
.

We remark that agglomerated faces are in general not hyperplanar and have

very general shapes. In Figure 1, a single non straight face �`+1 composed by

three straight facets is represented. According to the definition of standard and

agglomerated faces, for each mesh element the number faces is equal to the

number of neighboring elements.

2.2. Physical frame dG discretizations

For each mesh level ` = 0, ..., L we consider the following broken polynomial

spaces

Pk

d
(T`)

def
=

�
v` 2 L

2(⌦) : v`| 2 Pk

d
(), 8 2 T`

 
, (5)

where Pk

d
() is the restriction to a mesh element  of the polynomials functions

of d variables and total degree at most k, such that N


dof = dim(Pk

d
) =

�
k+d

k

�
.

Since in this work d = {2, 3} and no confusion is possible, we drop the subscript
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and simply use the notation Pk in place of Pk

d
. Due to the nestedness of mesh

elements we have Pk(T0) � Pk(T1) � Pk(T2)... � Pk(TL).

It is interesting to remark that physical frame discretizations are defined so to

inherently span the space Pk(T`) and provide optimal approximation properties

on regular h-refined mesh sequences (Th)h>0, see e.g. Botti [23]. Accordingly,

for all  2 Th and for each polynomial degree k, the L
2-orthogonal projection

operator ⇡k


: L2()! Pk() is such that for all v 2 H

k+1(), there holds

kv � ⇡
k


vkL2()  Capph

k+1


|v|Hk+1() (6)

where Capp is independent of h and k. The optimal approximation estimate (6)

holds true over mesh sequences composed of agglomerated elements of very gen-

eral shape, in particular agglomerated elements meshes built on top of a curved

elements mesh T0 are eligible to provide optimal approximation properties, see

e.g. [24]. While the mesh regularity assumption implies star-shapedness of ag-

glomerated elements, see [25] or [26] for additional details, the numerical conver-

gence rates assessed in [16] and [17] allow to claim that optimal approximation

properties are achieved over mesh sequences obtained by means of the MGrid-

Gen library (for instance using {T`}`=0,...,L in reversed order as a h-refined mesh

sequence).

Sharp approximation properties estimates valid in the general framework of

hp-discontinuous Galerkin discretizations have been obtained introducing the

concept of shape regular d-simplexes coverings of polygonal/polyhedral meshes,

see [18].
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2.3. Basis functions choice

For a given  2 T`, ` = 0, ..., L, let �k

P() = {'


i
, i = 1, ..., dim(Pk)} denote

a basis for Pk(). A basis for the space Pk(T`) is given by

�k def
= {�k

P()}2T` . (7)

where each basis functions '


i
is extended to ⌦ by simply setting '



i
= 0 on

⌦ \ .

From a practical viewpoint, in order to find a numerically satisfactory phys-

ical frame basis function we rely on the procedure proposed by Bassi, Botti,

Colombo, Di Pietro and Tesini [16]. Starting from a monomial basis for each

elementary space Pk() defined according to a reference frame whose axes are

aligned with the principal axes of inertia of , an L
2-orthonormal basis is inferred

by means of the Modified Gram-Schmidt (MGS) orthogonalization procedure.

The resulting basis functions �k = {'


i
} are hierarchical, orthogonal with re-

spect to the L
2 inner product and provide well conditioned local matrices at

high polynomial degrees. In particular the elementary mass matrices are unit

diagonal, for any element shape.

The sole requirement to apply the orthogonalization strategy is the capability

to compute the integrals of polynomial functions on each element . In the case

of agglomerated elements this is achieved by exploiting the partition K0 into

standard-shaped sub-elements. The integral of any v 2 Pk

d
(T`) is computed as

follows

Z

`

v(x) dx =
X

2K
`
0

Z

0

v(x) dx =
X

2K
`
0,0= (b)

Z

b
(v � )(⇠)|J (⇠)| d⇠, (8)

where x and ⇠ are physical and reference space coordinates, respectively, and

J  is the Jacobian of the mapping function  . The order of exactness required
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for exact integration over each sub-element rapidly increases when considering

high order polynomials on curved elements. Moreover, the use of Gaussian

quadrature rules defined on the reference frame polygon b might lead to an ex-

cessive growth of the number of quadrature points if the agglomerated elements

are composed of many sub-elements.

2.4. Average, jump and lifting operators

For all � 2 F
i
`
and all v` 2 Pk(T`) we introduce the jump and average

operators defined as follows:

[[v`]]�
def
= v`| � v`|0 , {{v`}}�

def
=

1

2
(v`| + v`|0).

Whenever no confusion can arise we drop the subscript �. On boundary faces,

we conventionally set [[v`]] = {{v`}} = v`. When v is vector-valued, the weighted

average operator acts componentwise on the function v.

For all � 2 F
b
`
, n� denotes the unit outward normal to ⌦, whereas, for all

� 2 F
i
`
such that � ⇢ @ \ @

0, n� is defined as the unit normal pointing out

of  (the order of the elements sharing � is arbitrary but fixed). For all � 2 F`

we define the (local) lifting operator r� : L2(�)! [Pk

d
(T`)]d, such that, for all

� 2 L
2(�),

Z

⌦
r�(�)·⌧ ` =

Z

�

�{{⌧ `}}·n� 8⌧ ` 2 [Pk(T`)]
d
. (9)

Note that the support of r� consists of one and two mesh elements if � 2 F
b
`

and � 2 F
i
`
, respectively, that is

supp(r�) =
[

2T�

.
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For any function v 2 H
1(T`), we also introduce the global lifting

Rl(v) :=
X

�2Fl

r�([[v]]), (10)

which collects the local lifting contributions, note that [[v]]� 2 L
2(�).

3. Incompressible flow problems

3.1. Incompressible Navier-Stokes equations dG discretization

We consider the unsteady INS equations with Dirichlet boundary conditions,

@tu+ u ·ru�r·(⌫ru) +rp = 0 in ⌦⇥ (0, tF ), (11a)

r·u = 0 in ⌦⇥ (0, tF ), (11b)

u = f on @⌦⇥ (0, tF ), (11c)

u(·, t = 0) = u0
, in ⌦, (11d)

hpi⌦ = 0, (11e)

where u 2 Rd is the velocity vector, p is the pressure, ⌫ > 0 denotes the

(constant) viscosity, f is the boundary datum, u0 is the initial condition, and

h·i⌦ denotes the average value over ⌦. The density has been assumed to be

uniform and equal to one.

Letting F⌫ = �⌫r⌦u and Fc = u⌦u+ pId be the viscous and convective

flux functions, Eqs. (11a)-(11b) can be written in conservation form as

@tu+r · F = 0, (12)
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where F
def
= [Fc + F⌫

,u] 2 Rd
⌦ Rd+1. For d = 3 we get

F =

2

66664

uu+ ⌫
@u

@x
+ p uv + ⌫

@v

@x
uw + ⌫

@w

@x
u

vu+ ⌫
@u

@y
vv + ⌫

@v

@y
+ p vw + ⌫

@w

@y
v

wu+ ⌫
@u

@z
wv + ⌫

@v

@z
ww + ⌫

@w

@z
+ p w

3

77775
(13)

The dG discretization of the Navier-Stokes equations we rely upon consists

in seeking (u0, p0) 2 [Pk(T0)]d+1 such that

Z

⌦
v0 · @tu0 �

Z

⌦
r0v0 :

h
Fc(u0, p0) + eF⌫ (r0u0,R0(u0))

i

+
X

�2F0

Z

�

n� ⌦ [[v0]] :
h
bFc

⇣
u,

0

0 , p
,

0

0

⌘
+ bF⌫

⇣
r0u

,
0

0 , ⌘�r
,

0

�
([[u0]])

⌘i
= 0,

(14a)

�

Z

⌦
r0q0 · u0 +

X

�2F0

Z

�

[[q0]]n� · bu(u,
0

0 , p
,

0

0 ) = 0, (14b)

Z

⌦
p0 = 0

for all (v0, q0) 2 [Pk(T0)]d+1.

According to the BR2 scheme, proposed in [21] and theoretically analyzed

in [27] and [28], the viscous numerical fluxes read

eF⌫ (r0u0,R0 (u0))
def
= �⌫r0u0 +R0 (u0) , (15)

bF⌫

⇣
r0u

,
0

0 , ⌘�r,
0

�
([[u0]])

⌘
def
= �⌫{{r0u0}}+ ⌘�{{r� ([[u0]])}}. (16)

eF⌫ is the consistent discrete gradient while bF⌫ is the consistent di↵usive flux

ensuring symmetry and stability of the scheme. In particular coercivity holds

provided that ⌘� is greater than the maximum number of faces of the elements

sharing �. The inviscid physical and numerical fluxes of the dG discretization

13



reads

F!⌫(w0)
def
= [Fc(w0),u0] and bF!⌫(w0)

def
=

h
bFc(w0), bu0(w0)

i
, (17)

respectively. The inviscid numerical fluxes bF!⌫ result from the exact solution of

local Riemann problems based on an artificial compressibility perturbation of

the Euler equations, as proposed in [29].

Boundary conditions are enforced weakly by properly defining for each � 2

F
b
0 a boundary state (u

0b
, p


0b
) having support on the interface of a ghost neigh-

boring elements 0b. The ghost boundary state is defined based on the method of

characteristics exploiting the hyperbolic nature of the artificial compressibility

perturbation of the Euler equation. Accordingly the ghost state depend on the

Dirichlet datum f but also on the internal state (u
, p

). Once ghost states are

computed, handling of internal and boundary faces is similar: for each � 2 F0

two neighboring elements ,
0 concur to the computation of numerical fluxes

and lifting operators.

3.2. Navier-Stokes equations temporal discretization

For the sake of notation we collect the vector velocity and the pressure poly-

nomial expansions in the vector w
def
= (u0,1, ..., u0,d, p0) 2 [Pk(T0)]d+1 and iden-

tify the unknown vector at time tn with wn

0 , that is w
n

0 = [u0(tn), p0(tn)]. For

all �w0,w0,k0 2 [Pk(T0)]d+1 we introduce the following bilinear and trilinear
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forms

mi(�wi, ki) = +
X

2T0

Z



ki �wi

j
!⌫
i,j
(w, �wj , ki) = �

X

2T0

dX

l=1

Z



@ki

@xl

@F
!⌫
l,i
(w)

@wj

�wj +
X

�2F0

dX

l=1

Z

�

[[ki]]n�,l

@ bF !⌫
l,i
(w)

@wj

�wj

(18)

j
⌫

i
(�wi, ki) = �

X

2T0

dX

l=1

Z



@ki

@xl

@ eF ⌫

l,i
(wi)

@wi

�wi +
X

�2F0

dX

l=1

Z

�

[[ki]]n�,l

@ bF ⌫

l,i
(wi)

@wi

�wi

(19)

f
m

i
(wi, ki) = �

X

2T0

Z



ki wi (20)

f
!⌫
i
(w, ki) = +

X

2T0

dX

l=1

Z



@ki

@xl

F
!⌫
l,i
(w)�

X

�2F0

dX

l=1

Z

�

[[ki]]n�,l
bF !⌫
l,i
(w),

f
⌫

i
(wi, ki) = +

X

2T0

dX

l=1

Z



@ki

@xl

eF ⌫

l,i
(wi)�

X

�2F0

dX

l=1

Z

�

[[ki]]n�,l
bF ⌫

l,i
(wi).

In the above definitions we dropped the mesh sequence subscript for notation

convenience. Note that, by abuse of notation, (18) is a bilinear (resp. trilinear)

when Fl,i(w) is a linear (resp. non-linear) function of wj .

Given the initial condition w0
0 = w0(t = 0) 2 [Pk(T0)]d+1 we define the

sequence wn+1
0 iteratively by means of the backward Euler method:
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Algorithm 1 Backward Euler

1: set wn

0 = w0
0, nF =

tF

�t
2: for n = 0, 1, ..., nF do
3: set wn+1

0  wn

0

4: while �w0 is too large do
5: find �w0 2 [Pk(T0)]d+1 such that, for all k0 2 [Pk(T0)]d+1

1

�t

dX

i=1

mi(�w0,i, k0,i) +
d+1X

i=1

d+1X

j=1

j
!⌫
i,j
(wn+1

0 , �w0,j , k0,i) +
dX

i=1

j
⌫

i
(�w0,i, k0,i) =

1

�t

dX

i=1

f
m

i
(wn+1

0,i � w
n

0,i, ki) +
d+1X

i=1

f
!⌫
i
(wn+1

0 , ki) +
dX

i=1

f
⌫

i
(wn+1

0,i , ki)

(21)

h�w0,d+1i⌦ = 0, (22)

6: set wn+1
0 += �w0

7: end while
8: end for

Note that the continuation condition at line 4 can be replaced by checking

that a proper norm of the right hand side of Equation (21) is too large. Equation

(22) is needed since the average value of the pressure increment is left undefined

in Equation (21).

To recast Problem (21) in operator form we let Xk(T0) = Pk(T0)⇥ [Pk(T0)]d
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and introduce the linear operators such that, 8w0 2 [Pk(T0)]d+1

(JA

0 �u0,v0)[L2(⌦)]d =
dX

i=1

j
⌫

i
(�w0,i, k0,i), 8 �u0,v0 2 [Pk(T0)]

d
,

(JB

0 (w0)�u0, q0)L2(⌦) =
dX

j=1

j
!⌫
d+1,j(w0, �w0,j , k0,d+1), 8 (q0, �u0) 2 X

k(T0),

(JB
t

0 (w0)�p0,v0)[L2(⌦)]d =
dX

i=1

j
!⌫
i,d+1(w0, �w0,d+1, k0,i), 8 (�p0,v0) 2 X

k(T0),

(JC

0 (w0)�p0, q0)L2(⌦) = j
!⌫
d+1,d+1(w0, �w0,d+1, k0,d+1), 8 �p0, q0 2 Pk(T0),

(JD

0 (w0)�u0,v0)[L2(⌦)]d =
dX

i=1

dX

j=1

j
!⌫
i,j
(w0, �w0,j , k0,i), 8 �u0,v0 2 [Pk(T0)]

d
,

(M0�u0,v0)[L2(⌦)]d =
dX

i=1

m0(�w0,i, k0,i), 8 �u0,v0 2 [Pk(T0)]
d
.

Moveover we introduce the residuals of momentum and continuity equations

fM0 (wn,n+1
0 ,v0) =

dX

i=1

f
m

i
(un+1

0,i � u
n

0,i, v0,i) +
dX

i=1

f
v,nv

i
(wn+1

0 , v0,i), 8v0 2 [Pk(T0)]
d
,

f
C

0 (wn+1
0 , q0) = fd+1(w

n+1
0 , q0), 8q0 2 Pk(T0).

Problem (21) amounts at solving a linear system in the form:

A
INS
0

2

64
�u0

�p0

3

75 =

2

64
fM0

f
C

0

3

75 , with A
INS
0 =

2

64
M0 + J

A

0 + J
D

0 J
B

t

0

J
B

0 J
C

0

3

75 . (23)

3.3. Stokes equations dG discretization

The steady Stokes equation problem can be obtained dropping the time

derivative and the convective term, that is the first two terms in equation (11a).

In case of a steady Stokes flow the inviscid interface fluxes bFc and bu can be

explicitly computed as the solution of a linear hyperbolic system, see [29] for

details. The resulting dG discretization reads: find (u0, p0) 2 [Pk(T0)]d+1 such

17



that

⌫a0(u0,v0) + b0(v0, p0) = fM0 (f ,v0), 8v0 2 [Pk(T0)]
d
, (24a)

�b0(u0, q0) + c0(p0, q0) = f
C

0 (f , q0), 8q0 2 Pk(T0), (24b)

hp0i⌦ = 0, (24c)

where

b0(v0, q0)
def
= �

Z

⌦
q0r0 · v0 +

X

�2F0

Z

�

[[v0]] · n�{{q0}}, (25)

=

Z

⌦
v0 ·r0q0 �

X

�2Fi
0

Z

�

{{v0}} · n�[[q0]], (26)

c0(q0, t0)
def
=

X

�2Fi
0

h�

Z

�

[[q0]][[t0]], (27)

a0(v0,w0)
def
=

dX

i=1

j
⌫

0 (v0,i, w0,i) =
dX

i=1

a
BR2
0 (v0,i, w0,i), (28)

and the terms on right hand side defined below accounts for the week imposition

of Dirichlet boundary conditions

fM0 (f ;v0) = �
dX

i=0

Z

⌦
R0(fi) ·r0v0,i + ⌘�

X

�2Fb
0

dX

i=0

Z

⌦
r�(fi) · r�(v0,i), (29)

f
C

0 (f ; q0) = �
X

�2Fb
0

Z

�

f · n�q0. (30)

According to (28) the discretization of the viscous term can be obtained apply-

ing the BR2 method to each velocity component, cf. definitions (19) and (36).

The dG discretization in (24) was analysed by Di Pietro in [30], see also [26,

Chapter 6].

Problem (24) has a block structure which we can take advantage for devising
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e↵ective preconditioners. To this end we define the operators A0, C0 and B0

(A0v0,w0)[L2(⌦)]d = ⌫a0(v0,w0), 8v0,w0 2 [Pk(T0)]
d
, (31)

(C0q0, r0)L2(⌦) = c0(q0, r0), 8q0, r0 2 Pk(T0), (32)

(B0v0, q0)L2(⌦) = �b0(v0, q0), 8(v0, q0) 2 [Pk(T0)]
d
⇥ Pk(T0). (33)

Note that according to (26) we are able to infer (v0, B
t

0q0)[L2(⌦)]d = b0(v0, q0).

Problem (24) amounts at solving a linear system in the form:

A
Stk
0

2

64
u0

p0

3

75 =

2

64
fM0

f
C

0

3

75 , with A
Stk
0 =

2

64
A0 B

t

0

B0 C0

3

75 . (34)

3.4. Viscous terms dG discretization

The BR2 dG formulation is employed for the discretization of the viscous

terms of Equation (11a) being an important building block of both the Stokes

and the Navier-Stokes dG discretizations. In this work we focus on the per-

formance of solving the BR2 dG discretization of the following model Poisson

problem 8
>><

>>:

�4u = f in ⌦,

u = 0 on @⌦.

(35)

Assessing and improving the performance of h-multigrid for elliptic problems has

been a critical step for achieving satisfactory performances on incompressible

flow problems.

The BR2 method can be written into a consistent and symmetric bilinear

form plus stabilization term as follows: For all v0, w0 2 Pk(T0),

a
BR2
0 (v0, w0)

def
= a

BR2,CS
0 (v0, w0) + s

BR2
0 (v0, w0), (36)
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where

a
BR2,CS
0 (v0, w0)

def
=

Z

⌦
(r0v0 �R0(v0)) · (r0w0 �R0(w0))�

Z

⌦
R0(v0)·R0(w0),

(37)

s
BR2
0 (v0, w0)

def
=

X

�2F`

⌘�

Z

⌦
r�([[v0]])·r�([[w0]]). (38)

Using the definition of the BR2 bilinear form in (36) the discretization of (35)

reads:

Find u0 2W0 s.t. aBR2
0 (u0, v0) =

Z

⌦
fv0 for all v0 2W0. (39)

Well-posedness of problem (39) was proved by Brezzi et al. [27].

The BR2 method in (39) can be reformulated as follows: Given f 2 L
2(⌦),

find u0 2 Pk(T0) s.t. A
BR2
0 u0 = ⇡

k

T0
f, (40)

where ⇡
k

T0
is the L

2(⌦)-orthogonal projection operator into Pk(T0) and A
BR2
0 is

the fine grid operator, such that

(ABR2
0 u0, v0)L2(⌦) = a

BR2
0 (u0, v0), 8u0, v0 2 Pk(T0). (41)

Solving (40) amounts to solving a linear system in the form

A
BR2
0 u0 = f0. (42)

4. h-multigrid V-cycle

The ability to define h-coarsened mesh sequences by agglomeration and to

perform high-order accurate dG discretizations on general polygonal grids allows
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to exploit h-multigrid solvers to improve the e�ciency of the solution strategy.

In this work we consider h-multigrid preconditioners for the dG discretization

of the Stokes problem (24) and the linearized Navier-Stokes problem (21). Be-

sides incompressible flow problems we will also focus on the performance of

h-multigrid applied to purely elliptic scalar problems. The interest is twofold:

firstly the discretization of the viscous terms relies on a BR2 dG discretiza-

tion and secondly block preconditioners for the Stokes problem require e↵ective

preconditioners for the discrete Laplace operator, see Section 5.

The linear (or linearized) systems arising from dG discretizations of the

Navier-Stokes, Stokes and Laplace equation, see Eqs. (23), (34) and (42), are

in the form

A0w0 = f0. (43)

Solving (43) allows to compute the degrees of freedom w0 of w0 2 [Pk(T`)]v,

where v = 4 in case of incompressible flow problems. As opposite we deal

with a scalar function in case of the Laplace equation, i.e. v = 1. In order

to accelerate convergence towards w0 the multigrid iteration relies on several

coarse grid problems in the form

A`w` = f`, ` = 1, ..., L. (44)

Coarse grids T` are explicitly built and coarse grid solutions belong to piecewise

polynomial spaces defined over them, w` 2 [Pk(T`)]v. The purpose of this section

is to provide some insight on how coarse grid operators A` are built and how

coarse grid solutions w` can be e↵ectively employed to speed up the achievement

of the fine grid solution w0. A comprehensive review can be found in Refs. [31,

32, 33], while the analysis of multigrid as a preconditioner for Krylov solvers, is

analyzed in detail by Smith, Bjørstad and Gropp [32].
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4.1. Multigrid V-cycle iteration

In this work we consider the multigrid V-cycle iteration, that is the simplest

way of traversing the mesh sequence generated by agglomeration coarsening of

the fine grid, see Section 2.1. The recursive multigrid V-cycle for the problem

A`w` = f` on level ` reads:

Algorithm 2 MGV(l, f`, w`)

if (` = L) then
w` = A

�1
`

f`

end if
if (` < L) then
Pre-smoothing:
w` = SMOOTH(w`, f`)

Coarse grid correction:
r` = f` �A`w`

r`+1 = I
`+1
`

r`

e`+1 = MGV(`+ 1, r`+1, 0)
bw` = w` + I

`

`+1e`+1

Post-smoothing:
w` = SMOOTH( bw`, f`)

end if
return w`

As a result of invoking MGV(0, f0, u0) the grid sequence is traversed moving

towards coarser levels, one grid at a time, until the coarsest level L is reached.

Note that the coarsest level can be thought to be located at bottom of the

V-shaped cycle. The descending phase is followed by ascension towards finer

levels, until a new approximation u0 of the exact solution over the fine grid is

available. This marks the completion of one V-cycle iteration.

On each level ` except the coarsest one, three distinct phases take place:

pre-smoothing, coarse grid correction and post-smoothing, see Algorithm 2.

In the pre-smoothing phase a few iterations (one or two, in this work) of a

standard preconditioned iterative solver are performed in order to damp high-

frequency modes of the error e` = w` � w`. Since the convergence of iterative
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solvers deteriorates when trying to damp low-frequency modes resulting in an

ine�cient solution process, the error equations A`+1e`+1 = r`+1 are solved on a

coarser grid (level `+ 1), where low-frequency modes appears more oscillatory.

Once the error is computed it is transferred back to level ` and used to correct

the solution: bw` = bw` + e`. Before doing so post-smoothing ensures that only

smooth components of the error have survived. Note that correction takes place

only after the residual equations have been accurately solved on the coarsest

level, usually with a direct solver.

It is interesting to remark that, due to the linearity of the original problem,

solving A`w` = f` with an arbitrary initial guess is equivalent to solving the

residual equations A`e` = r` with a zero initial guess. As a consequence the

coarse grid correction requires to compute the residual r`+1 but the computation

of an initial guess e`+1 is not needed. The residual is approximated by projecting

its fine counterpart r` = f`�A`w` to level `+1 which requires the definition of

the so called restriction operator I`+1
`

: Pk(T`)! Pk(T`+1). Similarly the error

e`+1 needs to be prolongated to the coarse mesh by means of the prolongation

operator I`

`+1: Pk(T`+1)! Pk(T`). The implementation of the intergrid transfer

operators I`

`+1 and I
`+1
`

is described in detail in the next section.

4.2. Intergrid transfer operators

In any geometric multigrid strategy, transfer operators are required to map

functions between two subsequent spaces in the set {Pk(T`)}`=0,...,L. Since

nested grids are generated by recursive coarsening of a fine grid, also the poly-

nomial spaces are nested, that is Pk(T0) � Pk(T1)... � Pk(TL). Accordingly,

prolongation is the natural injection I
`

`+1 : Pk(T`+1)! Pk(T`) such that

X

2T`

Z



(I`

`+1u`+1 � u`+1) = 0, 8u`+1 2 Pk(T`+1), (45)
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while restriction is the L
2 projection I

`+1
`

: Pk(T`)! Pk(T`+1) such that

X

2T`

Z



(I`+1
`

u` � u`) v`+1 = 0, 8(u`, v`+1) 2 Pk(T`)⇥ Pk(T`+1) (46)

The matrix counterpart I`+1
`
2 Rm,n

,m = card(T`+1)N

dof , n = card(T`)N

dof ,

of the restriction operator I
`+1
`

is a sparse block matrix composed of card(T`)

blocks I`+1,` 2 RN

dof ,N


dof , each defined as

I`+1,`

def
= M

�1

`+1
M`+1,` , (47)

where

(M`)i,j
def
=

Z

`

'
`
i

'
`
j
, i, j 2 1, ..., N

dof , (48)

�
M`+1,`

�
i,j

def
=

Z

`

'
`+1

i
'
`
j
, i, j 2 1, ..., N

dof . (49)

In particular each row of the matrix I`+1
`

is associated to an element `+1 2 T`+1

and consist of card(K`+1
`

) blocks. Similarly the prolongation matrix I`
`+1 2

Rn,m consists of card(T`�1) blocks I`,`+1 2 RN

dof ,N


dof , each defined as

I`,`+1

def
= M

�1

`

�
M`+1,`

�T

. (50)

Thanks to the use of orthonormal basis functions, the elemental mass matrices

reduce to the identity matrix, that is M = M`+1 = Id, reducing the compu-

tational cost of computing transfer operators. Moreover, since I`+1
`

= (I`
`+1)

T ,

storing transfer operators requires to store only
L�1X

`=0

card(T`) blocks of size

(N

dof)
2.

Interestingly the same holds true when considering intergrid transfer opera-

tors for a vector function w` 2 [Pk(T`)]v. Restriction and prolongation can be
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e�ciently performed componentwise, that is

Restriction: w`+1,i = I
`+1
`

w`,i, i = 1, ..., v, ` = 0, ..., L �1

Prolongation: w`,i = I
`

`+1w`+1,i, i = 1, ..., v, ` =L �1, ..., 0

without explicitly building the matrix I`+1
`

associated to the restriction oper-

ator I
`+1
`

: [Pk(T`)]v ! [Pk(T`+1)]v. Matrix-free restriction and prolongation

algorithms are implemented as follows.

Algorithm 3 Restriction of a vector function w` 2 [Pk(T`)]v

for `+1 2 T`+1 do
for ` 2 K

`+1
`

do
for i 2 {1, ..., v} do
w

i,`+1
+= M`+1,`wi,`

end for
end for

end for

Algorithm 4 Prolongation of a vector function w` 2 [Pk(T`)]v

for `+1 2 T`+1 do
for ` 2 K

`+1
`

do
for i 2 {1, ..., v} do
w

i,`
= MT

`+1,`
w

i,`+1

end for
end for

end for

Note that w
i,`+1

and w
i,`

are the degrees of freedom associated with the

i-th component of the function w`+1|`+1 2 [Pk(`+1)]v and of the function

w`|` 2 [Pk(`)]v, respectively.

4.3. Coarse grid operators

Two possibilities are available for building coarse grid problems in the form

of (44), the so called non-inherited multigrid, where discrete operators are as-
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sembled on each grid of the mesh sequence, and inherited multigrid, where

coarse operators are recursively built by restricting the fine grid operators.

Recently, evidence emerged that non-inherited multigrid might be preferable

from the convergence rates viewpoint, in particular Antonietti et al. [8] have an-

alyzed h-multigrid Interion Penalty dG discretization of the Laplace equation

demonstrating that only non-inherited multigrid provides uniform convergence

with respect to the number of levels. Nevertheless, inherited coarse grid oper-

ators are significantly cheaper to compute since evaluation of numerical fluxes

and assembly of bilinear forms over agglomerated elements grids is avoided. In

particular, from the implementation viewpoint i) numerical integration and ba-

sis function orthogonalization over agglomerated elements meshes are required

only for the computation of intergrid transfer operators; ii) the parallel imple-

mentation is simpler since flux computation on partition boundaries requires

to access data from ghost agglomerated elements (note that ghost agglomer-

ated elements are composed by many layers of fine ghost cells). Accordingly

choosing between inherited and non-inherited version of h-multigrid might in-

volve a trade-o↵ between e�ciency of the solver strategy and computational

cost of assembling coarse grid operators. In order to avoid such an uncomfort-

able situation, in what follows we propose to heal the convergence degradation

of inherited multigrid using a rescaled Galerkin projection of the stabilization

terms of the BR2 dG discretization. The possibility to suitably rescale the sta-

bilization terms of dG discretizations to improve the performance of coarse grid

solvers was first proposed by Antonietti et al. [34] in the context of two level

Schwarz methods for overpenalized Interior Penalty formulations.

4.3.1. BR2 dG discretization

Consider the BR2 bilinear form a
BR2
0 (v0, w0) : Pk(T0)⇥ Pk(T0)! R defined

in (36) and the corresponding fine grid operator A
BR2
0 : Pk(T0) ! Pk(T0), see
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definition (41). The coarse grid operators ABR2
`

, A
I,BR2
`

: Pk(T`)! Pk(T`), ` =

1, ..., L, read

Non-Inherited: (ABR2
`

v`, w`)L2(⌦)
def
= a

BR2
`

(v`, w`), 8v`, w` 2 Pk(T`),

(51)

Inherited: (AI,BR2
`

v`, w`)L2(⌦)
def
= a

BR2
0 (I0

`
v`, I

0
`
w`), 8v`, w` 2 Pk(T`),

(52)

where I
0
`
= I

0
1 I

1
2 ... I

`�1
`

and I
`

`+1 : Pk(T`+1) ! Pk(T`), ` = 0, ..., L-1 are

the prolongation operators introduced in Section 4.2. Continuity and coercivity

bounds for the a
BR2
`

(u`, v`) bilinear form over agglomerated elements meshes

were proven by Bassi et al. [16], in particular on level ` stability holds provided

that ⌘� > N@` . Accordingly the coarse grid problems ABR2
`

u` = f`, ` = 1, ..., L,

arising in the non-inherited version of the multigrid V-cycle iteration, see Section

4.1, are well-posed.

In what follows we demonstrate that, given the BR2 bilinear form in (36),

for all v`, w` 2 Pk(T`)

a
BR2,CS
0 (I0

`
v`, I

0
`
w`) = a

BR2,CS
`

(v`, w`), (53)

s
BR2
0 (I0

`
v`, I

0
`
w`) 6= s

BR2
`

(v`, w`). (54)

Accordingly the di↵erence between A
BR2
`

and A
I,BR2
`

hinges on the stabilization

term.

Using the local and global lifting operator definitions (9) and (10) the con-

sistency and symmetry BR2 bilinear form in (37) can be rewritten as

a
BR2,CS
0 (v0, w0) = a

BR2,CS
0 (v0, w0) + a

BR2,CS�
0 (v0, w0)
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where

a
BR2,CS
0 (v0, w0) =

X

2T0

Z



r0v0r0w0, (55)

a
BR2,CS�
0 (v0, w0) =�

X

�2F0

Z

�

({{r0v0}} · n� [[w0]] + [[v0]] {{r0w0}} · n�) . (56)

Since Pk(T0) � Pk(T`), we get

a
BR2,CS
0 (I0

`
v`, I

0
`
w`) =

X

2T0

Z



r0(I
0
`
v`) ·r0(I

0
`
w`)

=
X

2T`

X

2K
`
0

Z



r0(I
0
`
v`) ·r0(I

0
`
w`)

=
X

2T`

Z



r`v` ·r`w` = a
BR2,CS

`
(v`, w`). (57)

Since [[I0
`
v`]]�0 = 0 if �0 /2 F` \ F0, we get �aBR2,CS�

0 (I0
`
v`, I

0
`
w`) =

=
X

�2F0

Z

�

{{r0(I
0
`
v`)}} · n� [[I0

`
w`]] +

X

�2F0

Z

�

[[I0
`
v`]] {{r0(I

0
`
w`)}} · n�

=
X

�2F`

X

�2⌃`
0

Z

�

{{r0(I
0
`
v`)}} · n�[[I

0
`
w`]] +

X

�2F`

X

�2⌃`
0

Z

�

[[I0
`
v`]]{{r0(I

0
`
w`)}} · n�

=
X

�2F`

Z

�

{{r`v`}} · n� [[w`]] +
X

�2F`

Z

�

[[v`]] {{r`w`}} · n�

=

Z

⌦
r`v` ·R(w`) +

Z

⌦
R(v`) ·r`w` = �a

BR2,CS�

`
(v`, w`)

(58)

The above result together with (57) prove (53).

Using the local lifting operator definitions (9) the stabilization term in (38)

can be rewritten as

s
BR2
0 (v0, w0) =

X

�2F0

⌘�

Z

�

{{rk
�
([[v0]])}}·n� [[w0]]. (59)
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The inherited stabilization term reads

s
BR2
0 (I0

`
v`, I

0
`
w`) =

X

�2F0

⌘�

Z

�

{{rk
�
([[I0

`
v`]])}}·n�[[I

0
`
w`]]

=
X

�2F`

X

�2⌃`
0

⌘�

Z

�

{{rk
�
([[I0

`
v`]])}}·n�[[I

0
`
w`]]

=
X

�2F`

X

�2⌃`
0

⌘�

Z

�

{{rk
�
([[v`]])}}·n�[[w`]]

=
X

�2F`

X

�2⌃`
0

⌘�

Z

⌦
rk
�
([[v`]])·r

k

�
([[w`]]) (60)

while its non-inherited counterpart is simply

s
BR2
`

(v`, w`) =
X

�2F`

⌘�

Z

⌦
rk
�`
([[v`]])·r

k

�`
([[w`]]). (61)

The inherited stabilization term (60) introduces an excessive amount of stabi-

lization as compared to (61) having a detrimental e↵ect on the spectral proper-

ties of inherited coarse grid operators, see Antonietti et al. [8].

In order to recover the correct amount of stabilization we propose to rescale

it introducing the scaling term

H
�`
�0

def
=

⌘�`

⌘�0

h0,
0
0

h`,
0
`

, (62)

and defining the rescaled stabilization term

esBR2
0 (I0

`
v`, I

0
`
w`)

def
=

X

�2F`

X

�2⌃`
0

H
�`
�0

⌘�

Z

⌦
rk
�0
([[I0

`
v`]]) · r

k

�0
([[I0

`
w`]]), (63)
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such that

esBR2
`

(I0
`
v`, I

0
`
w`) . s

BR2
`

(v`, w`), 8v`, w` 2 Pk(T`), (64)

esBR2
`

(I0
`
v`, I

0
`
v`) & s

BR2
`

(v`, v`), 8v` 2 Pk(T`). (65)

To prove (64) we recall the following bounds on the local lifting operator: let

� 2 L
2(�), for all � 2 F`

Crh
�1/2
,0 k[[�]]kL2(�)  kr

k

�
(�)k[L2(⌦)]d  Ctrh

�1/2
,0 k�kL2(F ), (66)

where h,0 = min (h, h0), see e.g. [27, Lemma 2], [35, Lemma 7.2] or [26,

Lemma 4.33 and Lemma 5.18] for a proof. The constant Ctr depends on d, k

and the shape regularity of the elements sharing � and is inherited from the

discrete trace inequality: for all  2 T`, � 2 F

kv`kL2(�)  Ctrh
�1/2
,0 kv`kL2() (67)

While trace inequalities in the form of (67) are commonly available in the con-

text of simplicial and quadrilateral/hexahedral meshes we refer to [26, Lemma

1.46] for a version valid in the context of matching simplicial submeshes and to

[18, 19] for an optimal version derived in the context of polygonal/polyhedral

element meshes.

Using (66) we get the following bounds

s
BR2
`

(v`, w`) =
X

�2F`

⌘�`

Z

⌦
rk
�`
([[v`]])·r

k

�`
([[w`]])



X

�2F`

⌘�`kr
k

�`
([[v`]])k[L2(⌦)]d kr

k

�`
([[w`]])k[L2(⌦)]d

.
X

�2F`

⌘�`h
�1
`,

0
`
k[[v`]]kL2(�) k[[w`]]kL2(�)
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esBR2
0 (I0

`
v`, I

0
`
w`) =

X

�2F`

X

�2⌃`
0

H
�`
�0

⌘�0

Z

⌦
rk
�0
([[(I0

`
v`)]])·r

k

�0
([[(I0

`
w`)]])



X

�2F`

X

�2⌃`
0

⌘�`

⌘�0

h0,
0
0

h`,
0
`

⌘�0kr
k

�0
([[v`]])k[L2(⌦)]d kr

k

�0
([[w`]])k[L2(⌦)]d

.
X

�2F`

X

�2⌃`
0

⌘�`

h0,
0
0

h`,
0
`

h
�1
0,

0
0
k[[v`]]kL2(�) k[[w`]]kL2(�)



X

�2F`

⌘�`h
�1
`,

0
`

0

@
X

�2⌃`
0

k[[v`]]k
2
L2(�)

1

A

1
2
0

@
X

�2⌃`
0

k[[w`]]k
2
L2(�)

1

A

1
2

=
X

�2F`

⌘�`h
�1
`,

0
`
k[[v`]]kL2(�) k[[w`]]kL2(�)

which prove (64).

In view of (65), using (66), we now infer

esBR2
0 (I0

`
v`, I

0
`
v`)|�` =

X

�2⌃`
0

⌘�`

h0,
0
0

h`,
0
`

krk
�0
([[v`]])k

2
[L2(⌦)]d

�

X

�2⌃`
0

⌘�`

h0,
0
0

h`,
0
`

Cr0

h0,
0
0

k[[v`]]k
2
L2(�0)

= ⌘�`

Cr0

h`,
0
`

k[[v`]]k
2
L2(�`)

� ⌘�`

Cr0

Ctr`

krk
�`
([[v`]])k

2
[L2(⌦)]d .

=
Cr0

Ctr`

s
BR2
`

(v`, v`)|�` (68)

and summing over mesh faces on level ` we get the desired result. As re-

marked by Antonietti et al. [13], Ctr` is influenced by the aspect ratio of the

agglomerated element as well as by the ratio between the agglomerated element

measure and the agglomerated face measure. Interestingly enough MGridGen

algorithms are designed to optimize the aspect ratio of agglomerates and mini-

mize the number of graph neighbors, which should also limit the occurrence of

small degenerate faces (note that according to the definitions given in Section
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2.1 the number of faces is equivalent to the number of element neighbors). Note

that the theoretical analysis proposed in [13] also encompasses the limiting case

of small degenerate faces.

Consider now the inherited coarse grid operators

A
eI,BR2
`

def
= A

I,BR2,CS
`

+A
eI,BR2,STB
`

(69)

such that 8v`, w` 2 Pk(T`), ` = 1, ..., L

Mod-Inherited:
(AI,BR2,CS

`
v`, w`)L2(⌦)

def
= a

BR2,CS
0 (I0

`
v`, I

0
`
w`),

(A
eI,BR2,STB
`

v`, w`)L2(⌦)
def
= esBR2

0 (I0
`
v`, I

0
`
w`).

(70)

Since a
BR2,CS
0 (I0

`
v`, I

0
`
w`) + esBR2

0 (I0
`
v`, I

0
`
v`) =

=

Z

⌦

��r`v` �Rk

`
(v`)

��2 +
X

�2F`

X

�2⌃`
0

H
�`
�0
⌘�0

Z

⌦

��rk
�0
([[v`]])

��2 �
Z

⌦

��Rk

`
(v`)

��2

� kr`v` �Rk

`
(v`)k

2
[L2(⌦)]d

+
X

�2F`

✓
⌘�`

Cr0

Ctr`

krk
�`
([[v`]])k

2
[L2(⌦)]d � max

2T�

(card(F))kr
k

�`
([[v`]])k

2
[L2(⌦)]d

◆
,

stability holds provided that ⌘�`

Cr0
Ctrl

> max2T�`
(card(F)). In practice, mo-

tivated by the observation that the stabilization parameter choice suggested

by theory is abundant, see e.g. [17], we deliberately neglected the dependence

on Ctr and Cr in definition (62). Note that a strategy for estimating Ctr over

agglomerated element meshes has been proposed by [18].

As we already pointed out the main advantage of inherited multigrid is the

possibility to build coarse grid operator by means of intergrid transfer opera-

tors, avoiding numerical integration over agglomerated elements. The matrix

restriction algorithm is described in Appendix A and exploit the possibility to
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recursively inherit operators according to the following identities

(AI,BR2,CS
`+1 v`+1, w`+1)L2(⌦) = (I`+1

`
A

BR2,CS
`

I
`

`+1v`+1, w`+1)L2(⌦) (71)

X

�2F`+1

(A
eI,BR2,STB
`+1 v`+1, w`+1)L2(`+1[

0
`+1)

=
X

�2F`+1

X

�2⌃`+1
`

(H�`+1
�`

I
`+1
`

A
BR2,STB
`

I
`

`+1v`+1, w`+1)L2(`[
0
`)

(72)

where I
`+1
`

and I
`

`+1 are the restriction and prolongation operators described

in Section 4.2.

4.3.2. Stokes dG discretization

Consider the Stokes operator AStk
0 defined in (34), the inherited coarse grid

operators employed in this work read

A
eI,Stk
`

=

2

64
A

eI
`
, B

I,t
`

B
I
`

C
I
`

3

75 . (73)

Consider the bilinear form b0(v0, q0) : [Pk(T0)]d⇥Pk(T0)! R defined in (25),

and the corresponding fine grid operator B0 : [Pk(T0)]d ! Pk(T0), see definition

(33). The coarse grid operators B`, B
I
`
: [Pk(T`)]d ! Pk(T`), ` = 1, ..., L, read

Non-Inherited: (B`v`, q`)L2(⌦)
def
= b`(v`, q`), 8(v`, q`) 2 [Pk(T`)]

d
⇥ Pk(T`),

Inherited: (BI
`
v`, q`)L2(⌦)

def
= b0(I

0
`
v`, I

0
`
q`), 8(v`, q`) 2 [Pk(T`)]

d
⇥ Pk(T`),

where the restriction of a vector function is performed componentwise

I
0
`
v` =

dX

i=0

I
0
`
v`,i.
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Proceeding as in Section 4.3.1, see in particular (58), it is straightforward to

show that B` = B
I
`
.

According to definition (28) the operator A
eI
`
: [Pk(T`)]d ! [Pk(T`)]d, read

Inherited: (A
eI
`
v`,w`)L2(⌦)

def
=

dX

i=1

(A
eI,BR2
`

v`,i, w`,i)L2(⌦), 8v`,w` 2 [Pk(T`)]
d
,

(74)

see (69) for the definition of A
eI,BR2
`

.

To conclude, the coarse operators CI
`
: Pk(T`)! Pk(T`), read

Inherited: (CI
`
q`, r`)L2(⌦)

def
= c0(I

0
`
q`, I

0
`
r`), 8(q`, r`) 2 Pk(T`)⇥ Pk(T`),

see (27) for the definition of the bilinear form c0(q0, r0) : Pk(T0)⇥ Pk(T0)! R.

Even if the inherited bilinear form introduces a di↵erent (read smaller) amount

of stabilization as compared to its non-inherited counterpart the numerical test

case corroborate the choice not to modify the scaling of CI
`
.

Coarse grid operators are built by means of intergrid transfer operators,

exploiting the possibility to recursively inherit operators. For example the op-

erators BI
`
are such that, for all (v`, q`) 2 [Pk(T`)]d ⇥ Pk(T`)

(BI
`+1v`+1, q`+1)L2(⌦) = (I`+1

`
B`I

`

`+1v`+1, q`+1)L2(⌦)

where I
`+1
`

: [Pk(T`)]d ! [Pk(T`+1)]d and I
`

`+1 : [Pk(T`+1)]d ! [Pk(T`)]d and

` = 0, ..., L� 1. Similarly to vector restriction and prolongation, matrix restric-

tion can be performed matrix-free without requiring to assemble the matrices

I`+1
`

and I`
`+1. This practice yields large memory savings when the operators

I
`+1
`

, I
`

`+1 act on vector functions.
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4.3.3. Navier-Stokes dG discretization

Consider the Navier-Stokes operator A
INS
0 defined in (23), the inherited

coarse grid operators employed in this work read

A
eI,INS
`

=

2

64
M

I
`
+ J

A,eI
`

+ J
D,I
`

J
B

t
,I

`

J
B,I
`

J
C,I
`

3

75 . (75)

To inherit the viscous operators we follow the same path of the Stokes case.

Accordingly we get J
A,eI
`

= A
eI
`
, ` = 1, ...L, see Definition (74) and note that,

according to Definition (28), JA

0 = A0.

Regarding inviscid operators we consider the trilinear form

j
!⌫
0 (w0,u0,v0) =

dX

i=1

dX

j=1

j
!⌫
i,j
(w0, �w0,j , k0,i),

see Definition (18), such that

(JD

0 (w0)�u0,v0)[L2(⌦)]d = j
!⌫
0 (w0,u0,v0), 8�u0,v0 2 [Pk(T0)]

d
.

We remark that operators JB

0 , J
B

t

0 and J
C

0 can be restricted in a similar fashion.

The coarse grid operators JD

`
, J

D,I
`

: [Pk(T`)]d ! [Pk(T`)]d, ` = 1, ..., L, read

Non-Inherited: (JD

`
(I`

0w0)u`,v`)[L2(⌦)]d
def
= j`(I

`

0w0,u`,v`), (76)

Inherited: (JD,I
`

(w0)u`,v`)[L2(⌦)]d
def
= j0(w0, I

0
`
u`, I

0
`
v`), (77)

8u`,v` 2 [Pk(T`)]d,w0 2 [Pk(T0)]d+1. The non-inherited version of coarse grid

operators is not employed in this work but is included for the sake of comparison.

In practice, given the fine grid operator J
D

0 (w0), the inherited coarse grid

operators J
D,I
`

(w0) are defined recursively by means of the Galerkin projec-

tion. The operators J
D,I
`

(w0) are such that, for all u`,v` 2 [Pk(T`)]d,w0 2
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[Pk(T0)]d+1

(JD,I
`+1 (w0)u`+1,v`+1)[L2(⌦)]d = (I`+1

`
J
D,I
`

(w0)I
`

`+1u`+1,v`+1)[L2(⌦)]d .

Accordingly

Galerkin projection: J
I
`+1(w0)

def
= I

`+1
`

J
I
`
(w0) I

`

`+1, ` = 0, ..., L� 1, (78)

where I
`+1
`

and I
`

`+1 are the restriction and prolongation operators described

in Section 4.2 and (78) is performed matrix-free.

5. Multigrid and Block preconditioners

In this work we consider multigrid preconditioners for the Navier-Stokes

equations and block preconditioners for the dG discretization of the Stokes

problem (34). Both the Stokes and the Navier-Stokes problem have a block

structure that can be exploited to devise preconditioners based on Schur comple-

ment decompositions, nevertheless pressure Schur complement preconditioners

are less trivial in the Navier-Stokes case than in the Stokes case [1]. Comparison

between block and h-multigrid preconditioners will be performed on a Stokes

model problem, while in the Navier-Stokes case we will focus on h-multigrid as

a preconditioner of a FGMRES backward Euler iteration.

Incompressible flow problem dG discretizations in the form (43) can be solved

by preconditioned Krylov iterative methods, say ksp(A0,
bA0), where the precon-

ditioner bA0 is a suitable approximation of A0 (such that the application of bA�1
0

to a vector is cheap to compute). For example an Incomplete Lower Upper

(ILU) decomposition of the system matrix is a common preconditioner choice,

i.e. ksp (A0, ILU(A0)). Interestingly a Krylov iterative method, say dksp(A0),

can serve as a preconditioner by triggering convergence of the iteration on loose
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tolerances, i.e. ksp
⇣
A0,

dksp(A0)
⌘
. Note that in this case Flexible Generalized

Minimal RESidual (FGMRES) is usually employed as a solver as the precondi-

tioner varies at each outer Krylov iteration.

Similarly, the multigrid V-cycle iteration of Section 4.1 can be employed

as preconditioner, thus the solver strategy reads: FGMRES (A0,MGV(A0)).

Building the coarse grid operators A`, ` = 1, ..., L as described in Section 4.3,

the multigrid V-cycle MGV(A0) can be applied as a preconditioner of the Stokes

and Navier-Stokes operators AStk
0 , AINS

0 .

Besides multigrid preconditioners, block preconditioners for the Stokes prob-

lem (34) are derived by noticing that AStk admits the following LDU factoriza-

tion

A
Stk
0 =

2

64
I 0

B0A
�1
0 I

3

75

2

64
A0 0

0 S0

3

75

2

64
I A

�1
0 B

t

0

0 I

3

75 , (79)

where

S0 = C0 �B0A
�1
0 B

t

0, (80)

is the pressure Schur complement matrix. Since

�
A

Stk
0

��1
=

2

64
I �A

�1
0 B

t

0

0 I

3

75

2

64
A

�1
0 0

0 S
�1
0

3

75

2

64
I 0

�B0A
�1
0 I

3

75 , (81)

⇣
bAStk
0

⌘�1
can be obtained by replacing A

�1
0 and S

�1
0 with preconditioned

Krylov solvers, say ksp(A0,
bA0) and ksp(S0,

bS0). Whereas computing S0 ex-

plicitly is not viable, an approximate solver ksp(eS0,
bS0) can be employed with

eS0 = C0 �B0 ksp(A0,
bA0) B

t

0.

Note that applying eS0 to a vector involves a nested Krylov iteration. Clearly

the performance of the outer solver ksp(AStk
0 , bAStk

0 ) is strongly influenced by
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the availability of good preconditioners for the Laplace and the pressure Schur

complement operators, read bA0 and bS0.

As suggested by Shahbazi et al. [36] , bS0 can be constructed by a dG dis-

cretization of the Laplace operator with homogeneous Neumann boundary con-

ditions on Dirichlet boundaries. Accordingly the operator bS0 is such that

(bS0v0, w0)L2(⌦) = �a
BR2,hN
0 (v0, w0), 8v0, w0 2 Pk(T0) (82)

where

a
BR2,hN
0 (v0, w0) =

X

2T0

Z



r0v0r0w0 +
X

�2F i
0

⌘�

Z

�

{{rk
�
([[v0]])}}·n� [[w0]]

�

X

�2F i
0

Z

�

({{r0v0}} · n� [[w0]] + [[v0]] {{r0w0}} · n�) . (83)

Note that (83) can be obtained from the BR2 bilinear form in (36) using the local

and global lifting operator definitions (9) and (10) and dropping the boundary

face terms. As a preconditioner for A0 we employ the h-multigrid V-Cycle

iteration described in Section 4 using the rescaled-inherited version of coarse

grid operators defined in (74).

The solver and preconditioners options are summarized in what follows.

Richardson iteration serves as the outer loop, i.e. RCHRD(AStk
0 , bAStk

0 ). The

application of the block preconditioner reads:
⇣
bAStk

0

⌘�1
=

2

64
ksp(A0,

bA0) 0

0 I

3

75

2

64
I �B

t

0

0 I

3

75

2

64
I 0

0 ksp(eS0,
bS0)

3

75

2

64
I 0

�B0ksp(A0,
bA0) I

3

75 ,

(84)
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see PETSc User manual [37], where

ksp(A0,
bA0) = FGMRES (A0,MGV(A0)) ,

ksp(eS0,
bS0) = GMRES

⇣
eS0, ILU(bS0)

⌘
,

and eS0 = C0 �B0 ksp(A0,
bA0) Bt

0.

6. Numerical results

6.1. BR2 dG discretization

In this section we apply the h-multigrid V-cycle iteration of Algorithm 2

for solving a Poisson problem discretized by means of the BR2 dG formulation.

For the sake of comparison we consider the three strategies for defining coarse

grid operators introduced in Section 4.3.1, that is: i) non-inherited operators

defined assembling bilinear forms on each mesh level ii) inherited operators

defined by means of a Galerkin projection iii) the newly introduced inherited

operators with stability rescaling. We compare these approaches on the basis

of convergence rate and computation time and we assess the benefits of using

h-multigrid as compared to state-of-the-art single grid solvers like the precon-

ditioned Conjugate-Gradient (CG) method and the preconditioned Generalized

Minimal RESidual (GMRES) method.

We consider the Poisson problem in (35) on the bi-unit square and cube,

⌦ = [�1, 1]d with d = 2 and d = 3, respectively, where the forcing term is

imposed according to the following smooth analytical solution

u =
dY

i=1

sin(⇡xi), (85)

and homogeneous boundary conditions are imposed on @⌦.
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Figure 2: Two grids of the distorted and graded triangular mesh sequence. Left : 2 (322) grid
and right : 2 (642) grid. The square corner detail allows to appreciate that the aspect ratio of
triangular elements increases moving towards the domain boundaries.

TL

T0

T`

T`+1

Figure 3: Example of a five levels (L = 4) h-coarsened mesh sequence generated on top the
2(642) triangular elements grid of Figure 2.

In order to investigate the growth of computational costs while increasing
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the mesh size, 2D solutions are computed on three uniform quadrilateral ele-

ments meshes of size (128 · 2n)2, n = {0, 1, 2} and three distorted and graded

triangular meshes of size 2(64 · 2n)2, n = {0, 1, 2}, see Figure 2. As for 3D so-

lutions we consider a 1283 grid, counting of more than two million hexahedral

elements, and we investigate parallel performance of the multigrid algorithm

running on up to 128 processes. In both two and three space dimensions we

check the influence of raising the polynomial degree on the convergence rate and

the computational expense considering k = {1, 2, 3}, that is first, second and

third polynomial degree dG discretizations. The L
2 error norm is on the order

of 10�11 for the fourth-order accurate dG discretization on the 5122 quadrilat-

eral grid. We do not consider a further raise of the polynomial degree since

for higher-order discretizations p-multigrid or hp-multigrid solution strategies

might be best suited. Indeed h-multigrid is to be applied in the context of

large scale computations where the mesh size is constrained by the need to ac-

curately discretize a complex computational domain, note that the design of

coarse high-order meshes suited for higher-order discretizations is an open field

of research, see e.g. [38]. We remark that the agglomeration strategy does not

take advantage of the triviality of the geometry here considered. In Section 6.3.3

the multigrid strategy will be applied without any modification to unstructured,

possibly hybrid, meshes of complex computational domains.

To investigate the influence of the number of coarse levels on the conver-

gence rate we consider L = {2, 3, 4, 5} and L = {2, 3, 4} for d = 2 and d = 3,

respectively, that is we consider a stack of 3 to 6 grids in two space dimensions

and a stack of 3 to 5 grids in three space dimensions, see Figure 1 and Figure

3. The number of mesh elements at each level ` and the maximum and the

minimum number of elements among the distributed grid partitions at level `

is reported in Table (1) and Table (2), respectively. It is interesting to remark
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h-coarsened quadrilateral mesh sequences
card(T0) card(T`)

` = 1 ` = 2 ` = 3 ` = 4 ` = 5
642 1208 365 109 34 11
1282 4824 1447 437 136 41
2562 19218 5791 1754 535 161
5122 76880 23087 6976 2116 643

h-coarsened triangular mesh sequences
card(T0) card(T`)

` = 1 ` = 2 ` = 3 ` = 4 ` = 5
2(322) 541 157 46 13 4
2(642) 2290 660 194 57 17
2(1282) 9287 2683 780 231 66
2(2562) 37551 10956 3214 935 274

Table 1: Six levels h-coarsened agglomerated elements mesh sequences of the bi-unit square.
Number of agglomerated elements at each mesh level ` = 0, ..., 5.

3D h-coarsened mesh sequences, grid partition size

card(T0) processes (np)
maxi=1,...,np

mini=1,...,np
card(T i

`
)

` = 1 ` = 2 ` = 3 ` = 4 ` = 5

1283 16
131078 19378 2895 434 64
131066 19258 2846 416 60

1283 32
65541 9763 1468 219 34
65531 9666 1426 207 28

1283 64
32770 4878 734 111 17
32766 4809 708 104 14

1283 128
16392 2454 372 57 9
16380 2407 353 50 7

Table 2: Five levels (` = 1, ..., 5) h-coarsened mesh sequences agglomerated on top of a 1283

hexahedral elements grids of the bi-unit cube. Maximum and minimum number of elements
among the distributed grid partitions T i

` , i = 1, ..., np, obtained running in parallel with np
processes.
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that in three (resp. two) space dimensions a 6.7 (resp. 3.3) fold decrease of

the number of elements is obtained at each agglomeration step, whereas an 8

(resp. 4) fold decrease would be required in order to halve the mesh step size in

uniform hexahedral (resp. quadrilateral) elements mesh sequences. Neverthe-

less, since agglomerated elements have very general shapes, the element size h

is not uniform and, as demonstrated in [16], the maximum and average mesh

step size are usually bigger as compared to quadrilateral elements meshes of

the same cardinality. Accodingly, even if the agglomerated mesh cardinality

is suboptimal, the optimal coarsening steepness is closely approached, that is

h`+1

h`
/ 2 for each ` 2 T`.

We complete the definition of the V-cycle preconditioned FGMRES iteration,

i.e. FGMRES
�
A

BR2
0 ,MGV(ABR2

0 )
�
specifying the relevant solver and precondi-

tioner options. We employ a single iteration of multigrid V-cycle as a precondi-

tioner for a Flexible GMRES solver (restarted FGMRES with 60 Krylov spaces)

[39]. High-order modes of the error are smoothed with a single iteration of a

right preconditioned GMRES solver. In 2D serial runs we employ an Incomplete

Lower-Upper (ILU) preconditioner while in 3D parallel runs we opt for an Ad-

ditive Schwarz domain decomposition Method (ASM) with one level of overlap

between sub-domains and an ILU decomposition for each sub-domain matrix.

On the coarsest level L linear systems are solved with a direct solver in 2D. For

parallel 3D runs we rely on the solver employed in smoothing steps but, instead

of a single iteration, we impose a four order of magnitude decrease of the relative

residual norm, that is kfL�A
BR2
L ūLk

kfLk  10�4. The FGMRES solver is forced to

reach tight relative residual tolerance, in particular the linear system solution

converges in Nit iterations if at the i-th iterate kr̂i0k =
kf0�A

BR2
0 ū

i
0k

kf0k  10�10.

The numerical results reported in the next section have been computed by

exploiting the PCMGmultigrid preconditioner framework available in the PETSc
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library [40, 37, 41]. The MOAB [42] library is employed for storing distributed

mesh data at all mesh levels and METIS [43] library is employed to partition the

mesh in case of parallel computations.

6.1.1. 2D Poisson problem

Linear solver iterations, 2D Poisson problem, quadrilateral mesh sequences

operators inherited non-inherited rescaled-inherited

grid (card (T0) = (·)2) 128 256 512 128 256 512 128 256 512

k = 1
FGMRES MGV L = 2 12 12 13 10 10 10 10 10 10

FGMRES MGV L = 3 15 15 15 10 10 10 10 11 11

FGMRES MGV L = 4 19 19 20 10 10 10 10 11 11

FGMRES MGV L = 5 24 24 25 10 10 10 11 11 11

CG ILU(0) 206 398 743

GMRES(120) ILU(0) 229 566 1255

k = 2
FGMRES MGV L = 2 9 9 9 8 8 8 8 8 8

FGMRES MGV L = 3 16 15 15 8 8 8 8 8 8

FGMRES MGV L = 4 27 27 26 9 8 8 8 8 8

FGMRES MGV L = 5 60 45 49 9 9 8 9 9 8

CG ILU(0) 230 446 827

GMRES(120) ILU(0) 312 811 1925

k = 3
FGMRES MGV L = 2 8 7 7 7 7 6 7 6 6

FGMRES MGV L = 3 12 12 13 7 7 6 7 7 6

FGMRES MGV L = 4 20 21 23 8 7 7 8 7 7

FGMRES MGV L = 5 37 39 42 8 8 7 8 8 7

CG ILU(0) 250 480 899

GMRES(120) ILU(0) 310 1015 2000
⇤

Table 3: Number of iterations required to solve the 2D model Poisson problem (35)-(85) with
an FGMRES solver preconditioned with h-multigrid. Quadrilateral mesh sequence. Linear
system relative residual tolerance is 10�10, see text for details.

Tables 3 and 4 report the number of iterations required to solve the Poisson

problem (35)-(85) discretized with the BR2 method. Single grid solver options

mimic multigrid ones: we impose a relative residual decrease of 10�10 and em-

ploy ILU (right) preconditioned Conjugate Gradient (CG) and GMRES solvers

setting the number of Krylov spaces to 120 for GMRES.

As expected only non-inherited and inherited multigrid with stabilization

term rescaling (rescaled-inherited) are able to provide uniform convergence with
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Linear solver iterations, 2D Poisson problem, triangular mesh sequences

operators inherited non-inherited rescaled-inherited

grid (card (T0) = 2(·)2) 64 128 256 64 128 256 64 128 256

k = 1
FGMRES MGV L = 2 19 22 28 24 29 37 19 23 30

FGMRES MGV L = 3 20 23 28 24 29 38 19 24 30

FGMRES MGV L = 4 22 24 29 24 29 38 19 23 30

FGMRES MGV L = 5 26 29 32 24 29 38 19 23 30

CG ILU(0) 250 509 1011

GMRES(120) ILU(0) 298 677 1520

k = 2
FGMRES MGV L = 2 17 19 24 21 26 37 17 20 27

FGMRES MGV L = 3 20 22 26 21 26 37 17 21 27

FGMRES MGV L = 4 26 32 37 21 26 38 17 21 27

FGMRES MGV L = 5 44 61 77 21 27 38 17 21 27

CG ILU(0) 297 599 1197

GMRES(120) ILU(0) 330 866 2000
⇤

k = 3
FGMRES MGV L = 2 16 17 20 17 20 28 15 18 21

FGMRES MGV L = 3 18 19 23 17 21 29 16 18 21

FGMRES MGV L = 4 25 25 31 18 21 29 16 18 22

FGMRES MGV L = 5 71 43 67 18 22 29 17 19 22

CG ILU(0) 334 664 1324

GMRES(120) ILU(0) 396 911 2000
⇤

Table 4: Number of iterations required to solve the 2D model Poisson problem (35)-(85) with
an FGMRES solver preconditioned with h-multigrid. Distorted triangular mesh sequence.
Linear system relative residual tolerance is 10�10, see text for details.
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respect to the number of levels, note that this is the case even on bad quality

triangular meshes. Comparison of the number of iterations on quadrilateral

elements meshes highlights that the performance of single grid solvers worsen

on finer meshes while the rescaled-inherited multigrid iteration is almost grid

independent. Moving towards finer distorted triangular meshes also the num-

ber of multigrid iterations increases, but far less dramatically than with single

grid solvers. Interestingly the number of iterations of single grid solvers is

also a↵ected by raising the polynomial degree while the convergence rates of

h-multigrid improve increasing the polynomial degree when non-inherited and

rescaled-inherited multigrid are employed. Note that for k = 2 and k = 3

the average residual decrease exceeds one order of magnitude at each V-cycle

iteration on quadrilateral mesh sequences.

Total CPU time (s), 2D Poisson problem, quadrilateral mesh sequences

operators inherited non-inherited rescaled-inherited

grid (card (T0) = (·)2) 128 256 512 128 256 512 128 256 512

k = 1
FGMRES MGV L = 2 1.58 5.95 27.4 2.03 7.23 31.7 1.49 5.70 24.5
FGMRES MGV L = 3 1.72 6.70 28.1 2.10 7.89 32.3 1.69 6.11 25.9

FGMRES MGV L = 4 1.92 7.78 31.2 2.27 8.61 34.6 1.60 6.29 25.1

FGMRES MGV L = 5 2.14 8.32 36.0 2.67 8.95 36.9 1.57 6.69 26.3

CG ILU(0) 1.45 8.01 48.7

GMRES(120) ILU(0) 3.01 28.1 230

k = 2
FGMRES MGV L = 2 2.75 11.3 54.4 3.30 13.6 64.4 2.43 10.3 51.1

FGMRES MGV L = 3 3.49 12.0 54.2 3.34 14.1 58.3 2.43 9.4 42.1

FGMRES MGV L = 4 4.12 16.7 73.9 3.36 13.8 57.9 2.43 9.3 41.4
FGMRES MGV L = 5 7.18 24.3 115 3.74 15.6 60.3 2.43 9.7 41.7

CG ILU(0) 3.64 22.1 143

GMRES(120) ILU(0) 7.90 86.7 811

k = 3
FGMRES MGV L = 2 6.62 30.3 195 8.40 37.5 226 6.65 29.4 191

FGMRES MGV L = 3 6.03 26.1 126 7.46 30.0 133 5.07 22.0 96.2

FGMRES MGV L = 4 7.91 34.6 160 7.59 32.1 129 5.30 20.9 88.9

FGMRES MGV L = 5 11.9 52.5 242 8.17 33.4 134 5.38 21.8 87.7
CG ILU(0) 11.0 68.4 475

GMRES(120) ILU(0) 19.3 240 1851
⇤

Table 5: BR2 dG discretization of the 2D model Poisson problem (35)-(85). Total CPU times
(assembly plus solution times) required to reach a relative residual tolerance of 10�10, see
text for details. Bold text highlights the best result column-wise.
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MGV(k) vs CG(k) Total CPU time speedup

degree k = 1 k = 2 k = 3

quad grid 128 256 512 128 256 512 128 256 512

CG/MG step time 0.92 1.2 1.8 1.5 2.3 3.4 2.0 3.1 5.4

tri grid 64 128 256 64 128 256 64 128 256

CG/MG step time 0.95 1.6 2.4 1.4 2.3 3.5 1.7 3.1 5.0

Table 6: BR2 dG discretization of the 2D model Poisson problem (35)-(85). Comparison of
total CPU times (assembly plus solution times) required to reach a relative residual tolerance
of 10�10 with Conjugate Gradient and h-multigrid (L = 5), see text for details.

Total CPU times (total means the sum of solution and assembly CPU times)

reported in Table 5 demonstrate that the newly introduced rescaled-inherited

multigrid strategy is the best performing. From the solution time viewpoint

inherited and rescaled-inherited multigrid are almost indistinguishable while in-

herited multigrid is largely a↵ected by the performance degradation increasing

the number of grid levels. From the assembly time viewpoint inherited and

rescaled-inherited multigrid avoids the burden of numerically integrating bilin-

ear forms over agglomerated elements meshes. Non-inherited multigrid assembly

times strongly increase with the number of levels (note that assembly can be

twice as expensive than solution) negatively impacting total CPU times. We

remark that, if quadrature formulas are defined over sub-elements as described

in (8), the number of quadrature points is the same at each mesh level, irre-

spectively of the mesh density.

Rescaled-inherited total CPU times are almost independent of the number

of levels provided that the coarsest grid on level L is coarse enough. This is a

very important result in view of applying multigrid in real-world computations

since it basically removes the burden of choosing of the number of grid levels.

Most importantly both non-inherited and rescaled-inherited multigrid are close

to the optimal multigrid e�ciency. They lead to a four-fold increase of the

total computation time with a four-fold increase of the mesh size at all the

polynomials degrees, provided that L is chosen large enough.
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CG(kCG) vs MGV(kMG) Total CPU time ratio

solver(degree) CG(1)/MGV(2) CG(2)/MGV(3) CG(1)/MGV(3)

finest grid quad tri quads tri quads tri

CG/MG step time 0.95 1.0 1.6 1.3 0.55 0.37

Table 7: BR2 dG discretization of the 2D model Poisson problem (35)-(85). Comparison of
total CPU times (assembly plus solution times) required to reach a relative residual tolerance
of 10�10 with Conjugate Gradient and h-multigrid (L = 5). The multigrid solution strategy
is applied to an higher polynomial degree dG discretization (kMG > kCG).

Since CPU times for the 2D Poisson problem are measured running on a

2010 laptop, we recommend not to consider absolute values but rather relative

gains. In this regard, the gains with respect to the best performing single grid

solver (an ILU preconditioned Conjugate Gradient iteration) are significant,

especially at the highest polynomial degrees on fine meshes, see Table 6. As

a result, if we consider the finest quadrilateral and triangular meshes, solving

a second degree polynomial degree BR2 dG discretization with h-multigrid is

comparable to solving a first degree dG discretization with CG, see Table 7.

Interestingly the time required for solving a third polynomial degree BR2 dG

discretization with h-multigrid is twice the time required for solving a first

degree dG discretization with Conjugate Gradient, which is quite impressive

considering the accuracy gap.

Preprocessing CPU time (s), quadrilateral elements mesh sequence

task grid topology orthogonalization and intergrid operators

k=1 k=2 k=3

grid 128 256 512 128 256 512 128 256 512 128 256 512

L = 2 0.72 3.28 22.1 0.17 0.64 2.79 0.34 1.37 5.36 0.72 2.63 10.5

L = 3 0.75 3.84 25.1 0.21 0.80 4.01 0.45 1.68 6.82 0.97 3.72 15.1

L = 4 0.82 4.22 26.8 0.25 1.00 4.68 0.58 2.11 8.24 1.26 4.76 19.3

L = 5 0.88 4.65 28.1 0.29 1.19 5.46 0.67 2.53 10.4 1.57 5.95 24.2

L = 0 0.09 0.29 1.13 0.03 0.10 0.38 0.07 0.22 0.83 0.13 0.42 1.77

Table 8: Preprocessing phases required for h-multigrid computations as compared to single
grid computations (L = 0). CPU times for generation of h-coarsened mesh sequences (grid
topology computation task), orthogonalization of shape functions and computation of intergrid
operators, see text for details.

To conclude we also report preprocessing CPU times including generation of

h-coarsened mesh sequence and orthogonalization of shape functions together
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with computation and storage of intergrid transfer operators. In Table 8 it is

possible to appreciate that both these operations are time consuming as com-

pared to setup times of single grid computations. Nevertheless for k > 1 dG

discretizations, even considering preprocessing times, multigrid outperforms sin-

gle grid solvers.

6.1.2. 3D Poisson problem

The Poisson problem in three space dimensions is here considered to assess

the performance of the h-multigrid solution strategy in parallel computations.

The 1283 hexahedral mesh is first partitioned and distributed across the pro-

cesses, thus each process build an h-coarsened mesh sequence of its own par-

tition. This practice is optimal from the distribution of computational load

viewpoint but requires ad hoc strategies to deal with agglomerated elements

whose faces are shared between partitions.

While in single grid dG solvers the replication of a single layer of cells (the

so called ghost cells) across partition boundaries ensures that the stencil of the

discretization is fully accessible, the definition of ghost agglomerated cells in-

volves many layers of cells of the fine grid. Note that the exact amount of layers

depends on the grid level and the shape of agglomerated elements. Interest-

ingly, only non-inherited multigrid requires to evaluate basis functions of ghost

agglomerated elements at partition boundaries, while inherithed and rescaled-

inherited multigrid rely on integrid transfer operators associated to ghost cells.

In this regard the design decision of storing intergrid transfer operators in pre-

processing is very handy, see Section 4.2. Indeed, intergrid transfer operators

associated to ghost cells can be communicated across partitions without needing

to actually build ghost cells, only adjacencies informations are required. As a

consequence the implementation of inherited and rescaled-inherited multigrid is

simpler in parallel.
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Linear solver iterations, 3D Poisson problem in parallel

k 1 2 3

processes 8 16 32 16 32 64 32 64 128

FGMRES MGV L = 2 11 11 11 10 10 10 9 9 10

FGMRES MGV L = 3 12 12 12 11 11 11 10 10 11

FGMRES MGV L = 4 12 12 12 11 11 11 10 11 11

CG BJACOBI(ILU) 488 509 530 680 708 687 567 856 898

GMRES ASM(1,ILU) 432 467 455 675 699 614 868 794 745

Table 9: BR2 dG discretization of the 3D model Poisson problem (35)-(85). Number of
iterations required by a h-multigrid preconditioned FMGMRES solver and block-ILU precon-
ditioned single grid solvers, see text for details. Linear system relative residual tolerance is
10�10.

We consider the rescaled-inherited strategy for defining coarse grid opera-

tors which has demonstrated to provide uniform convergence with respect to

the number of levels and a↵ordable assembly times, see Section 6.1.1. Beside

the baseline computations performed with 8, 16 and 32 processes at first, second

and third polynomial degree, respectively, we double the number of processes

two times for a total of three runs at each polynomial degree. Thanks to the use

of an ASM preconditioner for the GMRES smoother the number of FGMRES

iterations is independent from the number of processes, see Table 9. The single

grid GMRES solver uses the same kind of ASM preconditioner employed by the

GMRES smoothers, that is an ASM preconditioner with one level of overlap

between the sub-domains and an ILU decomposition in each sub-domain ma-

trix. The single grid CG solver employs a block-Jacobi preconditioner with an

ILU decomposition in each sub-domain matrix (but no overlap between sub-

domains).

The CPU times reported in Table 10 demonstrate that the h-multigrid ef-

ficiency does not deteriorate increasing the number of processes. The gains

with respect to single grid solvers are comparable to those observed in serial

computations in two space dimensions, see Section 6.1.1. Similarly, a su�cient

number of grid levels must be employed to ensure that the grid on level L is

coarse enough, note the poor performance for L = 2. Even if a scalability
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CPU time (s) solution assembly total

k = 1
processes 8 16 32 8 16 32 8 16 32

FGMRES MGV L = 2 12.2 5.94 5.11 28.3 13.2 6.26 40.5 19.2 11.4

FGMRES MGV L = 3 11.6 5.85 3.12 28.8 12.8 6.72 40.4 18.7 9.84

FGMRES MGV L = 4 11.6 5.82 3.26 28.8 12.9 6.27 37.4 18.7 9.53

CG BJACOBI(ILU) 55.7 29.3 15.1 25.6 12.8 6.71 88.4 42.2 21.8

GMRES(120) ASM(1,ILU) 144 80.8 41.3 25.9 12.9 6.74 170 93.8 48.0

k = 2
processes 16 32 64 16 32 64 16 32 64

FGMRES MGV L = 2 32.7 26.1 17.9 45.6 23.3 11.8 78.3 49.3 29.8

FGMRES MGV L = 3 26.4 14.3 7.95 47.2 24.1 11.8 73.6 38.4 19.7

FGMRES MGV L = 4 25.8 14.2 7.92 48.2 24.4 12.5 74.0 38.6 20.4

CG BJACOBI(ILU) 224 109 54.6 45.4 22.9 11.4 269 132 66.1

GMRES(120) ASM(1,ILU) 411 237 100 45.4 23.2 11.4 457 261 111

k = 3
processes 32 64 128 32 64 128 32 64 128

FGMRES MGV L = 2 111 54.2 36.9 98.4 49.6 25.1 209 104 62.0

FGMRES MGV L = 3 60.9 24.1 15.1 101 50.2 26.1 162 74.2 41.2

FGMRES MGV L = 4 53.8 30.2 14.7 103 51.9 26.4 157 81.4 41.1

CG BJACOBI(ILU) 472 305 172 94.5 46.5 23.5 567 352 195

GMRES(120) ASM(1,ILU) 729 386 236 94.6 47.3 24.1 824 433 262

Table 10: BR2 dG discretization of the 3D model Poisson problem (35)-(85). Solution, as-
sembly and total CPU times (total means assembly plus solution times) required to reach a
relative residual tolerance of 10�10, see text for details.

51



analysis would require to further increase the number of processes we observe a

strong linear scaling, that is the computation times halves doubling the number

of processes.

CPU time (s) grid topology computation

processes 8 16 32 64 128
L = 2 31.3 17.1 7.15 2.88 1.77
L = 3 35.2 19.4 8.94 3.65 2.13
L = 4 41.7 22.5 10.2 4.90 2.52
L = 0 6.05 4.91 1.71 0.75 0.45

Table 11: Preprocessing phases required for h-multigrid computations as compared to single
grid computations (L = 0). CPU times for generation of h-coarsened mesh sequences (grid
topology computation task), see text for details.

CPU time (s) orthonormalization and intergrid operators
k=1 k=2 k=3

processes 8 16 32 16 32 64 32 64 128
L = 2 5.58 2.78 1.51 9.65 4.95 2.88 24.4 12.3 6.69
L = 3 7.75 3.88 2.02 13.9 7.73 3.65 37.6 19.7 10.7
L = 4 11.5 5.81 2.95 22.8 9.85 5.58 61.9 31.1 18.4
L = 0 1.03 0.52 0.26 1.88 0.96 0.48 4.06 2.04 1.11

Table 12: Preprocessing phases required for h-multigrid computations as compared to sin-
gle grid computations (L = 0). CPU times for orthogonalization of shape functions and
computation of intergrid operators, see text for details.

To demonstrate that also the preprocessing phase is scalable, in Table 11 and

Table 12 we report CPU times for the generation of h-coarsened mesh sequence

and orthogonalization of shape functions together with computation and storage

of intergrid transfer operators, respectively. Remarkably, since the problem size

has increased as compared to 2D computations, multigrid outperforms single

grid solvers in terms of overall computation time (that is considering assembly,

solution and preprocessing CPU times) at all polynomials degrees.

The gains with respect to the best performing single grid solver (the pre-

conditioned Conjugate Gradient iteration) are on pair with those observed in

2D computations and do not deteriorate increasing the number of processes, see
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MGV(k) vs CG(k) Total CPU time speedup, 2M hex elems grid

degree k = 1 k = 2 k = 3

processes 8 16 32 16 32 64 32 64 128

CG/MG step time 2.4 2.3 2.3 3.6 3.4 3.2 3.6 4.3 4.7

Table 13: BR2 dG discretization of the 3D model Poisson problem (35)-(85). Comparison of
total CPU times (assembly plus solution times) required to reach a relative residual tolerance
of 10�10 with Conjugate Gradient and h-multigrid (L = 4), see text for details.

CG(kCG) vs MGV(kMG) Total CPU time ratio

solver(degree) CG(1)/MGV(2) CG(2)/MGV(3) CG(1)/MGV(3)

CG/MG step time 1.1 1.6 0.53

Table 14: BR2 dG discretization of the 3D model Poisson problem (35)-(85). Comparison of
total CPU times (assembly plus solution times) required to reach a relative residual tolerance
of 10�10 with Conjugate Gradient and h-multigrid. The multigrid solution strategy is applied
to an higher polynomial degree dG discretization (kMG > kCG).

Table 13. Similarly to the 2D case solving a second degree polynomial degree

BR2 dG discretization with h-multigrid is comparable to solving a first degree

dG discretization with CG and the time required for solving a third polynomial

degree BR2 dG discretization with h-multigrid is twice the time required for

solving a first degree dG discretization with Conjugate Gradient, see Table 7.

6.2. Stokes dG discretization

In this section we tackle the solution of a model Stokes problem discretized

by means of the dG formulation in (24). The computational domain is the bi-

unit square, ⌦ = [�1, 1]2, and we impose Dirichlet boundary conditions on @⌦

according to the following smooth analytical solution

u = [�ex (y cos(y) + sin(y)) i, ex (y sin(y)) j] ,

p = 2 ex sin(y),

In order to investigate the growth of computational costs while increasing the

mesh size, solutions are computed on four uniform quadrilateral elements meshes

of size (64 ·2n)2, n = {0, 1, 2, 3} and four distorted and graded triangular meshes
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of size 2(32 ·2n)2, n = {0, 1, 2, 3}, see Figure 2. We check the influence of raising

the polynomial degree and the number of coarse levels considering k = {1, 2, 3}

and L = {2, 3, 4, 5}. The number of mesh elements at each level ` of the stack

of grids is reported in Table (1).

For the sake of comparison we consider the h-multigrid V-cycle precondi-

tioned FGMRES iteration and the Pressure Schur Complement preconditioned

Richardson iteration of Section 5. The relevant solvers options are summarized

in what follows.

MGV preconditioned FGMRES solver. One iteration of MGV cycle is used as a

preconditioner for the FMGRES(60) iteration. On quadrilateral meshes high-

order modes of the error are smoothed with a single iteration of a right ILU

preconditioned GMRES solver while on distorted and graded triangular meshes

we consider one and two smoothing iterations. On the coarsest level L we employ

the same solver but, instead of fixing the iteration number, we impose a four

order of magnitude decrease of the relative residual norm, that is kfL�A
Stk
L w̄Lk

kfLk 

10�4. The FGMRES iteration is forced to reach tight relative residual tolerance,

in particular the linear system solution converges in Nit iterations if at the i-th

iterate kr̂i0k =
kf0�A

Stk
0 w̄

i
0k

kf0k  10�12.

Pressure Schur Complement MGV preconditioned Richardson solver. To ap-

proximatively invert the discrete vector Laplace operator A0 and the pressure

Schur complement eS0 appearing in the block factorization of AStk
0 , see Section

5, we employ a FGMRES(60) and a GMRES(60) solver, respectively. We set

a two order of magnitude decrease of the relative residual norm and limit the

maximum number of iterations to 2 and 40, respectively. The pressure Schur

Complement GMRES solver is preconditioned with an ILU decomposition of

the operator bS0 in (82). The FMGRES solver acting on the discrete Laplace

operator is preconditioned with one and two iteration of multigrid V-cycle on
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quadrilateral and triangular grids, respectively. Smoothing options are the same

of Section 6.1. The Richardson iteration is forced to reach a relative residual

tolerance of 10�12.

We compare the solvers on the basis of convergence rate and computation

time and we compare execution times with a Lower Upper (LU) decomposi-

tion direct solver and the ILU preconditioned GMRES(200) solver. All the

numerical results have been computed by exploiting the PCMG multigrid pre-

conditioner and the PCFIELDSPLIT block preconditioner frameworks available

in the PETSc library [40, 37]. Provided that the iterative solver’s convergence

criterion is satisfied and the LU factorisation is computed without running out

of memory, the same error with respect to the exact solution is measured. For

the k = 3 dG discretization on the 1282 quadrilateral grid the L
2 error norm is

on the order of 10�10 and 10�8 for velocity and pressure, respectively.

The number of iteration reported in Table 15 and Table 16 confirm uni-

form converge with respect to the number of levels for multigrid preconditioned

solvers, both on quadrilateral and triangular mesh sequences. Nevertheless,

while on uniform quadrilateral elements grids the convergence is grid indepen-

dent, on distorted and graded triangular meshes the number of iterations in-

creases on finer grids. Moreover, only on quadrilateral elements meshes increas-

ing the polynomial degree entails less iterations. This can be better appreciated

by inspecting the average residual decrease or convergence factor

⇢ = exp

✓
1

Nit
ln
krNitk

kr0k

◆

reported in Table 17. Convergence failure after 2000 ILU preconditioned GM-

RES iterations reads 2000⇤ in Tables 15-16.

Looking at the wall clock times (solution times plus assembly times) reported

in Table 18 it is clear that both multigrid preconditioned iterative solvers yield

55



significant execution times gains with respect to direct solver on the quadri-

lateral mesh sequence. Since we get a four-to-five-fold increase of the total

computation time with a four-fold increase of the mesh size at all the polynomi-

als degrees, optimal multigrid e�ciency is approached. Note that in case of the

h-multigrid preconditioned FGMRES solver the number of levels L must be cho-

sen large enough because of the poor performance of the coarse grid GMRES

solver, even on relatively coarse meshes. In this regard uniform convergence

with respect to the number of levels is highly beneficial.

Linear solver iterations, 2D Stokes problem, quadrilateral mesh sequence

solver FGMRES MGV SchurCompl MGV GMRES ILU

L 2 3 4 5 2 3 4 5 0

grid k = 1
64 25 26 27 27 11 11 11 11 1013

128 25 27 27 27 11 12 11 11 2000
⇤

256 26 27 28 28 11 12 12 12 2000
⇤

512 27 27 28 28 11 12 12 12 2000
⇤

k = 2
64 16 16 17 17 10 10 10 10 531

128 16 16 17 17 10 10 10 10 2000
⇤

256 16 16 17 17 10 10 10 10 2000
⇤

512 16 16 17 17 10 10 10 10 2000
⇤

k = 3
64 13 14 14 14 10 10 10 10 597

128 13 14 14 14 10 10 10 10 2000
⇤

256 13 14 14 14 10 10 10 10 2000
⇤

512 18 14 14 14 10 10 10 10 2000
⇤

Table 15: Comparison of the number of iterations required to solve a 2D model Stokes problem,
see text for details. Linear system relative residual tolerance is 10�12.

The wall clock times measured on the triangular mesh sequence and reported

in Table 19 demonstrate that only the preconditioned FGMRES solver allows to

bit direct solvers. The performance of the Schur Complement block precondi-

tioner is hit by the poor performance of the Schur complement subsolver which

fails to lower the residual by two orders of magnitude in 40 iterations (we verified

that increasing the maximum number of iteration beyond 40 is not beneficial

in terms of execution times). As opposite the multigrid preconditioned FGM-
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Linear solver iterations, 2D Stokes problem, triangular mesh sequence

solver FGMRES MGV SchurCompl MGV GMRES

SM it 1 2 2

L 2 3 4 5 2 3 4 5 2 3 4 5 0

grid k = 1
32 35 35 35 35 20 20 20 20 28 29 29 30 464

64 39 39 39 39 23 23 23 23 44 45 45 46 1433

128 46 47 47 47 26 26 26 26 70 70 70 71 2000
⇤

256 51 51 51 51 29 29 29 29 86 86 86 86 2000
⇤

k = 2
32 29 29 29 29 16 16 16 16 29 29 29 29 374

64 36 36 36 36 22 22 22 22 45 45 45 45 1526

128 55 55 55 55 28 28 28 28 81 80 81 81 2000
⇤

256 73 70 75 76 41 41 41 41 64 63 66 65 2000
⇤

k = 3
32 27 27 27 27 14 14 14 14 39 39 39 39 437

64 36 36 36 36 19 19 19 19 57 57 57 57 1863

128 44 44 44 44 26 26 26 26 72 72 72 72 2000
⇤

256 63 63 63 63 40 40 40 40 119 119 119 120 2000
⇤

Table 16: Comparison of the number of iterations required to solve a 2D model Stokes problem,
see text for details. One and two smoothing iterations (SM it) are considered for triangu-
lar meshes to improve the performance of multigrid preconditioners. Linear system relative
residual tolerance is 10�12.

Convergence factor ⇢, 2D Stokes problem

grid quadrilateral meshes (triangular meshes)

solver FGMRES MGV SchurCompl MGV FGMRES MGV SchurCompl MGV
SM it 1 1 1 2

L 2 5 2 5 2 5 2 5

grid size k = 1
64 (32) .324 .349 .070 .075 .456 .456 .372 .387

128 (64) .328 .354 .078 .079 .497 .498 .536 .544

256 (128) .337 .364 .078 .089 .554 .556 .676 .679

512 (256) .348 .370 .079 .087 .583 .584 .728 .727

k = 2
64 (32) .162 .186 .053 .055 .382 .383 .383 .383

128 (64) .165 .193 .052 .053 .470 .471 .544 .543

256 (128) .165 .196 .055 .056 .608 .606 .711 .712

512 (256) .167 .196 .051 .054 .687 .695 .651 .658

k = 3
64 (32) .116 .124 .060 .061 .349 .349 .495 .494

128 (64) .117 .127 .051 .051 .464 .465 .616 .617

256 (128) .118 .129 .053 .051 .539 .540 .682 .682

512 (256) .205 .130 .051 .051 .648 .648 .792 .794

Table 17: 2D model Stokes problem. Convergence factors of a FGMRES solver preconditioned
with h-multigrid and a Richardson solver with a Pressure Schur Complement Block precon-
ditioner, see text for details. Quadrilateral and distorted triangular mesh sequences. One
and two smoothing iterations (SM it) are considered for triangular meshes to improve the
performance of multigrid preconditioners. Linear system relative residual tolerance is 10�12.
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RES solver employed for the Laplace operator performs fairly well on distorted

triangular meshes, see Table 4. Also the performance of h-multigrid FGMRES

degrade as compare to quadrilateral elements meshes: we observe a six-fold in-

crease of the total computation time with a four-fold increase of the mesh size.

Worsening of convergence factors is awaited given that the number of stretched

triangles increases and their aspect ratios worsen when the mesh is refined, see

Figure 2.

Total CPU time (s), 2D Stokes problem, quadrilateral mesh sequence

solver FGMRES MGV SchurCompl MGV GMRES LU

L 2 3 4 5 2 3 4 5 0 0

grid k = 1
64 1.03 0.91 0.91 0.89 1.61 2.0 1.86 1.92 11.1 1.33

128 5.07 3.87 3.83 3.89 7.57 8.42 7.62 7.58 90.4* 10.7

256 42.2 17.6 16.8 16.8 31.0 36.3 35.4 37.0 349* 84.0

512 480 99.4 75.9 75.7 137 151 153 149 1278* 691

k = 2
64 2.81 1.84 1.83 1.89 5.86 5.97 6.1 6.22 11.2 6.06

128 13.76 7.86 7.78 7.83 25.7 27.1 28.6 28.0 168* 49.9

256 113 39.9 33.1 32.7 114 110 109 112 713* 409

512 977 288 172 159 497 494 485 547 2690*

k = 3
64 6.19 4.47 4.44 4.51 18.0 18.1 18.5 18.6 30.2 17.2

128 37.2 20.8 18.6 18.2 79.8 82.4 85.6 81.8 365* 146

256 301 103 77.8 74.8 326 325 325 324 1533*

512 3012 734 381 347 1419 1360 1355 1350 5973*

Table 18: Comparison of wall clock time (solution plus assembly times) required to solve a 2D
model Stokes problem, see text for details. Linear system relative residual tolerance is 10�12.

The comparison between direct solver and h-multigrid FGMRES CPU times

proposed in Table 20 confirms that strong gains can be attained by means of

multilevel preconditioners, even on unstructured meshes composed of stretched

and skewed elements. On fine enough uniform quadrilateral mesh solving a

first degree dG discretization with an LU solver is comparable to solving a

third degree dG discretization with a multigrid preconditioned FGMRES solver.

Similarly, on a fine enough distorted triangular grids, k + 1 and k degree dG

discretizations are comparable in terms of exacution time if solved with multigrid
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Total CPU time (s), 2D Stokes problem, triangular mesh sequence

solver FGMRES MGV SchurCompl MGV GMRES LU

L 2 3 4 5 2 3 4 5 0 0

grid k = 1
32 0.42 0.42 0.42 0.42 7.63 8.33 8.75 9.33 1.70 0.26

64 2.08 1.93 1.90 1.94 51.0 55.1 56.1 57.7 21.8 2.22

128 11.1 9.04 9.10 8.74 329 346 356 357 121* 18.9

256 80.2 44.5 40.3 40.6 1798 1870 1895 1879 522* 158

k = 2
32 1.04 0.99 0.99 1.10 19.5 20.6 21.6 22.1 3.30 1.65

64 6.49 5.53 5.57 5.57 136 144 138 137 58.6 14.9

128 39.8 29.5 28.0 26.5 1000 1082 1123 1098 315* 129

256 290 181 164 156 3433 3315 3458 3397 1305* 1087

k = 3
32 2.73 2.74 2.57 2.64 70.6 72.7 73.8 74.4 9.45 4.16

64 17.6 14.4 14.1 13.9 457 472 480 510 160 39.5

128 116.8 77.5 72.1 71.0 2473 2444 2459 2472 689* 343

256 973 484 419 434 12112 12360 12355 12350 2782*

Table 19: Comparison of wall clock time (solution plus assembly times) required to solve a 2D
model Stokes problem, see text for details. Linear system relative residual tolerance is 10�12.

MGV(k) vs LU(k) Total CPU time speedup

degree k = 1 k = 2 k = 3

quad grid 64 128 256 512 64 128 256 512 64 128 256

LU/MG step time 1.5 2.7 5 9.1 3.2 6.4 12.5 3.8 8

tri grid 32 64 128 256 32 64 128 256 32 64 128

LU/MG step time 0.6 1.1 2.2 3.9 1.5 2.7 4.9 7 1.6 2.8 4.8

Table 20: 2D model Stokes problem. Comparison of total CPU times (assembly plus solution
times) required to solve with a direct solver and with h-multigrid preconditioned FGMRES
(L = 5), see text for details. Linear system relative residual tolerance is 10�12 in case of
FGMRES.

preconditioned FGMRES and direct LU solver, respectively.

Since the multigrid V-cycle preconditioner is the best performing and is

reliable on low quality grids, in the next section the strategy will be applied for

solving non-linear incompressible flow problems.

6.3. Navier-Stokes dG discretization

In this section we assess the performance of the multigrid preconditioned

FGMRES solver applied to repeatedly solve the linearized system of equation

in (21), as required for advancing in time the dG discretization of the incom-
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pressible Navier-Sokes equation in (14) by means of the Backward Euler method.

We consider the 2D Kovasznay and 2D-3D Lid-driven cavity problems, ad-

mitting a steady state solution at the Reynolds numbers considered in this work.

Thus we tackle a real-life transient hemodynamic application: we consider the

possibility to simulate the blood flow behavior all along the cardiac cycle in a

3D cerebral aneurysm geometry reconstructed from medical images.

We remark that the Backward Euler method can be modified to implement a

pseudo-transient continuation strategy,  tc see e.g. [44], that can be employed

to seek steady state solutions of the incompressible Navier-Stokes equations.

Roughly speaking it is su�cient to omit the while loop in Algorithm 1 (which

is done for e�ciency purposes since accuracy of the time integration is unneces-

sary) and introduce a time step adaptation strategy, e.g. the Successive Evolu-

tion Relaxation Strategy [45], which allows to progressively enlarge the pseudo

time step (starting from a su�ciently small initial guess) when the steady state

solution is approached.  tc is a globalization of Newton method that guarantees

convergence even when the tentative solution is far from the sought steady state

solution. Moreover the favourable convergence rates of the Newton method can

be exploited when the pseudo time step is large enough.

6.3.1. Kovasznay test case

To assess convergence with respect to the number of levels we consider the

2D Kovasznay problem [46] at Reynolds 40. Dirichlet boundary conditions

are imposed according to the exact solution and we seek for the steady state

solution starting from fluid at rest. Since the flow regime is di↵usion dom-

inated we set the initial pseudo-time step of the continuation strategy to a

very large value (1013) and fall back to pure Newton for the steady Navier-

Stokes equations. We impose a four order of magnitude decrease of the relative

residual norm at each Newton iteration: i.e. at the n-th Newton iterate the
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i-th iterate of the multigrid preconditioned FGMRES solver has congerged if

kr̂
n,i

0 k =
kf0(wn

0 )�A
INS
0 (wn

0 )�w
n,i
0 k

kf0(wn
0 )k  10�4. Convergence is achieved is six Newton

iterations, the steady state solution w
6
0 is such that |f0(w6

0)|  10�12.

The smoothing and solver option for the multigrid preconditioner are the

same that in the Stokes case. One iteration of MGV cycle is used as a precon-

ditioner for the FMGRES(60) iteration. Smoothing is performed with a single

iteration of a right ILU preconditioned GMRES solver while for the ILU precon-

ditioned GMRES solver on level L we impose a four order of magnitude residual

decrease. Besides the multilevel V-cycle iteration, for the Kovasznay test case

we include the results obtained with the W-cycle iteration, see e.g. [33]. The V-

and W-cycle iterations di↵er in terms of the coarse grid correction of Algorithm

2, as outlined below

Coarse grid correction (V-cycle)

r` = f` �A`w`

r`+1 = I
`+1
`

r`

e`+1 = MGV(`+ 1, r`+1, 0)

bw` = w` + I
`

`+1e`+1

Coarse grid correction (W-cycle)

r` = f` �A`w`

r`+1 = I
`+1
`

r`

be`+1 = MGV(`+ 1, r`+1, 0)

e`+1 = MGV(`+ 1, r`+1, be`+1)

bw` = w` + I
`

`+1e`+1

In order to investigate the growth of computational costs while increasing the

mesh size, 2D solutions are computed on three uniform quadrilateral elements

meshes of size (128 ·2n)2, n = {1, 2, 3} of the bi-unit square domain [�0.5, 1.5]⇥

[0, 2]. We check the influence of raising the polynomial degree on the convergence

rate and the computational expense considering k = {1, 2, 3}. To investigate

the influence of the number of coarse levels on the convergence rate we consider

L = {2, 3, 4, 5}.

Since we are considering the performance of a linear multigrid iteration ap-
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plied to each of six Newton method steps required to reach the steady state

solution all the numerical results presented in what follows are averaged over

the six steps. The number of linear iterations reported in Table 21 and the con-

vergence factors reported in Table 22 show that only the W-cycle iteration yields

uniform convergence with respect to the number of levels. The influence of the

number of levels on the V-cycle iteration is not dramatic but clearly noticeable.

The number of iterations is not grid independent but moving from a 1282 to

a 5122 quadrilateral elements mesh (a sixteen-fold increase of the number of

elements) the iterations increase is less than two-fold. Also the polynomial de-

gree dependence is mild: similarly to the Stokes case a slight worsening of the

convergence rates is observed for k = 2.

Average linear solver iterations

k 1 2 3

grid 128 256 512 128 256 512 128 256 512

FGMRES MGV L = 2 7 8 9 8 11 16 8 9 12

FGMRES MGV L = 3 8 9 10 10 12 17 9 11 13

FGMRES MGV L = 4 9 10 12 11 14 18 11 13 16

FGMRES MGV L = 5 10 11 13 12 15 20 12 14 18

FGMRES MGW L = 2 5 6 8 7 9 13 6 8 11

FGMRES MGW L = 3 5 6 8 7 9 13 6 8 11

FGMRES MGW L = 4 5 6 8 7 9 13 6 8 11

FGMRES MGW L = 5 5 6 8 7 9 13 6 8 11

GMRES(200) ILU(0) 464 1589
⇤

449 1518 579 1669
⇤

Table 21: 2D Kovasznay problem. Number of iterations of a FGMRES solver preconditioned
with a V-cycle and a W-cycle h-multigrid iteration (one iteration), see text for details. Linear
system relative residual tolerance is 10�4. Average linear iterations over the six Newton steps
required to find the steady state solution.

The wall clock times comparison of Table 23 confirms that strong gains can

be obtained as compared to the ILU preconditioned GMRES(200) iteration.

Interestingly, even if the W-cycle iteration is the best performing in terms of

convergence rates, the increased computational cost as compared to the V-cycle

penalizes execution times. Similarly to the Stokes case we get a four-to-five fold

increase of the computational cost with a four fold increase of the number of

levels.
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Average convergence factor, ⇢
k 1 2 3

grid 128 256 512 128 256 512 128 256 512

FGMRES MGV L = 2 .23 .26 .34 .31 .40 .53 .28 .34 .43

FGMRES MGV L = 3 .29 .33 .39 .36 .44 .55 .35 .41 .47

FGMRES MGV L = 4 .33 .37 .43 .40 .49 .58 .40 .46 .52

FGMRES MGV L = 5 .36 .41 .47 .43 .52 .61 .42 .49 .57

FGMRES MGW L = 2 .14 .20 .28 .22 .33 .45 .20 .28 .40

FGMRES MGW L = 3 .14 .20 .28 .23 .33 .45 .20 .28 .40

FGMRES MGW L = 4 .14 .20 .28 .23 .33 .45 .21 .28 .40

FGMRES MGW L = 5 .14 .20 .28 .23 .33 .45 .21 .28 .40

Table 22: 2D Kovasznay problem. Convergence factors of a FGMRES solver preconditioned
with a V-cycle and a W-cycle h-multigrid iteration (one iteration), see text for details. Linear
system relative residual tolerance is 10�4. Average convergence factors over the six Newton
steps required to find the steady state solution.

Total CPU time (s), 2D Kovasznay problem, quadrilateral mesh sequence

solver FGMRES MGV FGMRES MGW GMRES

L 2 3 4 5 2 3 4 5 0

grid k = 1
128 3.18 2.90 3.08 3.24 2.86 2.47 2.48 2.56 16.5

256 25.6 13.4 13.3 14.0 26.2 12.4 11.0 11.1 229

512 229 79.1 59.8 62.3 294 108 58.9 51.8

k = 2
128 11.1 8.14 8.34 8.58 13.4 8.46 8.15 8.27 46.0

256 109 42.9 37.9 39.2 138 58.1 42.5 40.8 586

512 1090 313 176 179 1589 627 269 215

k = 3
128 29.4 19.6 19.8 20.8 35.1 22.6 19.8 19.8 107

256 283 108 94.1 97.6 361 152 106 94.8 1640

512 2218 829 481 471 3399 1563 754 550

Table 23: 2D Kovasznay problem. Comparison of wall clock time (solution plus assembly
times) required to solve linearized systems of Newton method, see text for details. Linear
system relative residual tolerance is 10�4. . Average CPU times over the six Newton steps
required to find the steady state solution

.
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As observed for the Stokes problem, the assembly and solution wall clock

times of Table 24 confirms that it is important to choose a su�ciently high

number of levels not to get penalized by the poor performance of the ILU pre-

conditioned GMRES coarse grid solver.

CPU time (s) solution assembly total

grid 128 256 512 128 256 512 128 256 512

k = 1
FGMRES MG L = 2 1.64 19.3 204 1.54 6.25 24.8 3.19 25.6 229

FGMRES MG L = 3 1.14 6.34 50.8 1.75 7.01 28.2 2.90 13.4 79.1

FGMRES MG L = 4 1.18 5.68 29.3 1.89 7.59 30.5 3.08 13.3 59.8

FGMRES MG L = 5 1.25 5.97 30.1 1.99 8.01 32.1 3.24 14.0 62.3

GMRES(200) ILU(0) 15.8 226 0.70 2.78 16.5 229

k = 2
FGMRES MG L = 2 8.18 97.4 1048 2.90 11.7 42.5 11.1 109 1090

FGMRES MG L = 3 4.89 30.0 271 3.24 12.9 41.4 8.14 42.9 313

FGMRES MG L = 4 4.88 24.5 131 3.07 13.5 44.3 8.34 37.9 176

FGMRES MG L = 5 4.96 24.9 131 3.62 14.2 47.0 8.58 39.2 179

GMRES(200) ILU(0) 44.4 580 1.58 5.90 46.0 586

k = 3
FGMRES MG L = 2 23.6 260 2121 5.81 23.5 96.7 29.5 283 2218

FGMRES MG L = 3 13.2 81.8 720 6.40 25.9 109 19.6 108 829

FGMRES MG L = 4 12.9 66.3 364 6.89 27.7 115 19.8 94.1 480

FGMRES MG L = 5 13.5 68.1 349 7.27 29.6 121 20.8 97.6 471

GMRES(200) ILU(0) 104 1626 3.01 13.4 107 1640

Table 24: 2D Kovasznay problem. Solution, assembly and total (solution plus assembly) times
for solving linearized systems of Newton method with with a FGMRES solver preconditioned
with a V-cycle h-multigrid iteration, see text for details. Linear system relative residual
tolerance is 10�4. Average CPU times over the six Newton steps required to find the steady
state solution.

6.3.2. Lid-Driven cavity test case

To investigate the influence of the Reynolds number on the convergence rates

and the performance in three space dimensions we consider the lid-driven cavity

problem. We rely on a uniform 1002 quadrilateral and a uniform 803 hexahedral

grid of the unit square and the unit cube, respectively. We check the influence of

raising the polynomial degree on the convergence rate considering k = {1, 2, 3, 4}

in 2D but omitting k = 4 in 3D. We consider two Reynolds numbers, Re = 1000

and Re = 5000, in 2D and Re = 1000 in 3D.
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 tc iterations convergence factor ⇢ max(avg)

Re 1000 5000 1000 5000

k = 1
FGMRES MG L = 3

24 45
.556 (.395) .815 (.537)

FGMRES MG L = 4 .646 (.451) .883 (.567)

k = 2
FGMRES MG L = 3

23 53
.321 (.228) .638 (.349)

FGMRES MG L = 4 .463 (.306) .753 (.394)

k = 3
FGMRES MG L = 3

23 79
.171 (.126) .483 (.228)

FGMRES MG L = 4 .313 (.199) .682 (.284)

k = 4
FGMRES MG L = 3

23 67
.126 (.090) .469 (.225)

FGMRES MG L = 4 .201 (.132) .654 (.289)

Table 25: 2D lid-driven cavity problem. Number of pseudo-transient continuation iterations
and maximum/average convergence factors (⇢) measured over the  tc iterations. Linearized
systems of  tc method are solved with a FGMRES solver preconditioned with a V-cycle
h-multigrid iteration, see text for details.

Since the Reynolds number is higher than in the Kovasznay case and we

approach convection dominated flow regimes, we seek for a steady state solu-

tion starting from fluid at rest by means of of the pseudo-transient continuation

strategy with SER time stepping. Besides adapting the time step, it is conve-

nient to adapt the forcing terms, that is the relative relative tolerance triggering

convergence of the linear system at each continuation step, we adopt the strat-

egy proposed in [47]. The goal is to avoid oversolving of the linear system when

the linearization of the residual f(wn+1) = f(wn)+J(wn)�w
n

is not su�ciently

accurate to pay o↵ in terms of convergence towards the steady state.

The smoothing and solver option for the multigrid preconditioner are the

same that in the Stokes and Kovasznay case. One iteration of MGV cycle is

used as a preconditioner for the FMGRES(60) iteration. High-order modes of

the error are smoothed with a single iteration of a right ILU preconditioned

GMRES solver while we require a four order of magnitude residual decrease for

the ILU preconditioned GMRES solver on level L. In parallel computations

ILU preconditioners are replaced with ASM preconditioners with one level of
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Re 1000 np avg card(T i
` )  tc it ⇢ max(avg)

k = 1
FGMRES MG L = 2

32
16000/2350/350

33
.806 (.509)

FGMRES MG L = 3 16000/2350/350/53 .942 (.589)

k = 2
FGMRES MG L = 2

64
8000/1175/170

33
.535 (.356)

FGMRES MG L = 3 8000/1175/170/25 .822 (.487)

k = 3
FGMRES MG L = 2

128
4000/585/90

34
.392 (.259)

FGMRES MG L = 3 4000/585/90/13 .630 (.390)

Table 26: 3D lid-driven cavity problem. Number of processes (np), average grid partition
cardinality on each level of the h-coarsened mesh sequence, number of pseudo-transient con-
tinuation iterations and maximum/average convergence factors (⇢) measured over the  tc

iterations. Linearized systems of  tc method are solved with a FGMRES solver precondi-
tioned with a V-cycle h-multigrid iteration, see text for details.

overlap, as we did for solving elliptic problems in parallel in Section 6.1.

The average and maximum convergence factors measured over the  tc it-

erations are reported in Table 25. While the maximum convergence factors,

usually observed in the terminal phase of the convergence (that is when the

time step is large), are significantly a↵ected by raising the Reynolds number,

the average convergence factors are satisfactorily small at Reynold 5000. In-

terestingly increasing the polynomial degree is beneficial from the convergence

rates viewpoint, very good performances are observed for k = 4.

Parallel 3D computations demonstrate that the convergence rates do not

degrade, even if the number of mesh elements in each grid partition is remark-

ably small on the coarsest level, see Table 26. The trend observed in 2D is

confirmed, raising the polynomial degree is advantageous from the convergence

rate viewpoint. We remark that the third polynomial degree dG discretization

on the 803 hexahedral elements grid tops at approximatively 10M unknowns.

6.3.3. Cerebral aneurysm hemodynamics

In this section we apply the Backward Euler time integration strategy of Al-

gorithm 1 to approximate the blood flow field in a pathological Internal Carotid

Artery (ICA) reconstructed from medical images, see Figure 4.
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Figure 4: Hemodynamics of a cerebral aneurysm reconstructed from medical images. Left,
hybrid (tetrahedral and prismatic) 270k elements grid and velocity contour. Right, streamlines
computed at the systolic peak.

In order to take into account the pulsatile flow behaviour Dirichlet boundary

conditions are imposed at the circular inflow section relying on the Womersley

analytical solution [48] and considering a physiological flow rate all along the

cardiac cycle [49]. The average Reynolds number Reavg = 500. Stress-free

boundary conditions are imposed at the outflow section and no-slip boundary

conditions are imposed at the vessel walls. We apply k = {1, 2, 3} polynomial

degree dG discretizations over the 270K hybrid grid generated with the open-

source Vascular Modeling Toolkit (VMTK) [50]. Simulations are performed

running in parallel on 16, 32 and 64 processes for first, second and third degree

dG discretizations, respectively. The fixed time steps is chosen such that 150

numerical solution are computed in each cardiac cycle. The time integration

strategy is initialized with fluid at rest and conducted for three cardiac cycles.

Reavg = 500 np avg card(T i
` ) time steps ⇢ max(avg)

k = 1
FGMRES MG L = 2 16 10600/1560/230 150 .644 (.547)

k = 2
FGMRES MG L = 2 32 5300/770/114 150 .678 (.540)

k = 3
FGMRES MG L = 2 64 2650/390/57 150 .631 (.477)

Table 27: Cerebral aneurysm hemodynamics. Number of processes (np), average grid partition
cardinality on each level of the h-coarsened mesh sequence, number of times steps per cardiac
cycle and maximum/average convergence factors (⇢) measured over the Backward Euler time
integration strategy. Linearized systems of  tc method are solved with a FGMRES solver
preconditioned with a V-cycle h-multigrid iteration, see text for details.
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For solving the linearized systems of the BE method (21) one iteration of

MGV cycle is used as a preconditioner for the FMGRES(60) solver. High-order

modes of the error are smoothed with a single iteration of an ASM precon-

ditioned GMRES solver while we require a four order of magnitude residual

decrease for the ASM preconditioned GMRES solver on level L. ASM precon-

ditioners employ one level of overlap between sub-domains and an ILU decom-

positions for each sub-domain matrix.

Table 27 reports the maximum and average convergence rates measured

over the third cardiac cycle. Since the time step is fixed, the gap between

maximum and average converge factors is narrower than in the pseudo-transient

continuation strategy, cf. Table 26, and reflects the influence of varying the

Reynolds number. In particular the maximum convergence factor is recorded

during systole where convection is more pronounced as compared to diastole.

Even if the average convergence rates reported in Table 27 are less satisfac-

tory that in the lid-driven cavity case, the fact that the linear system residual

halves at each FGMRES iteration is a significant achievement. Hemodynamic

computations are considered very challenging from the numerical solution view-

point, to the point that even segregated Pressure Corrections strategies might

require ad-hoc preconditioners [51].

7. Conclusions

This work demonstrates the feasibility and e↵ectiveness of h-multigrid pre-

conditioners applied to high-order accurate dG discretizations of incompressible

flow problems. In view of e�ciency agglomeration based h-multigrid strate-

gies with inherited coarse grid operators are attractive because the expensive

process of numerically integrating over agglomerated elements can be avoided

in all but the preprocessing phase. Indeed, intergrid transfer operators can be
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computed once prior to the non-linear iteration, and stored for later use. In this

work we introduced an e↵ective strategy for improving performance of inher-

ited coarse grid operators which exploits a rescaled Galerkin projection of the

BR2 dG discretization stabilization term. Using a single iteration of precon-

ditioned GMRES as smoothing strategy, the multigrid convergence is uniform

with respect to the number of levels and the typical multigrid e�ciency is closely

approached on model problems. The ability to beat direct solvers on arbitrarily

unstructured low quality grids and the appealing performance obtained on par-

allel real-life computations might revert the common belief that discontinuous

Galerkin discretizations are more expensive to solve as compared to standard

finite element and finite volume formulations.

Appendix A. Implementation details: restriction of BR2 operators

We provide implementations details about the matrix-free implementation

of the restriction of coarse grid operators. For the sake of brevity we consider

inheritance of the BR2 bilinear forms, the Stokes and Navier-Stokes coarse grid

operators can be obtained in a similar fashion. Note that BR2 coarse grid

operators involve Galerkin projections for consistency terms, see Equation (71)

and the rescaled Galerkin projection for the stabilization term, see Equation

(72).

The matrices counterparts ABR2
`

of the operators A
BR2
`

are sparse block

matrices of size (card(T`) N

dof)
2 (the block size is (N

dof)
2) composed of diagonal

blocksA`,` and o↵-diagonal blocksA`,
0
`
. O↵-diagonal blocks are responsible

of the coupling between neighboring elements `,
0
`
sharing a face �`. The coarse

operators A
eI,BR2
`

are obtained matrix-free as described in Algorithms 5 and 6.

Matrix restriction is performed contextually to fine matrix assembly so that

stability term contributions ASTB, and consistency-symmetry terms contribu-
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Algorithm 5 Inherited BR2 (mesh elements and boundary faces)

for 0 2 T0 do
assemble (ACS

0,0
)i,j = a

CS
0 ('0

i
,'

0
j
)

for ` = 0, ..., L� 1 do
find `+1 2 T`+1 such that ` 2 K

`+1
`

A`+1,`+1 += M`+1,` (A
CS
`,`

) MT

`+1,`

end for
end for
for �0 2 F

b
0 do

find 0 such that �0 = @0 \ @⌦
assemble (ACS�

0,0
)i,j = a

CS�
`

('0
i
,'

0
j
)

assemble (ASTB
0,0

)i,j = s`('
0
i
,'

0
j
)

for ` = 0, ..., L� 1 do
find `+1 such that ` 2 K

`+1
`

find �`+1 such that �` 2 ⌃
`+1
`

ACS�
`+1,`+1

= M`+1,` (A
CS�
`,`

) MT

`+1,`

ASTB
`+1,`+1

= H
�`+1
�`

⇣
M`+1,` (A

STB
`,`

) MT

`+1,`

⌘

A`+1,`+1 +=
⇣
ACS�

`+1,`+1
+ASTB

`+1,`+1

⌘

end for
end for

tions ACS and ACS� , see Section 4.3.1, are restricted separately, before being

collected into diagonal and o↵-diagonal blocks of the fine matrix.

It is interesting to remark that only a subset of the internal faces contri-

butions on level ` is restricted on level ` + 1. In particular we remark that all

diagonal and o↵-diagonal contributions ASTB
,ACS� associated to facets � 2 F

i
`

that do not belong to the boundary of agglomerated elements on level ` + 1

are ignored in Algorithm 6. This optimization is permitted thanks to the local

conservation properties of dG formulations.
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Algorithm 6 Inherited BR2 (internal faces)

for �0 2 F
i
0 do

find 0,
0
0 such that 0 6= 

0
0 and �0 = @0 \ @

0
0

assemble ACS�
0,0

,ACS�


0
0,

0
0
,ACS�

0,
0
0
and (ACS�


0
0,0

)i,j = a
CS�
0 ('


0
0

i
,'

0
j
)

assemble ASTB
0,0

,ASTB

0
0,

0
0
,ASTB

0,
0
0
and (ASTB


0
0,0

)i,j = s0('

0
0

i
,'

0
j
)

for ` = 0, ..., L� 1 do
find `+1,

0
`+1 such that ` 2 K

`+1
`

, 
0
`
2 K

0`+1
`

find �`+1 such that �` 2 ⌃
`+1
`

if `+1 = 
0
`+1 then

break {ignore contributions of internal facets �l 62 @K
l+1
l
\ @K

0`+1
`

}

else
ACS�

`+1,
0
`+1

= M`+1,` (A
CS�

`,
0
`
) MT


0
`+1,

0
`

ACS�


0
`+1,`+1

= M
0
`+1,

0
`
(ACS�


0
`,`

) MT

`+1,`

ACS�
`+1,`+1

= M`+1,` (A
CS�
`,`

) MT

`+1,`

ACS�


0
`+1,

0
`+1

= M
0
`+1,

0
`
(ACS�


0
`,

0
`
) MT


0
`+1,

0
`

ASTB
`+1,

0
`+1

= H
�`+1
�`

⇣
M`+1,` (A

STB
`,

0
`
) MT


0
`+1,

0
`

⌘

ASTB

0
`+1,`+1

= H
�`+1
�`

⇣
M

0
`+1,

0
`
(ASTB


0
`,`

) MT

`+1,`

⌘

ASTB
`+1,`+1

= H
�`+1
�`

⇣
M`+1,` (A

STB
`,`

) MT

`+1,`

⌘

ASTB

0
`+1,

0
`+1

= H
�`+1
�`

⇣
M

0
`+1,

0
`
(ASTB


0
`,

0
`
) MT


0
`+1,

0
`

⌘

A`+1,
0
`+1

+=
⇣
ACS�

`+1,
0
`+1

+ASTB
`+1,

0
`+1

⌘

A
0
`+1,`+1

+=
⇣
ACS�


0
`+1,`+1

+ASTB

0
`+1,`+1

⌘

A`+1,`+1 +=
⇣
ACS�

`+1,`+1
+ASTB

`+1,`+1

⌘

A
0
`+1,

0
`+1

+=
⇣
ACS�


0
`+1,

0
`+1

+ASTB

0
`+1,

0
`+1

⌘

end if
end for

end for
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