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Abstract

COGARCH models are continuous time version of the well known GARCH
models of financial returns. The aim of this paper is to show how the method
of Prediction-Based Estimating Functions can be applied to estimate the pa-
rameters of a COGARCH(1,1) model from observations taken from real data
set. In particular the General Motors tick-by-tick data of the Trades and
Quotes database of the New York Stock Exchange (NYSE) are considered.
A comparison between the results obtained with the method of moments es-
timator is done in terms of stability of the estimates over different windows
of observations and in terms of analysis of residuals.

Keywords: Prediction based estimating function - Method of moment estimator - General

Motors returns series

1 Introduction

COGARCH, that stands for COntinuous (in time), Generalized, Auto Regressive,
Conditionally Heteroscedastic models were introduced in 2004 by Klüppelberg,
Lindner and Maller (see [7]). In the last years COGARCH models have been widely
studied and applied. For example Buchmann, and Müller in [3] look at COGARCH
as limit experiment of GARCH processes, Klüppelberg, Maller and Szimayer in [8]
present a COGARCH option pricing model including the possibility of default,
Swishchuk and Couch in [13] present volatility and variance swaps valuations for
the COGARCH (1,1) model Müller, Durand, Maller in [4] make an analysis of
Merton’s hypothesis for COGARCH models. One of the reason that suggest to
use these models to fit financial log-return data is due to the fact that they are
able to capture the so called stylized facts observed in real data: uncorrelated
log-returns but correlated absolute log-return, time varying volatility, conditional
heteroscedasticity, cluster in volatility, heavy tailed and asymmetric unconditional
distributions, leverage effects. The aims of this paper is to apply the COGARCH
(1,1) model to some real financial data sets, estimate the parameters of the model
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via the prediction based estimating functions as presented in [1] by Negri and
Bibbona, and to look at the performance of these estimates. In particular the
General Motors tick-by-tick data of the Trades and Quotes database of the New
York Stock Exchange (NYSE) are considered. A comparison between the results
obtained with the method of moments estimator is done in terms of stability of
the estimates over different windows of observations and in terms of analysis of
residuals. The paper is organized as follow. In Section 2 the COGARC(1,1) model
is presented. The estimation procedure based on Prediction-Based Estimating
Functions is introduced in Section 3 and in Section 4 the application to the real data
set is presented. Finally in Section 5 some conclusions and further developments
are given.

2 The model

The COGARCH(1,1) model is defined as the solution (G, σ2) = (Gt, σ
2
t )t≥0 to the

following stochastic differential equations{
dGt = σt−dLt

dσ2
t = (β − ησ2

t−)dt+ φσ2
t−d[L]dt

(1)

where [L]dt is the discrete part of the quadratic variation [L]t = τ 2t + [L]dt of the
Lévy process L = (Lt)t≥0, defined as

[L]dt =
∑
0<s≤t

∆L2
s

with ∆Ls = Ls − Ls−. We define G0 = 0 and σ2
0 independent of L. We assume

E(L1) = 0 and E(L2
1) = 1 so that the volatility of the component Gt is given solely

by σt.
The parameter space Θ ⊂ R3 is defined as the set of those θ = (β, η, φ) such

that β > 0, η > 0 and φ > 0.
We remember that the The GARCH(1,1) model is defined, for n ∈ N, as follows{

Yn = σnεn

σ2
n = β + λY 2

n−1 + δσ2
n−1

For GARCH(1,1) model we can write

σ2
i = β

i−1∑
k=0

i−1∏
j=k+1

(δ + λε2j) + σ2
0

i−1∏
j=0

(δ + λε2j)

The previous formula can be rewritten as

σ2
i = β

i−1∫
k=0

exp

 i−1∑
j=buc+1

log(δ + λε2j)

 du+ σ2
0exp

[
i−1∑
j=0

log(δ + λε2j)

]
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The idea is to replace the noise (εi)i≥0 by increments of a Lévy process. It can
be proved (Klüppelberg et al. 2004) after changing the parameters, and some
computation that the process (σ2

t )t≥0 satisfy (1).
The continuous volatility process (σ2

t )t≥0 can be defined via an auxiliary Lévy
process:

Xt = ηt−
∑
0<s≤t

log(1 + φ∆L2
s)

as

σ2
t = βe−(Xt−Xu)

∫ t

u

e−(Xu−Xs) ds+ e−(Xt−Xu)σ2
u.

σ2
t is the instantaneous volatility or spot volatility, which is assumed to be sta-

tionary and latent. In contrast to classical stochastic volatility models, driven by
two independent source of noise, in COGARCH(1,1) models L drives both, the
volatility and the price process. So as in GARCH(1,1) models there is only one
source of noise. The process G jumps at the same times as L does, with jump
size ∆Gt = σt∆Lt. Large change in the Lévy process results in an increase of the
volatility and at the same time, in an increase or decrease of the process G.

3 Statistical Estimation

The estimation of the model parameters are based on a sample of equally spaced
returns Gir,r = G(i+1)r−Gir. In [5] Haug et al. explicit estimators are derived from
a method of moments. In [9] Maller et al. proposed a pseudo maximum likelihood
method that allows also for non equally spaced observations. Kim and Lee in
[6] the asymptotic properties of the PML estimator proposed in [9] are proved.
In [10] Müller et al an MCMC-based estimation method has been proposed for
the model driven by a compound Poisson process. In [1] the Prediction Based
Estimating Functions (PBEFs) method introduced in (Sorensen, 2000) is applied
to the COGARCH(1,1) model. Let us present briefly the problem. We have
to estimate the p = 3-dimensional parameter θ = (β, η, φ), β > 0, η ≥ 0 and
φ ≥ 0. Let Hθ

i be the Hilbert space of all square integrable real functions of the
observations {Gjr,r}ij=0 endowed with the usual inner product

〈h, g〉 = Eθ (h(G0,r, . . . , Gir,r)g(G0,r, . . . , Gir,r)) ,

where Eθ denotes the expectation under the model with parameter θ. Let us
fix an integer q. For any i = q + 1, . . . , n we introduce the closed subspaces
Pθi of Hθ

i spanned by the q observations that come before the i-th, i.e. Pθi =
span(1, G2

(i−q)r,r, . . . , G
2
(i−1)r,r), where 1 denotes the constant function with unit

value. Provided that Eθ(G2
ir,r) < ∞ for every θ ∈ Θ and every i = 1, . . . , n, the

prediction-based estimating functions is

Sn(θ) =
n∑

i=q+1

wi−1(θ, n)(G2
ir,r − πi−1(θ)) (2)
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The vector wi−1(θ, n) = (wi−1k (θ, n))pk=1 has components wi−1k (θ, n) ∈ Pθi−1 where
πi−1(θ) is the minimum mean square error predictor of G2

ir,r in Pθi−1, that is the
orthogonal projection of G2

ir,r on Pθi−1. An estimator is obtained solving the equa-
tion Sn(θ) = 0 providing that this solution exists. The vector wi−1(θ, n) =
(wi−1k (θ, n))3k=1 has components wi−1k (θ, n) ∈ Pθi−1 and πi−1(θ) is the minimum
mean square error predictor of G2

ir,r in Pθi−1, that is the orthogonal projection of
G2
ir,r on Pθi−1. Such projection exist and it is uniquely determined by the normal

equations
Eθ
(
π(G2

ir,r − πi−1(θ))
)

= 0 ∀π ∈ Pθi−1.

Define C(θ) the covariance matrix of the q vector (G2
(i−1)r,r, . . . , G

2
(i−q)r,r)

T and

b(θ) the vector whose components are bj(θ) = Covθ(G
2
(i−j)r,r, G

2
ir,r) for j = 1, . . . , q.

As the increment process Gir,r is stationary the matrix C(θ) and the vector
b(θ) do not depend on i. We define the vector a(θ) = C(θ)−1b(θ) whose com-
ponents are denoted by aj(θ) for j = 1, . . . , q and the scalar a0(θ) = EθG2

ir,r −∑q
j=1 aj(θ)Eθ(G2

(i−j)r,r). Moreover we denote by ã(θ) the q + 1 vector ã(θ) =

(a0(θ), a1(θ), . . . , aq(θ))
T .

An explicit expression for the predictors is given by Sørensen in [11] (see also
of the same author [12]) by

πi−1(θ) = a0(θ) +

q∑
j=1

aj(θ)G
2
(i−j)r,r (3)

As the components wi−1k (θ, n) of the vector wi−1(θ, n) are elements of Pθi−1, they
can be decomposed as wi−1k (θ, n) = wi−1k0 (θ, n) +

∑q
j=1w

i−1
kj (θ, n)G2

(i−j)r,r for some

scalars wi−1k0 (θ, n) and wi−1kj (θ, n) j = 1, . . . , q that we collect into the p × (q + 1)

matrices W i−1
n (θ) whose elements are wi−1kl (θ, n) for 1 ≤ k ≤ p and 0 ≤ l ≤ q.

With these notations the estimating function (2) can be written as

Sn(θ) =
n∑
i=1

W i−1
n (θ)H i(θ)

where H i(θ), i = 1, . . . , n, are (q + 1)−vectors whose components are

H i
0(θ) = G2

ir,r − a0(θ)− a1(θ)G2
(i−1)r,r − · · · ,−aq(θ)G2

(i−q)r,r

and for k = 1, . . . , q,

H i
k(θ) = G2

(i−k)r,r(G
2
ir,r − a0(θ)− a1(θ)G2

(i−1)r,r − · · · − aq(θ)G2
(i−q)r,r).

Since the increment process Gir,r is stationary, so is the vector H i(θ) and there is
no reason to give different weights for different i, thus we restrict our PBEFs to
those that can be written in the form

Sn(θ) = Wn(θ)
n∑
i=1

H i(θ). (4)
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Let us introduce the vector Zi = (1, G2
(i−1)r,r, . . . , G

2
(i−q)r,r)

T , the matrix C̃(θ) =

E
(
Zi(Zi)T

)
, and the matrix D(θ) = −W (θ)C̃(θ)∂θT ã(θ). In terms of such quanti-

ties we state the following conditions.

1. There exist a constant δ > 0 such that Eθ(G8+δ
1 ) <∞.

2. The vector ã(θ) and the matrix Wn(θ) are continuously differentiable with
respect to θ.

3. There exist a non-random matrix W (θ) such that for every compact set
K ⊂ Θ

Wn(θ)
Pθ0−→ W (θ) ∂θWn(θ)

Pθ0−→ ∂θW (θ)

uniformly for θ ∈ K as n −→∞.

4. The matrix D(θ0) has full rank 3.

5. We have W (θ)Eθ0
(
H i(θ)

)
6= 0 for any θ 6= θ0.

Under the previous condition a solution θ̂n of (2) exist is consistent and asymptot-
ically Normal. See Bibbona and Negri [1] and Sørensen [11]. Knowing all simple
and joint moments up to the order four E

(
G2
jr,rG

2
ir,r

)
,E
(
G4
jr,r

)
,E
(
G2
jr,r

)
for any

integer i, j is essential to calculate the predictors and hence to calculate any esti-
mating function in the form (4). Such explicit expressions for the COGARCH(1,1)
model are given in [5]. However the asymptotic variance of the estimates involves
the matrix M which depends on all the simple and joint moments up to the order
eight, e.g. E

(
G8
jr,r

)
, E
(
G6
jr,r

)
, E
(
G2
jr,rG

6
ir,r

)
, E
(
G2
ir,rG

2
jr,rG

2
kr,rG

2
hr,r

)
and similar.

Such explicit expressions for the COGARCH(1,1) model are given in [1]. Accord-
ing to the general theory (see for example Sørensen [11] and [12]), among all the
PBEFs in the form (4) it is possible to select an optimal one. The optimal PBEF
will be such that the corresponding estimator has the smallest possible asymptotic
variance. The weight matrix of the optimal PBEF is

W ∗
n = ∂θã

T (θ)C̃(θ)M−1
n (θ) (5)

where the form of the matrix Mn(θ) can be found in for example in Bibbona and
Negri [1]. Also the optimal weight matrix W ∗ depends on all the simple and joint
moments up to the order eight. In term of the existence of higher moments, the
condition requested for the asymptotic normality of the estimators obtained via
PBEF and via the MM is the same (Condition 1. above Eθ(G8+δ

1 ) < ∞ for some
δ > 0).

4 Applications and examples in finance

Taking the of log-returns of a financial series we estimate the parameters in the
model through the functions implemented in the COGARCH package, based on
the PBES’s method. Following the flow chart in Figure 1 the function eCOGARCH
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rCOGARCH( Trajectory(

Par2COGARCH(

Par2(Levy(

Simula:on(infos(

Trajectory( eCOGARCH( Par2COGARCH(

Figure 1: Flow chart of the Cogarch package. First line: the simulation part.
Second line: the estimation part.

is able, given a trajectory, to estimate the parameters via the prediction-based es-
timating functions and the method of moment estimator. Then the rCOCARCH
function is able to simulate a COGARCH model given the value of the parameters,
the Lévy process driving the COGARCH models and some informations about the
trajectory we want to simulate, such as the step between two observations. The
package is available at https://r-forge.r-project.org/projects/cogarch/.
The COGARCH(1,1) model will be fitted to 5 minutes log returns of three dif-
ferent time series. The data-sets is one of the same presented by in Haug et al. in
[5].

The stocks time series is General Motors (GM). We consider tick-by-tick data
of the Trades and Quotes database of the New York Stock Exchange (NYSE). The
general data set spans over 4 months starting in February 2002. We considered
only the prices between 9.35 a.m. and 4 p.m. to compute the five minutes log
returns based on previous tick interpolation. There were 83 trading days between
the beginning of February and the end of May 2002. Hence, each of the series has
a total length of 6391 data points. For our application we consider only a subset
of this general data set.

Here we follow a different approach than the one in [5]. Precisely we estimate
the parameter of the COGARCH(1,1) model for different windows of 500 data.
This is a reasonable number for the estimation procedure. At any estimation step
we move one step ahed the observation window and we compute the value of the
three parameters for 350 times. The estimated values are reported in Figure 4.
We can see how the values of the parameter are reasonably stable. This stability
is better understand if you have a look to Figure 2 and to Figure 3. The values of
the three parameter are reported for 500 times ahed instead of 350. This is just to
show that after observation 850 we have to investigate better how this instability
for both the two estimator procedures arise. The estimator based on PBEF seems
to be more stable, as we can deduce from Figure 2 and from Figure 3

The mean values and the standard deviation of the three parameters are re-
ported in Table 1.
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Figure 2: The GM return values (Top left) and the values of the three estimated
parameter by PBEF

Table 1: Mean and standard deviation of the parameter η, β and φ for the GM
return series. The values are evaluated on 350 windows of 500 observations each.

Mean PBEF Std PBEF Mean MME Std MME
β 0.27 0.0322 0.02 0.0136
η 0.15 0.0058 0.02 0.0130
φ 0.05 0.0006 0.01 0.0099
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Figure 3: The GM return values (Top left) and the values of the three estimated
parameter by MME
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Figure 4: The GM return values (Top left) and the values of the three estimated
parameter by PBEF for 350 step in windows of 500 observations
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Table 2: Mean, standard deviation, skewness and kurtosis of residuals from the
PBEF and the MME for the financial series GM

Mean Std Skewness Kurtosis
PBEF -0.05 0.72 -0.02 4.43
MME -0.05 0.73 0.00 4.42

We investigate the performance of the estimation procedure based on PBEF by
a residuals analysis. The residuals are given by

rt =
Gt

σ̂t−1

where the estimated volatility σ̂2
t is given by

σ̂2
t = β̂ + (1− η̂)σ̂t−1 + φ̂G2

t .

The details are given by Haug et al. in [5]. Table 2 reports the value of the mean
the standard deviation, the skewness and the kurtosis of the residuals obtained
with the two estimator procedure. We can see how the indexes are very similar
both for PBEF and MME. In Bibbona and Negri [1] a small gain of the optimal
estimator was observed in the case of simulated data. Obtaining the optimal
prediction based estimating function is very expensive in computational time, so
we don’t apply this estimation procedure as in a test set the gain was very pour
both in term of stability of the estimates and in the analysis of the residuals.

5 Conclusion and further developments

This study is a first attempt to apply two statistical estimations procedure for
COGARCH(1,1) models to real data. In the study given by Haug et al. in [5]
they estimate the value of the parameters on a unique trajectory. Here we try to
estimate the parameters on multiple and contiguous windows of the series of data
to understand how the estimated values of the parameter vary. Both the estimator
methods have some stability problems that have to be investigate better. Anyway
both estimator procedure are good as the analysis of the residuals reveals but the
procedure based on PBEF seems to give more stable estimates of the parameters.
In a next study the results for some other data set could be included and also the
result based on the pseudo maximum likelihood method introduced by Maller et
al. in [9]. In terms of forecasting it would be very interesting to understand how
we can model the returns and compare the various method of estimation in terms
of prediction errors. One possibility that we want to investigate is to model returns
with CARMA(1,1) model. CARMA(p.q) models were introduced by Brockwell in
[2].

10



References

[1] Bibbona, E., Negri, I. (2016). Higher Moments and Prediction-Based Estima-
tion for the COGARCH(1,1) Model, Scandinavian Journal of Statistics, Vol. 42:
891 910.
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