EncSwift and Key Management: An Integrated
Approach in an Industrial Setting

Enrico Bacis*, Marco Rosa*, Ali Sajjadf
*Universita degli Studi di Bergamo, 24044 Dalmine - Italy Email: firstname.lastname @unibg.it
TBritish Telecom - UK Email: ali.sajjad@bt.com

Abstract—The use of cloud technology is continually expand-
ing. Yet, in many scenarios the adoption of an external cloud
service provider may be a worry for data confidentiality since it
leads to a partially loss of control over data. One of the solutions
for letting users put trust in a provider is the use of encryption to
protect data. EncSwift [1] is a solution that provides transparent
support for the encryption of objects stored on OpenStack based
providers, adopting Barbican, the OpenStack secret storage, as a
key manager. In this work we introduce a new key manager, BT
KMS, already adopted in industrial systems, that offers a large
set of features, and that it is designed to be flexible, transparent,
and scalable. Moreover, we analyze the possibility of integration
between the BT KMS and the EncSwift approach, and provide
an architectural overview of this new integrated system.

I. INTRODUCTION

A clear trend of users and organizations for storing data
is moving them to the cloud. This provides great advantages,
mostly in terms of economic cost and availability, but also
introduces major concerns with regard to confidentiality. This
becomes pivotal when considering the cloud provider as
hones-but-curious, i.e., it behaves as expected but it cannot be
trusted for accessing the content of data it stores. An efficient
approach for dealing with an hones-but-curious provider is
the use of encryption for protecting data before outsourcing
them to an external cloud provider [1], [2]. In this way, data
are protected both against privacy interfering providers and
adversaries who may exploit vulnerabilities of the provider in
order to gain access to the physical representation on disks.
Moreover, the use of encryption offers the opportunity to
effectively enforce access control by encrypting data with
different keys, each of them shared with users according to
an authorization policy [3], [4]. EncSwift [1] is a tool for
protecting data confidentiality in OpenStack Swift, it uses
different encryption keys to protect resources, according to
the policies ruling access on them, and providing in this way
fine graned access control.

In a dynamic system with frequent policy updates, the use of
encryption brings not negligible complexity since keys must be
shared and revoked in an efficient and trusted way. In fact, as
though granting access to a resource only requires to share its
encryption key, access revocation is a more relevant problem,
because the revoked user could have stored local copies of
the keys and, if the access control enforced by the server is
faulty, she potentially could still access the plain content of the
resource. Nevertheless, forcing the owner of the resource to

978-1-5386-0683-4/17/$31.00 (©2017 IEEE

download and re-encrypt objects with a fresh key would add
a unbearable overhead to the performance of the system. In
this case, Over-Encryption [5] offers a solution, adopted also
in the EncSwift tool, that can manage access revocation in
an efficient way, applying a server-side encryption layer such
that this new encryption key, generated by the server, cannot
be known to revoked users. Over-Encryption would provide a
clear benefit both in terms of performance and security, but
requires an efficient key management service able to manage
a potential large number of encryption keys.

The purpose of this work is to introduce a new efficient key
management service, BT KMS, and investigate its integration
with EncSwift, in a scenario with frequent policy updates, and
thus with the generation and administration of a large number
of encryption keys.

The remainder of this paper is organized as follows. Sec-
tion II describes some basic concepts on the OpenStack
infrastructure, together with the principles of EncSwift, focus-
ing on one of its implementations. Section III describes the
architecture of BT KMS and its integration with EncSwift.
Section IV discusses related work. Finally, Section V presents
our conclusions.

II. ENCSWIFT

This section introduces the EncSwift approach. In Sec-
tion II-A we briefly describe the OpenStack organization and
its infrastructure. In section II-B we describe EncSwift princi-
ples for data confidentiality protection, and in section II-C we
analyze how the Over-Encryption approach can be introduced
into EncSwift for managing policy updates.

A. OpenStack Swift

In this paper, we assume that the user wants to outsource her
data to a cloud provider based on OpenStack [6]. OpenStack,
originally developed by Nasa and Rackspace has become today
the standard-de-facto for private cloud. It offers a combination
of open source tools for managing the core cloud-computing
services of compute, networking, storage, identity, and image
services, and more other projects can be bundled together
for customizing the platform based on need. In this paper
we focus on Swift, the object storage of OpenStack. Swift
is designed to efficiently, safely, and cheaply store files, that
can be accessed through a tenant/container/object structure.
Objects correspond to files and are organized in containers,
i.e., folders, whereas at the highest level of this hierarchy are

<> pubkey

I

trust boundary

.' Master Key

X
=
= a
% o
=
L
- >

openstack

T

Fig. 1. EncSwift architecture

the tenants, sets of containers that are usually assigned to an
organization. Swift also defines two levels of Access Con-
trol Lists (ACLs): tenant and container. A tenant-level ACL
defines users that can perform administrative operations on
the tenant. A container-level ACL defines read|write|listing
permissions on the container. There is no ACL associated with
objects (the ACL of a container applies to all objects in it).

With regard to its internal structure, Swift it based on WSGI
(Web Server Gateway Interface). This permits to define a
pipeline, i.e., a chain of modules (the middlewares) that can
enrich requests before they reach the main web server com-
ponent (the Proxy Node), and that can modify the responses
coming from it.

B. Protection of data confidentiality

EncSwift is a solution presented in [1] for enforcing data
confidentiality and efficient access control in OpenStack Swift.
EncSwift behaves as a transparent proxy, encrypting objects,
with a symmetric key (DEK, Data Encryption Key) before
uploading them to the cloud provider, and decrypting them at
download time. Each DEK is associated with a container, such
that all the objects stored in the same container are encrypted
with the same DEK, that must be shared along all the users that
can access it. Every user is also associated with a signature
key pair (for signing messages), and a RSA key pair, that
can be used to asymmetrically encrypt the DEKs she owns,
in order that she can store them in an encrypted form, i.e., as
KEKSs (Key Encryption Keys) Owing to the fact that users may
want to access their data from several devices, a secret known
only to the user is needed (MK, Master Key). All the other
keys (both the RSA key pair and the KEKs) are stored in a
key management service. The Master Key is therefore used to
encrypt the RSA and signature keys of the user. OpenStack
already offers a secret storage, Barbican. Barbican stores
secrets, that are equivalent to objects in Swift, and that can be
organized in containers, just like Swift. Each Swift container
then has a corresponding container in Barbican, storing both
users’ RSA and signature key pairs, and KEKs. Note that

CLIENT OPENSTACK
-~
N Physical representation
I \ on disks
1
I j 1
1| = o
e o |
1
1 ;‘.:,’ E £ |
-
1 = S
e ‘g o | !
¢t w 1
I = |
P X
1 Swift 1
\ Proxy J
\ SEL boundary 7

Fig. 2. Over-Encryption management in EncSwift

keys are stored in encrypted form in Barbican since we do
not trust the cloud provider for accessing the sensitive content
of outsourced objects. Indeed, storing keys in plaintext in a
Barbican container would put the confidentiality of outsourced
data at risk. Even if keys are stored in encrypted form at the
cloud provider, in [1] the authors decided to use Barbican
for their storage, in contrast to Swift, because it enforces
additional security measures against outside attacks. EncSwift
architecture is shown in Figure 1.

C. Policy Update

Due to the adoption of policy-based encryption, a modifi-
cation to the ACL of a container spreads to the encryption
policy of that container. In fact, a policy update would require
to change the encryption key for that container, but this is
unfeasible since a user would be required to download the
whole content of a container, re-encrypt it and re-upload
everything. Over-Encryption [5] is the solution that EncSwift
adopts in order to prevent this excessively onerous operation.
The integration of Over-Encryption requires the addition of a
layer of encryption. Indeed, a first layer of encryption (BEL,
Base Encryption Layer) is applied at client side in order
to provide data confidentiality against an honest-but-curious
provider, enforcing the initial access control policy. A second
layer of encryption (SEL, Surface Encryption Layer) is then
applied server side in order to enforce policy updates. Policy
updates can be of two kinds: grant and revoke. In case of
a grant access to a container, the data owner has to share
the encryption key used for protecting resources at the BEL
level, i.e., the BEL DEK, with the new user, creating a new
KEK and sharing it through the Key Management Service
(KMS). In case of revoke, the objects in the container must be
protected at the SEL level with a new DEK, generated by the
server. In [1] three implementations for the Over-Encryption
are illustrated. In this paper we focus on the on-the-fly mode.
This means that Over-Encryption is enforced every time a
user downloads an object from that container, by generating a
new SEL DEK to encrypt the resource on-the-fly. The Over-

/I HTTPS / REST Interface |-\

Key Lifecycle
Management

Key Activity
Reporting

Key Access Control |

_ Key Vault Y,

BT Key Management Service

Fig. 3. Architecture of the BT KMS

Encryption can be easily integrated in EncSwift by inserting a
new custom middleware in the Swift pipeline, thus it requires
a modification of the server. The SEL DEK permits to enforce
a fine grained access control mechanism at container level. It
is generated by the custom middleware at the first access to the
container after a policy update, and stored as a KEK for every
authorized user in the KMS. Figure 2 shows the architecture
of a policy update.

The number of keys that Barbican must manage increases
exponentially with the number of policy updates. This is
the rationale behind the investigation on the possibility of
integration of EncSwift with a new efficient KMS.

III. INDUSTRIAL KEY MANAGEMENT FOR ENCSWIFT

This section introduces the main contributions of our work.
In Section III-A we describe a new industrial key man-
agement service, BT KMS, together with its architecture.
In Section III-B we analyze a possible integration between
this industrial key manager and the EncSwift approach for
protecting data confidentiality and enforcing access control.

A. BT Key Management Service

The main purpose of the BT Key Management Service
(KMS) is to allow users to securely manage their encryption
keys and certificates securely, either in a cloud based or in
an on-premise environment. Furthermore, in a cloud based
setting, the BT KMS can be provisioned and managed via
the BT Service Store [7], which enables its users to create
isolated and compartmentalized key management domains.
This allows the users to manage their keys for use in multiple
cloud platforms in a secure multi-tenant environment. The
main components of the BT KMS are shown in Figure 3 and
are described in more detail below.

e HTTPS/REST Interface: it offers an intuitive web-based
management console for enterprise-scale administration,
as well as Single Sign-On capabilities that can be seam-
lessly integrated with LDAP based user identity manage-

ment services. It also supports management through the
use of a full-featured REST based API.

e Key Lifecycle Management: it provides complete life-
cycle management of the keys, including key creation,
storage, import, export, rotation, revocation and deletion.
Thus users have complete control over every aspect of
a key during its existence. It also supports multiple
API standards like PKCS#11, Microsoft Extensible Key
Management (EKM) and OASIS KMIP, which helps with
the automation of various operational tasks.

o Key Activity Reporting: it implements the ability to audit
and report on all activities relating to keys, so that the
users are able to generate comprehensive and granular
audit logs of encryption key and certificate management
activities. This is an essential requirement for a lot of
compliance standards, and BT KMS complies with the
FIPS 140-2 Level 1 standard.

o Key Access Control: lastly, it is tightly integrated with
an access control capability that governs the rules and
policies for releasing the relevant data encryption keys to
the authorized users and processes. It also enforces the
storage and retrieval to and from the key vault, which
provides high availability storage and backup of the keys.

One of the core requirements from users of cloud based
services is maximum and transparent control and ownership
of their data in the cloud eco-system. This can be realized
by utilizing the BT KMS, as it enforces the user-based
management of the cryptographic keys, so that only the users
are able to authorize policy-based release of keys to trusted
applications. Even the cloud service provider on which the BT
KMS is deployed has no view or control of the users’ keys
and other security credentials. This approach also keeps the
keys separate from the data that they are protecting.

Each instance of the BT KMS contains a public/private
key pair (RSA key pair), which is used to protect the Key
Encrypting Keys (KEK) and other sensitive security objects
stored within the Key Vault. The RSA key pair can be changed
periodically without any impact to the keys and credentials
being protected by it. A KEK is a random AES-256 key which
is used to protect the Data Encryption Keys (DEK) while they
are at-rest in the Key Vault or in transit from the BT KMS to
the client application. The DEKs are AES-256 keys that are
used for the actual encryption of the objects, and are always
encrypted at-rest and in transit. This minimizes the exposure
of the DEK, as well as the need for its frequent rotation.

B. Integration between BT KMS and EncSwift

We decided to analyze possible challenges and enhance-
ments to the EncSwift solution in case of adoption of the
BT KMS in place of Barbican. Obviously, a research tool
as EncSwift would benefit from the integration of a full
real industrial key management service. Indeed, BT KMS is
designed to bring good performance and to be scalable in a real
industrial scenario, and thanks to its flexibility and the wide
number of communication protocols it supports, BT KMS
would fully fit into the EncSwift architecture. Nevertheless,

[EncSwift (BEL)]

trust boundary

CLOUD PROVIDER

'_? w
£5 | EncSwift (SEL)

Key Management
Service

Fig. 4. Architecture of EncSwift and BT KMS integration

this integration would require a low implementation effort in
order to fix some differences in the key usage. First of all, both
BT KMS and EncSwift requires to store KEKs. Yet, in Enc-
Swift KEKs are produced as symmetric DEKs asymmetrically
encrypted with users’ RSA keys, on the contrary BT KMS
supports encryption of DEKs with a symmetric KEKs, that
are encrypted themselves with users’ RSA keys. A possible
integration of the two architectures would require to choose
one of the key treatment alternatives.

In our analysis, we adopt the EncSwift key structure,
and deprecate the use of BT KMS encrypting keys, i.e.,
DEKs are asymmetrically encrypted with users” RSA keys.
An architectural overview of the integration is shown in
Figure 4. EncSwift still relies on an OpenStack Swift object
storage, but all the encryption keys are stored at the BT KMS
instead of Barbican. Moreover, the EncSwift SEL. middleware
implemented to enforce Over-Encryption can communicate
with BT KMS in order to store and retrieve the SEL DEK.

IV. RELATED WORK

A clear trend in the last years has been the increasing
role of cloud computing, for both computation and storage.
In this paper we focused on EncSwift [1], a solution for
protecting data confidentiality and enforcing access control
through the integration of Over-Encryption technique [5],
adapted to operate in the OpenStack Swift scenario [8]. The
original Over-Encryption proposal assumed the presence of a
single data owner instead of a scenario with resource sharing,
and operated with an abstract provider capable of resources
and keys management. An extension of the proposal in [3] to
a multi-owner scenario has been presented in [4] and is based
on a Diffie-Hellman scheme, but it still considers an abstract
provider.

Being one of the most widespread modern cloud infras-
tructures, OpenStack has recently been in the spotlight. Much
research focus on the role of Swift, e.g., in [9] the authors
propose a framework to encrypt objects, relying on an external
server to be used as a KMS, but do not address the problem
of efficiently enforcing access revocation. In [10], the problem

of integrating a new external key manager into OpenStack is
dealt with, but it still relies on Barbican.

V. CONCLUSIONS

This paper introduced a new solution for key management
services, BT KMS, developed by BT and already adopted
in real industrial settings. Thanks to its flexibility and well
structured architecture, we investigated the possibility of a new
integration between it and the EncSwift approach [1], which
implements a solution for protecting data stored in OpenStack
Swift. EncSwift guarantees data confidentiality and integrity,
also naturally regulating - via encryption - access to them.
With frequent policy updates, there is a trend to generate
a large number of encryption keys, that EncSwift stores in
Barbican, OpenStack secret storage. In our investigation, we
were able to build an architecture of the new integrated system
that could be produced with a low implementation effort.

VI. ACKNOWLEDGMENT

This work was supported by the EC within the H2020 under
grant agreement 644579 (ESCUDO-CLOUD).

REFERENCES

[1] E. Bacis, S. De Capitani di Vimercati, S. Foresti, D. Guttadoro, S. Para-
boschi, M. Rosa, P. Samarati, and A. Saullo, “Managing data sharing
in OpenStack Swift with Over-Encryption,” in Proc. of the 3rd ACM
Workshop on Information Sharing and Collaborative Security (WISCS
2016), Vienna, Austria, October 2016.

[2] W. Wang, Z. Li, R. Owens, and B. Bhargava, “Secure and efficient
access to outsourced data,” in Proc. of the 2009 ACM Workshop on
Cloud Computing Security (CCSW 2009), Chicago, IL, USA, November
2009.

[3] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Encryption policies for regulating access to outsourced
data,” ACM Transactions on Database Systems (TODS), vol. 35, no. 2,
pp. 1-46, April 2010.

[4] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
G. Pelosi, and P. Samarati, “Encryption-based policy enforcement for
cloud storage,” in Proc. of the 1st ICDCS Workshop on Security and
Privacy in Cloud Computing (SPCC 2010), Genova, Italy, June 2010.

[5]1 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Over-encryption: Management of access control evolution
on outsourced data,” in Proc. of the 33rd International Conference on
Very Large Data Bases (VLDB 2007), Vienna, Austria, September 2007.

[6] “OpenStack Project,” http://www.openstack.org.

[7]1 G. Ducatel, J. Daniel, T. Dimitrakos, F. A. El-Moussa, R. Rowlingson,
and A. Sajjad, “Managed security service distribution model,” in Proc. of
the 4th International Conference on Cloud Computing and Intelligence
Systems (CCIS 2016), Beijing, China, August 2016.

[8] E. Bacis, S. D. C. di Vimercati, S. Foresti, S. Paraboschi, M. Rosa,
and P. Samarati, “Access control management for secure cloud storage,”
in Proc. of the 12th International Conference on Security and Privacy
in Communication Networks (SecureComm 2016), Guangzhou, China,
October 2016.

[9]1 H. Albaroodi, S. Manickam, and M. Anbar, “A proposed framework

for outsourcing and secure encrypted data on OpenStack object storage

(Swift),” Journal of Computer Science, vol. 11, no. 3, pp. 590-597,

2015.

D. Sitaram, S. Harwalkar, U. Simha, S. Iyer, and S. Jha, “Standards

based integration of advanced key management capabilities with Open-

Stack,” in Proc. of the 2015 IEEE International Conference on Cloud

Computing in Emerging Markets (CCEM), Bangalore, India, March

2015.

[10]

