Available online at www.sciencedirect.com

c@k ScienceDirect Procedia

Computer Science

Procedia Computer Science 108C (2017) 1115-1124

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland

Orthology Correction for Gene Tree Reconstruction:
Theoretical and Experimental Results

Riccardo Dondi!, Giancarlo Mauri?, and Italo Zoppis?

! Universita degli Studi di Bergamo, Bergamo, Italy
riccardo.dondi@unibg.it
2 Universita degli Studi di Milano-Bicocca, Milano, Italy
mauri@disco.unimib.it, zoppis@disco.unimib.it

Abstract

We consider how the orthology /paralogy information can be corrected in order to represent a
gene tree, a problem that has recently gained interest in phylogenomics. Interestingly, the prob-
lem is related to the Minimum CoGraph Editing problem on the relation graph that represents
orthology /paralogy information, where we want to minimize the number of edit operations on
the given relation graph in order to obtain a cograph. In this paper we provide both theoretical
and experimental results on the Minimum CoGraph Editing problem. On the theoretical side,
we provide approximation algorithms for bounded degree relation graphs, for the general prob-
lem and for the problem restricted to deletion of edges. On the experimental side, we present
a genetic algorithm for Minimum CoGraph Editing and we provide an experimental evaluation
of the genetic algorithm on synthetic data.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

Keywords: Orthologous Genes, Gene Tree Reconstruction, CoGraph Editing, Approximation Algo-
rithms, Genetic Algorithms

1 Introduction

Understanding the relations among homologous genes is fundamental in different contexts, for
example to predict gene functionality. When studying gene functionalities, a family of homologs
is usually considered, where two genes are called homologs if they originated from the same
ancestral gene. However, different evolutionary events may have given rise to two homologous
genes: losses, duplications, speciations, lateral gene transfers. In particular, if the ancestral gene
of two homologous genes is a duplication (speciation, respectively), the two genes are called
paralogous (orthologous, respectively). The evolution of a set of homologous genes is represented
with a phylogenetic tree, called gene tree, whose leaves are labeled by the set of genes and whose
internal nodes represent the evolutionary events (speciations, duplications). The comparison of
a gene tree and of a species tree (the phylogenetic tree that represents the evolutionary history

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.047

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.047&domain=pdf

1116

Riccardo Dondi et al. / Procedia Computer Science 108C (2017) 1115-1124

of the species considered), allows to infer the evolutionary events responsible for the evolution
of the set of genes studied.

A popular conjecture, called orthologs conjecture [20], states that orthologous genes, are
usually more similar both in the sequence and in functionality than paralogous genes. This
motivates the research of reliable methods to infer the kind of relations among homologous
genes.

Two approaches have been considered for the inference of the relations among homologous
genes: (1) reconciliation-based methods, and (2) clustering methods. The first approach, see
[8, 3], is based on the comparison between a gene tree for the considered family and a species tree.
Clustering methods are instead based on sequence similarity (see for example [22, 15, 2, 14]).
However, both methods are known to be error-prone (see [9, 11, 4, 18]), thus a major problem
in phylogenomics is the integration of the two approaches, in order to infer reliable sets of gene
relations. Some methods have investigated the integration of these two approaches [9, 10, 13, 12],
giving interesting results based on graph-theory. Giving a graph Rq (called relation graph)
representing a set R of relations among genes obtained via clustering methods, a first problem
defined in this direction asks whether a set of relations among genes is representable with a
(gene) tree. A set of relations that admits a representation with a gene tree is called satisfiable.
Interestingly, in [9, 13] it is proved that a set R of relations is satisfiable if and only if the
graph G that represents R is a cograph, that is a graph that does not contain simple paths of
length four.

Since the clustering methods to detect gene relations are error-prone, we consider the prob-
lem of correcting a set of orthologous/paralogous relations. The corresponding combinatorial
problem is the Minimum CoGraphEditing problem, that, giving a graph, asks for the minimum
number of edge insertion and edge deletion so that the resulting graph is a cograph. Minimum
CoGraphEditing is NP-hard [16], and it is approximable within factor 4A, where A is the
degree of the input graph [19], and in factor n [5], where n is the number of vertices of the
graph. In [16], the parameterized complexity of the problem has been considered, showing that
Minimum CoGraphEditing is fixed-parameter tractable when parameterized by the number of
edit operations. Moreover, an integer linear programming has been considered in [10]. Notice
that recently some results on the approximation of the problem have been given for its weighted
variant [5].

Here, we give both theoretical and practical results for Minimum CoGraphEditing. On the
theoretical side, we present in Section 3.2 an approximation algorithm of factor 3A, where A
is the degree of the input graph, for the problem and an approximation algorithm of factor 2A
for the deletion variant of the problem (that is the variant where edges can be only removed
and no edge insertion is allowed). Notice that the deletion variant of the problem is NP-
hard [6]. The two algorithms are based on the isolation of vertices of the graph and have a
factor depending on A, thus their application in practice is limited. Hence, we consider in
Section 4 genetic algorithms as an approach to compute efficiently optimal or near optimal
solution for the Minimum CoGraphEditing problem. We give in Section 4 a natural genetic
algorithm, and we present some experimental results on simulated data. The results show that
usually the genetic algorithm is efficient, but the quality of returned solutions is influenced by
the skewness in the degree distribution of the input graph. We conclude the paper with some
open problems. We start by introducing some notations and by formally defining the problem
in Section 2.

Riccardo Dondi et al. / Procedia Computer Science 108C (2017) 1115-1124
2 Definitions

In the section we introduce the main concepts related to orthology, and we define formally the
problem we are interested in. We consider trees that are rooted and that, except for the root,
have no nodes of degree 2. The leafset of a tree T' is denoted by L(T). Given a set of elements
L, a tree labeled by L is a tree T such that there exists a bijection between L(T") and L. Given
a set I' of homologous genes on a set 3 of species, a gene tree T¢ represents the evolution of
genes in I" and is a tree labeled by I". A species tree Tg represents the evolution of the species
in ¥ and is a tree labeled by 3. The lca-mapping [7] allows to define the evolutionary events
(here we consider only speciations and duplications) associated with the internal nodes of T,
by mapping nodes of T in nodes of Ts. Given a set of genes I" and a gene tree T labeled by
I', two genes x,y € I are orthologous if the Ica of x and y in T is a speciation; two genes z
and y are paralogous if the lca of x and y in T is a duplication.

Given a set of genes I', we represent their relations (orthologous/paralogous) with a graph,
called relation graph and denoted as Rg(I') or simply Rg when it is clear from the context.
RG = (Vg,EG) where

Ve={vy: zisinl }

E¢ = {{vs,vy} : vg,vy € Vg, = and y are orthologous }

Following the notation of [13], the ortholog relations is represented by an edge, while a paralog
relation is represented by a missing edge.

Given a gene tree, it is always possible to reconstruct the corresponding relation graph. On
the other side, given a relation graph, a corresponding gene tree may not exist. A relation
graph for which there exists a corresponding gene tree is called satisfiable. In [9], it is shown
that a relation graph R is satisfiable if and only if it is a cograph, that is there is no set of
exactly four vertices of Rg that induces a simple path of length 4. A simple path of length 4
in a graph is called a Py. Given four vertices v; 1, v; 2, ;,3,via of Re = (Vi, E¢) that induce a
Py, we denote by (v; 1, v; 2, vi3,v;4) the path connecting v; 1 to v; 2, v; 2 to v; 3 and v; 3 to v; 4,
that is {Ui,l; 'Ui,2}; {UZ‘,Q, 'Ui’g}, {Ui,g, 'Ui’4} S Eg, while {vi’17vi,3}7 {'Ui,la 'Ui’4}7 {'Ui,2; 'Ui’4} ¢ Eg.

Given a graph Gr = (Vi, E¢), an edge insertion consists of adding an edge {v;, v}, with
v;,vj € Vo, where {v;,v;} ¢ Eg; an edge deletion consists of removing an edge {v;,v;} € Eq.
A relation correction of Rg is either an edge insertion or an edge deletion.

Now, we are able to introduce the problem we are interested in. The problem asks for the
minimum number of relation corrections such that the resulting graph is a CoGraph.

Minimum CoGraph Editing:(MinCoED)

Input: A gene family T and relation graph Rg = (Vg, Eg) for T
Output: A cograph Ry, = (V4, Ef;) such that Vg = VY, and |Eg \ E;, + E; \ E¢| is minimum.

In the following, we consider also a variant of MinCoED, called Minimum CoGraph by
Deletion (MinCoDEL), in which only edge deletions are allowed.

1117

1118

Riccardo Dondi et al. / Procedia Computer Science 108C (2017) 1115-1124

3 Approximation Algorithms for MinCoED and Min-
CoDEL

In this section, we present approximation algorithms for MinCoED and MinCoDEL. The ap-
proximation algorithms are inspired by that in [19] that achieves an approximation factor 4A
for MinCoED and MinCoDEL. The approximation algorithm in [19] is designed for a general
variant of MinCoED, where the input graph has to be edited so that it does not contain a
forbidden subgraph of size t, for some constant ¢ > 1. The approximation algorithm in [19]
greedily finds one occurrence of such a forbidden subgraph of size ¢ and it deletes all the edges
incident in its vertices. In the case of MinCoED and MinCoDEL, the algorithm picks a Pj,
and it deletes all the edges incident in the vertices of the P,. This leads to an approximation
of factor 4A. Here we show that for MinCoED and MinCoDEL, we can reduce the number of
vertices we select for editing or deletion.

3.1 A 3A-Approximation Algorithm for MinCoED

In this section, we describe a 3A-approximation algorithm for MinCoED, where A is the degree
of the input graph G. The approximation algorithm, called APPR-ALG-ED, considers the
graph Rg and modifies it until it is a cograph, that is there is no P,. Consider a P, in Rg,
denoted by p;, with p;=(v; 1, v 2, ;3,v;4); the set {v;1,v;2,v; 3} is called the pivot triplet of
p; and is denoted by ¢(p;).

While Rg is not a cograph, the algorithm greedily picks a Py p; in Rg, and deletes all
the edges incident in the vertices of ¢(p;). The iteration is repeated until the resulting graph
does not contain any P;. The time complexity of the algorithm is clearly polynomial, as it is
dominated by the time required to compute if there exists a Py in R¢, which requires at most
time O(n?).

Now, we show that APPR-ALG-ED provides an approximation algorithm of factor 3A.
First, we prove a lower bound on the number of relation corrections required to obtain a
cograph starting from G.

Lemma 1. Given a set P of Pys in Rg, such that, for each p;,p; € P, p; and p; share at most
one vertex. Then, a cograph Ry, is obtained from R with at least |P| relation corrections.

Proof. Consider p;, p; in P. Notice that, since p; and p; share at most one vertex, a relation
modification in p; affects two vertices {v; 4, vi 4} of p;, and at most one of v; 4, v; , belongs to
p;. Hence, the modification of {v; 5, v; 4} does not affect any relations in p;. 1

Now, we focus on the set T of Pys selected by APPR-ALG-ED. We prove the following
property.

Lemma 2. Let T be the set of Pys selected by APPR-ALG-ED. Then for each pi,pj € T, pi
and p; share at most one vertex.

Proof. Consider two P4s p;, pj in 7. Assume without loss of generality that p; was selected
before p;. Let p; =(vi,1,vi2,vi,3,0;4). Since APPR-ALG-ED deletes all the edges incident in
the triplet pivot t(p;), it follows that when p; is selected by the algorithm, the vertices in ¢(p;)
are isolated. Hence, p; can contain at most vertex v; 4. O

Now, we prove a lemma that shows that by deleting all the edges incident in a set of vertices
of Rg, we do not induce any P, that was not in the original graph.

Riccardo Dondi et al. / Procedia Computer Science 108C (2017) 1115-1124

Lemma 3. Let W be a set of vertices in Rg and let Ry, the graph obtained from Rg by deleting
all the edges incident in W. Then every Py of Ry, is also a Py in Rg.

Proof. Let p; =(v;1,v;2,0i3,vi4) & Py in Ry, that is not a Py in Rg. Notice that, since by
construction the set of edges of Ry, is a subset of the set of edges of Rg and since p;is not a
P, in R, there exists an edge connecting two vertices, w.l.o.g. v;1, 15,3, in Rg that is not an
edge of R’(;. It follows that one of v; 1, v;3 belongs to W, w.l.o.g. v;,1. Thus by construction
v; 1 is an isolated vertices of R’G and cannot belong to a Py.

O

Now, we denote by OPT the value of an optimal solution of MinCoED over instance Rg,
and we show that APPR-ALG-ED returns a solution having approximation factor 3A.

Theorem 1. APPR-ALG-ED returns a solution of MinCoED that modifies at most 3A-OPT
relations.

Proof. By Lemma 2 and Lemma 3, the set 7 of Pys selected by APPR-ALG-ED consists of Pys
contained in Rg such that, for each p;,p; € T, they share at most one vertex. By Lemma 1
OPT > |T| and, since APPR-ALG-ED deletes at most 3A edges for each p; € T, the theorem
holds.

]

3.2 A 2A-Approximation Algorithm for MinCoDEL

Now, we consider the MinCoDEL problem and we show that the approximation factor can be
further reduced to 2A.

First, we describe the approximation algorithm, denoted by APPR-ALG-DEL, which is very
similar to that of the previous section. Similarly, APPR-ALG-DEL considers the graph Rg and
modifies it until it is a cograph, that is there is no Py in the resulting graph. First consider p;,
a Py in Rg, with p; =(v;1,v;,2,0; 3, v;.4); the set of vertices v; o, v; 3 is called the pivot pair of
p; and is denoted by pp(p;).

APPR-ALG-DEL greedily picks a Py p; in Rg and deletes all the edges incident in vertices
of pp(p;). The iteration is repeated until the resulting graph does not contain any P;. As in
the previous algorithm, the time complexity of the algorithm is clearly polynomial.

Now, we show that APPR-ALG-DEL provides an approximated solution of factor 2A. First,
we prove a lower bound on the number of edit operations required to obtain a cograph starting
from G.

Lemma 4. Given a set P of edge disjoint Pys in Re, then a cograph Ry, is obtained from Rg
with at least |P| edge deletions.

Proof. Consider p;,p; € P. Since p; and p; are edge disjoint, it follows that the deletion of an
edge of p; does not delete any edge of p;. As a consequence, p;, after the deletion of some edge
of p;, is still a Py. It follows that at least |P| edge deletions are needed so that each p; € P is
removed from Rg. O

Now, we prove that the set W of Pys selected by the APPR-ALG-DEL are edge disjoint.

Lemma 5. Let W be the set of Pys in Rg selected by APPR-ALG-DEL. Then W is a set of
edge disjoint Pys.

1119

1120

Riccardo Dondi et al. / Procedia Computer Science 108C (2017) 1115-1124

Proof. Consider p;, p; in W, and assume without loss of generality that p; was picked by APPR-
ALG-DEL before p;. Since APPR-ALG-DEL deletes all the edges incident in the pair pivots of
pi, it follows that when p; is picked every edge of p; has been deleted. Thus p; and p; cannot
share an edge.]

Now, denote by OPT the value an optimal solution of MinCoDEL over instance R¢.

Theorem 2. APPR-ALG-DEL returns a solution of MinCoDEL that deletes at most 2A-OPT
relations.

Proof. By Lemma 5 and Lemma 3, the set VW consists of edge disjoint Pys contained in Rg. By
Lemma 4 OPT > |W)| and, since APPR-ALG-DEL deletes at most 2A edges for each p; € W,
the theorem holds. O

Notice that the analysis of the approximation factor of APPR-ALG-DEL cannot be directly
extended to MinCoED, as Lemma 4 does not hold in this case. Indeed, in some cases it is
possible to edit a set edge disjoint P4s with a single edge insertion.

4 A Genetic Algorithm for MinCoED

The algorithms presented in Section 3 are mainly of theoretical interests. Indeed, although they
represent simple and (probably) fast heuristics, they tend to isolate vertices of the graph, which
is not a desirable property of a solution of MinCoED. On the other side, their approximation
factors depends on A, and for large graphs this may lead to solution far from the optimum. To
this concern, we consider here a different approach based on genetic algorithms (GA) [17].

Generally, genetic algorithms use chromosomes in order to represent instances and compute
solutions of the problem at hand. In our case, we coded in the chromosome population the
instances of the MinCoED problem. The algorithm was coded in R using the Genetic Algorithm
package (GA package) [21] 1. More specifically the following issues were considered in our
simulations.

e Chromosome representation

In order to benefit most from the potentialities offered by the GA package, we adopted a
very simple representation for chromosomes. In our script, chromosomes represent graphs
through binary vectors which are obtained by combining rows of the graph adjacency
matrices.

e Fitness

A fitness function f was defined to promote new chromosome generations with both
the minimum number of edit operations to the input graphs (i.e. chromosome rep-
resentation), and the minimum number of P,s generated within the graphs repre-
sented through new chromosomal offspring. With this aim, we defined f(NoPy,y) =
exp — (k1 * NoPy + ko * y), where NoPy represents the number of Pys in the graph associ-
ated with the chromosome, k1 and ks are constants used to balance the contributes of the
following two main components: NoP, and the difference d = XOR(R¢, R;)/2 between
the input graph R¢ and the graph Ry, obtained through the final best solution from the
offspring representation.

LGA package is downloadable at https://cran.r-project.org/web/packages/GA/index.html

Riccardo Dondi et al. / Procedia Computer Science 108C (2017) 1115-1124

e Mutation

Mutation process was generated with the following two objectives.

— To introduce the minimum number of changes in the initial graph. This was simply
provided by shifting bits from one to zero (respectively, from zero to one) over the
coded chromosomes.

— To apply the methodology discussed in Section 3.1 for the approximation of Min-
CoED (with low probability). In this case, we greedily sampled P4s from represented
graphs (i.e. using random walks over the graphs) and, for each sample, we deleted
the edges incident to the pivot triplet of each selected Pj.

e Crossover

The crossover operator simply moves a relation between two vertices from a graph to
another. In other terms, given two adjacency matrices M7 and M (respectively associated
with the graphs represented through chromosome 1 and 2) and s = M; [z, y], we have (after
the crossover application) Mas[x,y] = s; the same applies to My, i.e if s = M|z, y] then
we have Ma[z,y] = s.

e Selection

To guarantee that the solution quality does not decrease from one generation to another
[1], we allowed best fitness individuals to survive at each generation (i.e. elitism).

4.1 Experimental Results

Genetic algorithms were applied to simulated data (graphs) using the ape package 2 and the
igraph package 3. We generated input graphs, first by randomly sampling gene trees, then
transforming the gene trees into the corresponding relation graphs (which do not contain Pys
as proved in [9]). Finally, we added P,s by perturbing the obtained graphs with a random
mechanisms able to create (or delete) edges between vertices. Please notice that in this phase the
number of added Pys are strictly dependent to the graph structures. Targets of our simulations
were the following:

e To asses whether the genetic algorithm results in a decrease in the added number of P;s.

e To asses whether the genetic algorithm task is influenced in some way by structural
properties of the input graphs.

In the first case, we applied GA to graphs with a number of vertices ranging in S =
{15,25,35}, and for each s € S we repeated 10 tests with different input to get a better
evaluation of the algorithms behavior. Results are reported in Table 1.

We can observe the following facts.

e Performances definitely benefit when the number of vertices of the input graph is lower
than 35.

e The greater the number of paths introduced, the greater the difficulty of removing them

2https://cran.r-project.org/web/packages/ape
Shttp:/ /igraph.org/r

1121

1122

Riccardo Dondi et al. / Procedia Computer Science 108C (2017) 1115-1124

N. of Vertices N. of Py - Start N. of P4 - Final Distance User time System time

15 54.20 0.80 7.9 86.74 0.31
25 904.60 12.50 46.60 195.99 0.82
35 3261.40 2528.40 147.80 200.02 0.99

Table 1: Summary of performances (average values); Distance: distance between the starting
and the final graph in terms of edge insertion/removal. User time: seconds spent for calcula-
tions. System time: seconds spent by the OS to respond program’s requests

e Both the distance and the computation time do not seem to be too heavy and do not
change substantially with the vertex number.

It is reasonable to assume that GA difficulty in decreasing the number of paths is due to
some structural property of the input graphs. Thus, in order to answer the second issue, we
considered the degree distributions of the input. Indeed, we defined two new variables. The
first for the skewness in the degree distribution: a variable called “skewnees class”, taking
value 1 for positive skewed distribution (0, otherwise). The second variable represents a GA
negative behavior: a variable called “Risk Class”, equal to 1 for negative performance. In these
experiments we considered as negative, results for which GA was not able to reduce the number
of P, at least of 50% compared to the initial number (respectively, positive results was coded
by 0, if this was not the case). Please notice that, a negative skewed distribution of the vertex
degree express higher connectivity in the input graphs (i.e. many nodes with a high degree of
connectivity).

Experiments were conducted using 45 and 55 vertices for the input graphs. In this case we
repeated 20 tests for 45 vertices and 10 tests for 55 vertices.

Figure 1 reports a 2 x 2 contingency table where data consist of two binary variables, one
for the outcome (Risk Class) and one for the skewness (being used as predictor variable). The
figure shows that while for negative skewed distribution the number of times in which GA has
a negative behavior is predominant, many tests do not fall into the risk class 1 (i.e. good
performances) for positive skewness (i.e. many nodes with low degree of connectivity). To give
a significance evidence for these data we conducted a chi-square test (Pearson chi-square). The
results are reported in Figure 2: a significant difference between the risk of falling into the level
1 for the Risk class variable and negative skewed distribution exists in patterns collected from
the experiments. The p-value equals to 0.021, and this is smaller than the significance («) level
0.05. In Figure 3 we report summary statistics (average values) concerning the distance of the
final solution from the input graphs, as well as the computational time. Also in this case the
average values do not seem to be too burdensome.

5 Conclusion

We have considered two combinatorial variants (MinCoED and MinCoDEL) of the problem
of editing a relation graph representing orthologous/paralogous relations among genes. We
have provided both theoretical results (approximation algorithms for bounded degree graphs)
and experimental results (a genetic algorithm). There are interesting open problems in both
perspective. From a theoretical point of view, it would be interesting to consider if the approx-
imation factor of MinCoED and MinCoDEL can be improved. On the experimental side, it
would be interesting to test our genetic algorithm on real data and to design efficient heuristics

Riccardo Dondi et al. / Procedia Computer Science 108C (2017) 1115-1124

Contingency table Skewness_Class * Risk_Class

Count

Skewness Class 0
3

Total

Risk class
0 i
4 13
9 4
13 10

Total

17
13
30

Figure 1: 2 x 2 contingency table, where the values in the entries represent the number of tests
corresponding to the outcome (Risk Class) and the skewness values.

Value
Pearson Chi-Square 6,266°
Continuity Correction 4,543
Likelihood Ratio 6,455
Fisher’s Exact Test
Linear-by-Linear Association 6,057
30

Chi-square test

Asy
mp. Sig. Exact Sig.
df (2-sided) (2-sided)
i ,012
1 ,033
1 ,011
i ,014

Exact Sig.
(1-sided)

016

Figure 2: The chi-square test (Pearson chi-square) give a p-value equals to 0.021 (column Asy.

mp. sig. (2-sided)).

for the MinCoED problem.

References

[1] S. Baluja and R. Caruana. Removing the genetics from the standard genetic algorithm.

In

A. Prieditis and S. J. Russell, editors, Machine Learning, Proceedings of the Twelfth International

SkewnessClass

distance 0
I
time.1. 0
T
time 2. 0
1
time 3. 0
I
skewness, 0
1

Descriptive Stat.

Statistics

482,59
336,23
160,7624
152,2792
,2306
,2938
161,2600
152,8162

-397172209,9672450000000
101423471,0629568000000

Figure 3: Average values for distance, time and skewnees for both risk class 0 and 1; (Time 1
(User time): seconds spent for calculations. Time 2 (System time): seconds spent by the OS to
respond program’s requests. Time 3 (elapsed time): sum of User and System time, plus other

program and/or the OS tasks.

1123

1124

2]
3]
[4]
[5]
[6]
[7]

8]

[9]

Riccardo Dondi et al. / Procedia Computer Science 108C (2017) 1115-1124

Conference on Machine Learning, Tahoe City, California, USA, July 9-12, 1995, pages 38-46.
Morgan Kaufmann, 1995.

A.C. Berglund, E. Sjolund, G. Ostlund, and E.L. Sonnhammer. InParanoid 6: eukaryotic ortholog
clusters with inparalogs. Nucl. Acids Res., 36, 2008.

G. Blin, P. Bonizzoni, R. Dondi, R. Rizzi, and F. Sikora. Complexity insights of the minimum
duplication problem. Theor. Comput. Sci., 530:66-79, 2014.

R. Dondi, N. El-Mabrouk, and K. M. Swenson. Gene tree correction for reconciliation and species
tree inference: Complexity and algorithms. J. Discrete Algorithms, 25:51-65, 2014.

R. Dondi, M. Lafond, and N. El-Mabrouk. Approximating the correction of weighted and un-
weighted orthology and paralogy relations. Algorithms for Molecular Biology, 12(1):4, 2017.

E. S. El-Mallah and C. J. Colbourn. The complexity of some edge deletion problems. Circuits and
Systems, IEEE Transactions on, 35(3):354-362, 1988.

W. M. Fitch. Homology. a personal view on some of the problems. TIG, 16(5):227- 231, 2000.
M. Goodman, J. Czelusniak, G.W. Moore, A.E. Romero-Herrera, and G. Matsuda. Fitting the
gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed
from globin sequences. Syst. Zoology, 28:132-163, 1979.

M. Hellmuth, M. Hernandez-Rosales, K. Huber, V. Moulton, P. Stadler, and N. Wieseke. Orthology
relations, symbolic ultrametrics, and cographs. J. Math. Biol., 66(1-2):399-420, 2013.

M. Hellmuth, N. Wieseke, M. Lechner, H. Lenhof, M. Middendorf, and P. F Stadler. Phylogenomics
with paralogs. PNAS, 2014.

M. Lafond, C. Chauve, R. Dondi, and N. El-Mabrouk. Polytomy refinement for the correction of
dubious duplications in gene trees. Bioinformatics, 30(17):519-526, 2014.

M. Lafond, R. Dondi, and N. El-Mabrouk. The link between orthology relations and gene trees:
a correction perspective. Algorithms for Molecular Biology, 11:4, 2016.

M. Lafond and N. El-Mabrouk. Orthology and paralogy constraints: satisfiability and consistency.
BMC Genomics, 15(Suppl 6):512, 2014.

M. Lechner, S. Findeif}; L. Steiner, M. Marz, P.F. Stadler, and S.J. Prohaska. Proteinortho:
detection of (co-)orthologs in large-scale analysis. BMC' Bioinformatics, 12:124, 2011.

L. Li, C.J. Jr. Stoeckert, and D.S. Roos. OrthoMCL: identification of ortholog groups for eukaryotic
genomes. Genome Research, 13:2178- 2189, 2003.

Y. Liu, J. Wang, J. Guo, and J. Chen. Complexity and parameterized algorithms for cograph
editing. Theor. Comput. Sci., 461:45-54, 2012.

M. Mitchell. An introduction to genetic algorithms. Complex adaptive systems. MIT press, Cam-
bridge (Mass.), 1996.

A. Mykowiecka and P. Gérecki. Bootstrapping algorithms for gene duplication and speciation
events. In M. Botén-Fernandez, C. Martin-Vide, S. Santander-Jiménez, and M. A. Vega-Rodriguez,
editors, Algorithms for Computational Biology - Third International Conference, AlCoB 2016,
Trujillo, Spain, June 21-22, 2016, Proceedings, volume 9702 of Lecture Notes in Computer Science,
pages 106-118. Springer, 2016.

A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some edge modification
problems. Discrete Applied Mathematics, 113(1):109-128, 2001.

S. Ohno. Ewvolution by gene duplication. Springer, Berlin, 1970.

L. Scrucca. GA: A package for genetic algorithms in R. Journal of Statistical Software, 53(4):1-37,
2013.

R.L. Tatusov, M.Y. Galperin, D.A. Natale, and E.V. Koonin. The COG database: a tool for
genome-scale analysis of protein functions and evolution. Nucl. Acids Res., 28:33- 36, 2000.

