
UNIVERSITY OF BERGAMO

School of Doctoral Studies

Doctoral Degree in Engineering and Applied Sciences

XXX cycle

SSD: ING/INF-04

Learning meets control

Data analytics for dynamical systems

Advisor: Prof. Fabio Previdi

Co-advisor: Prof. Simone Formentin

Doctoral Thesis

Mirko MAZZOLENI

Student ID: 1007371

Academic Year 2016/2017

ii

Acknowledgements

I’d like to thanks

all the people I came across during this journey. In one way or another,

all of them contributed to this work sharing their experiences, talks, thoughts

and existence. A special thanks to the collegues of the research group (in no

particular order):

� Alberto Cologni, who taught me what it means to be an engineer

� Michele Ermidoro, whose spirit and creativy reflects an uncommon mind

� Fabio Angeloni, whose analysis skills to decomponse complex problem

remains unchallenged

� Paolo Sangregorio, who is the archetype of “getting things done”

� Yamuna Maccarana, who beared along with me many burdens

� Stefano Moretti, who reminded me that men live for passions

� Claudio Ghisleni, to whom I envy practical sense and positive attitude

� Dario Nava, a mate whom traits I will not find anywhere else

� Frank Owen, who showed me what a man can do

� Gabriele Maroni, who I trust blindly

� Matteo Scandella, whose rigor and exceptional intuitions will guide him

towards the peaks of the world

i

ii

A heartfelt thanks to Simone Formentin, whose presence is like the green light

on the other side of the bay. My sincere gratitude to my advisor, professor

Fabio Previdi, whose lead made me a better scientist and whose advices made

me a wiser person.

Finally, I’d like to thanks my girlfriend Arianna and my family for having

always sustained me.

iii

In God we trust, all others bring data.

—William Edwards Deming (1900-1993)

iv

v

Abstract

System identification has always been one of the main research focuses of

the control community, since the early steps of the automatic control field.

The development of a dynamical system’s models from experimental data

is instrumental for understanding the plant under study and designing its

model-based control scheme. In the last decade, a cross-fertilization began

between the System Identification and the Statistical Learning communities.

This led firstly to the introduction of regularization techniques in system

identification, and, more recently, to the application of kernel methods to

dynamical system learning. This thesis further investigates the roles that

learning methods can have in the control science. In the first part, we lay

the theoretical foundations of a new kernel-based regularization method for

Nonlinear Finite Impulse Response (NFIR) system identification. The method,

called Semi-Supervised Identification (SSI), relies on the manifold spanned by

the system’s inputs. This manifold is built by using not only the measured

input/output data, but also inputs data for which there is no corresponding

outputs. The effect of this rationale is to impose prior information on the

system structure, in the form of local smoothness assumptions. This differs

from standard Tikhonov regularization, which imposes a global smoothness

behaviour on the learned function. The second part of this work presents

practical applications of how statistical learning methods can be used to face

control and estimation problems. The case studies span a variety of different

applications, from fault detection of electro-mechanical actuators, to clustering

methodologies and pure forecasting challenges.

Keywords. System Identification, Statistical Learning, Regularization, Manifold

Learning, Fault Detection, Clustering, Forecasting

vi

Contents

I System identification review and new research 1

1 Introduction 3

2 Parametric system identification 7

2.1 Models of dynamic systems . 7

2.2 Regularization in static systems 11

2.2.1 Frequentist interpretation of regularization 11

2.2.2 Bayesian interpretation of regularization 15

2.3 Regularization in dynamic systems 18

3 Nonparametric system identification 21

3.1 Reproducing Kernel Hilbert Spaces 21

3.2 Regularization in RKHS . 24

3.3 System identification as function estimation 26

4 Semi-supervised system identification 31

4.1 Motivation . 31

4.2 Problem statement . 36

4.3 Manifold regularization . 38

4.4 The semi-supervised approach 39

4.5 Unsupervised inputs selection 43

4.6 Results and discussion . 47

4.7 Conclusions and future developments 51

vii

viii CONTENTS

II Applications of statistical learning methods 53

5 Health On Line Monitoring for Electromechanical actuator

Safety 55

5.1 Fault detection and EMA . 56

5.2 Experimental setup . 58

5.2.1 Fault implementation and test conditions 59

5.2.2 Test profiles . 61

5.2.3 Collected and available measurements 62

6 Holmes project - Model based approach 67

6.1 Motivation for the particle filter algorithm 67

6.2 System modeling . 68

6.3 Fault detection via particle filters 70

6.3.1 Observation and Transition Particle Filter 72

6.4 Results and discussion . 73

6.4.1 Simulation results . 74

6.4.2 Discussion . 76

6.5 Conclusions and future developments 77

7 Holmes project - Data driven approach 79

7.1 Data-driven fault detection strategy 79

7.1.1 Feature extraction . 80

7.1.2 Feature selection and classifier design 82

7.1.3 Classifier evaluation . 82

7.2 Results and discussion . 83

7.3 Conclusions and future developments 85

8 Holmes project - Clustering 87

8.1 Introduction . 87

8.2 Principal Direction Divisive Partitioning 88

8.3 Modified PDDP based on statistical test 90

8.3.1 Chi-squared goodness of fit test 90

8.3.2 Modified PDDP . 91

8.4 Application to fault detection 94

8.5 Conclusions and future developments 100

CONTENTS ix

9 Control-oriented modeling of SKU-level demand in retail food

market 101

9.1 Introduction . 101

9.2 Problem statement . 104

9.3 Sales prediction . 106

9.3.1 Covariate selection . 106

9.3.2 Missing data imputation 109

9.4 Performance assessement . 111

9.4.1 Last-like promotion benchmark model 111

9.4.2 ARMAX benchmark model 112

9.4.3 Comparison of results . 112

9.5 Conclusions and future developments 115

10 Conclusions 117

Appendices 119

A Topics in learning parametric models 121

A.1 Bias and variance . 121

A.2 Model order selection . 123

A.3 Empirical Bayes . 124

B Functional analysis fundamentals 127

B.1 Vector spaces and linear operators 127

B.1.1 Banach spaces . 128

B.1.2 Hilbert spaces . 130

x CONTENTS

Part I

System identification review

and new research

CHAPTER 1

Introduction

All types of sciences and theories have been developed with the intent to

understand the world around us. The world speaks the language of the data, and

if we want to comprehend it, we have to be able to translate these information

into something which is interpretable by a human. The main tool we have at

our disposal when pursuing this aim is a mathematical model. A model is a

more or less simplified version of an aspect of reality, that is convenient for some

application. Equipped with the right mathematics, we are able to describe in a

compact way a huge number of different systems, taking advantage of all the

available knowledge. A system is an abstract mechanism that transforms inputs

(causes) into outputs (effects). Statistical learning is the science of building

models of systems from data. In the case of static systems, that is, when there

is not a temporal relationships between inputs and outputs, the set of learning

techniques and concepts is known as Machine Learning. The great majority of

physical phenomena are however dynamic systems, i.e., mechanisms for which

the sole knowledge of the input is not sufficient to unequivocally determine

the relative output. The missing parts are the system’s initial conditions,

known as the system’s states, that embody the concept of memory. Control

theory relies on dynamic model concepts to impose a particular behaviour

to a physical system. In these setting, the inputs and the outputs evolve in

time according to differential (or difference) equations. Learning procedures

applied to dynamic systems constitute the System Identification field. In this

setting, the modeling is done from experiments. The system is excited with

Chapter 1. Introduction

some inputs and the outputs are observed; then, these data are used to identify

the process that links inputs and outputs. This approach is known as black-box

modeling. Learning procedure are not the only way to determine a model of

physical systems. A genuine procedure is to decompose the modeling problem

into smaller components which already have a model. An example of this is

the modeling of electronic circuits. The circuit is decomposed into its basic

building blocks, resistors, transistors, capacitors, among others. Each one of

these basic building blocks has a well established model. Using Kirchhoff’s

laws, it is possible to assemble the building blocks to get a model that describes

the circuit as a whole. This method is known as white-box modeling. In other

applications, the two approaches are often used together (grey-box modeling):

the physical approach is used to define a model from first principles, and the

identification approach is used to fit its parameters, so that the model agrees

with what it is observed [1].

The most widespread approach to the identification of dynamic systems

relies on the time domain parametric Prediction Error Methods (PEMs) [2, 3].

The rationale of this approach is to minimize the squared difference between

each observed datum and its prediction made by the chosen model. The choice

of the parametric model is a twofold problem: in first instance, the engineer

has to define a model’s structure, then, as a subsequent step, the model’s order.

This identification step is known as model selection. When the model structure

is fixed, PEM procedures are shown to converge to the best approximation

of the true system contained in the chosen family of models, for large data

sets. Model selection is an important and practical topic: it is directly related

to the bias-variance tradeoff, and can be handled by various model validation

techniques [4]. This is often carried out by resorting to complexity measures,

such as the Akaike’s criterion (AIC) [5] or cross validation (CV) [4]. Some

inefficiencies related to these classical approaches have been recently pointed

out [6, 7, 8]. In particular, it has been shown that sample properties of PEM

approaches, equipped e.g. with AIC or CV, may be unsatisfactory when tested

on experimental data. This makes the PEM estimator a Post Model Selection

Estimator (PMSE) [9].

In both static and dynamic cases, learning an (unknown) function from a

finite set of data is always an ill-posed problem. Infact, the true function can

behave in any way outside the points that we observed. In machine learning,

this has generated the theoretical framework of PAC (Probably Approximately

Correct) learning [10]. Starting from the seminal works of Tikhonov and

4

Chapter 1. Introduction

Phillips [11, 12], a number of regularization methods have been proposed in the

literature to better condition the static learning problem [13, 14]. Therefore, it

is not suprising how regularization has found a flourishing application also in

the system identification community. A recent approach that grounds on the

concept of regularization was presented in [8]. Here, the authors have adapted

to dynamic systems the functional analysis’ methods previously employed by

the machine learning community to static systems [15, 16]. The new paradigm

formulates the identification problem as function estimation possibly in an

infinite-dimensional space. In the context of linear system identification, the

elements of such space are all possible impulse responses. The adopted method

considers a regularization component that admits a Bayesian interpretation

[17]. This is in line with standard results in the Ridge and Lasso penalties for

machine learning models [4]. In particular, the impulse response is modeled as

a zero-mean Gaussian process. In this way, prior information (acting as the

regularization term) is introduced in the identification process by assigning a

covariance, known as the kernel in the machine learning literature [18]. The

choice of the kernel is of paramount importance to define the properties of the

inferred function. In this context, a recent major advance for linear system

identification has been the introduction of new kernel’s types, which include

information on impulse response exponential stability [8, 6]. This requirement

was not investigated in the context of static systems, for obvious reasons.

Kernel functions depend on hyperparameters which can be estimated from

data using marginal likelihood maximization (also known as Empirical Bayes)

approaches [19]. This is a procedure that is conceptually similar to model

selection, but it turns out to be much more robust. A comparison of empirical

Bayes versus a full Bayes method for hyperparameter tuning is presented in [20].

For a comprehensive survey on kernel methods for linear system identification,

see [21], while the adaptation of the aforementioned framework for non-linear

systems is faced in [22]. The cited time-domain PEM approach is not the only

method to perform system identification. Subspace methods [23, 24] offers the

possibility to perform direct identification of models represented in state-space

form. Frequency-domain solutions [25] are an alternative tool which is rapidly

evolving. In particular, kernel methods have recently caught the attention also

of the frequency domain system identification community [26]. This motivates

further research on these non-parametric approaches.

The focus of this thesis will be on the black-box system identification

approach: given a set of data, the aim is to find a function that best explains

5

Chapter 1. Introduction

their variability and nature. In the first part, a new regularization approach for

non-linear system identification, based on kernel methods, is introduced. The

process of learning an unknown function is then applied to various applications

of control problems in the second part of this work.

Outline

Chapter 2 gives an overview of the parametric system identification area,

describing the classical dynamic system models, the bias-variance tradeoff,

model selection and the regularization technique, highlighting the similarities

between system identification and statistical learning.

Chapter 3 shows the main tools, borrowed from the functional analysis, used

in the context of the nonparametric system identification. The notion of

kernel and Reproducing Kernel Hilbert Spaces (RKHS) will be introduced

and the state of the art of nonparametric methods in system identification

is outlined briefly.

Chapter 4 describes the first main contribution of this work, namely a new

approach to system identification based on semi-supervided learning. The

concept of manifold learning is introduced and the method outlined.

Chapter 5 and following are dedicated to the second contribution of this

thesis, that is, the application of learning methods to solve practical

control and estimation problems. In this chapter, the description of a

fault detection project for Electro-Mechanical Actuators (EMA) and its

experimental setup are presented.

Chapter 6 presents a model-based fault detection scheme, for the problem in

Chapter 5, based on a particle-filter methodology, showing comparisons

with the classical extended Kalman filter approach.

Chapter 7 deals with a data-driven fault detection scheme, for the problem in

Chapter 5, based on a machine learning pipeline and feature extractions.

Chapter 8 describes a new unsupervised learning algorithm applied to the

fault detection of EMA data.

Chapter 9 highlights a forecasting application in the retail food market, where

the concepts of closed-loop control are applied as unifying view of the

problem.

6

CHAPTER 2

Parametric system identification

This chapter briefly reviews the concepts of the parametric system identification

methods, focusing on Linear Time-Invariant (LTI) Single Input Single Output

(SISO), stable and causal systems. Section 2.1 decribes the main parametric

models for dynamic systems and the Prediction Error Method (PEM) for

system identification. Model order selection is an important component of

parametric system identification procedures. Regularization methods are one

of the fundamental tools to face this challenge. Section 2.2 introduces the

main regularization concepts for static systems, both from the frequentist and

bayesian viewpoint. The application of regularization to dynamic systems is

finally reviewed in Section 2.3.

2.1 Models of dynamic systems

A model family M is a parametrized collection of models that describes the

relations between the input and output signals of the system. The inputs

and outputs are denoted respectively as u(t) and y(t), with t the temporal

index. The model familyM defines both the model structural form (the model

class) and the model complexity (the number of its parameters). The model’s

parameters are denoted by θ ∈ Rm×1, thus M(θ) defines a particular model.

Therefore, M acts as an hypothesis space, and M(θ) ∈ M is a particular

hypothesis which belongs to M.

In order to show the main ideas of parametric dynamic systems’ modeling,

Chapter 2. Parametric system identification

Figure 2.1: General model for linear SISO time-invariant dynamic systems. Bold
lines represent measured signals

we restrict our attention to LTI SISO systems. A general modeling of a LTI

SISO system is given by the transfer function G(q, θ) from input to output

and the transfer function H(q, θ) from a zero mean white noise source e(t) to

output additive disturbance v(t), see Figure 2.1:

M(θ) : y(t) = G(q, θ)u(t) +H(q, θ)e(t) (2.1a)

E [e(t)] = 0; E [e(t)2] = σ2; E [e(t)e(k)] = 0 if k 6= t, (2.1b)

In this representation, the transfer function G(q, θ) represents the deterministic

system’s component, driven by a known input signal. The model H(q, θ)e(t)

represents both modeling uncertainties and disturbances, complementing the

aspects of y(t) that u(t) is not able to explain. The general framework for the

identification of the H(q, θ) lies in interpreting the data sequences as finite-time

realizations of stationary stochastic processes. A stochastic process {v(t, s)}(in
discrete time) is a sequence of random variables defined from the same random

experiment s, indexed via a temporal index t. A stochastic process is said

to be strictly stationary if its joint probability distribution does not change

when shifted in time. In the development of the Kolmogorov-Wiener prediction

theory [27], the concept of weak-sense stationarity is used, which requires only

that the expected value and the autocovariance function do not vary with

respect to time and time windows, respectively. The signal v(t) in Figure

2.1 is then interpreted as a stationary stochastic process obtained by feeding

a linear dynamic system with a white noise source. This interpretation is

made possible by the spectral factorization theorem [3], that states the relation

between stationary stochastic processes and dynamic systems. The true system

8

Chapter 2. Parametric system identification

(the data-generating model), denoted as S0, can be expressed as:

S0 : y(t) = G0(q)u(t) +H0(q)η(t) (2.2a)

E [η(t)] = 0; E [η(t)2] = ν2; E [η(t)η(k)] = 0 if k 6= t, (2.2b)

where G0(q), H0(q) are the true system’s transfer function, and η(t) is a white

noise. The models (2.1)-(2.2) are in discrete time (assuming sampling interval

of one time unit) and q denotes the shift operator such that qy(t) = y(t+ 1).

Since G(q, θ) and H(q, θ) are transfer functions, their expansion in the inverse

(backward) operator gives the impulse response of, respectively, gk(θ) and hk(θ):

G(q, θ) =
∞∑
k=1

gk(θ)q
−k (2.3)

H(q, θ) = h0 +
∞∑
k=1

hk(θ)q
−k, (2.4)

where h0 = 1 for normalization reasons. The model (2.1) is dynamic: this

permits to predict the output at time t, i.e. y(t), based on observations of

previous input-output data up to time t−1. Under the assumption that H(q, θ)

is inversely stable, the natural one-step ahead predictor for (2.1) is [2]:

ŷ(t|t− 1, θ) =
H(q, θ)− 1

H(q, θ)
y(t) +

G(q, θ)

H(q, θ)
u(t). (2.5)

Common black-box models parametrizations are to let G and H be rational in

the q operator:

G(q, θ) =
B(q)

F (q)
; H(q, θ) =

C(q)

D(q)
, (2.6)

where B(q), F (q), C(q) and D(q) are polynomials of q−1, and their dependence

of θ has been omitted for ease of notation. A common model choice is to

impose F (q) = D(q) = A(q) and C(q) = 1 which gives the Auto-Regressive

with eXogenous input (ARX) model:

y(t) =
B(q)

A(q)
u(t) +

1

A(q)
e(t), (2.7)

where A(q) = 1+a1q
−1 + . . .+anaq

−na , B = b1q
−1 + . . .+bnbq

−nb , and na, nb are

the orders of the ARX model. The elements of the parameter vector θ are then

the coefficients a1, a2, . . . , ana , b1, b2, . . . , bnb , with na + nb = m, the dimension

of θ. Another useful structure, which will be the focus of the next few chapters,

9

Chapter 2. Parametric system identification

is the Finite Impulse Response (FIR) model, F (q) = C(q) = D(q) = 1:

y(t) = B(q)u(t) + e(t). (2.8)

Other thoroughly studied models are the Output Error (OE) model, C(q) = D(q),

the Auto-Regressive Moving Average with eXogenous input (ARMAX) model,

F (q) = D(q) = A(q), and the Box-Jenkins (BJ) model, with all four polynomials

different. The chosen model structure needs then to be fitted to measured data.

A set of N collected data in time domain, generated from S0, is indicated as

D = {u(1), y(1), . . . , u(N), y(N)}. The PEM method consists in minimizing the

mean squared prediction error between actual response and the one predicted

by (2.5):

JN(θ) =
N∑
t=1

(
y(t)− ŷ(t|t− 1, θ)

)2
, (2.9)

and the corresponding parameters’ estimate is:

θ̂N = arg min
θ

JN(θ). (2.10)

The term JN (θ̂) ≡ Ein will be referred as in-sample error since it measures the

performance of the identified model on the training data. The out-of-sample

error, instead, measures the model’s performance on unseen data, and can be

defined as Eout = E
[(
y(t)− ŷ(t|t− 1, θ)

)2
]
, where the expectation is over the

unobserved regressors.

In deriving the PEM method (2.9)-(2.10), no assumptions on the distribution

of e(t) has been made: however, it is posssible to show that, if the disturbances

are Gaussian, the method coincides with the Maximum Likelihood (ML)

approach [28].

This section introduced some common model’s structures for linear time

invariant dynamic system. As briefly discussed in the Chapter 1, after having

chosen a model structure, the next design choice is the model’s order. Referring

to a fixed model family M we have that:

� More complexM leads to better chance of approximating the true system

model S0. Infact, if M is too simple, we fail to approximate S0 and we

end up with large Ein.

� Less complexM gives better chance of generalizing out of sample. Infact,

if M is too complex, the model will learn also the idiosyncrasies of the

particular training dataset, which are not related to the main system’s

10

Chapter 2. Parametric system identification

dynamics. This, in turn, translates to large Eout.

It follows that it is not possible to obtain low values for the Ein and Eout

errors at the same time. The aim in any learning problem is to balance

the approximation and generalization capability of the chosen model. This

fundamental aspect is known as bias-variance tradeoff. For a deeper discussion

on bias and variance, refer to Appendix A.1.

2.2 Regularization in static systems

The use of PEM methods after having chosen the model order with techniques

such such as AIC (FPE) and BIC (see Appendix A.2), can lead to poor sample

properties, as noticed in [6]. Furthermore, these procedures perform a “hard”

threshold decision on the model’s complexity, making the final model’s choice

not adaptable to all practical situations. Regularization permits to effectively

contrast overfitting, while at the same time retaining all the ability of complex

models to approximate the true unknown function. The following discussion will

treat regularization in a generic case of static systems, providing the foundation

for the introduction of regularization techniques to dynamic models, treated

in Section 2.3. In this section, were static systems are considered, the letter t

does not indicate a temporal unit, but merely an indexing variable.

2.2.1 Frequentist interpretation of regularization

Consider a generic static linear model:

y(t) = ϕT (t)θ + e(t) θ ∈ Rm×1, (2.11)

where y(t) (the output) and ϕ(t) (the regression vector) are observed variables,

e(t) is a noise disturbance (assumed to be independent of ϕ(t)) and θ is the

unknown (deterministic) parameters’ vector. The least-squares method finds

the estimate θ̂ as:

θ̂LS = arg min
θ

N∑
t=1

(
y(t)− ϕT (t)θ

)2
, (2.12)

which is shown to be unbiased. The same solution is given by the Maximum

Likelihood (ML) paradigm, when the errors e(t) are i.i.d. Gaussian variables,

e(t) ∼ N (0, σ2).

11

Chapter 2. Parametric system identification

One of the possible ways to perform regularization consist of penalizing

the value of the estimated parameters. Commonly used penalty terms of this

type are given by the 2-norm of the parameters’ vector, leading to the Ridge

regression:

θ̂R = arg min
θ

N∑
t=1

(
y(t)− ϕT (t)θ

)2
+ λ

m∑
j=1

θ2
j , (2.13)

and the parameter vector’s 1-norm, giving the Lasso regression formula:

θ̂L = arg min
θ

N∑
t=1

(
y(t)− ϕT (t)θ

)2
+ λ

m∑
j=1

|θj|, (2.14)

where λ is a hyperparameter that controls the regularization strength. There is

therefore a tradeoff between minimizing the model fit to the data and minimizing

the value of the parameters. If a parameter is driven to zero by the minimization

process, we end up with a model that has less parameters. Otherwise, a simpler

model is still effectively produced, although the contribution of each regressor is

taken into consideration (even if in a small portion). With these regularization

schemes, the estimate is no more unbiased, but the variance is in general

significatively reduced.

Truth

Realization

Model bias

Estimation bias

Closest fit in population

Closest fit

MODEL

SPACE

RESTRICTED

MODEL SPACE

Shrunken fit

Estimation

variance

Measurement

error

Figure 2.2: Regularization and bias-variance decomposition for linear models
(adapted from [4])

The intuition behind regularization is depicted in Figure 2.2. In the case of

linear models, the model space is the set of all linear predictions from m inputs

12

Chapter 2. Parametric system identification

and the black dot labeled “closest fit” is best linear model fit. The blue-shaded

region indicates the error’s variance with which we see the truth in the training

sample, as stated in the model (2.11). The “closest fit in population” represents

the fit obtained when no stochastic disturbance is present. In this case, the

figure depicts with the yellow circle the variance of the estimate. The model

bias is indicated as the distance from the truth, when a linear model is not

sufficient to correctly fit all the data. When we further restrict the model space

by regularization, the estimation bias becomes greater than zero, since we have

no more the best linear model, but the variance is drastically reduced. For

linear models fit by ordinary least squares, the estimation bias is zero. As long

as this gain in variance is greater than the increment in bias, the procedure is

worthwhile.

The Ridge and Lasso penalties can be alternatively seen as constrained

minimization problems:

θ̂R = arg min
θ

N∑
t=1

(
y(t)− ϕT (t)θ

)2
(2.15)

subject to
m∑
j=1

θ2
j ≤ C, (2.16)

and respectively:

θ̂L = arg min
θ

N∑
t=1

(
y(t)− ϕT (t)θ

)2
(2.17)

subject to
m∑
j=1

|θj| ≤ C. (2.18)

There is an inverse proportionality between λ and C: if C is lower, then the

constraint on the parameters’ value is tighter, meaning that λ is higher. A

geometrical interpretation of the Ridge and Lasso is depicted in Figure 2.3, for

a 2-dimensional cost function. The regularized solution is the intersection (in

the paramters space) of the cost function’s contours with the region dictated

by the constraint. It is possible to observe that the Ridge penalty shrinks

the parameters to a lower value which is different from zero, while the Lasso

solution tends to exactly set one (or more) parameters to be identically null.

Computing the Lasso solution is a quadratic programming problem, and

therefore it is computed as a byproduct of very computationally efficient

algorithms such as the Least Angle Regression (LAR) [29]. On the contrary,

13

Chapter 2. Parametric system identification

(a) Ridge regression contour surfaces:
the method tends to give soutions
with a low parameters’ value

(b) Lasso regression contour surfaces:
the method tends to give a sparse
parameter’s vector

Figure 2.3: Comparison between Ridge and Lasso regularizations from a geometrical
viewpoint

the Ridge regression has a closed form solution [4]. It is useful, for this purpose,

to express model (2.11) in matrix notation:

Y = Φθ + E, (2.19)

where Y ∈ RN×1 contains the y(t) stacked in row, Φ ∈ RN×m is the regressors’

matrix obtained by stacking the single regressors ϕT (t) ∈ R1×m, θ ∈ Rm×1 is

the parameters’ vector and E ∈ RN×1 contains the stacked error terms. The

Least Square formulation (2.12) becomes:

θ̂LS = arg min
θ

‖Y − Φθ‖2 (2.20)

=
(
ΦTΦ

)−1
ΦTY, (2.21)

where ‖ · ‖ indicates the Euclidean norm. Using the matrix notations, the

regularized Ridge regression problem (2.13) becomes:

θ̂R = arg min
θ

‖Y − Φθ‖2 + λ‖θ‖2 (2.22)

=
(
ΦTΦ+ λIm

)−1
ΦTY, (2.23)

where Im ∈ Rm×m is the identity matrix.

The solution (2.22) to the Ridge regression problem (2.23) is nearly identical

to the standard least squares formulation (2.21). The only difference lies in the

λIm term, which acts as a tool to better condition the estimate.

14

Chapter 2. Parametric system identification

2.2.2 Bayesian interpretation of regularization

The result in (2.23) admits an interesting Bayesian interpretation. Let x ∈ Rd×1

be a Gaussian random vector with mean µ ∈ Rd×1 and covariance Σ ∈ Rd×d,

such that x ∼ N (µ,Σ). We can partition x into two disjoint subsets xa ∈ Rm×1

and xb ∈ RN×1 with d = m + N , being m the dimension of xa and N the

dimension of xb, so that:

x =

[
xa

xb

]
. (2.24)

The joint distribution of xa and xb can be expressed as:[
xa

xb

]
∼ N

([
µa

µb

]
,

[
Σaa Σab

Σba Σbb

])
, (2.25)

where Σaa ∈ Rm×m and Σbb ∈ RN×Nare symmetric, Σab ∈ Rm×N , Σba ∈ RN×m

and ΣT
ab = Σba. Then, the conditional distribution xa|xb is still Gaussian [30]:

xa|xb ∼ N (µa|b,Σa|b) (2.26)

µa|b = µa + ΣabΣ
−1
bb (xb − µb) (2.27)

Σa|b = Σaa − ΣabΣ
−1
bb Σba. (2.28)

It is often useful to express the Gaussian distribution as a function of the

precision matrix instead of the covariance one:

Λ ≡ Σ−1. (2.29)

We refer to equations (2.27) - 2.28 as the covariance representation of the

Gaussian conditional distribution: expressing them in terms of the precision

matrix leads to the precision form:

µa|b = Σa|b · {Λaaµa − Λab(xb − µb)} (2.30)

= µa − Λ−1
aa Λab(xb − µb) (2.31)

Σa|b = Λ−1
aa , (2.32)

where:

Λaa =
(
Σaa − ΣabΣ

−1
bb Σba

)−1
(2.33)

Λab = −
(
Σaa − ΣabΣ

−1
bb Σba

)
· ΣabΣ

−1
bb . (2.34)

15

Chapter 2. Parametric system identification

The formulas outlined until now refer to the general case of two jointly

Gaussian vectors xa and xb. When a specific parametric structure is imposed

on these variables, it is possible to exploit such formulation to restate the

more general formulas, deriving a practical solution for the problem at hand.

Consider now the linear model (2.19), where E ∼ N (0, L−1) and L ∈ RN×N is

the errors’ precision matrix. It is possible to define a prior distribution over

the parameters’ vector θ such that:

p(θ) = N (µ,Λ−1), (2.35)

where Λ ∈ Rm×m is the parameters’ precision matrix. The vector θ is now

considered a random variable, as opposite to the frequentist approach where

it was a deterministic vector. The conditional distribution of the data can be

expressed as:

p(Y |θ) = N (Φθ, L−1). (2.36)

Having imposed p(θ) in (2.35) and computed p(Y |θ) (2.36), the aim is to derive

p(θ|Y). Since p(θ) and p(Y |θ) are Gaussian, their joint pdf is still Gaussian,

with z = [θ, Y]T ∈ Rd×1, d = m+N , and p(z) = N (µz,Σz):

z =

[
θ

Y

]
∼ N

([
µ

Φµ

]
,

[
Λ−1 Λ−1ΦT

ΦΛ−1 L−1 + ΦΛ−1ΦT

])
. (2.37)

The precision matrix R of p(z) can be found to be [30]:

R ≡ Σ−1
z =

[
Λ + ΦTLΦ − ΦTL
−LΦ L

]
(2.38)

Substituting (2.37) into equations (2.26)-(2.28) yields the conditional distribution

p(θ|Y) ∼ N (µθ|Y ,Σθ|Y) in covariance form:

µθ|Y = µ+ Λ−1ΦT
(
L−1 + ΦΛ−1ΦT

)−1
(Y − Φµ) (2.39)

Σθ|Y = Λ−1 − Λ−1ΦT
(
L−1 + ΦΛ−1ΦT

)−1
ΦΛ−1, (2.40)

while using (2.38) in (2.30)-(2.32) gives p(θ|Y) in precision form:

µθ|Y =
(
Λ + ΦTLΦ

)−1 ·
{(

Λ + ΦTLΦ
)
µ+ ΦTL (Y − Φµ)

}
(2.41)

=
(
Λ + ΦTLΦ

)−1 ·
{
ΦTLY + Λµ

}
(2.42)

Σθ|Y =
(
Λ + ΦTLΦ

)−1
(2.43)

16

Chapter 2. Parametric system identification

Once the posterior distribution is computed, if one wants a point value estimate

for the unknown parameters, the most common choice is to take the Maximum A

Posteriori (MAP) estimate. This is the value of the parameters which maximizes

the posterior probability density. Since P (θ|Y) is Gaussian, θ̂MAP corresponds

to E[p(θ|Y)] = µθ|Y . If the prior distributions on errors and parameters are

taken such that:

p(θ) = N (µ = 0, Λ−1 = γ2Im) (2.44)

p(E) = N (0, L−1 = σ2IN), (2.45)

where Im ∈ Rm×m and IN ∈ RN×N are identity matrices, then the conditioned

probability of the data becomes:

p(Y |θ) = N (Φθ, σ2IN). (2.46)

The posterior mean, by substituting (2.44)-(2.45) in (2.41) is therefore:

µθ|Y =
[(
γ2Im

)−1
+ ΦT

(
σ2IN

)−1
Φ
]−1

·
{
ΦT
(
σ2IN

)−1
Y
}

(2.47)

=

[
1

γ2
Im +

1

σ2
ΦTΦ

]−1

· 1

σ2
ΦT INY (2.48)

=

[
1

σ2
·
(
σ2

γ2
Im + ΦTΦ

)]−1

· 1

σ2
ΦTY (2.49)

=

[
ΦTΦ+

σ2

γ2
Im

]−1

· ΦY = θ̂MAP . (2.50)

The posterior covariance, by elaborating on (2.43) is:

Σθ|Y =
(
Λ + ΦTLΦ

)−1
=

[
1

γ2
Im +

1

σ2
ΦTΦ

]−1

. (2.51)

By setting λ = σ2

γ2
in (2.50), the MAP estimate can be restated as:

θ̂MAP =
(
ΦTΦ+ λIm

)−1
ΦY, (2.52)

which is equivalent to the frequentist formulation (2.23). A Gaussian prior

on the unknown parameters is a way to induce regularization in the learning

model. The interpretation of the term σ2

γ2
is as follows. If σ2 is near zero, then

there is little noise in the data, and the expression reduces to the simple least

square estimate, since an unbiased solution is preferred and there is no need to

17

Chapter 2. Parametric system identification

regularize to avoid the risk of overfitting caused by the noise. The same result

appears if the parameters’ prior is very vague: in this case, no preference is

given to particular parameters’ values, and so the regularization effect vanishes.

If the parameters’ prior is very concentrated, then the regularization term is

higher, since we are more confident that the parameters should not deviate

much from that we have imposed with the prior information.

As a concluding remark for this section, it possible to show that the Lasso

penalty formulation (2.13) can be recovered in a Bayesian framework, when a

Laplace distribution is taken as prior information for the parameters [4].

2.3 Regularization in dynamic systems

The natural application of the regularization’s concepts introduced in Section

2.2 concerns those dynamic models that can be casted as linear regression ones.

Here, the indexing letter t denotes a temporal unit. As an example, consider

the generic Finite Impulse Response (FIR) model:

y(t) = G(q, θ)u(t) + e(t) =
m∑
k=1

gku(t− k) + e(t) (2.53)

= ϕTu (t)θg + e(t), (2.54)

where in ϕTu (t) and θg are collected the m elements of u(t − k) and the m

impulse response coefficients gk, respectively. This is again a linear regression

problem. All that was said above about linear regressions, regularization and

estimation of hyper-parameters can thus be applied to the estimation of FIR

models. Consider a more general version of the regularization problem (2.22):

θ̂T = arg min
θ

‖Y − Φθ‖2 + λθTP−1θ (2.55)

=
(
PΦTΦ+ λIm

)−1
PΦTY, (2.56)

where P ∈ Rm×m is a proper regularization matrix. This is a general formulation

of the Tikhonov regularization. Note that problem (2.55) is equivalent to

problem (2.22) if P = Im. Suitable choices of P should reflect what is reasonable

to assume about an impulse response. If the system is exponentially stable, the

impulse response coefficients gk should decay exponentially, and if the impulse

response is smooth, neighbouring values should have a positive correlation. A

18

Chapter 2. Parametric system identification

suitable regularization matrix P g for θg is a matrix whose k, j element is:

DC P g
kj(η) = δα(k+j)/2ρ|j−k|; (2.57)

δ ≥ 0, 0 ≤ α < 1, |ρ| ≤ 1; η = [δ, α, ρ]. (2.58)

Here α accounts for the exponential decay along the diagonal, while ρ describes

the correlation across the diagonal (the correlation between neighbouring

impulse response coefficients).

We call this matrix, or kernel, DC for Diagonal-Correlated [6].

A special case derived from (2.57) is obtained by posing ρ =
√
α, leading

to the Tuned/Correlated kernel [31, 32]:

TC P g
kj(η) = δαmax(k,j); (2.59)

δ ≥ 0, 0 ≤ α < 1, η = [δ, α]. (2.60)

A third useful kernel is the Stable Spline (SS) one [8]:

SS P g
kj(η) = δ

(
αk+j+max(k,j)

2
− α3·max(k,j)

6

)
; (2.61)

δ ≥ 0, 0 ≤ α < 1, η = [δ, α]. (2.62)

The hyperparameter η can be tuned by marginal likelihood optimization

via (A.11). Efficient numerical implementation of this minimization problem

is discussed in [33, 34]. The impulse response can then be computed from

(2.55) with λ = σ2. This method of estimating the impulse response, possibly

followed by a model reduction of the high order FIR model, has been extensively

tested in Monte Carlo simulations in [6]. The method is shown to be a viable

alternative to the classical PEM/ML estimation, mainly because the question

of model order determination is avoided.

19

Chapter 2. Parametric system identification

Example: 2.3 (i) Diagonal-Correlated DC kernel

Consider the problem (2.55) with kernel matrix as defined in (2.57). Suppose

m = 2, δ = 1 for ease of explanation. Then, the kernel matrix P g ∈ R2×2 is:

P g =

[
α α3/2ρ

α3/2ρ α2

]
(2.63)

The regularization term θTP−1θ in (2.55) is therefore:[
θ1 θ2

] [
α α3/2ρ

α3/2ρ α2

]−1 [
θ1

θ2

]
= (2.64)

1

detP g
·

[
θ1 θ2

] [
α2 −α3/2ρ

−α3/2ρ α

][
θ1

θ2

]
= (2.65)

1

detP g
·
[
θ2

1α
2 + θ2

2α − 2θ1θ2α
3/2ρ
]

(2.66)

Equation (2.66) encodes the prior information on the FIR model impulse response.

The term θ2
1 is weighted less than the term θ2

2, meaning that g2 is less important

with respect to g1 in predicting the next impulse response value. If θ1 and θ2 have

equal sign, then the last term avoids bringing to zero the interaction between the

impulse responses coefficients, with a strength proportional to the ρ parameter. If θ1

and θ2 have different sign, the minimization of the cost function tries to bring both

the parameters to lower values, imposing the required smoothness.

20

CHAPTER 3

Nonparametric system identification

This chapter introduces the time-domain nonparametric approach to system

identification, based on the framework of Reproducing Kernel Hilbert Spaces

(RKHS), described in Section 3.1. The aim is to learn an unknown function

from a set of measured data. This function is searched in a functions set defined

by an RKHS. By interpreting the system identification problem as a function

estimation one, the methods and concepts that belong to the latter framework

can be employed (with the due modifications) in the former one. In Section

3.2 the framework of the RKHS is presented for the static function’s learning

case. Then, Section 3.3 introduces the application of nonparametric learning

procedure to LTI SISO dynamic systems.

A brief review of the fundamental concepts of functional analysis are reported

in Appendix B. For a detailed exposition of these concepts, see [35].

3.1 Reproducing Kernel Hilbert Spaces

Definition 3.1.1 A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert

space V such that:

a) Its elements are functions u : Ω→ R, where Ω is a generic set

b) ∀x ∈ Ω, Lx : V → R
u 7→ u(x)

is a continous linear functional, that is, ∃M ∈ R

such that |u(x)| ≤M · ‖u‖ ∀u ∈ V

Chapter 3. Nonparametric system identification

For the Riesz’s representation theorem (see Appendix B), there exists a

function rx ∈ V (called the representer of x) such that Lx = 〈·, rx〉, that is,

Lx(u) = u(x) = 〈u, rx〉. By setting u = rz, we have that rz(x) = 〈rz, rx〉. We

define the reproducing kernel as:

K(x, z) = 〈rx, rz〉 , (3.1)

K : Ω× Ω→ R. (3.2)

The reproducing kernel K is:

a) symmetric: K(x, z) = K(z, x)

b) semidefinite positive:
∑n

i,j=1 cicjK(xi, xj) ≥ 0 ∀n, ci ∈ R, ∀xi ∈ Ω

The theory of Reproducing Kernel Hilbert Spaces (RKHS) was first introduced

in [36]. Their adoption as hypothesis space provides a general solutions to

functions’ estimation and approximation problems, see [37, 38].

Example: 3.1 (i) Reproducing Kernel Hilbert Space

Let V = {u ∈ L2(R) | supp(û) ⊂ [−a, a]}, where a > 0 is fixed and

F [u](ω) = 1√
2π

∫ +∞
−∞ e−jxωu(x) dx is the Fourier transform of u, with j the imaginary

unit. Then, V is the space of functions with limited bandwidth. It can be shown that

V is a Hilbert space with respect to the inner product 〈u, v〉 =
∫ +∞
−∞ u(x)v(x) dx. It

can also be shown that:

- Lx is continous ∀x ∈ R

- V is a RKHS

- The reproducing kernel is:

K(x, z) =
sin
(
a (z − x)

)
π (z − x)

An important result is the following theorem [37]:

Theorem 3.1.1 Moore-Aronszajn theorem

A RKHS defines a corresponding reproducing kernel. Conversely, a reproducing

kernel defines a unique RKHS.

So, if we are able to define a reproducing kernel, we know that there exists an

associated RKHS H. The kernel defines the properties of the functions that

belong to the respective RKHS.

22

Chapter 3. Nonparametric system identification

Example: 3.1 (ii) Reproducing kernels

Examples of reproducing kernels are the following:

- Linear kernel: K(x, z) = x · z

- Gaussian kernel: K(x, z) = e−
‖x−z‖2

2σ2

- Polynomial kernel: K(x, z) = (x · z + 1)d

The idea is then, in the case of a learning problem, to search the unknown

function in H. The advantage is that, by selecting an appropriate kernel, we

are able to impose the desired characteristics to the functions in H and, as a

conseguence, to the learned one. An example of this is as follows.

Example: 3.1 (iii) Kernels and induced function space

Suppose that the (non-normalized) Gaussian kernel K(x, z) = e−
‖x−z‖2

2σ2 is

employed. Let C0
0 (Rm) denote the set of continous function with compact support.

The set

Hσ ≡
{
u ∈ C0

0 (Rm) : u ∈ L1 (Rm) and

∫
Rm
|F [u] (ω)|2 e

σ2‖ω‖2
2 dω < +∞

}
is the RKHS associated with the Gaussian kernel K(x, z) [39]. It can be shown that

the functions u ∈ Hσ have induced norm:

‖u‖2 ∝
∫
Rm
|F [u] (ω)|2 e

σ2‖ω‖2
2 dω.

Notice that the induced norm is greater for functions that have higher frequency

components. Then, as a conseguence of the characterization of the Gaussian RKHS

Hσ, the following statements hold:

1. For any 0 < σ < τ , we have that:

Hτ ⊂ Hσ ⊂ L2 (Rm)

2. For any u ∈ Hτ , we have that:

‖u‖Hτ ≥ ‖u‖Hσ ≥ ‖u‖HL2

The interpretation of the previous statements is that, as σ gets higher, less functions

satisfy the definition of Hσ, since the functions’ norm increases.

23

Chapter 3. Nonparametric system identification

3.2 Regularization in RKHS

A typical formulation of a static nonparametric learning problem is to find the

function ĝ : Ω→ R, in a RKHS H, such that:

ĝ = arg min
g∈H

N∑
i=1

(
yi − g(xi)

)2
+ λ · ‖g‖2

H, (3.3)

for a finite set N of points (xi, yi) ∈ Ω × R. Here, we used the shorthand

notation xi = x(ti) and yi = y(ti). This means that yi is the ti-th observation of

the outcome variable y, and xi is the ti-th observation of the regressor variable

x. The variational problem (3.3) is similar to the formulations (2.13) and (2.14).

The first term in (3.3) is the cost which measures the function’s fit to data.

A condition for the existence of a unique minimizer of (3.3) is that this cost

has to be strictly convex (no flat regions) and coercive (meaning that it grows

rapidly at extrema). The second term represents a regularization component,

penalizing the norm of each hypothesis g in the hypothesis space H, where

λ > 0 is an hyperparameter. When a RKHS is adopted as hypothesis space,

problem (3.3) is well-posed: the solution is unique and is stable, meaning that

small perturbations in the data do not change the final solution [12].

The rationale of the method is clearly different from the parametric case:

instead of constraining the unknown function to a specific parametric structure,

g is searched over a possibly infinite-dimensional functional space H (a space is

infinite-dimensional if it does not have a finite basis). One question naturally

arises: how it is possible to practically manage an infinite number of values?

The answer is given by the following result [40]:

Theorem 3.2.1 Representer theorem

The minimizer of (3.3), where H is a RKHS, is given by:

ĝ(x) =
N∑
i=1

ciK(x, xi) =
N∑
i=1

ciK(xi, x) (3.4)

=
N∑
i=1

cirxi(x), (3.5)

for some N-tuple c = [c1, c2, . . . , cN]T ∈ RN×1.

Hence, minimizing over the (possibly infinite-dimensional) Reproducing Kernel

Hilbert Space H boils down to minimizing over RN , that is, to estimate the

coefficients’ vector c ∈ RN . The expression (3.5) has an intuitive interpretation:

24

Chapter 3. Nonparametric system identification

the estimated function’s value at a point x, i.e. ĝ(x), is obtained as a weighted

sum of the representer functions rxi of every point xi in the dataset, evaluated

in the new point x. The solution appears as just a sum of basis functions

(the representers): however, unlike the standard parametric approach, in this

solution the number of basis functions is not fixed, but it depends on the number

of data points. The estimator (3.5) is known in the literature as regularization

network [41] or least squares support vector machine [42].

Example: 3.2 (i) Impact of kernel choice on the learned function

Consider the RKHS Hσ induced by the (non-normalized) Gaussian kernel

K(x, z) = e−
‖x−z‖2

2σ2 . Then, the function u ∈ Hσ has induced norm [39]:

‖u‖2 ∝
∫
Rm
|F [u] (ω)|2 e

σ2‖ω‖2
2 dω.

The formulation (3.3) then penalizes more heavily functions with high frequency

components, striving for smoother solutions. As σ gets higher, the norm increases

and the regularization term becomes more important, restraining the function space

to a set of even smoother functions.

It turns out that the expression for the vector of coefficients c admits

a closed-form solution. Using the representer theorem (3.5), an alternative

expression for the squared norm ‖g‖2
H is:

‖g‖2
H = 〈g, g〉H =

〈
N∑
i=1

cirxi ,
N∑
j=1

cjrxj

〉
(3.6)

=
N∑
i=1

N∑
j=1

cicj
〈
rxi , rxj

〉
(3.7)

= cTKc, (3.8)

where K ∈ RN×N is a semidefinite positive matrix (also called Gram matrix or

kernel matrix) such that Kij = K(xi, xj). Using (3.5) and (3.8) it is possible

to rewrite the minimization problem (3.3) as function of only the vector of

coefficients c:

ĉ = arg min
c∈RN

‖Y −Kc‖2
2 + λ · cTKc, (3.9)

where Y ∈ RN×1 contains the yi stacked in row, and ‖ · ‖2 denotes the 2-norm

operator. Solving problem (3.9) (by setting the partial derivatives with respect

25

Chapter 3. Nonparametric system identification

to c to zero) yields:

(K + λIN) · ĉ = Y. (3.10)

The estimate ĉ of the coefficients’ vector c can then be obtained by solving the

linear system (3.10).

In the case of the linear kernel, i.e. K(x, z) = xT ·z, the kernel matrix K can

be written as K = ΦΦT , where Φ ∈ RN×m contains the N observed regressors

x ∈ Rm×1 stacked in row. The problem (3.9) can then be reformulated as:

ĉ = arg min
c∈RN

‖Y − ΦΦT c‖2
2 + λ · cTΦΦT c (3.11)

By defining θ ≡ ΦT · c ∈ Rm×1 we have that (3.11) becomes:

θ̂ = arg min
θ∈Rm

‖Y − Φθ‖2
2 + λ · θT θ (3.12)

= arg min
θ∈Rm

‖Y − Φθ‖2
2 + λ · ‖θ‖2

2 (3.13)

=
(
ΦTΦ+ λIm

)−1
ΦTY (3.14)

The solution to the problem (3.3), when the function space H generated by

the linear kernel K(x, z) = xT · z is adopted as hypothesis space, is therefore

the same as the Ridge regression solution (2.23) and the MAP estimate of the

bayesian linear model problem with a Gaussian prior on the parameters (2.52).

3.3 System identification as function estimation

One successful approach, that incorporated the kernel methods previously

presented into the system identification field, has been proposed in [8]. Here

the authors faced the problem of identifying a continous stable SISO system’s

impulse response. The impulse response is seen as a continous function of

time, and lends itself naturally to the applications of the methods described in

Section 3.2, that dealt with continous static functions g. Assuming an output

error model, one has that the response of a dynamic system is:

y(ti) =

∫ +∞

0

u(ti − s)g(s) ds+ e(ti) i = 1, . . . , N (3.15)

where u(ti), y(ti) are the system’s input and output (at time ti) respectively,

e(ti) is a white noise and g is now the impulse response. The dataset is now

composed by the couples {u(ti), y(ti)}. The system identification problem

26

Chapter 3. Nonparametric system identification

presents some peculiarities with respect to the static case:

1. the domain of the function g is one-dimensional and given by the positive

real axis (the domain is now the time), i.e. Ω = R+ and g : R+ → R

2. compared to the static case, the nature of the data is more complex since,

in place of g(xi), the measurement model involves the functional Li given

by:

Li [g] =

∫ +∞

0

u(ti − s)g(s) ds (3.16)

The optimization problem can now be formulated as:

ĝ = arg min
g∈H

N∑
i=1

(
yi − Li [g]

)2
+ λ · ‖g‖2

H, (3.17)

which coincides with (3.3) except that Li [g] replaces g(xi). The authors in

[8] established that the representer theorem is still valid for problem (3.17).

This is the case because the functional Li is linear and continous, so the

Riesz’s theorem holds (see Appendix B). The functional Li can therefore be

expressed as Li[·] = 〈·, rti〉, and so we are in a situation like in the case of static

systems. The solution to (3.17), as function of time t, can be expressed using

the representer theorem 3.2.1 as:

ĝ(t) =
N∑
i=1

ciLi [rt] , (3.18)

where t ∈ R+ and the coefficients’ vector c admits a closed-form solution.

The difference with respect to the static case is that the basis functions

are no more the representers, but their convolution with the input u, i.e.

Li[rt] =
∫ +∞

0
u(ti − s)K(t, s)ds.

A key issue is the choice of the kernel function. As stated by the representer

theorem (3.5), the representer functions rxi(x) (also known as kernel’s sections)

constitute the elements that, linearly combined, compose the final solution.

For stable dynamic systems, the impulse response decreases exponentially to

zero. Therefore, a suited kernel is one that generates kernel’s sections which

decrease to zero, imposing a sort of “prior knowledge” about the unknown

function. Broadly speaking, this represents the fact that the uncertainty about

the impulse response behaviour decreases as time increases, since we are sure

that it will eventually go to zero. Let’s now introduce the cubic spline kernel

27

Chapter 3. Nonparametric system identification

as [21]:

K(x, z) =
x · z ·min{x, z}

2
− min{x, z}3

6
(3.19)

where K : Ω × Ω → R, Ω = [0, 1], and which kernel’s sections are cubic

smoothing splines, consisting of piecewise third-order polynomials, see Figure

3.1.

0
1

0.1

1

0.2

0.3

0.5

0.4

0.5

0 0

(a) Cubic spline kernel

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b) Cubic spline representers

Figure 3.1: Cubic spline kernel and kernel’s sections rz(x) for z = 0.1, 0.2, . . . , 1

The use of spline functions, originally employed in the interpolation scenario,

permits to leverage notable numerical properties. In particular, piecewise

polynomials avoid Runge’s phenomenon [43] (presence of large oscillations in

the reconstructed function). As it is possible to notice in Figure 3.1, cubic

splines representers grow as the independent variable (the unkown function’s

input) x gets higher. In our formulation for dynamic systems, the input domain

is the positive real time axis. Let’s rename the independent input variable as

t: then, t ∈ R+. We therefore need representers that decrease to zero as time

t gets higher, in order to reflect the behaviour of the impulse response (the

unknown function that needs to be found). A solution could be to employ the

following change of coordinates using the cubic spline kernel K(x, z) defined in

(3.19):

S(t, s) = K(e−βt︸︷︷︸
x

, e−βs︸︷︷︸
z

), (3.20)

where t, s ∈ R+ and β is a hyperparameter that can be tuned by empirical Bayes

(see Appendix (A.3)). This procedure maps time values t and s (belonging

to R+) to suitable input, which belongs to (0, 1], for the cubic spline kernel.

Therefore, when t = 0, we have that e−βt = 1 and the cubic spline kernel

assumes the maximum value. As time increases, the value of e−βt gets lower,

which translates into a lower value of the cubic spline kernel. By substituting

28

Chapter 3. Nonparametric system identification

expression (3.19) in (3.20), we obtain the stable spline kernel, see (3.2):

S(t, s) =
e−β(t+s+max(t,s))

2
− e−3βmax(t,s)

6
, (3.21)

which is a valid kernel as shown in [21] and exibits the desidered properties.

0
3

0.1

3

0.2

2

0.3

2

0.4

1 1
0 0

(a) Stable spline kernel

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

(b) Stable spline representers

Figure 3.2: Second-order stable spline kernel with β = 1 and kernel sections rs(t) for
s = 0.2, 0.4, . . . , 2

The stable spline kernel (3.20), defined for continous time systems, can be

straightforwardly extented to the discrete time setting by setting α = e−β and

obtainining the sampled version (2.61).

Just as Ridge regression (which we obtained as special case of kernel

regression equipped with a linear kernel) admitted a Bayesian interpretation,

the generic formulation of kernel regression (3.3) can be given a probabilistic

interpretation in a Bayesian framework [17, 38, 44, 45]. The rationale is

to interpret the unknown function as as continous-time Gaussian stochastic

process on R+. The observations yi are modeled as in (3.15) and (3.18), i.e.,

yi = Li[g] + ei, where:

� the ei are zero-mean Gaussian of variance σ2, mutually independent and

independent of g;

� the prior for the system’s impulse response g is a zero-mean Gaussian

stochastic process, on R+, with autocovariance γ2 ·K and independent

of ei.

Then, it is possible to show that the MAP estimation of the system’s impulse

respose g given the data is obtained by minimizing (3.3) with λ = σ2

γ2
. The

reader can find a connection with the Bayesian derivation of Ridge regression

(2.52).

29

Chapter 3. Nonparametric system identification

The application of kernel methods to system identification has been extented

to the non-linear case in [22]. In both cases, the main advantage of these

methods is the elimination of the model order selection step. This is performed

by the regularization term and the correspective (robust) tuning of the kernel’s

hyperparameters, which permit to explore a richer range of solutions with

respect to the “hard thresholding” of model order selection methods.

Other types of regularization employed for system identification relied on the

Lasso formulation [46, 47] (presented in Section 2.2.1). Regularized approaches

for nonlinear and state-space models identification can be found in [48, 49, 50].

The use of kernel methods in system identification is an actual and promising

line of research. After that much work has alredy been done in time-domain,

kernel methods are currently finding more and more applications also in the

frequency-domain system identification methodologies [26]. In addition to the

research of new kernel’s types, that embody particular prior information on the

system, another possible research direction is the introduction of new types of

regularization terms, in place of the squared norm ‖g‖2
H in the cost function 3.3.

This is exacly the focus that we will carry on in the next section, constituting

the first contribution of this thesis.

30

CHAPTER 4

Semi-supervised system identification

This chapter lays the foundation for the introduction of a new regularization

term, employed in the cost function (3.3), where the system identification

problem is cast into the framework of Reproducing Kernel Hilbert Spaces

(RKHS). The focus will be on Nonlinear Finite Impulse Response (NFIR)

systems. Therefore, the problem can be considered as a special case of learning

a static function, and the formulation (3.3) remains valid. The remainder of the

chapter is organized as follows. In Section 4.1, the proposed method is motivated

via intuitions and examples, highlighting the first main contributions of this

work. Section 4.2 defines the problem boundaries. Section 4.3 introduces the

theoretical foundations and assumptions in order to apply the semi-supervised

learning scheme. Section 4.5 suggests a method for generating additional input

points. Section 4.4 presents the proposed semi-supervised system identification

methodology. Section 4.6 shows the main results and comparison of the

described method with respect to employing standard Tikhonov regularization

in place of the proposed regularization term. Lastly, Section 4.7 is devoted to

concluding remarks and future challenges.

4.1 Motivation

An humble attempt of this thesis is to collect, organize and show the main

interlacements that system identification had (and still has) with machine

learning. The author’s opinion is that there is still much that the two

Chapter 4. Semi-supervised system identification

communities can give and share to each other, in both directions. The aim of this

work is to foster and encourage, even if in a small portion, the dialog between

the two research areas. This is the position that we took in Chapter 1. The

present contribution born just beneath this line of reasoning. A main method

that system identification borrowed from machine learning is the technique of

regularization. In Chapter 2, we introduced this concept and the empirical

Bayes method, highlighting the effectiveness of their combined use (the former

technique to deal with the bias/variance tradeoff, the latter for hyperparameters’

tuning). In Chapter 3, the nonparametric function learning approach, based

on the RKHS framework, has been introduced. Originally developed for the

static function learning case (Section 3.2), the methodology has been extended,

and incorporated with relevant results, to the identification of dynamic systems

(Section 3.3). Both contributions to the system identification worlds came from

machine learning. The question that now arises naturally is: how much can

still give the machine learning world to system identification? The author’s

belief is, as previously explained, a lot.

In order to introduce the methodology that is the main actor of this chapter,

it is useful to recall the main machine learning fields of application. Broadly

speaking, machine learning deals with four types of problems:

� Supervised learning[30, 4]: this is the problem formulation that we

dealt with until now. The inputs and outputs to the unknown true

function are given, and the aim is to estimate this function from the

available dataset. We say that we have labeled or supervised data, since

the outputs (the labels) are known. In the following, we will use the two

definitions interchangeably. Supervised learning problems can be further

decomposed into classification and regression ones. In the former case, the

aim is to predict a category or a class, represented as categorical discrete

variables; in the latter, the purpose is to predict continous real-valued

data

� Unsupervised learning[30, 4]: in this setting, only the inputs are given.

The data are therefore unlabeled or unsupervised. In the following, we

will use the two definitions interchangeably. Thus, it is not possible to

induce a function. The purpose is to find patterns, clusters and relations

between the input data

� Semi-supervised learning[51]: this type of problems is characterized

by having both supervised and unsupervised data. A similar scenario

32

Chapter 4. Semi-supervised system identification

may occur when performing a measurement is costly or it is a destructive

experiment (see [52] for a selection of practical examples on the topic). A

variety of techniques have been developed to make use of the additional

(not labeled) data, in order to represent a function which maps inputs to

outputs

� Reinforcement learning[53]: this machine learning branch assumes

that, as well as inputs and outputs, a reward (for having taken a specific

action) is also available. The aim of the algorithm is then to learn a

policy, that is, what actions to take in correspondence of certain inputs,

in order to maximise the reward. This field shares many similarities with

the classic theory of optimal control [54].

Supervised learning concepts, such as regularization and kernel methods,

have found application in system identification. With the same spirit, by

looking at what machine learning still has to offer, we can legitimately wonder

if and how the presence of inputs with no corresponding outputs (i.e. unlabeled

data) can be useful to the system identification purpose. This would translate

the system identification problem from supervised to semi-supervised, opening

for the inclusion of related techniques. The addition of more training points

(although not supervised) can be beneficial in a small-data regime.

(a) Classification: Badly
conditioned classification task
using only two labeled points
(above) and well conditioned
problem exploiting additional
unlabeled samples (below)

Original data
Labeled data
Recostructed data

(b) Regression: learning a static function in presence
of few labeled points and additional unlabeled
regressors. The additional inputs lie in the x1 − x2
plane. The information about their disposition aids
the reconstruction of the output y (blue), together
with the points for which the y value is known (red)

Figure 4.1: Examples of semi-supervised learning of static systems

33

Chapter 4. Semi-supervised system identification

In the case of static systems, semi-supervised methods have already been

employed for both classification [52] and regression [55] cases. This is sketched

in Figure 4.1. In the classification example, the aim is to find a function (called

classifier) which correctly separates the black dot from the white one. Seeing

only this two points - top panel of Figure 4.1 (left) - a possible classifier would

be the horizontal dotted line. Suppose now that additional unlabeled points

are added (represented in grey in the bottom panel of Figure 4.1 (left). We do

not know if they are black or white, but we do know how they are arranged in

space. By exploiting the additional information provided by their placement,

it is possible to induce a different (and more reasonable) classification bound.

In the regression example, the aim is to learn the function that generated the

labeled data. These are data that are at our disposal, and are such that both

inputs (the vectors [x1, x2]T ∈ R2×1) and outputs y ∈ R are known. When, in

addition to the supervised data, other regressors (which lie in the x1−x2 plane)

are available (but without the corresponding output y), their disposition in the

x1 − x2 plane gives additional information about how the unknown y could be,

given that, for certain (supervised) points, the output y is known in advance.

The algorithm for producing Figure 4.1(right) has been presented in [55, 56].

Here, however, the described method (which makes use of additional input

data) is a transductive learning one. This means that its purpose is to correcly

predict only specific test data. This is in contrast with the inductive learning

reasoning, that tries to generalize from specific training examples to general

rules (which are then applied to specific test cases). System identification

belongs to this latter group, since the aim is to find a model that is able to

describe the true system in a generic set of applications. There is therefore

the need for a mathematical function, describing the relation between generic

inputs and outputs variables. As an example of how the use of additional input

data can be beneficial in the system identification case, consider the example

of Figure 4.2. Here, we supposed that an input signal u(t) has been passed

through a stable LTI SISO system, generating the corresponding output signal

y(t). The filtering effect of the dynamic system is that of attenuating and

delaying the input. Suppose now that the input is measured with a sampling

frequency that is greater with respect to the output one. We would end up with

more input data than output measurements, leading to a possible application

of the semi-supervised concepts.

The method presented in this chapter, named Semi-supervised System

Identification (SSI), gives a solution for the inductive semi-supervised learning

34

Chapter 4. Semi-supervised system identification

Figure 4.2: Example of obtaining a semi-supervised dataset in a dynamic scenario.
The input signal (top) is sampled more frequently than the output one
(bottom). This leads to having a set of supervised data (represented with
dots and connected by the dashed grey line), and a set of unsupervised
data (represented by the orange dashed vertical lines on the input signal)

problem. The aim is to identify the unknown true system S0 given a set of

input-output data (supervised dataset), leveraging also on the information

contained in a set of input-only measurements (unsupervised dataset). The

prior information embedded in the distribution of the unsupervised dataset

are employed in the form of an additional regularization term, called manifold

regularization. This is in line with the standard Tikhonov regularization term,

that can be interpreted, via a Bayesian treatment, as a prior information on the

parameters’ value (see Section 2.2). As a conseguence, Tikhonov regularization

impacts the global smoothness of the learned function. We will show that the

manifold regularization term implies, instead, the concept of local smoothness.

Since, in dynamic systems, the regressors may also contain the past output

samples (not available in correspondence of the unlabeled input points), we

will restrict our analysis to the case of Nonlinear Finite Impulse Response

(NFIR) systems, leaving this extension to future research. The point here is

that this work is a first (and unique) step into carrying the semi-supervised

framework into the system identification community. The principal virtue of

this contribution relies on the implications that this shipment could bring to

the system identification community when, arrived at destination through a

cargo truck full of goods, will be opened.

35

Chapter 4. Semi-supervised system identification

In this setting, it is appropriate to acknowledge that the application of a

manifold regularization term in (inductive) static fuction learning has been

faced in [57, 58, 59]. We built on these results, first by applying the methodology

to the system identification case, and, afterwards, by introducing a new method

for generating the unsupervised input data (without the need to perform an

additional experiment).

4.2 Problem statement

Let the NFIR Single-Input Single-Output (SISO) model be defined as:

S0 : y (t+ 1) = g
(
ϕ (t)

)
+ e (t) , (4.1)

where y (t) ∈ R denotes the system output, g is a nonlinear function, ϕ (t) ∈ Rm×1

is the regression vector made of past samples of the input u(t) such that

ϕ (t) = [u (t) , · · · , u (t−m+ 1)]T , and e (t) ∈ R is an additive white noise.

From now on, m will be referred to as the model order. The objective of this

work is to identify a system of type (4.1), assuming that m is known1. We

suppose furthermore that two different datasets are available: a supervised data

set DS and an unsupervised one DU . The supervised dataset is such that:

DS =
{(
uS (t) , y (t)

)
| 1 ≤ t ≤ NS

}
, (4.2)

where uS(t) is the input at time t, y(t) is the output associated with the input

uS(t), and NS is the number of supervised data. The unsupervised dataset DU
is defined as:

DU =
{(
uU (t)

)
| 1 ≤ t ≤ NU

}
, (4.3)

where uU (t) is an input for which the associated output has not been measured,

and NU is the number of these unsupervised input measurements. Notice that

the dataset DS contains both input and output samples, while the dataset

DU consists of only input measurements. In order to obtain a more compact

representation, it is useful to represent the observations and the regressors in

matrix form. By using the supervised dataset DS, we obtain the output vector

Y ∈ RN×1:

Y =
[
y (m+ 1) · · · y (NS)

]T
, (4.4)

1 The knowledge of m is generally not available and an estimate is usually derived from
the data. Since the issue is not trivial, this is postponed to future research.

36

Chapter 4. Semi-supervised system identification

which contains the observations y(t) stacked in row, and N = NS −m is the

number of outputs that it is possible to employ for the identification stage,

given the model order m. In the same way, it is possible to construct the N

supervised model’s regressors as:

ϕS (t) =
[
uS (t) · · · uS (t−m+ 1)

]T
m ≤ t ≤ NS − 1, (4.5)

where ϕS(t) ∈ Rm×1. The regressors’ matrix Φ ∈ RN×m can be defined as in

(2.19), by stacking all supervised regressors ϕTS (t) ∈ R1×m, leading to:

Φ =


ϕTS (m)

...

ϕTS (NS − 1)

 . (4.6)

Remember now that, in addition to the supervised dataset DS, we have at

our disposal also the unsupervised dataset DU , containing only input samples. It

is therefore possible to construct the model’s regressors as in (4.5), by leveraging

on DU . There are therefore NrU = NU −m+ 1 available unsupervised model’s

regressors, each one of them defined as:

ϕU (t) =
[
uU (t) · · · uU (t−m+ 1)

]T
m ≤ t ≤ NU , (4.7)

where ϕU(t) ∈ Rm×1. It is then possible to group all of these unsupervised

regressors into an (unsupervised) regressors’ matrix:

ΦU =


ϕTU (m)

...

ϕTU (NU)

 , (4.8)

with ΦU ∈ RNrU×m.

Combining the input datasets, we can define the joint matrix, containing

both supervised (4.5) and unsupervised (4.7) regressors, as:

Φ̃ =

[
Φ

ΦU

]
, (4.9)

where Φ̃ ∈ RNr×m and Nr = N +NrU is the total number of regressors, both

supervised and unsupervised. From now on, for simplicity, the i-th row of Φ̃

and Y will be denoted as ϕ (i) and y (i), respectively.

37

Chapter 4. Semi-supervised system identification

The aim now is to identify the system S0 by employing the information

contained in DS and DU .

4.3 Manifold regularization

When can DU be of some use into discovering the relation between inputs and

outputs? This is the case if the marginal probability density p(ϕ) which, we

suppose, generates the inputs, happens to be informative about the conditional

distribution p(y|ϕ), describing the possible outputs values in correspondence

of the input regressor ϕ [58]. We can make this possible by stating a specific

assumption about the connection between the marginal and the conditional

distributions [52]:

Assumption 4.3.1 Semi-supervised smoothness assumption

If two regressors ϕ (i) and ϕ (j) in a high-density region are close, then so

should be their corresponding outputs y (i) and y (j).

Assumption 4.3.1, therefore, constrains the solution to be smooth with

respect to the manifold onto which the regressors lie. This can be enforced by

a proper regularization term, that should reflect the intrinsic structure of p(ϕ).

This term has a different taste with respect to the standard Tikhonov one, that

instead, enforces a global smooth behaviour to the unknown function.

One of the first attempts to formalize Assumption 4.3.1 has been taken in

[60]. Here, we take the opposite path: our aim is to define a regularization term

which, in turn, enforces Assumption 4.3.1, without a specific set of choices and

ad-hoc definitions. In this view, a possible choice for the manifold regularization

term has been advocated in [58] as:

Sg =

∫
G
‖∇g (ϕ)‖2 · p (ϕ) dϕ, (4.10)

where G ⊆ Rm×1 is the regressor space and p(ϕ) denotes the probability density

function of the regressors defined over G. The main idea behind the manifold

regularization rationale considered here is that, if Assumption 4.3.1 holds, the

gradient of g, and so Sg, must be small. Then, minimizing Sg with respect to

model parameters on missing output labels is a way to enforce Assumption

4.3.1.

In the standard supervised learning approach, the information about the

input distribution p(ϕ) is rarely used. This is the case because, most of the times,

38

Chapter 4. Semi-supervised system identification

p(ϕ) is unknown and the smoothness index Sg cannot be computed exactly. It

turns out that Sg can be approximated using the regressor graph [57, 58]. This

is a weighted complete graph with the (supervised and unsupervised) regressors

as its vertexes, and the weight of each edge defined as:

wi,j = e
−
‖ϕ(i)−ϕ(j)‖2

2σe2 , (4.11)

where σe ∈ R is a tuning parameter. Now, let’s consider the Laplacian

matrix L̃ = D −W , where D ∈ RNr×Nr is the diagonal matrix with elements

Dii =
∑Nr

j=1 wi,j, and W ∈ RNr×Nr is the matrix composed by the weights wi,j.

A higher value of (4.11) indicates that two regressors are similar. This rationale

derives from the Laplacian Eigenmaps algorithm [61]. It can be shown that

[58]:

Sg ' Ỹ T · L̃ · Ỹ (4.12)

where Ỹ =
[
ỹ (1) , · · · , ỹ (Nr)

]T
=
[
g
(
ϕ(1)

)
, · · · , g

(
ϕ(Nr)

)]T
∈ RNr×1 contains

the noiseless outputs, corresponding to both supervised and unsupervised input

regressors. In order to obtain the approximation of Sg (4.12), only the input

regressors are needed. Thus, both supervised and unsupervised regressors can

be employed for this purpose. Notice that Y differs from Ỹ , since the former is

a noisy vector of N observations, while the latter is a noiseless vector of Nr

observations.

It is interesting to observe that the same problem structure (4.12) is shared

by other manifold learning methods, although they do not use L̃, but a different

symmetric matrix [62]. The reason of this fact is that such manifold learning

algorithms are still based on Assumption 4.3.1, but they interpret it from

different perspectives.

4.4 The semi-supervised approach

In this work, we will consider the realistic case where g is unknown and therefore

no prior parameterization is available. A powerful tool for dealing with such

challenges is the framework of the Reproducing Kernel Hilbert Spaces (RKHS),

presented in Section 3. Therefore, a kernel-based nonparametric approach,

based on RKHS, is proposed. The method embodies the notion of manifold

regularization, in order to take advantage of the presence of unsupervised data

points.

Suppose now that g belongs to a RKHS H defined using the kernel K.

39

Chapter 4. Semi-supervised system identification

The tipical variational formulation, involving the Tikhonov regularization term

‖g‖2
H, has been presented in (3.3). In order to include information about the

local smoothness of the function (leveraging on the unsupervised data points),

it is meaningful to add the manifold regularization term (4.12) to (3.3), leading

to the following modified variational problem [58]:

ĝ = arg min
g∈H

N∑
t=1

(
y (t)− g

(
ϕ (t)

))2

+ λ · ‖g‖2
H + λM · Ỹ T · L̃ · Ỹ , (4.13)

where λM ∈ R is an hyperparameter which controls the weight given to the

manifold regularization term.

It is possible to show that the representer theorem 3.2.1 still holds for the

cost function (4.13), and the solution is given by considering all Nr regressors,

both the N supervised and the NrU unsupervised ones [58]:

ĝ
(
ϕ(t)

)
=

Nr∑
s=1

c̃sK
(
ϕ (t) , ϕ (s)

)
=

Nr∑
s=1

c̃sK
(
ϕ (s) , ϕ (t)

)
(4.14)

=
Nr∑
s=1

c̃srϕ(s)

(
ϕ (t)

)
, (4.15)

for some Nr-tuple c̃ = [c̃1, c̃2, . . . , c̃Nr]
T ∈ RNr×1.

The formulation (4.15) can be expressed in a more compact way by introducing

the kernel matrix K̃ ∈ RNr×Nr that spans all available Nr regressors:

K̃ =


K
(
ϕ (1) , ϕ (1)

)
· · · K

(
ϕ (1) , ϕ (Nr)

)
...

. . .
...

K
(
ϕ (Nr) , ϕ (1)

)
· · · K

(
ϕ (Nr) , ϕ (Nr)

)
 , (4.16)

Notice that (4.16) differs from the kernel matrix K ∈ RN×N introduced in

Section 3.2, which considers only the N supervised points. The vector Ỹ

introduced in (4.12) can the be rewritten as:

Ỹ = K̃c̃. (4.17)

The solution to the general problem, that depends only on the unknown vector

c̃ ∈ RNr×1, can be found by substituting (4.17) in (4.13) as in problem (3.9):

ĉ = arg min
c̃∈RNr

∥∥∥∥∥
[

Y

0NrU

]
− P · K̃c̃

∥∥∥∥∥
2

2

+ λT · c̃T K̃c̃+ λM · c̃T · K̃LK̃ · c̃. (4.18)

40

Chapter 4. Semi-supervised system identification

In order to proper evaluate the effect of the new introduced regularization

term (4.12), we will suppose from now on that the Tikhonov term in the cost

function (4.13) is set to zero, leading to the following purely semi-supervised

formulation:

ĝ = arg min
g∈H

N∑
t=1

(
y (t)− g

(
ϕ (t)

))2

+ λM · Ỹ T · L̃ · Ỹ . (4.19)

The solution of (4.19) can be therefore simply expressed as:

ĉ = arg min
c̃∈RNr

∥∥∥∥∥
[

Y

0NrU

]
− P · K̃c̃

∥∥∥∥∥
2

2

+ λM · c̃T · K̃L̃K̃ · c̃, (4.20)

where 0NrU ∈ RNrU×1 is column vector of all zeros. The matrix P ∈ RNr×Nr

permits to select only the elements of K̃ that contribute to explain the N

supervised data points, such that:

P =

[
IN 0

0 0

]
. (4.21)

Since (4.20) is now quadratic in c̃, its minimization can be carried out

analytically, just as in (3.9). The minimizer of (4.20), therefore, can be found

by solving the linear system:

[
P · K̃ + λM · L̃ · K̃

]
· ĉ =

[
Y

0NrU

]
. (4.22)

Notice that the formulation of the solution came in a form similar to the

standard Tikhonov regularization problem (3.10), with the difference that, now,

the unsupervised points contribute to the overall estimated function via the

matrix K̃.

It is now interesting to show a comparison between searching the unknown

function, following formulation (4.13), where, respectively, only the Tikhonov or

the manifold regularization term is considered. We consider, for clarity, a static

function estimation problem, from a finite set of supervised and unsupervised

points, using the RKHS framework. The true unknown function g(x) presents

a discontinuity point at x = 0, in order to show the different properties of

smoothness that the two regularization terms induce. The Tikhonov term

enforces a global smooth behaviour, while the manifold term strives for local

smoothness. The employed kernel is the Gaussian kernel K(x, z) = e−
‖x−z‖2

2σ2 .

41

Chapter 4. Semi-supervised system identification

Figure 4.3 shows the results of a regularization network that employs only the

Tikhonov regularization as in (3.9), for different values of λ and σ. In this case,

the unsupervised points are of no use, and therefore are not depicted. When

λ = 0, also the Tikhonov term is absent, and the estimated function interpolates

each one of the supervised points. Choosing a low value of σ, we are defining a

function space that admits also non-smooth functions (see Examples 3.1(iii)

and 3.2(i)). Because of this, the learned function is composed by a series of

sharply peaked Gaussians, centered at the observed points. This is in line with

the definition given by the representer theorem (3.2.1), given that, in the case

of a Gaussian kernel, the representers (or kernel’s sections) are still Gaussian

functions. As σ grows, the estimated function gets smoother, fitting worse and

worse the high variation regions of the true underlying function. The effect

of the regularization hyperparameter λ is that of weighting the regularization

and the error cost function. With high values of λ, the estimated function

tends to the zero one: this is in line with the parametric approach, where a

high λ value makes all parameters’ estimates null. In all of these cases, given

the global nature of the imposed regularization, the estimated function fails to

approximate well the discountinuity region.

-1.5 -1 -0.5 0 0.5 1 1.5
-5

0

5

-1.5 -1 -0.5 0 0.5 1 1.5
-5

0

5

-1.5 -1 -0.5 0 0.5 1 1.5
-5

0

5

-1.5 -1 -0.5 0 0.5 1 1.5
-5

0

5

-1.5 -1 -0.5 0 0.5 1 1.5
-5

0

5

-1.5 -1 -0.5 0 0.5 1 1.5
-5

0

5

-1.5 -1 -0.5 0 0.5 1 1.5
-5

0

5

-1.5 -1 -0.5 0 0.5 1 1.5
-5

0

5

-1.5 -1 -0.5 0 0.5 1 1.5
-5

0

5

Figure 4.3: Example of hyperparameters’ sensitivity when employing only the
Tikhonov regularization term. The plots depict the true unknown
function (solid green line), the supervised data (red dots), and the
estimated function (dotted black line)

The function’s estimation example using only the manifold regularization

term is depicted in Figure 4.4. Here, we suppose that unsupervised points are

available in a neighbourhood of the discontinuity point. The method should

42

Chapter 4. Semi-supervised system identification

not regularize in this region, in order to allow non-smooth (rapid) variation of

the estimated function, and should enforce, instead, smoothness elsewhere. By

choosing an appropriate low value of σ, it is possible to fit the function even

in the discountinuity region, being not sensible to the variation of λM . High

values of σ makes the estimate smoother, just like as λ controlling the Tikhonov

regularization. Increasing λM makes the function as smooth as possible: in

this case, this means that the manifold regularization term is weighted much.

This, in turns, translates into making each domain point similar to the other,

and the estimated function reduces to the mean of the supervised points.

-1.5 -1 -0.5 0 0.5 1 1.5
-5

0

5

-1.5 -1 -0.5 0 0.5 1 1.5
-5

0

5

-1.5 -1 -0.5 0 0.5 1 1.5
-5

0

5

-1.5 -1 -0.5 0 0.5 1 1.5
-5

0

5

-1.5 -1 -0.5 0 0.5 1 1.5
-5

0

5

-1.5 -1 -0.5 0 0.5 1 1.5
-5

0

5

-1.5 -1 -0.5 0 0.5 1 1.5
-5

0

5

-1.5 -1 -0.5 0 0.5 1 1.5
-5

0

5

-1.5 -1 -0.5 0 0.5 1 1.5
-5

0

5

Figure 4.4: Example of hyperparameters’ sensitivity when employing only the
manifold regularization term. The plots depict the true unknown function
(solid green line), the supervised data (red dots), the unsupervised
data (blu dots), and the estimated function (dotted black line). The
hyperparameter σe is fixed to 0.01

4.5 Unsupervised inputs selection

As state in Section 4.1, unlabeled inputs reveal the manifold where the

regression variables typically take value. By using the proposed semi-supervised

regularization, identification is tuned so as to fit well the data-generation

mechanism on such manifold. The use of artificial data to induce regularization

is not new. Ridge regression estimates can be obtained by ordinary least

squares regression on an augmented dataset, where generated response values

are set to zero. In this way, the fitting procedure is forced to shrink also

the coefficients toward zero [4]. Authors in [63] formalized the Vicinal Risk

43

Chapter 4. Semi-supervised system identification

Minimization (VRM) principle. Here, additional virtual examples can be drawn

from a defined vicinity distribution of the training examples, to enlarge the

support of the training distribution. In this work the authors showed how,

using the VRM approach, one can obtain the regularized Ridge regression and

Support Vector Machine (SVM) solutions [4],. This method is currently often

applied for training deep neural networks, in particular when performing image

classification. Infact, it is common to define the vicinity of one image as the

set of its horizontal reflections, slight rotations, and mild scalings [64]. In this

setting, a recent data augmentation technique has been introduced to alleviate

overfitting problems and sensitivity to adversarial examples [65]. A related

idea has been presented by [66], where model constraints are implemented by

adding artificial data examples that satisfy them. Differently from previously

cited methods, here the learning “hints” can be designed by relying only on

the independent variables.

In real-world identification of dynamic systems, contrary to the standard

semi-supervised problems encountered in machine learning, the unsupervised

data set DU may not be a problem input as in Figure 4.4, but, instead, a design

parameter. In some cases, DU may contain some input time series which are

likely to excite the system dynamics in future operating conditions (when the

model will be used). More often, since this additional data set affects the model

quality, DU could be chosen to enforce Assumption 4.3.1 to be true. Notice that

to obtain such an additional data set, it is not required to run a new experiment

on the plant. Following Figure 4.4, if the discontinuity region would be known,

a possible unsupervised points generation method could be to generate the

additional inputs as in the example. If the discontinuity region is not known,

then, a more general method has to be devised for the generation of DU .

Before discussing the choice of DU , notice that Assumption 4.3.1 requires

only that, inside the same high density region, the regressors have a similar

corresponding output, namely that their difference is “small”. For this reason,

the proposed method will generate the unsupervised regressors in the neighborhood

of the supervised ones, where, if the system is smooth enough, they should have

a similar corresponding output. This approach will generate a regressors set

similar to the one shown in Figure 4.5, where it is possible to notice the presence

of NS regions, containing a supervised regressor and some unsupervised ones.

The algorithm used to select DU is indicated next. Let DU be composed of

44

Chapter 4. Semi-supervised system identification

p unsupervised datasets DiU , i = 1, . . . , p as:

DiU =
{(
uiU (t)

)
| 1 ≤ t ≤ NS

}
(4.23)

where uiU (t) = uS (t) + vi(t), vi(t) is a random variable and p is a tuning knob

of the method. Each one of the p new (unsupervised) datasets contain therefore

exactly NS unsupervised input regressors, see Figure 4.5.

Figure 4.5: An example of unsupervised regressors’ selection, for a system with m = 2
using p = 10. The plot represents the supervised regressors (red crosses)
and the unsupervised regressors (blue circles)

The value of vi(t) determines the distance of the p unsupervised points

with respect to the supervised one (proportional to the area of the regressors’

regions): therefore, it has to be small enough to guarantee that the system

output does not vary significantly inside these regions. The choice of vi(t) will

be discussed later.

From such p datasets, it is possible to determine the quantities defined in

Section 4.2. Since the unsupervised points are generated in correspondence of

the supervised ones, we have N employable unsupervised regressors for each one

of the p datasets. This leads to a total of NrU = p ·N unsupervised regressors

ϕiU (t) ∈ Rm×1, i = 1, . . . , p. Each one of them is such that, according to (4.7):

ϕiU (t) =
[
uiU (t) · · · uiU (t−m+ 1)

]T
m ≤ t ≤ NS − 1. (4.24)

45

Chapter 4. Semi-supervised system identification

From the unuspervised regressors computed in (4.24) using the i-th dataset, it

is possible to form the i-th unsupervised regressors’ matrix ΦiU ∈ RN×m as in

(4.8):

ΦiU =


(
ϕiU (m)

)T
· · ·(

ϕiU (NS − 1)
)T
 . (4.25)

The complete (unsupervised) regressors’ matrix ΦU ∈ RNrU×m can there be

therefore composed by stacking the matrices (4.25), i = 1, . . . , p:

ΦU =


Φ1
U
...

ΦpU

 . (4.26)

A reasonable criterion for the selection of the random variable vi(t) is to

consider that the regions should not mix with each other, since this would lead

to non-smooth functions (e.g., with jumps in certain points). It is then useful

to introduce a tuning parameter α, allowing to regulate the regions’ maximum

area, and that highlights if the regions mix or not. In particular, in the method

indicated next, α = 1 corresponds to the threshold between mixed regions

(achieved using α < 1) and completely distinct regions (α > 1). In order to

use α, it is necessary to define a distribution of vi(t) that depends on α and

guarantees the aforementioned properties. A possible way is to use a uniform

distribution:

vi(t) ∼ U (−h, h) 1 ≤ t ≤ NS, i = 1, . . . , p (4.27)

where h > 0 determines the area of the unsupervised points regions. To impose

distinct regions, the following inequalities must hold:

∥∥ϕiU (t)− ϕS (t)
∥∥ ≤ d

2
m ≤ t ≤ NS − 1, i = 1, . . . , p (4.28)

where d is the distance between the two closest supervised regressors. After

some computations, it can be shown that (4.28) can be written as:

m∑
j=1

(
vi (t− j + 1)

)2 ≤

(
d

2

)2

m ≤ t ≤ NS − 1, i = 1, . . . , p (4.29)

Since |vi (t− i+ 1)| ≤ h (it is generated from the random variable (4.27)), the

46

Chapter 4. Semi-supervised system identification

inequalities (4.29) hold if:

m∑
j=1

h2 ≤

(
d

2

)2

. (4.30)

Recalling that h ≥ 0, we have that (4.30) corresponds to:

h ≤
d

2
√
m

(4.31)

The condition described in (4.31) imposes a constraint for h to maintain NS

distinct regions. To make such a constraint more or less conservative, it is

possible to use α, for examples, as follows:

h =
d

2α
√
m

(4.32)

4.6 Results and discussion

In this section, a numerical example is provided to show the effectiveness

of the Semi-Supervised Identification algorithm, presented in the previous

sections, that employs the manifold regularization term as in (4.19). The

approach is compared with the standard formulation (3.3), where the Tikhonov

regularization is considered. We employed the Gaussian kernel to estimate the

second order (m = 2) NFIR system:

y (t) =1.432 · u (t)2 + 1.564 · u (t− 1)2 + 3.234 · u (t)u (t− 1) +

+ 2.145 · u (t)3 + 3.432 · u (t)2 u (t− 1) +

+ 2.745 · u (t)u (t− 1)2 + 1.034 · u (t− 1)3 .

(4.33)

The supervised dataset DS generated from (4.33) is composed by very few

points, namely NS = 15 measures, corrupted by a Gaussian white noise input of

zero mean, unitary variance and signal to noise ratio of 15 dB. The problem is

then badly conditioned and is well suited for testing the proposed methodology.

The unsupervised input dataset DU has been generated according to Section

4.5.

The hyperparameters of the Tikhonov regression method (3.3) are:

1. λ: the regularization coefficient

47

Chapter 4. Semi-supervised system identification

2. σ: shape parameter of the Gaussian kernel

The hyperparameters of the manifold regression method (4.19) are:

1. λM : the regularization coefficient

2. σ: shape parameter of the Gaussian kernel

3. σe: shape parameter of the Laplacian Eigenmaps

4. α: the parameter controlling the area of the generated unsupervised

points

5. p: the number of additional unsupervised datasets

In order to tune the respective hyperparameters of the methods, an additional

supervised dataset DV of NV = 1000 points has been generated in the same way

as DS. This has been done in order to assess the method capability and value.

For obvious reasons, DV should not be available, otherwise the problem is no

more ill conditioned, and a standard least-squares approach should be pursed.

The empirical Bayes method, introduced in Section A.3, could be employed

to estimate the hyperparameters without resorting to DV . The considered

hyperparameters are reported in Table 4.1.

In order to assess the overall performance of the estimation methods, a

supervised testing dataset DT of NT = 10000 points is employed, generated

analogously to DS. Using DT it is possible to evaluate the NRMSE (Normalized

Root-Mean Square Error) fitness metric:

Fit = 100 ·

1−

∥∥∥YT − Ŷ ∥∥∥
‖YT − yT · 1‖

 , (4.34)

where Ŷ is the vector of the estimated test outputs using the test inputs, YT is

the true test outputs vector, yT is the mean of YT and 1 denotes a vector of

ones of suitable dimension.

In particular, a Montecarlo test using NM = 100 sets of measures (with

different random initializations) is proposed, to show the statistical significance

of the method. The notched boxplots in Figure 4.6 depicts that SSI significantly

outperform the Tikhonov regularization method, showing a significant difference

in the medians. The SSI method, in addition, exhibits a lower estimation

variance. In Figure 4.7, one of the 100 realizations is chosen to show how the

function estimates evolves in time domain. Again, the SSI estimation is clearly

48

Chapter 4. Semi-supervised system identification

Table 4.1: Values of the tuning parameters for the nonparametric approaches in the
numerical example.

Tikhonov regression

λ 100 evenly spaced values in [0, 10−3]

σ 3, 6, 10, 11

Semi-supervised System Identification

λM 100 evenly spaced values in [10−6, 10−1]

σ 3, 6, 10, 11

σe 0.1, 1, 10, 100

α 100 evenly spaced values in [1, 17]

p 2, 3, 4

better than the standard Tikhonov regularization, especially for estimating the

peaks of the true system output.

Given the numerical results, the belief is that they clearly show the potential

of the semi-supervised approach for nonlinear system identification with respect

to state of the art techniques. The price to pay is the fact that, e.g., compared

to Tikhonov regression, three additional knobs need to be tuned, namely σe, α,

p. However, notice that they are characterized by a clear physical interpretation:

σe controls how much far two points can be considered similar or “connected”

(if σe → ∞ the result is an adiacency graph); p (that is, NrU/N) indicates

the relevance of the prior smoothness assumption over the measured data,

while α represents a degree of smoothness. Therefore, they can be reasonably

tuned with some (mild) prior information on the system dynamics. Moreover,

simulations showed that, at least for the considered example, the performance

are not sensitive to a fine tuning of such parameters.

49

Chapter 4. Semi-supervised system identification

Tikhonov regularization Semi-supervised identification

30

40

50

60

70

80
F

it
[%

]

Figure 4.6: Comparison between Tikhonov regression and Semi-Supervised
Identification in terms of the NRMSE measure of fitness. The boxplots
represent a total of 100 different simulation and estimation trials

5 10 15 20 25 30 35 40
Samples

-100

0

100

200

300

400

500

S
ys

te
m

 o
ut

pu
t

SSI
Tikhonov regression
True output

Figure 4.7: Comparison between Tikhonov regression and Semi-Supervised
Identification in terms of the time behaviour of one random data
realization

50

Chapter 4. Semi-supervised system identification

4.7 Conclusions and future developments

In this work, a semi-supervised learning approach suited to nonlinear dynamical

systems has been developed. The method applies to NFIR models, namely those

models where output measurements are not needed for manifold regression,

and turns out to be equivalent to a weighted regularization network. The

approach has been shown to outperform the statistical performance of Tikhonov

regularization, when the additional unsupervised data set is selected as indicated

by the method. Future research work will be dedicated to the extension of the

semi-supervised paradigm to auto-regressive models and to a comparison with

more complex regularization techniques. The estimation of the hyperparameters

is still an open problem that have to be tackled. Another possible extension is

the ability to put arbitrary constraints to the learned function behaviour. As

stated in the beginning of the chapter, this work should be seen also in the

light of a first tentative to introduce into system identification the (previously

overlooked) framework of semi-supervised learning, which is very active in the

machine learning community. The aim is, as previously noticed, to encourage

a cross-fertilization between the two research areas.

51

Chapter 4. Semi-supervised system identification

52

Part II

Applications of statistical

learning methods

CHAPTER 5

Health On Line Monitoring for Electromechanical actuator

Safety

The second part of this thesis presents some applications of statistical learning

methods to solve practical control and estimation problems. These case studies

constitutes the second contribution of this work.

The first application regards the development of a health monitoring

sofware for mechanical fault detection of Electro-Mechanical Actuators (EMA),

employed in the aerospace industry. The HOLMES project was funded by the

CleanSky Joint Technology Initiative, within the 7-th Framework Program

(FP7) of European Union (EU). Together with project’s partners, a massive

experimental activity has been carried out, by means of a test bench, on an

airliner EMA, equipped with a ballscrew transmission. Several degrees of a

specific type of fault have been injected on the actuator, and experimental

data were collected. Following chapters will present both a model-based and a

data-driven method applied to the HOLMES project. A third application

to this fault detection challenge regards an innovative improvement to a

known clustering algorithm, known as Principal Direction Divisive Partitioning

(PDDP).

This chapter introduces the HOLMES project, reviewing briefly in Section

5.1 the state of art of fault detection on EMA in aerospace environments, and

describing its experimental setup in Section 5.2.

Chapter 5. Health On Line Monitoring for Electromechanical actuator Safety

5.1 Fault detection and EMA

The development of a More Electrical Aircraft (MEA) is a technological

transition applied for almost all the systems in aircrafts and helicopters. In

such context, the implementation of Electro-Mechanical Actuators (EMAs) has

increased rapidly during the last years [67]. Mechanical systems deployed in

aerospace environments require constraints on weigth and robustness. When

no hardware redundancy can be afforded, for safety reasons, an actuator must

be equipped with a sophisticated diagnostic, prognostic, and recovery system.

The monitoring of mechanical components for Fault Detection and Isolation

(FDI) purposes is nowadays well known in literature [68].

A fault is defined as a not allowed deviation of at least one system property

or parameter, with respect to its nominal operating behaviour [69]. Examples

of such malfunctions are the jam of an actuator, a sensor contact loss, or a

disconnection of a system component. These faults can lead to unsatisfactory

performance, destabilize the process and possible catastrophical events. Fault

detection and diagnosis systems implement the following tasks [70]:

� Fault Detection: the indication that something deviates from nominal

system behaviour

� Fault Isolation: the determination of the fault location

� Fault Identification: the quantification of the fault magnitude.

The isolation and identification tasks together are referred to as fault diagnosis.

Fault detection and diagnosis methods are usually classified into model-based

and model-free ones, see [71] and successive works for comprehensive reviews.

Most model-based failure detection and isolation methods rely on the idea

of analytical redundancy [72]. In contrast to physical redundancy, where a

deviation is detected via comparison of different sensors readings, in the latter

method sensory measurements are compared to analytically obtained values

of the respective variable. The physical sensor is then replaced by a virtual

one. This can be beneficial in some applications. The aerospace industry, as an

example, places hard constraints on installed equipment’s volume and weight.

A general scheme, introduced by [73], highlights the typical components of a

model-based fault detection methodology. Faults of different nature can affect

both actuators, processes and sensors. Based on system inputs u(t) and outputs

y(t), a model of the process under control can then be identified. The feature

generation step can be accomplished by one of three different methods:

56

Chapter 5. Health On Line Monitoring for Electromechanical actuator Safety

Actuators Process Sensors

Process

model

generation

Feature

detection

Change

diagnosis

Fault

Normal

behaviour

Model-based

fault detection

u(t)

n(t)

y(t)

Faults

Figure 5.1: Classical model-based fault detection scheme

1. Parameter estimation: the system parameters are computed online

with recursive identification algorithms. When the estimated values

deviate from the starting ones, a fault is detected. This method is

suitable for multiplicative faults, which can be modeled as parameter

changes [74]

2. State estimation: the state of the system is estimated via an observer

equipped with the nominal model. In this case the detection can be

done tracking the behaviour of the state variables and of the observer

innovations [75]

3. Parity equations: residuals are computed as z(t) = y(t) − G(s)u(t),

where u(t) is the system input, y(t) the measured output and G(s)

the process transfer function. These are then subjected to a linear

transformation, in order to obtain the desired fault detection and isolation

properties [76]. The state estimation and the parity equation methods

are suitable for additive faults, that influence a variable by the addition

of a fault entity.

Seminal works and surveys can be found in [77, 78], while [79] provides guidelines

for a practical use of model-based fault detection and isolation methods.

Previous work on model-based fault detection on EMA in aerospace can be

57

Chapter 5. Health On Line Monitoring for Electromechanical actuator Safety

found in [80, 81]. The former paper tested various types of mechanical (spalling

on raceway, actuator jam) and sensors faults, using a small scale test bed which

can be mounted on an aircraft. On the contrary, tests performed during this

project are based on a full scale 1:1 scale actuator. In the latter work, authors

focused on simulating failures on transmission gears and bearings. Instead,

in this work, real faults were injected on an EMA’s ballscrew transmission

spheres.

Regarding the recent employment of data-driven methods in the context of

electrical motors, in [82] a robust diagnosis technique is presented by iteratively

analyzing the patterns of multiple fault signatures in a motor current signal.

Similarly, [83] adopts kernel density estimation to evaluate the probability

density function of each healthy motor and motor stator fault. A review of

pattern recognition techniques for fault detection is given in [84], whereas a

panoramic view of features and classifiers for fault diagnosis is employed in

[85]. For a combination of model-based and model-free approaches on EMAs

in the avionics world, see [86].

The injected faults, test bench structure, experimental campaign and

measured data of the HOLMES project are described in the next section.

5.2 Experimental setup

The test rig is designed to represent the actuator of primary flight surfaces of a

wide-body airliner. As depicted in Figure 5.2, the test rig is composed by the

main EMA under test, equipped with a ballscrew transmission.

The motor consists of a five phases brushless DC motor. This configuration

is intrinsically fault tolerant; infact, the motor performance does not decrease

even when two phases are open. A nut containing the recirculating spheres

moves axially over the screw, transforming the rotation into a linear movement.

The EMA position is closed-loop controlled, ranging from 0 mm (home position)

to about 400 mm (fully extended). A hydraulic cylinder, modeled in [87], is

used to simulate the force which the EMA has to overcome during its motion

(mainly due to aerodynamic forces). A load cell is used to close the force

control loop. The nut under test has two recirculating circuits, with 80 balls

per channel that alternates between steel and ceramic ones, see Figure 5.3.

The fault investigated in this work consists of the damage undergone by

the the steel spheres, at different damage severity levels. This fault was chosen

for investigation after a Fault Tree Analysis (FTA) and a Failure Mode and

58

Chapter 5. Health On Line Monitoring for Electromechanical actuator Safety

Figure 5.2: Test rig with main components. The load cell is used to close the
hydraulic cylinder force loop, controlled by the servovalve

Figure 5.3: Ballscrew transmission and recirculation nut detail. The balls alternates
between ceramic and steel ones

Effect Analysis (FMEA). The RTCA/DO-160 “Environmental Conditions and

Test Procedures for Airborne Equipment” standard has been consulted, and

low temperature tests were performed. Other test conditions specified in the

standard have not been taken into consideration, because the actuator was

proved to be robust to them, or because they were impossible to test.

5.2.1 Fault implementation and test conditions

As described previously, the considered mechanical fault conditions regard the

spalling of steel balls inside the ballscrew recirculation nut. This type of fault

has been deemed representative of a real one by the ballscrew producer. The

59

Chapter 5. Health On Line Monitoring for Electromechanical actuator Safety

(a) Balls damage detail inside the transmission.
From left to rigth: light, medium and high
damaged balls

(b) Quantification of
ballscrew steel balls
injected damages

Figure 5.4: Injected faults on ballscrew spheres: qualitative and quantitative views

fault was injected by a Electrical Discharge Machine (EDM), which removes

material providing a truncated sphere shape. In this way, both the shape and

the dimension of the balls are modified. Three types of damage harshness have

been chosen. The fault quantification can be assessed by referring to Figure

5.4: the diameter d for healthy balls is 3.5 mm, while, for defected balls, the

entity of the fault is respectively:

� Light damage: A = 3.3 mm

� Medium damage: A = 3.2 mm

� High damage: A = 3.1 mm

With the aforementioned damage levels, four different nuts have been

prepared for tests:

1. Fault condition 0: no damaged spheres

2. Fault condition 1: 6 light damaged + 6 medium damaged + 6 high

damaged balls per channel

3. Fault condition 2: 20 high damaged balls per channel

4. Fault condition 3: 40 high damaged balls per channel

These conditions have been chosen in order to enhance the fault severity, by

increasing both the number of damaged balls and their damage level. Tests

were performed with both healthy and faulty nuts, by simply replacing one nut

60

Chapter 5. Health On Line Monitoring for Electromechanical actuator Safety

with another. During acquisition sessions, the temperature was controlled by

cooling the actuator after each movimentation to its starting temperature, in

order to minimize the uprising of temperature-dependent effects. A number

of tests have been also performed by letting the motor temperature to raise

up, to study the possible effects of heating on actuator performance. The test

campaign’s prospect included low temperature tests, which were performed by

means of a cold chamber, connected to the metal cage which embedded the

actuator, see Figure 5.5. This setup allowed to reach temperatures of −40 °C

via liquid nitrogen injection.

Figure 5.5: Low temperature tests setup with motor cage detail

5.2.2 Test profiles

The whole test bench is controlled via a specific PC bench, which permits

to select the desired profiles to be executed. The computer is connected to

the electric drive through a Serial Peripheral Interface (SPI) connection, and

communicates with the hydraulic cylinder via a National Instrument (NI)

CompactRIO hardware. The drive deals with the control of the electric motor

speed and current loop, while the CompactRIO computes the control law of the

hydraulic piston. The position, or speed, profile is sent via the RS232 protocol

to an ECU linked to the motor drive, and has the duty to close the position

control loop. The profiles used in the experimentation were discussed with the

project partners. The nominal load profile used during the tests corresponds

to a typical high lift load profile; additional load profiles with constant 12 kN

and 15 kN where employed as shown in Figure 5.6, to better assess the fault

conditions. Slightly different behaviours in the load response are due to test

61

Chapter 5. Health On Line Monitoring for Electromechanical actuator Safety

bench non-idealities. The position profile has been defined as follows:

1. Position run from 0 mm to 411 mm (100% of the actuator stroke), in 20 s

2. Acceleration of 2 s, from 0 mm
s

to 21 mm
s

In order to cope with the second constraint, the motion profile has been

implemented as a speed profile, as depicted in Figure 5.7. The experimental

tests consisted each in two runs of the aforementioned speed profiles: data

are recorded during all runs, but only measurements from the second run are

retained for successive processing. This is due to the fact that, during the first

motion, test rig’s settlements and vibration due to motion starting compromise

the validity of acquired data.

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20
Nominal load profile

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20
12 kN load profile

L
oa

d
[k

N
]

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20
15 kN load profile

Time [s]

Load measured
Load reference

Figure 5.6: Load profiles employed during the test sessions. The non-ideal tracking
behaviour is due to test bench limitations

5.2.3 Collected and available measurements

Various measurements have been collected from the test rig’s equipped electronic,

with the addition of a NI cDAQ device. The modules installed on the cDAQ

consisted in a 16 bit voltage module (to acquire the load cell for synchronzation

purposes) and current one (to acquire cylinder pressures), along with a 24 bit

module used to measure the signals of two piezoelectric accelerometers mounted

62

Chapter 5. Health On Line Monitoring for Electromechanical actuator Safety

0 5 10 15 20 25 30 35 40 45
−40

−20

0

20

40

Time [s]

S
pe

ed
 [r

ad
/s

]

Speed profile

Speed measured
Speed reference

Figure 5.7: Speed profile employed during the test sessions. Spikes and oscillating
behaviours are visible

in orthogonal directions on the nut. The acquisition frequency for the cDAQ was

set to 20 kHz; already acquired variables, related to the EMA, were acquired at

5 kHz and sent to the PC bench via SPI, while variables related to the hydraulic

part were measured at 1 kHz and stored via a NI 6323 16 bit acquisition board.

A type K thermocouple was mounted on the motor surface were the magnets

lie, and acquired through a Hydra Fluke device.

0 5 10 15 20 25 30 35 40 45
−10

0

10

Time [s]

C
ur

re
nt

 [A
]

Phase A current

5 5.05 5.1 5.15 5.2

−2

0

2

Time [s]

C
ur

re
nt

 [A
]

0 5 10 15 20 25 30 35 40 45
−10

0

10

Time [s]

T
or

qu
e

[N
m

]

Motor torque

5 5.05 5.1 5.15 5.2
3

4

5

6

Time [s]

T
or

qu
e

[N
m

]

Figure 5.8: Top: motor phase A current with detail on current shapes. Bottom:
computed motor torque with detail

Variables that were stored but not used to perform any health monitoring

function consist of the motor phase voltage references collected by the motor

drive, the motor angular position via a combination of resolver and multiturn

encoder measurement, the load and speed profile references.

The variables used for the development of the data-driven fault detection

algorithms are mainly related to phase current measurements, with current

sensors directly installed on the motor drive. The motor’s torque, along with

63

Chapter 5. Health On Line Monitoring for Electromechanical actuator Safety

PC
 b

en
ch

E
C

U

-
po

si
tio

n
lo

op

D
R

IV
E

-
sp

ee
d

lo
op

-
cu

rr
en

t l
oo

p

M

R
E

SO
L

V
E

R
M

U
L

T
IT

U
R

N

C
U

R
R

E
N

T

SE
N

S
O

R
S

E
M

A
 p

os
iti

o
n

E
M

A
 s

pe
ed

 (
dE

M
A

P
os

it
io

n/
dt

)

E
M

A
 p

os
it

io
n

m
ea

su
re

d

H
A

L
L

SE

N
S

O
R

S
 +

E

N
C

O
D

E
R

P
h

as
e

 c
u

rr
en

ts

re
fe

re
nc

es

P
ha

se
 A

,B
,C

,D
,E

 c
ur

re
n

ts

SP
I

T
ar

ge
t s

pe
ed

E
M

A
 r

ot
or

 m
ec

ha
n

ic
al

 p
o

si
tio

n

SP
I

SP
I

M
ea

su
re

d
va

ri
ab

le
s

B
L

D
C

 t
he

rm
oc

ou
p

le

P
h

as
e

 A
,B

,C
,D

,E

vo
lta

g
es

E
M

A
 p

os
iti

o
n

re
fe

re
nc

e

V
a

ria
bl

e
u

se
d

fo
r

co
nt

ro
l

V
ar

ia
bl

e
us

ed
 fo

r
H

ea
lt

h
M

on
it

or
in

g

L
E

G
E

N
D

cR
IO Load cell H

yd
ra

ul
ic

s

C
ur

re
nt

m

od
ul

e
N

I
92

03
+

-2
0m

A

cD
A

Q

V
ol

ta
ge

m

od
ul

e
N

I
92

15
+

-1
0V

A
cc

el
er

om
et

er

m
od

ul
e

N
I

92
33

H
yd

ra
 F

lu
ke

R
S2

32
 –

 A
ct

ua
tio

n
pa

ra
m

et
er

s

R
S2

32

Figure 5.9: Schematic of the test rig components, with interactions and measurements
system information

64

Chapter 5. Health On Line Monitoring for Electromechanical actuator Safety

the quadrature current, has been computed from the phase currents and the

motor mechanical sectors, Figure 5.8.

The motor’s commutation logic is provided by means of hall sensors and an

incremental encoder. The motor’s torque constant was obtained through bench

characterization. Other variables used to compute the fault detection indexes

are the load cell and the thermocouple. An overall representation of the

measurements’ information flow is presented in Figure 5.9.

For the development of the model-based fault detection scheme, the main

used variables are the phase currents (relating the torque with the motor

speed), the load cell, and the motor speed obtained by deriving the position

measurement.

The next chapters will present a model-based and a model-free fault

detection scheme applied to the HOLMES project.

65

Chapter 5. Health On Line Monitoring for Electromechanical actuator Safety

66

CHAPTER 6

Holmes project - Model based approach

This chapter presents a modification of the standard particle filter algorithm,

applied to the HOLMES project introduced in Chapter 5. The variant, based

on a hybrid system interpretation of the health monitoring problem, is known

as Observation and Transition Particle Filter (OTPF). By modeling each fault

condition as a hybrid system mode, the method is able to assess the most likely

regime for each time stamp. A model for each condition was identified and

the proposed methodology applied. Simulation results show the superiority

of the method with respect to the EKF (Extended Kalman Filter), especially

because the distribution of the disturbances that affect the system is usually

not gaussian.

6.1 Motivation for the particle filter algorithm

Most model-based methods and schemes referenced in Section 5.1 are based on

the assumptions that the sytem is linear and affected by gaussian disturbances.

Here, the optimal solution to the filtering problem is given by the Kalman

filter, and the residuals are represented by its innovations [72]. In the case of

non-linear systems, sub-optimal solutions are employed, such as the Extended

Kalman Filter (EKF). In situations where strong non-linearities or non-gaussian

disturbances are present, the EKF method is not able to perfom satisfactorily:

algorithms based on the Sequential Monte Carlo (SMC) framework, such as

the Particle Filter (PF), are candidates for the employement [88]. The use

Chapter 6. Holmes project - Model based approach

of these methods in the context of fault detection is not new. In [89], the

authors employed the PF for fault detection in a sensor network. The use

of a particle filter algorithm called Hybrid Boostrap Particle Filter (HBPF)

for fault detection of hybrid systems is introduced in [90]. This approach has

the disadvantage that faults with low probability of occurring (often the most

serious ones) will be harder to detect because less tracked by the algorithm.

To solve this problem, [91] proposed the OTPF (Observation and Transition

Particle Filter). Here, the hybrid system’s operating mode is interpreted as a

particular process status (healthy/faulty). Its estimation permits therefore to

solve the detection and diagnosis phase.

The employement of the OTPF algorithm in place of the more known EKF

is advocated by simulation results. Specifically, when strong non-linearities

and non-gaussian disturbances affect the system, the added computational

and tuning complexity of the proposed approach is justified. In particular, in

aerospace applications, phenomena as atmospheric turbulences [92] and exhaust

plume disturbance [93] are typical sources of non-gaussianity.

The remainder of the chpater is organized as follows. Section 6.2 develops

the continous mathematical model of the mechanical system under study. In

Section 6.3, along with a brief description of the standard particle filter method,

the OTPF algorithm is described. Section 6.4 discusses results and comparisons

with the Extended Kalman Filter technique, under non-gaussian disturbance

distributions simulations. Lastly, Section 6.5 is devoted to concluding remarks

and future developments.

6.2 System modeling

A schematic representation of the developed model is depicted in Figure 6.1.

The test bench is equipped with two motors but only one is considered for this

work, since the other one is disconnected. Indicating with t the continous time

index, the model inputs consist of:

1. Motor torque Tmt - computed by measuring the phase currents

2. Load force F h
t - measured from the hydraulic cylinder

The output of the model is:

1. Motor angular speed ωt - computed from the resolver’s position measurement

The known parameters are:

68

Chapter 6. Holmes project - Model based approach

hF
wF

fFmT ω&mJ

1Motor

cylinder Hydraulic

2Motor Nut

τ

Figure 6.1: Diagram of the system dynamic quantities

1. Transmission ratio τ = 0.005
2π

[m
rad

]

2. Weight force Fw = 210 N - measured experimentally

The unknown parameters are:

1. Motor inertia Jm

2. Coulomb f c, Stribeck f s, and viscous friction parameters c1 , c2, along

with the Stribeck velocity ωs. These coefficients control the friction force

F f
t

Given measured data, a continous time system can be developed and the

six parameters identified. From the relations in Figure 6.1, it is possible to

obtain the following dynamic balance, where the load inertia has been neglected

because of the low acceleration of the speed profile used for the performed tests,

as discussed in Section 5.2:

Tmt − Jmθ̈t = τ
[
F h
t − Fw + F f

t

]
. (6.1)

The model in (9.1) can be casted into state-space form by introducing the state

variable xt = ωt: ẋt =
Tmt − T ht + Twt − T

f
t

Jm

yt = xt

, (6.2)

where T ht , T
w , T ft are respectively the torques of load, weight and friction

referred to the motor-side. The friction torque, depending on the motor angular

69

Chapter 6. Holmes project - Model based approach

speed, is modeled with a Tustin friction model [94]:

T ft =
[
f c + (f s − f c)e−(xtωs)

2

+ c2 · x2
t

]
· sign(xt) + c1 · xt (6.3)

Tests were performed at various constant speeds to better characterize the

friction behaviour. The quadratic term c2 ·x2
t has been shown to experimentally

better represent the data, as discussed in [95]. In order to simulate the model,

the function sign has been replaced with the hyperbolic tangent. The model

was then discretized using the backward Euler method, in order to implement

the filtering procedures described hereafter.

6.3 Fault detection via particle filters

The particle filter is a special implementation of a SMC method [96]. These

techniques make use of simulations to generate weighted samples, in such a

way to approximate a target distribution. In the context of dynamic systems

filtering, this boils down into estimating the state probability density function

(pdf). The KF and EKF algorithms estimate the state pdf as a gaussian

one: this is correct if the system is linear and the disturbances have normal

distribution. The state point estimate is then the mean of that gaussian. In

other cases, the employement of SMC algorithms enable the use of samples to

compute any distribution’s moment, and empirically approximate the state

pdf, without resorting to a specific distribution’s mathematical model. The

practical generation of the samples is made possible by the combined actions

of importance sampling and resampling schemes, which prevent the weight

degeneracy issue, [97]. Consider a generic state-space model, under the usual

Markov assumption, where k is the discrete time stamp:

� System model

xk = a(xk−1, ek)↔
Transition density︷ ︸︸ ︷
f(xk|xk−1) (6.4)

� Measurement model

yk = b(xk, vk)↔
Observation density︷ ︸︸ ︷

g(yk|xk) (6.5)

Variables xk and yk represent respectively the dynamic system state and

output, a(·) and b(·) are generic non-linear functions, f and g are probability

70

Chapter 6. Holmes project - Model based approach

density functions, ek and vk are disturbances with known pdf. The system

can be equivalently represented by means of the transition and observation

densities. The filtering problem consists into estimating the state distribution

πk|0:k(xk|y0:k) given observations up to time k, assuming that the initial state

x0 is distributed according to π0(x0). The full state posterior can be obtained

by the following recursion [98]:

� Prediction

π0:k|0:k−1(x0:k|y0:k−1) = (6.6)

= π0:k−1|0:k−1(x0:k−1|y0:k−1)

f(xk|xk−1)︷ ︸︸ ︷
f(xk|x0:k−1, y0:k−1), (6.7)

� Correction

π0:k|0:k(x0:k|y0:k) =
g(yk|xk)π0:k|0:k−1(x0:k|y0:k−1)

lk|0:k−1(yk|y0k−1)
, (6.8)

where lk|0:k−1 is the predictive distribution of yk given the past observations

y0:k−1, and f(xk|x0:k−1, y0:k−1) = f(xk|xk−1) thanks to the Markov property of

dynamic systems. For a fixed data realization, this term is a normalization

constant, that makes the quantity in (6.8) to be a correct probability density

function. The aim is now to sample from π0:k|0:k(x0:k|y0:k). Since it is generally

impossible to sample directly from this distribution, a sequential version of

the importance sampling is employed. Conceptually, Np particle paths, x̃
(i)
0:k

i = 1 . . . Np, are sampled from a convenient importance distribution q0:k(x0:k|y0:k),

and the unnormalized importance weights ω̃
(i)
k are computed:

ω̃
(i)
k =

π0:k|0:k(x̃
(i)
0:k|y0:k)

q0:k(x̃
(i)
0:k|y0:k)

. (6.9)

Using the weighted sample {x̃(i)
0:k, ω̃

(i)
k }, and having normalized the weights,

it is possible to compute any distribution’s statistic. The trick behind the

sequential importance sampling lies in choosing an importance distribution

which factorizes as the target posterior distribution (the state pdf). In this way,

both particles and weights can be computed recursively. In order to prevent the

weights degeneracy problem, a resampling scheme is applied to remove particles

with low weight and replicate the most important ones. In this work, the

71

Chapter 6. Holmes project - Model based approach

state transition density f(xk|xk−1) is chosen as importance distribution: with

this choice, new particles are obtained via the system dynamic equations, and

weighted according to their likelihood of belonging to the output density (which

makes use of the current observation). This algorithm is know as boostrap

particle filter. For further details and implementation issues, see [99].

6.3.1 Observation and Transition Particle Filter

The idea behind the OTPF method [91] is to frame the fault detection problem

into an hybrid systems formulation [100]. When, at a certain discrete time

instant k, the hybrid system is in the mode νk ∈ {1, . . . V }, with V the number

of discrete possible process modes, its behaviour is described by:xk = aνk(xk−1, ek)

yk = bνk(xk, vk)
, (6.10)

where aρk(·) and bνk(·) are generic functions which describe the system dynamics

in the mode νk. It is assumed that the initial mode and initial system state

are known. A matrix Θ, known a-priori, is such that Θij defines the transition

probabilities from mode i to mode j. The problem of state estimation in

hybrid systems and the fault detection one are strictly interconnected. In fact,

assuming that different modes describe the system dynamics against different

faults, once the most probable mode at current time is estimated, automatically

the detection and identification of the fault are assessed. While much work

has been devoted to the filtering of hybrid linear system, see [101], less is

known about non-linear models. Proposed solutions to this issue, based on

particle filter methods, have been shown to perform well in practice [102]. In

the OTPF method, the hybrid system mode (which can vary at each time

stamp) is considered an unknown parameter to be estimated. A step is added

to the particle filter procedure to obtain the most likely estimation of the mode

from the particles. Once the most probable mode is found, it is assumed that

the hybrid system will follow the relative dynamics. Then, the subsequent

steps are the same as the standard particle filter. In order to estimate the

mode, the OTPF combines the current observation yk with the mode transition

probabilities. This permits to monitor even low occurring modes.

The logic behind the fault detection filtering algorithm, depicted graphically

in Figure 6.2, is as follows. Given an hybrid system with V possible modes,

known process and observation models, Np particles are generated from the

72

Chapter 6. Holmes project - Model based approach

R

�,� � �

�,� � �

�,� � �

…

�
�

���|	:��� ��� 	:���

�,�

�,�

�,�

�

�|	:� � 	:�

Figure 6.2: OTPF single-step procedure

assumed known initial state. Considering the number R of modes for which

the previous mode has not-null transition probability, particles are propagated

through each the R modes. The outputs of this step are R sets of Np particles.

Then, for each mode ρ ∈ {1, . . . , R}, the mean weight Wρ of all particles in

that mode is computed, leveraging on the current measurement yk. Then,

the quantity Qρ = Θνk−1,ρ ·Wρ is computed, with νk−1 the selected mode at

time k − 1 and ρ the hypothesized mode at time k. The quantity Qρ encodes

information about both the transition probability and the data likelihood given

by Wρ. In this way, even modes occurring with low probability can be selected

if supported by the data. The mode νk = arg max
ρ

Qρ is chosen as the most

plausible one, and its particles resampled and propagated through its dynamic.

6.4 Results and discussion

Data were collected from the test bench described in Section 5.2. A model,

in the form described in Section 6.2, has been identified for each of the

four fault conditions (using data measured with fault injected components),

focusing only on the nominal load condition. Simulated data were generated by

feeding the four models with the same inputs, and their outputs concatenated.

Performances on the fault detection and identification problem are shown,

73

Chapter 6. Holmes project - Model based approach

comparing the OTPF with the EKF, under gaussian and uniform distributions.

Results show how the OPTF method outperforms the EKF, especially when

the noise pdf is not gaussian. The employement of these methods is mandatory

given the non-linear form of the models.

The EKF fault detection approach is as follows. The ν-th Kalman filter

tracks the dynamics of the ν-th mode, with ν ∈ 1, . . . , V . The ν-th residual at

time k is then zk,ν = yk−ŷk,ν , with yk the observed output and ŷk,ν the predicted

output from the mode ν filter. If the state estimation is correct, the innovations

are gaussian with zero mean and covariance Σk,ν = [H̄k,νPk|k−1H̄
T
k,ν +V2], where

H̄k,ν represents the linearized output matrix, Pt|t−1 is the recursively computed

variance matrix of the state filtering error, and V2 is the covariance of the output

disturbances. A fault can be detected by a variation (significative deviation

from zero) of the Weighted Squared Residual (WSR): ξk,ν = zk,νΛ
−1
k,νz

T
k,ν . A

more robust measure, used in this work, is the Weighted Sum Squared Residual

(WSSR): Ξk,ν =
∑k

j=k−s+1 ξj,ν , where s is the window length in which residuals

are added [72, 103]. In the simulations, a value s = 20 was chosen. The

estimated mode νk at time k are the one for which the WSSRs are minimum:

νk = arg min
ν

Ξk,ν .

6.4.1 Simulation results

This section reports the simulation results comparing the OTPF with the EKF

under different disturbances distributions. The selected number of particles

was Np = 100, while the transition matrix was defined as:

Θ =


1− ε ε 0 0

0 1− ε ε 0

0 0 1− ε ε

0 0 0 1

 , (6.11)

where ε = 10−8 is chosen as probability of the investigated ballscrew fault, and

each column and row reflects the following order: (Fault condition 0, Fault

condition 1, Fault condition 2, Fault condition 3). As an example, Θ1,2 = ε is

the probability of transitioning in the “Fault condition 1” mode, given that the

current mode is the “Fault condition 0” one.

74

Chapter 6. Holmes project - Model based approach

Gaussian disturbances

The first experiment added gaussian disturbances to the simulated models

states and outputs, both with variance 0.01. The transition and observation

densities of the OTPF consisted in gaussian distributions with variance 0.01.

The covariances V1 , V2 of the state and output noises of the EKFs were set to

0.01. Results are reported in Figure 6.3. Binary accuracy is the percentage of

corrected classifications made by trying to distinguish the healthy class vs. the

faulty ones. Multiclass accuracy refers to the multiclass classification task, that

is, to exactly assign each data in its own class.

0 1000 2000 3000 4000 5000 6000 7000 8000
Samples

0

1

2

3

S
ys

te
m

 c
on

di
tio

n

Binary accuracy: 100%

Multiclass accuracy: 99.67%

0 1000 2000 3000 4000 5000 6000 7000 8000
Samples

0

1

2

3

S
ys

te
m

 c
on

di
tio

n Binary accuracy: 83.83%

Multiclass accuracy: 73.56%

Figure 6.3: Fault detection with gaussian disturbances. Top: OTPF estimated
system mode (blue dots) vs. real system mode (black dashed line).
Bottom: EKF estimation

Uniform disturbances

The second experiment added disturbances distributed according to a uniform

distribution U(−3, 3) distribution to the simulated models states, and gaussian

noise to outputs, with variance 0.01. The transition density of the OTPF

consisted in an U(−3, 3) pdf, while the output one was a gaussian with mean 0

75

Chapter 6. Holmes project - Model based approach

and variance 0.01. The covariances V1 , V2 of the state and output noises of the

EKFs were set to 0.01. Results are reported in Figure 6.4.

0 1000 2000 3000 4000 5000 6000 7000 8000
Samples

0

1

2

3

S
ys

te
m

 c
on

di
tio

n

Binary accuracy: 99.59%

Multiclass accuracy: 99.19%

0 1000 2000 3000 4000 5000 6000 7000 8000
Samples

0

1

2

3

S
ys

te
m

 c
on

di
tio

n Binary accuracy: 73.75%

Multiclass accuracy: 54.26%

Figure 6.4: Fault detection with uniform disturbances. Top: OTPF estimated system
mode (blue dots) vs. real system mode (black dashed line). Bottom:
EKF estimation

6.4.2 Discussion

As it is possible to observe, the OPTF outperforms the EKF in both experiments.

While the latter approach still keeps the pace when the disturbances are gaussian,

it performs poorly when non-gaussian distribution comes into play. This suggest

that, in presence of non standard disturbances and strong non linearities, the

employement of a particle filter algorithm can be beneficial. Binary accuracy

refers to the classification error considering the “fault condition 0” data as

the “healthy” class, and the data acquired in the other fault conditions as the

“faulty” class. The RMSE (Root Mean Square Error) on the filtering of the state

variable was computed for each simulation. Regarding results of Figure 6.3,

the RMSE for the OPTF was 0.07 while for the EKF was 0.73. As concerns

results from Figure 6.4, the RMSE for the OPTF was 0.13 while for the EKF

was 1.15. For the first experiment, the elapsed time for the OTPF and EKF

76

Chapter 6. Holmes project - Model based approach

was 2.27 s and 0.91 s respectively, on a i7-2.30 GHz processor. For the second

experiments, the OTPF took 31 s, while the EKF 1.15 s.

6.5 Conclusions and future developments

In this work, a variant of the particle filtering algorithm, known as Observation

and Transition Particle Filter, has been applied to fault detection of an

electro-mechanical actuator. The actuator, deployed in aerospace environments,

was injected with real faults on the ballscrew transmission spheres. By collecting

data in each fault condition, four different models were identified, where the

friction component included a non-linear aspect. The compared non-linear

filtering techniques, in terms of fault detection capability, were the OPTF and

the EKF methodologies. In order to do this, data were simulated from the four

different models. When gaussian noise was added to the data, both techniques

performed good. However, when a non-gaussian noise was introduced, the

OTPF method clearly won. In aerospace applications, where phenomena such

as atmospheric turbulence and exhaust plume disturbance are present, the

gaussianity of the disturbances could be a strong assumption. Future research

consists of the application of the method on real data and the integration of a

model-free approach.

77

Chapter 6. Holmes project - Model based approach

78

CHAPTER 7

Holmes project - Data driven approach

This chapter presents a data-driven approach to the fault detection problem

of Chapter 5. The methodology is based on a machine learning pipeline, on

the assumption that data collected from different system conditions belong

to different “classes” that the algorithm learns to discern. This assumption

came from the fact that non-ideal mechanical behaviours can be detected by

inspecting suitable measurements, such as motor phase currents [104]. Features,

belonging to different domains, have been extracted from the measured signals.

These indexes are based largely on the motor driving currents, in order to

avoid the installation of new sensors. A comparison of different classification

algorithms is presented, and the chosen one is a Gradient Tree Boosting classifier.

Furthermore, the most promising features for a classification point of view are

reported. Methods and results are validated by means of experimental tests.

In Section 7.1, the steps involving the design of a model-free fault detection

algorithm are outlined. Section 7.2 shows a comparison between different

classifiers, with indications about the choices made, and a graphical visualization

of the most important features for fault detection is given. Section 7.3 is devoted

to concluding remarks and future developments.

7.1 Data-driven fault detection strategy

This section presents the logical steps adopted in order to develop the machine

learning based model-free solution. The process pipeline is sketched in Figure 7.1,

Chapter 7. Holmes project - Data driven approach

where details about each phase are described. The steps consists into feature

extraction, feature selection with classifier design, and classifier evaluation.

Figure 7.1: Model-free methodology flowchart

The motivations behind the data-driven solution has to be sought into the

possibility to perform many experimental tests with different fault conditions.

The model-free approach, which is independent of any physical modeling, takes

a higher vision on the system at hand. The proposed methodology consists in

computing features on data obtained through a sliding window, which runs

on the entire measurement vectors, selecting each time a portion of the data.

The length of the sliding window has been chosen, after a sensitivity analysis

and guided by a trade-off between computational time and quantity of data

on which to compute the features, to be of 1.5 s, with an overlapping factor of

0.75 s. These hyperparameters have to be tuned for the application at hand.

Preprocessing of data consisted in filtering noisy signals. The features that are

extracted for each data window are described next.

7.1.1 Feature extraction

In this work, up to 15 features were computed, spanning time and frequency

domain. The indexes are:

1. Torque-load ratio

2. Root Mean Square value

80

Chapter 7. Holmes project - Data driven approach

3. Kurtosis

4. Skewness

5. Frequency power via FFT transform

6. Peak-to-valley

7. Energy operator

8. Crest factor

9. Shape factor

10. Mean frequency

11. Frequency center

12. Root Mean Square frequency

13. Standard deviation frequency

14. Sixth central moment

15. Mean temperature

The use and computation of these indexes has been advocated in many previous

fault detection applications (see for details the work done by [85], [105], [106],

[107], [108]). Feature 1 is computed by taking the ratio of the computed motor

torque over the load measured by the load cell mounted on the hydraulic

cylinder. Features from 2 to 14 are computed on the motor quadrature current

signal, while feature 15 is computed from the thermocouple measurements. The

considered spectrum in Feature 6 is (0 Hz− 50 Hz], since the major frequency

content of the quadrature current lies in that range. Then, the total frequency

power in that range is used as a feature. The output of this stage is a feature

matrix Φ ∈ RN×m, where N = 5359 is the number of observations (depending

on the length of the performed tests), and m = 15 is the number of features.

This choice of measurements has been demanded by the application: the

aim was indeed to rely mainly on electrical variables to perform the health

monitoring.

81

Chapter 7. Holmes project - Data driven approach

7.1.2 Feature selection and classifier design

The data were randomly shuffled and then divided into train (80%) and test

(20%) set. This lead to a total of 4287 training data and 1072 test data.

After the splitting, the classes were almost equally represented, as concerns

the number of points belonging to each class, in the train and test set. The

train data were then scaled via a robust standardization procedure [109],

which, for each feature, removes the median and divides for the interquantile

range (the interval between the 25th quantile and the 75th quantile). This

standardization was chosen because it is more robust to outliers in the data.

The transformation, with parameters fitted on the training set, is then applied

to the test set. Then, various types of classification algorithms were tested,

such as: Logistic Regression (LR), Support Vector Machine (SVM), Näıve

Bayes (NB) and Gradient Tree Boosting (GTB) [4]. All chosen classifiers

are discriminative, except for the Näıve Bayes one. The choice is dictated

by the fact that the classification result is of most interest with respect to

understand the data-generating process. However, it is useful to test both

classifier types, given that, under certain conditions, generative classifiers can

reach faster their maximum accuracy bound with respect to discriminative

algorithms [110]. The hyperparameters of each algorithm have been found by

using a 5-fold cross-validation (cv) on the train set. The selected model is then

trained on the training data. The logistic regression classifier was equipped

with a L2−regularization term (another name for the ridge regularization),

and the relative hyperparameter was tuned. The Support Vector Machine

classifier used a Radial Basis Function kernels which required to find the proper

hyperparameters’ value. Regarding the Näıve Bayes algorithm, the Gaussian

likelihood was assumed. The tuning parameters of the Gradient Tree Boosting

method were the number of tree estimators, the subsample percentage and the

learning rate.

7.1.3 Classifier evaluation

The evaluation of each classifier is done through two different procedures. As a

first performance check, the classifiers were evaluated on the test set, and the

mean F1-score is reported [111]. A value of 1 indicates perfect classification,

while a value of 0 indicates a completely wrong result. Since the F1-score

is defined for a binary classification problem, we end up with four F1-scores,

because in this formulation there are four classes into which classify the data

82

Chapter 7. Holmes project - Data driven approach

(Fault condition 0, Fault condition 1, Fault condition 2, Fault condition 3).

This score is computed by taking the weighted mean of the four F1-scores. The

weights are the percentage of observations for a specific class over the total

number of tests points. This choice of metric is due to the fact that it better

assesses cases of imbalanced classes as opposed to classification accuracy. In

our case, since the classes are well balanced, there is no high difference with

the classification accuracy performance.

To check the stability of the training procedure, including also the steps

performed to find the best hyperparameters, a nested cross-validation can be

employed. It has been shown in [112] that this method better assesses the

true algorithm performance, giving a less biased estimation with respect to

the stardard cross-validation with fixed parameters, which would lead to an

optimistic evaluation. With this method, each train/test fold may get different

hyperparameter settings, resulting in an algorithm that internally finds the

best parameters for each data set it gets. The results of this procedure are then

reported as estimation of the model true performance. In this work a 5-fold

nested-cv has been used on all the data (training + test dataset). As before, the

weighted F1-score has been applied as performance metric. The feature scaling

is fit on the training fold and applied on the test ones, for each training/testing

folds combinations. The output is a vector of 5 weighted F1-scores, and the

mean and standard deviation of this vector is taken as performance metric

for classifiers comparison. This leads to an estimation of the mean F1-score

with associated standard error. If the standard error is high, it means that

the discovered hyperparameters are not reliable, and the learned model, with

hyperparameters selected via cross-validation on the training set (or on all

available data) can’t be deployed into production.

7.2 Results and discussion

The final comparison results are reported in Table 7.1. The best performing

classifier is the Gradient Tree Boosting algorithm, with a weigted mean F1-score

obtained through nested cross-validation of 0.82. The Logistic Regression and

Näıve Bayes algorithm failed to properly capture most of the data traits, not

being enough flexible in their decision boundaries. The low standard error of the

mean F1-score obtained by nested cross-validation indicates that the procedure

used to select the classifiers hyperparameters is stable, not exibiting large

variations when different datasets are used to tune them. Figure 7.2 depicts

83

Chapter 7. Holmes project - Data driven approach

the importance of each feature used, as considered by the GTB algorithm.

The most informative indexes, as concerns the classification point of view, are

the cage temperature, the torque to load ratio, and the computed frequency

content.

Table 7.1: Classifiers comparison summary

Classifier
Mean Test set

F1-score
Mean Nested
cv F1-score

Std. error
Nested cv
F1-score

LR 0.25 0.21 0.024

SVM 0.70 0.70 0.005

NB 0.13 0.12 0.006

GTB 0.83 0.82 0.009

15 1 5 4 10 9 3 14 13 2 8 7 11 6 12

Feature number [-]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

F
e
a
u
tu

re
 i
m

p
o
rt

a
n
ce

 [
%

]

Feature importances

Figure 7.2: Features importance

84

Chapter 7. Holmes project - Data driven approach

7.3 Conclusions and future developments

This work presented a practical approach to the fault detection and identification

problem. The application described regarded the health monitoring of mechanical

components for electro-mechanical actuators deployed in an airliners applications.

Future developments include the combination of the proposed approach with

a model-based methodology, and applications of the framework to other fault

types and conditions.

85

Chapter 7. Holmes project - Data driven approach

86

CHAPTER 8

Holmes project - Clustering

In this application, the use of the Principal Direction Divisive Partitioning

(PDDP) method for unsupervised learning is discussed and analyzed with a

focus on fault detection applications. Specifically, a geometric limit of the

standard algorithm is highlighted by means of a simulation example and a

modified version of PDDP is introduced. Such a method is shown to correcly

perform data clustering also when the standard algorithm fails. The modified

strategy is based on the use of a Chi-squared statistical test, and offers more

guarantees in terms of detection of a wrong functioning of the system. The

proposed algorithm is finally experimentally tested in the same framework of

Chapter 5, but on different test conditions. A comparison with k-means and

fuzzy k-means approaches is also provided.

8.1 Introduction

The Principal Direction Divisive Partitioning (PDDP) [113] is a clustering

algorithm originally proposed to solve a text document classification. Various

research activities have worked towards improvements in this direction [114,

115, 116]. The PDDP approach presents many distinctive features. First of all,

its computational cost is roughly linear in the number of non-zeros in the feature

matrix and only weakly (logarithmic) scaled with the number of generated

clusters. Therefore, despite of its simplicity, it has been proven to produce high

quality clusters, especially when the dimensionality of the data is high [115].

Chapter 8. Holmes project - Clustering

This is possible by stopping the singular value decomposition (SVD) at the

first singular value/vector and makes PDDP significantly less computationally

demanding than other widely known text-mining methods like, e.g., Latent

Semantic Indexing (LSI) algorithm [117], especially if the data-matrix is sparse

and the principal singular vector is computed by resorting to the Lanczos’

technique [118, 119]. In this work, it will be shown that Fault Detection and

Isolation (FDI) using the standard PDDP approach may yield some problems.

More specifically, it will be illustrated by means of a motivating simulation

example that PDDP may intrinsically split the data along the first principal

component even when two clusters are slender and narrow, and their length is

greater than the distance between their centroids. This fact constitutes a great

limit, as it may significantly jeopardize the quality of clustering. To overcome

this problem a modified version of PDDP - called mPDDP - is proposed, in

which the choice of the cluster to split is based on Chi-squared goodness of the

data fitting. It should also be said that many other variations of the original

PDDP algorithm have been proposed to enhance its performance. In [120] the

authors developed a non-greedy variant of the algorithm, which tries all the

possible choices of partition on a specified number of clusters and principal

components, by evaluating the variance within the cluster. The choice of the

number of clusters, if not specified a priori, is discussed in [121] with the use of

a BIC criterion (see Appendix A). The works in [122, 123] focus instead on the

choice of which cluster to split. However, as far as the author is aware, none of

the above variations of the PDDP has directly dealt with the problem object

of this work. The remainder of the chapter is as follows. In Section 8.2, the

standard PDDP method is briefly recalled. The proposed modification of the

clustering method is illustrated in Section 8.3, where a simulation example is

used to show the limits of the standard approach and visually explain the main

idea behind the new algorithm. The modified PDDP is then applied on real

data acquired from the test bench described in Chapter 5, where a significant

increase in clustering performance is highlighted. Section 9.5 is then related to

some concluding remarks.

8.2 Principal Direction Divisive Partitioning

The task of unsupervised learning is to reveal the organization of patterns into

“sensible” clusters (groups). Similar patterns, in the sense of a defined similarity

measure, will be grouped into the same cluster by a clustering algorithm. Many

88

Chapter 8. Holmes project - Clustering

clustering algorithms have been proposed throughout the years. The oldest

ones are based on the Basic Sequential Algorithmic Scheme (BSAS), where each

new point is said to belong to a group of points, depending on its distance from

the existing clusters [124]. Then, several other categories of methods have been

proposed: optimization-based, among which the celebrated k-means algorithm

[125]; density-based, e.g. the Density-Based Spatial Clustering of Applications

with Noise (DBSCAN) [126] and hierarchical clustering, like Principal Direction

Divisive Partitioning (PDDP) [113].

PDDP belongs to another important class of data-processing techniques:

SVD-based (Singular Value Decomposition) methods, in which the Latent

Semantic Indexing algorithm (LSI) [117], and the LSI-related Linear Least

Square Fit (LLSF) algorithm [127] are also included. The considered clustering

approach is the bisecting divisive clustering: the problem to be solved is the

splitting of the data matrix Φ ∈ RN×m (where N is the number of data and m

is the data dimensionality) into two sub-matrices (or sub-clusters) XL ∈ RNL×m

and XR ∈ RNR×m, with NL+NR = N . The data matrix Φ is therefore composed

by stacking all the observations xi ∈ Rm×1, i = 1, . . . , N , in row. PDDP is

mainly based on Principal Components Analysis (PCA), thus involving the

eigenvector decomposition of the data covariance matrix, or equivalently a

Singular Value Decomposition of the data matrix after mean centering. The

principal trend in data can be considered in two ways. In PCA, the direction

of principal trend is taken as the direction in which the variance (or “spread”)

of the data is maximum. The second way to define the principal trend is by

means of least squares, in which case the trend is along a line l for which the

total sum of squares of orthogonal deviations from l is minimal among all lines

in Rm.

The PDDP algorithm is very popular, mainly for its low computational

requirements. As a matter of fact, PDDP has a computational cost roughly

linear in the number of non-zeros in the feature matrix and it is characterized

by a weak scaling, which is logarithmic with the number of generated clusters.

Moreover, it provides a “one-shot” deterministic solution, unlike the initialization

dependent solution given, e.g., by the k-means. A thorough comparative analysis

of bisecting k-means and PDDP is given in [128].

The PDDP algorithm can be formalized as follows.

89

Chapter 8. Holmes project - Clustering

PDDP clustering algorithm

1. Compute the centroid w ∈ Rm×1 of Φ

2. Compute the auxiliary matrix Φ̆ = Φ− e ·wT , where e ∈ RN×1 is column

vector of ones, namely e = [1, 1, . . . , 1]T

3. Compute the Singular Value Decompositions (SVD) of Φ̆, Φ̆ = UΣV T ,

where Σ is a diagonal N ×m matrix, and U ∈ RN×N and V ∈ Rm×m are

orthonormal unitary square matrices

4. Take the first column vector v1 ∈ Rm×1 of V (the first principal component),

and divide Φ into two sub-clusters ΦL and ΦR, according to the following

rule: xi ∈ ΦL (xi − w)T · v1 ≤ 0

xi ∈ ΦR (xi − w)T · v1 > 0,
(8.1)

where xi ∈ Rm×1, i = 1, . . . , N , represents the i-th observation

5. Iterate until the desired number of clusters is reached.

8.3 Modified PDDP based on statistical test

In this section, a limit of the PDDP algorithm in some practical situations is

highlighted. Precisely, it will be shown that the splitting along the first principal

component is not always the best choice when two clusters are slender and

narrow, and their length is greater than the distance between their centroids.

To overcome this problem, a modified version of the PDDP method is proposed.

In what follows, first the Chi-squared test will be briefly outlined, then the

modified version of PDDP method will be described and illustrated by means

of a simulation example.

8.3.1 Chi-squared goodness of fit test

The chi-squared goodnees of fit test performs a statistical test to assess whether

the data is drawn from a Gaussian probability density function (pdf). The

situations are then two: either the data was drawn from a normal distribution

(assumption H0) or from another distribution (assumption H1).

Given an histogram, the question is whether it is consistent with a given

pdf. If the histogram has κ bins, let b0, b1, . . . , bκ be the κ+ 1 boundaries. So,

90

Chapter 8. Holmes project - Clustering

x belongs to the i-th bin if bi−1 ≤ x ≤ bi, i = 1, . . . , κ. Let oi be the counts

(numbers of points) for the i-th bin. Since there could be many experiments, oi

is a particular outcome of the random variable Oi. The expected counts ei are

computed from the distribution with parameters estimated on the data. To

measure the discrepancy between the observed histogram oi and the histogram

ei computed under the null hypothesis, it is then natural to use

χ2 =
κ∑
i=1

(oi − ei)2

ei
. (8.2)

Since the observed bin values oi are outcomes of the random variables Oi, the

value χ2 is itself an outcome of the random variable

χ2 =
κ∑
i=1

(Oi − ei)2

ei
, (8.3)

which is distributed according to a Chi-squared probability density function,

with d = κ−1 degrees of freedom, pχ2
d
(x), because of the constraint

∑κ
i=1Oi = N .

The p-value is defined as the probability of obtaining a test statistic at

least as extreme as the one that was actually observed, assuming that the null

hypothesis is true:

p = P
[
χ2 ≥ χ2

]
=

∫ ∞
χ2

pχ2
d
(x)dx (8.4)

If p ≤ α, the hypothesis H0 is rejected at a significance level α, and the result

is consistent with the null hypothesis with probability 1− α.

8.3.2 Modified PDDP

To exemplify the problem, consider the case depicted in Figure 8.1. The

projection on the first principal component, according to the PDDP rule, splits

the cluster into two groups: the first cluster is composed by the top half of the

blue and the red clusters, while the second cluster is composed by the bottom

halves. Projecting on the second component, the two resulting clusters are the

blue one and the red one, as an external observer would have suggested.

Consider now the simulation example illustrated in Figure 8.2. The first

and the second big clusters are recognized by the PDDP algorithm and the

cluster selected for further splitting is chosen to be the top one. However, at

the second step of the algorithm, the red cluster is split into the green and red

91

Chapter 8. Holmes project - Clustering

Figure 8.1: Dataset projection on the first two principal components

groups, which is obviously the uncorrect choice.

−50 −40 −30 −20 −10 0 10 20
−60

−50

−40

−30

−20

−10

0

10

20

Feature 1

F
e

a
tu

re
 2

Cluster 1

Cluster 2

Cluster 3

Figure 8.2: Clustering produced by the standard PDDP algorithm at the second step

To address this problem, it should first be noticed that the distributions of the

data projected on the first component (see again Figure 8.1) are significantly

92

Chapter 8. Holmes project - Clustering

overlapped. Moreover, the sum of the two distributions approximates the

normal distribution better than the sum of the distributions of the projections

on the second principal component. The idea is then to adopt the statistical

hypothesis test of Section 8.3.1 to check if the data really follow a normal

distribution. By relying on the previous arguments, the data have to be

projected on the direction for which their distribution is less similar to a

Gaussian. Then, a statistical goodness of fit test can be performed on the data

projected on each direction. The direction which has generated the data for

which the hypothesis test gives the smallest p-value is chosen as the direction

where to apply the PDDP. Notice how the choice of the α level is irrelevant

to our analysis, since we rely only on the p-value, regardless of the fact that

the test has confirmed or not the null hypotesis. The number C of principal

directions to be evaluated is a trade-off between computational complexity and

performance. In this application, the choice of C is made once at the beginning,

but it can also vary at every step. Investigations about this topic are still

ongoing.

The first three steps of the so-built algorithm (we call it the mPDDP

algorithm) are then equal to the old ones, whereas the others need to be

reformulated. The overall procedure looks as follows.

mPDDP clustering algorithm

1. Compute the centroid w ∈ Rm×1 of Φ

2. Compute the auxiliary matrix Φ̆ = Φ− e ·wT , where e ∈ RN×1 is column

vector of ones, namely e = [1, 1, . . . , 1]T

3. Compute the Singular Value Decompositions (SVD) of Φ̆, Φ̆ = UΣV T ,

where Σ is a diagonal N ×m matrix, and U ∈ RN×N and V ∈ Rm×m are

orthonormal unitary square matrices

4. Choose the number C of principal components to evaluate, 1 ≤ C ≤ m.

Take the first C columns of V , vc ∈ Rm×1, c = 1, . . . , C. Compute the

projections of all the data onto this principal directions, zc = Φ̆ · vc,
zc ∈ RN×1

5. Perform a Chi-squared goodness of fit test on the zc vector of projected

data, with a significance level α and compute the p-value pc

6. Find j = arg min
c

pc to find the index of the test which gave the lowest

p-value.

93

Chapter 8. Holmes project - Clustering

7. Divide the data into two sub-clusters XL and XR, according to the

following rule: xi ∈ ΦL (xi − w)T · vj ≤ 0

xi ∈ ΦR (xi − w)T · vj > 0,
(8.5)

8. Iterate until the desired number of clusters is reached.

In Figure 8.3, the new strategy is applied on the simulation example. Notice

that now, as expected, the cluster is split according to the second principal

component, unlike using standard PDDP.

−50 −40 −30 −20 −10 0 10 20
−60

−50

−40

−30

−20

−10

0

10

20

Feature1

F
e

a
tu

re
 2

Cluster 1

Cluster 2

Cluster 3

Figure 8.3: Clustering produced by the mPDDP algorithm at the second step

8.4 Application to fault detection

In the following Section, the mPDDP algorithm is applied to data measured

from the test bench describen in Chapter 5. It should be noticed that this is

only a benchmark on which we want to test the mPDDP method, and it is

not meant to provide a complete solution to the aforementioned problem. In

particular, the injected faults were different from the ones described in Chapter

5, and consisted in:

94

Chapter 8. Holmes project - Clustering

� One raceway slightly clogged

� Two raceways slightly clogged

� Worn balls

The adopted approach was a data-driven one, similar to that of Chapter 7

The training data were collected for different types of input position profiles,

with the aim to excite the system in all its components. The type of input

profiles was trapezoidal one, with different amplitudes and speed. For each

input, the data were collected for every fault conditions, with a sampling

frequency of fs = 10 kHz. The variables available for the acquisitions were:

1. Position set-point

2. Position measured

3. One phase current (phase A)

The load profiles were set to zero for each experiment.

Recent studies [129, 130] report that existing current and position/speed

sensors equipping aerospace EMA are a promising tool for health monitoring

of electromechanical actuators based on screw systems. Therefore, features to

be used for FDI are computed based on the current signals from the various

fault types and profiles. Each feature sample is computed via an overlapping

moving window, with length of 3 s and overlapping length of 1.5 s.

In this application, up to 21 features have been computed (on the phase

current signal if not specified), spanning from time domain, frequency domain,

and time-frequency domain. Time domain features include general purpose

indexes, like Root Mean Square (RMS) value, skewness, kurtosis, sixth central

moment, shape and crest factors, peak-to-valley value, energy operator [131,

108, 85], and application specific indexes, like position error [132] and the

torque-speed ratio. Frequency domain features consist mainly of the magnitude

of the Fast Fourier Transform (FFT) over 3 sets of frequencies. Three indexes

of these type have been extracted, based on the value of the magnitude at

different frequency bands. Other features are mean frequency, frequency center,

RMS and standard deviation in the frequency domain [85]. The remaining

features in time-frequency domain consisted in the magnitude of a current’s

spectrogram at different frequency bands.

After the computation of the features, any point in the feature space is

m-dimesional, with m = 21. In order to be able to visualize the clustering

95

Chapter 8. Holmes project - Clustering

results, a feature selection step is performed. Specifically, the method of the

Linear Discriminant Analysis (LDA), which goes back to the pioneering work

of Fisher [133], is used. The LDA is a supervised method, which means that

the class which data belong is given to the algorithm; the dimension reduction

is achieved via a linear combinations of the existing features, by seeking the

direction in the m-dimensional space along which the classes are best separated.

This can be done by maximizing the Fisher Discriminant Ratio, which, for the

two-classes case, it is equal to:

F =
(µ1 − µ2)2

σ2
1 + σ2

2

,

where µ1 and µ2 are the mean of the class one and two after the projection

along the best direction, respectively, and with σ2
1, σ

2
2 are the variances of the

class one and two after the projection. These parameters are scalar values after

the projection along the best direction. Notice that F is large if the classes are

well separated. The method can be straightforwardly extended to be used in

the multi-class case [134]. The peculiarity of this technique is that it produces

a number of features which is at most equals to the number of classes minus

one. So, in this case, since there are 3 classes, after this step the feature space

changes from 21-dimensional to 2-dimensional, and the new features, which

we can call “Feature1” and “Feature2”, are linear combination of the previous

ones.

After that the feature extraction and selection phases have been performed,

we can apply and observe the clustering results. A point belongs to the cluster

at minimum Euclidean distance, computed respectively to the cluster center.

Here, it is possible to compare the standard and modified PDDP algorithms.

Figure 8.4 and Figure 8.5 show the real bounds (solid) and the boundaries

found by the clustering algorithms (dashed). The three considered faults are

highlighted using three different colors and the misclassified points are put in

evidence with surrounding circles. It can be noted that the boundaries found

by the new algorithm are closer to the true ones than the stripes selected by

the standard algorithm. This fact produces a much better detection rate and a

much smaller number of misclassified points, as summarized in Table 8.1.

For the sake of completeness, also the performance of the k-means [135]

and the fuzzy k-means [136] algorithms are evaluated. The results with such

methods are shown in Figure 8.6 and 8.7, whereas the main quality indeces

are summarized in Table 8.1. Notice that the proposed mPDDP algorithm

96

Chapter 8. Holmes project - Clustering

-0.02 -0.01 0 0.01 0.02 0.03

Feature 1

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1
F

ea
tu

re
 2

Worn ball
Two raceways clogged
One raceway clogged
Cluster center

Figure 8.4: Performance of the standard PDDP algorithm. True boundaries (solid
lines), obtained boundaries (dotted lines), misclassified points (circled)

-0.02 -0.01 0 0.01 0.02 0.03

Feature 1

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

F
ea

tu
re

 2

Worn balls
One raceway clogged
Two raceways clogged
Cluster center

Figure 8.5: Performance of the proposed mPDDP algorithm. True boundaries (solid
lines), obtained boundaries (dotted lines), misclassified points (circled)

97

Chapter 8. Holmes project - Clustering

-0.02 -0.01 0 0.01 0.02 0.03

Feature 1

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

F
ea

tu
re

 2

One raceway clogged
Two raceways clogged
Worn balls
Cluster center

Figure 8.6: Performance of the k-means algorithm. True boundaries (solid lines),
obtained boundaries (dotted lines), misclassified points (circled)

-0.02 -0.01 0 0.01 0.02 0.03

Feature 1

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

F
ea

tu
re

 2

Worn balls
One raceway clogged
Two raceways clogged
Cluster center

Figure 8.7: Performance of the fuzzy k-means algorithm. True boundaries (solid
lines), obtained boundaries (dotted lines), misclassified points (circled)

98

Chapter 8. Holmes project - Clustering

Table 8.1: Results of classification

Algorithm Misclassified points Detection rate

mPDDP 13/67 0.1940

PDDP 29/67 0.4328

k-means 30/67 0.4478

fuzzy k-means 27/67 0.4030

outperforms also this different clustering approach.

99

Chapter 8. Holmes project - Clustering

8.5 Conclusions and future developments

Principal Direction Divisive Partitioning is among the most popular techniques

in the clustering framework. However, in this work, it is shown that PDDP may

provide wrong results in case of particular distribution of the data in the features

space. Therefore, a modified version of the PDDP algorithm is proposed, called

mPDDP, based on a Chi-squared statistical test. The proposed method showed

to be very effective when applied on experimental data taken from an aerospace

EMA setup (where suitable faults were simulated ad-hoc). Future work will

be dedicated to the theoretical analysis of the proposed approach. Moreover,

different applications will be addressed to better understand the potential of

the proposed approach with respect to other existing methods.

100

CHAPTER 9

Control-oriented modeling of SKU-level demand in retail

food market

In food market, modeling the dynamics of Stock-Keeping Unit (SKU) requests

is of fundamental importance, not only to understand the market, but also for

optimization and control purposes. In fact, standing on model-based predictions

of future demand, an efficient planning of the promotional calendar can be

devised. Moreover, better inventory management can be achieved, by reducing

losses due to expired aliments remained unsold and improving distribution

operations. In this work, a data-driven control-oriented modeling of such a

demand is discussed and a novel switching dynamical strategy is proposed.

When applied to experimental data from a real food company, the above

strategy is shown to accurately predict future sales under fixed promotion

events.

9.1 Introduction

The ability to accurately forecast the future demands of goods and services

gives a clear competitive advantage over competitors, leading to higher profits

by constantly optimizing operation management tasks, such as inventory

management, planning and scheduling [137]. In the context of food retail market,

Stock-Keeping Unit (SKU) request prediction is of paramount importance

to reduce losses caused by expired aliments that remained unsold, enhance

customer satisfaction and improve distribution operations. One of the main

Chapter 9. Control-oriented modeling of SKU-level demand in retail food
market

factors contributing to sold quantity variation is the employment of promotional

events by the retailers. Usually these are planned collaboratively by them and

manufacturers, who jointly agree on the products, types, price reduction and the

timing of promotions. Products are typically on promotion for a limited period

of time, in the order of days, during which demand is usually substantially higher

than during periods without promotions [138]. Here, the authors also identified

that the display location of items in retail stores, weather and holiday periods

had a positive impact on sales. This dramatical change in sales behaviour (uplift)

with respect to the quantity sold during non-promotional days (baseline) makes

standard inventory management and replenishment techniques (e.g. based on

reorder point/order quantity policies) not suitable for an efficient management.

There is therefore a need for more intense collaboration, such as Collaborative

Planning, Forecasting and Replenishment (CPFR) procedures [139, 140].

However, despite the benefits of CFPR, collaboration and information

sharing does not prevail [141]. When collaborative information is not available,

the supplier must rely on historical data and qualitative knowledge of the

marketplace to build the forecast. The effectiveness of data-driven decisions

on firm performance has been assessed in [142]. To tackle this problem,

two basic approaches have been considered: judgemental and quantitative

forecasting [143]. A combined approach, aiming at supporting human decisions

on predictions provided by the statistical model, has been taken into consideration

in [144]. Some of the most used models in literature consist of the Simple

Exponential Smoothing (SES) [145], the “last-like promotion” [146] and the

Autoregressive Distributed Lag (ADL) model [145]. The SES model, shown

to be efficient in capturing the level component in demand over time, does

not make use of any promotional information: when the characteristics of the

demand series change due to special events such as promotions or holidays,

the fitted parameters can no longer describe the series. The so-called “last-like

promotion” model is one of the simplistic models that use exogenous variables.

This method first generates a baseline forecast using a model, such as the

SES, for non-promoted time periods. A “lift effect” is then added to the

baseline forecast during the promoted periods. The ADL model considers

instead various types of predictors, such as: past values of demand of the

considered product, price of the considered product, promotional index of the

considered product, price of the competitors products, promotional indices

of the competitors products, monthly indicator variable and calendar events.

Many studies have focused on evaluating the effect of promotions on sales, using

102

Chapter 9. Control-oriented modeling of SKU-level demand in retail food
market

store or market level data [147, 148]. Authors in [149] proposed a hierarchial

model at single Universal Product Code (UPC) level, while [150] investigated

the presence of outliers in developing promotional sale forecasting methods.

The work of [151] was focused on predicting the sales of a new launched product,

and [152] simulated customers behavior to estimate the possible cart content

and assess the changing in sales under different price conditions.

The contribution of this work contribution is twofold: (i) a switching

dynamic model is proposed to perform both baseline and uplift forecasting;

(ii) an imputation methodology, based on a similarity metric, is employed

when promotional information are not present for a particular customer. The

development of a switching model encompasses the benefits of both the last-like

promotion and ADL models. The benefits of the proposed approach are the

identification of a parametric model which is able to perform forecasts at

any prediction horizon, encapsulating the different aspect of each promotion.

Furthermore, when historical data are few, the ADL model structure can be too

complex: the proposed method is shown to be reliable even with a low number

of data, and domain specific KPIs (Key Performance Indexes) are introduced.

The comparison of clients via a similarity measure can be used to produce

visualizations and dashboards, enhancing the company understanding and

decision making by revealing hidden groups and structures. In this view, the

use of customer clustering is not new [153]. However, in the aforementioned work

clustering is used as a solution to build a lower number of models. Nowadays,

provided that technological resources are available, it is not uncommon to deploy

thousands of models into production [154]. In this work, stores comparisons

are instead used to recostruct missing promotional information at customer

level.

The remainder of the chapter is organized as follows. In Section 9.2,

the business problem tackled in this work is stated. In Section 9.3, the steps

involving the predictive model design and missing data imputation are presented.

Section 9.4 highligths the main performance indexes used to assess the approach

validity, and a comparison with known methods is performed. Section 9.5 is

devoted to concluding remarks and future developments.

The whole analysis and method development will be supported by the

use of experimental data taken from a real food company. For confidentiality

reasons, data will be normalized and some details on the specific business will

be omitted.

103

Chapter 9. Control-oriented modeling of SKU-level demand in retail food
market

9.2 Problem statement

The aim of this work is to evaluate the effect, that is, the sold quantity,

generated by a different set of promotion types, for different products, for

every customer of a food producer company. Forecasts are relative to the

total delivered quantity in a working week. Correct predictions are beneficial

for both the customers and producer. In the first case, there will be a more

focused planning of the promotional calendar, while for the producer side,

better inventory management and improved line production efficiency will be

of direct conseguence.

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50

Time [week]

D
e

liv
e

re
d

 q
u

a
n

ti
ty

 [
K

g
]

Promotion type NO PROMO DISCOUNTS FLYER

Customer 1 - Product 1

Figure 9.1: Sales over a one year period. Baseline and uplifts phases are highlighted.
The promotion of each week is represented by different symbols

The dataset employed in this work consists of 185 customers, 3 products

(referred as Product 1, Product 2 and Product 3) and 8 promotion types

(No Promo, Discount, Flyer, Collection Points, Flyer 1+1, Flyer discounted,

Discount 1+1, Other). In each week, only a promotion can be present. A

tipical behaviour of a sold quantity, normalized to protect sensible information,

with and without promotional events, is depicted in Figure 9.1. The promotion

type “No Promo” indicates the absence of a promotion. The company needed

to plan the working 2 weeks in advance, due to constraints on logistics, stocks

and production management. The ultimate goal of a forecasting algorithm is to

104

Chapter 9. Control-oriented modeling of SKU-level demand in retail food
market

take optimal actions, which have a positive impact on the company economy, as

discussed in the introduction. In this view, this work can be stated in a control

system framework, where the focus is on the control component in Figure 9.2.

Sales Forecast
Stock Management

Promo Calendar

Decision

Implementation

SystemSensing Control Actuator

Market

Figure 9.2: Recasting of the business question as a control design problem: standing
on the prediction of future requests, a promotion calendar can be modified
or the inventory can be efficiently managed

This boils down to the identification of a proper sales model (considered

as the process under control), which will be used to infer future sales. This,

accordingly, results in specific actions undertaken on production lines (the

“Actuator” block). Once the forecasted quantity has been observed (“Sensing”

block), corrective actions can be taken, both in the form of automatic model

updating or human-in-the-loop interventions (the “Control” component). The

feedback is generated by the fact that operational actions (select when and

what promotion to apply, inventory replenishment decisions) affect the market.

By looking at the market responses, new information about the effectiveness of

certain promotion types and period of their application are gathered, improving

the decision-making process. This framework permits an efficient, self-improving

management of stocks and production operations. Similar control-oriented

approaches applied to the business sector, such as inventory management, can

be found in [155, 156].

In order to evaluate the goodness of the proposed approach, three different

KPIs were defined:

� Integral Error during Promotion (IEP): to quantify the total error

during promotional weeks

� Mean Baseline Error (MEB): to check the error committed during

non-promotional weeks

� Maximum Uplift Error (MUE): to evaluate the maximum error

committed in forecasting a single promotion effect

The proposed performance measures are considered more representative of the

forecasting problem facets, with respect to standard evaluation metrics, such as

105

Chapter 9. Control-oriented modeling of SKU-level demand in retail food
market

the Mean Absolute Error (MAE) [157, 146], or the Mean Average Percentage

Error (MAPE) [149]. In [158], the author showed the drawbacks of using such

standard indicators, and proposed a metric based on the logarithm of the

ratio between predicted and actual demand, called Log Accuracy Ratio (LAR).

Nonetheless, MAE and MAPE metrics are reported for clarity, along with the

LAR index. Information regarding customers sales were gathered from the

company business intelligence software.

9.3 Sales prediction

This section describes the proposed approach to solve the forecast of promotional

events’ effect, illustrating first the parametric model identification procedure

undertaken, and then the missing promotional information imputation strategy.

9.3.1 Covariate selection

For each customer-product couple, its relative dataset consisted in 104 weeks

of historical data, with aggregated sales for each week. The data covered the

2014 and 2015 years. The data sampling time can therefore be considered as

one week. The dependent variable is the sold quantity, while chosen regressors

consist of the promotion at each week (to evaluate the promotion effect on

sales) and the period each week belong to (in order to obtain a stagionality

effect). The variable “Period of the year” is computed by subdividing the

weeks in a year into 6 periods (January-February, March-April, May-June,

September-october, November-December). Given the assumption that previous

sales level and promotions have an effect on the current delivered quantity,

two additional covariates where computed from the existing ones. The new

variables consist of the quantity delivered 2 weeks before the current time (in

order to ensure the 2 weeks forecast horizon), and the promotion present in the

week before the current one. Each week t is then described by the following set

of variables:

1. Delivered quantity: y(t) (quantitative dependent variable)

2. Delivered quantity lagged of 2 timestamps: y(t− 2)

3. Promotion type: p(t) (categorical variable, 8 levels)

4. Promotion type lagged of 1 timestamp: p(t− 1)

106

Chapter 9. Control-oriented modeling of SKU-level demand in retail food
market

5. Period of the year: d(t) (categorical variable, 6 levels)

Given the low number of training points with respect to the number of

regressors, a linear model structure was chosen to perform evaluations. The

identification of a linear model is supported by the literature reviewed in

Section 9.1: however, proposed methods like the ADL model, requires too

many information which can not be available when a company has just started

its business or does not have enough historical information. The proposed

methodology consists in a switching model formulation, in order to estimate

correctly both uplifts and baseline behaviours. Referring again to Figure 9.1,

it can be observed that the dependence of baseline periods on previous sales

quantity is not evident, as opposite to uplift peaks. For this reason, the

switching behaviour includes a static model which is more thrifty, being able

to manage the low data available for the identification. During promotional

events, a dynamic predictor is employed, which makes use of past information.

During weeks with no promotions, the static model estimates the baseline value:

ŷ(t) =



αd · y(t− 2) + βd
(
p(t)

)
+ γd

(
p(t− 1)

)
+ µd

(
d(t)

)
+

+κ · [y(t− 2)− ŷ(t− 2)] if p(t) 6= NO PROMO

βs
(
p(t)

)
+ µs

(
d(t)

)
if p(t) = NO PROMO

(9.1)

This switching strategy is made possible because the promotion calendar

is known since the beginning of the year. The developed tool will help to

improve the definition of the time and type of promotions for each week of the

year, depending on the specific customer and product. Practical benefits of the

proposed methodology are: i) independent estimation of baseline and uplift

scenarios; ii) linear parametric structure, which makes simple the imputation

of missing data; iii) effective even when the number of historical data is scarse.

The variable ŷ(t) represents the predicted delivered quantity at time t,

with αd, βd, γd, µd the dynamic system estimated coefficients, and βs, µs the

static system estimated coefficients. The notation of the promotion coefficients

βd, γd, βs as function of the promotions at a certain time, indicates that various

model with the same slope but different intercepts are being fitted by the

linear model method. Variables p(t) and d(t) were coded as factor variables

with defined levels, and y(t) is a numerical quantity. The parameter κ, chosen

heuristically given the impossibility to perform proper cross-validation with the

small data sample at disposal, controls the entity of the correction based on

107

Chapter 9. Control-oriented modeling of SKU-level demand in retail food
market

the previous 2-step prediction error. The model parameters are then estimated

via least squares.

The model is trained incrementally each week, as more data are at disposal.

This ensures that all available information are used and taken into account

when performing forecasts. The initial training data set consists of the year

2014 data (52 observations), and predictions for the year 2015 in its entirety

are performed. Then, the model is updated with data from the year 2015,

and forecasts are recasted with the up to date sales information. As depicted

in Figure 9.3, it is possible to observe how the model does a good job into

estimating both uplifts and baseline values. It is to be noticed that the error on

the promotion “Discount”, represented by a filled circle, decreases as more data

on this particular promotion type become available. The system is therefore

obviously expected to perform even better with the arrival of new data.

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50

Time [week]

D
e

liv
e

re
d

 q
u

a
n

ti
ty

 [
K

g
]

Promotion type NO PROMO DISCOUNT FLYER

Customer 1 - Product 1

Figure 9.3: Product 1 delivered quantity (continous blue line) and forecast
(dot-dashed orange line). The large error on the first promotion uplift
is due to the lack of information on that particular promotion in the
training data (i.e., before week 13 of 2015).

The behaviour of the Product 2 for a specific customer 2, see Figure 9.4,

it is somewhat different with respect to the sales profile showed in Figure 9.3.

Although uplift peaks are still visibile, period with no promotion does not seem

to differentiate much with respect to promotional weeks. Nevertheless, the

108

Chapter 9. Control-oriented modeling of SKU-level demand in retail food
market

�

�

�

�

�

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50

Time [week]

D
e

liv
e

re
d

 q
u

a
n

ti
ty

 [
K

g
]

Promotion type �NO PROMO DISCOUNT COLLECTION POINTS OTHER

Customer 2 - Product 2

Figure 9.4: Product 2 delivered quantity (continous blue line) and forecast
(dot-dashed orange line).

forecasts are still able to capture the sales general trend. The plot in Figure

9.5 reflects how the feedback correction acts, allowing a higher prediction at

week 21 to compensate the underestimation of sales at week 19. From week 30,

the Product 3 was no more sold in Customer 3 salespoints. The algorithm is

able to cope with this sudden sales interruption. An interesting aspect is that

the promotion “Flyer” in Figure 9.3 is not present in the training data prior to

week 28 of year 2015. To overcome this problem and being able to perform the

required predictions, an imputation procedure based on a similarity measure

between customers has been employed.

9.3.2 Missing data imputation

In order to retrieve the missing promotional information, customers were

compared by the euclidean distance measure, in the vector space defined by

the following two features:

� Mean baseline value: the mean quantity sold during baseline periods

� Mean uplift value: the average increase in sales during promotional

events. This feature is computed by taking the delivered quantity values

109

Chapter 9. Control-oriented modeling of SKU-level demand in retail food
market

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50

Time [week]

D
e

liv
e

re
d

 q
u

a
n

ti
ty

 [
K

g
]

Promotion type NO PROMO FLYER

Customer 3 - Product 3

Figure 9.5: Product 3 delivered quantity (continous blue line) and forecast
(dot-dashed orange line).

at the beginning and at the end of the promotion, and their mean

computed. Then, this value is subtracted from the maximum value of

sold quantity during the promotion period. The procedure is repeated

for each promotion of that particular client, giving raise to a number of

indexes equal to the number of promotions of that client. Finally, their

mean is computed and taken as a feature

The adopted representation of clients in a 2-dimensional space permits a

rapid and effective distance computations, given the number of stores (185 in

this study). An higher dimensional space would have led to less significative

comparisons due to the curse of dimensionality. As can be seen in Figure 9.6 ,

the clients form one large cluster, with the upper-right customer considerable

as another category. In order to impute missing promotional information for a

client, its nearest customer (which has an evaluation of the missing promotion),

is taken. Once the searched client is found, the model in Equation 9.1 is

identified, and the coefficients corresponding to the missing promotions are

used to evaluate the information not present. If the nearest customer does not

have all required information (but only a subset of the missing information),

the second nearest store is used, and so on. The results of this mapping can

110

Chapter 9. Control-oriented modeling of SKU-level demand in retail food
market

be used to interpret how a client is positioned into different market segments.

The procedure has therefore been useful to develop a deeper understanding of

the customer portfolio for the company.

1

2

3

4

-1 0 1 2 3

Log10 of mean baseline value

L
o

g
1

0
 o

f
m

e
a

n
 u

p
lif

t
v
a

lu
e

Vector space clients mapping - Product 1

Figure 9.6: Clustering induced on Product 1 clients.

9.4 Performance assessement

In this section, the proposed model performances are compared with standard

benchmark systems.

9.4.1 Last-like promotion benchmark model

The first benchmark consists in the last-like promotion model, as implemented

in [146], with the minor modification of taking values two steps in the past. This

method, also known as exponential smoothing with lift adjustment, contains a

switching logic like the algorithm proposed in this paper. The philosopy behind

the benchmark model is the following. If there is no promotion in the incoming

week, the forecast is the smoothed value of the non promotional weeks in the

past; else, the last observed lift amount is added to the smoothed value to

obtain the prediction:

ŷl(t) =


z(t) + L(t) if p(t) 6= NO PROMO

z(t) if p(t) = NO PROMO

(9.2)

111

Chapter 9. Control-oriented modeling of SKU-level demand in retail food
market

and

z(t) =


z(t− 2) if p(t) 6= NO PROMO

(1− τ)z(t− 2) + τy(t− 2) if p(t) = NO PROMO

(9.3)

with ŷl(t) denoting the forecast at time t of the last-like promotion model,

z(t) refers to the smoothed number of items sold up to week t, based on non

promotional weeks. The value of τ used is 0.2, based on the traditional default

value for exponential smoothing. The lift amount L(t) is computed as the

difference of the actual sales at time t and the smoothed non-promotion sales at

the time of the most recent promotion, L(t) = y(t− 2)− z(t− 2). The model

behaves as a “persistency” one, replicating the uplift behaviour two weeks in

the future.

9.4.2 ARMAX benchmark model

The ARMAX (Autoregressive Moving Average with eXogenous inputs) model

provides a general framework for modeling short-memory time series equipped

with an external inputs u(t):

A(q)y(t) = B(q)u(t) + C(q)e(t) (9.4)

where e(t) is a white noise error term, q is the lag operator such that q ·
y(t) = y(t+ 1), and A(q), B(q), C(q) are the polinomials of the autoregressive,

exogenous and moving average part respectively. In this work, the most suitable

model structure was found to be an ARMA(1,1) model, with indicators variable

for period of the year and promotion type. The model was retrained each week,

and a 2-step forecast computed.

9.4.3 Comparison of results

A comparative overview of the proposed approach performance (on a client

without missing promotion), with respect to the benchmarks described in

the previous sections, is reported in Figure 9.7. As can be seen, the last-like

promotion model behaves like a persistence model, repeating the delivered

quantity of two week before. The ARMAX model correctly detected the

promotion periods, but it is not able to “reset” its prediction to the baseline

value when the promotion ends. The proposed model is able to correctly detect

112

Chapter 9. Control-oriented modeling of SKU-level demand in retail food
market

the timings of a promotion, its effect, and rapidly switch to the baseline trend.

A quantitative comparison of the described methods is reported in Table 9.1

and Table 9.2, where the best results are highlighted in bold text. The proposed

method is the best for 6 out of 7 KPIs. Major improvements lie in the baseline

and uplifts value estimation. The ARMAX model instead obtains a better

result on the integral error. Notice however that the proposed model is not

designed to optimize such a measure but for a pointwise estimation.

Table 9.1: Comparison results: standard metrics

Method MAE MAPE LAR

Proposed 0.171 195% 12.655

Last-like 0.418 249% 35.404

ARMAX(1,1) 0.248 358% 18.781

Table 9.2: Comparison results: proposed metrics

Method IEP MEB MUE

Proposed 0.083 0.005 -0.186

Last-like -0.094 0.038 -0.756

ARMAX(1,1) 0.019 0.056 -0.514

113

Chapter 9. Control-oriented modeling of SKU-level demand in retail food
market

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50

Time [week]

D
e

liv
e

re
d

 q
u

a
n

ti
ty

 [
K

g
]

Proposed approach

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50

Time [week]

D
e

liv
e

re
d

 q
u

a
n

ti
ty

 [
K

g
]

Last-like promotion model

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50

Time [week]

D
e

liv
e

re
d

 q
u

a
n

ti
ty

 [
K

g
]

Promotion type NO PROMO FLYER

Arma(1,1) + Exogenous inputs model

Figure 9.7: Comparison of delivered quantity (continous blue line) and forecasts
(dot-dashed orange line) with the proposed method and the benchmarks
models.

114

Chapter 9. Control-oriented modeling of SKU-level demand in retail food
market

9.5 Conclusions and future developments

This work presented an innovative approach to tackle the forecast of sales

delivery in presence of promotional events. The proposed methodology consists

in a switching linear structure, which is able to correctly predict both baseline

and uplifts sale periods. The identified model has been shown to be particularly

effective in presence of a low amount of training data for the identification

stage. When no prior information on the effect of a promotion are available,

an imputation procedure based on customer similarity has been proposed

and employed with success. Furthermore, a performance assessment and a

comparison with state of the art methods has been carried out, introducing

new and domain specific KPIs which better reflects the forecasts accuracy from

different points of view. Future research will be focused on the integration of

the proposed modeling approach within a closed-loop business decision process,

and the use of hierarchical models to better capture the correlations between

clients and products.

115

Chapter 9. Control-oriented modeling of SKU-level demand in retail food
market

116

CHAPTER 10

Conclusions

In Part I of this thesis, we took a journey from the classical landscapes of

parametric system identification (Chapter 1) to modern valleys of nonparametric

functions’ estimation techniques (Chapter 2). The bridge that made this

crossing possible is the interest that the system identification community

started to cultivate for the related statistical learning one. Leveraging on this

fruitful fertilization, this work investigated one, until now, hidden scenario

for system identification: the semi-supervised learning framework. In this

view, additional inputs points with no corresponding output data can be

employed to better conditionate the learning problem. Chapter 3 introduced

a new regularization term, called manifold regularization, to the estimation

of Nonlinear Finite Impulse Response (NFIR) systems. The method is shown

to outperform standard Tikhonov regularization, and has to be seen a first

step to incentivate even more the communication and sharing of knowledge

between the system identification and the statistical learning fields. In Part

II, we discussed some applications of statistical learning methods, mostly in

the field of fault detection for electro-mechanical actuators. Motived by the

HOLMES european project (Chapter 5), a model-based (Chapter 6) and a

data-driven (Chapter 7) methods were proposed. The former methodology was

based on a particular variation of the particle filter algorithm. This method

treats the fault detection problem as a hybrid system state estimation one,

were the system condition (healthy, faulty) is seen a state to be estimated. The

latter approach treated the problem as a pure black-box, computing different

Chapter 10. Conclusions

types of features on measured signals, and finally training a classifier on the

extracted features in order to assign to each data point a particular system

condition. In Chapter 8, we developed a modification of a pre-existing clustering

algorithm, the Principal Direction Divisive Partitioning (PDDP) clustering

strategy. The modified PDDP is shown to generate better cluster with respect

to standard PDDP, k-means and fuzzy k-means clustering methodologies, by a

fault detection application to data coming from the same experimental setup

of previous applicative chapters. In Chapter 9 we faced a different problem,

that is, the forecasting of delivered food quantity in the retail market. The aim

was to correctly predict the sold quantity during promotional events. In order

to solve this, a switching dynamic model has been designed, which is able to

forecast promotional peaks and baseline sales, even with the few amount of

data from a real food company.

Statistical learning methods are ubiquitous in the challenges poses in the

automatic control areas, both the theoretical ones as in Part I, and in the

applicative context as in Part II.

As a final note, if this thesis succeeds into light the reader interest for

learning methodologies, I will consider it to be a success.

118

Appendices

APPENDIX A

Topics in learning parametric models

A.1 Bias and variance

The bias-variance tradeoff is related to the approximation-generalization dilemma.

The ultimate goal is to have a small Eout for a particular identified model, that

is, a good approximation of S0 on new and unseen data. Suppose that the

model family M has been fixed. A particular model is then M ≡M(θ). The

out of sample error of a model M is indicated with Eout(M). Since the identified

model M depends on the identification (training) dataset D, it is convenient to

explicitate this dependence, leading to the notation Eout(M
(D)) for the out of

sample error of model M trained on D. The bias-variance analysis decomposes

ED
[
Eout(M

(D))
]
, i.e. the expected out of sample error of the models M (D),

each identified on a different realizations of D, into two terms, Figure A.1:

� Bias: How well M can approximate S0, that is, how much the model

M∗ ∈M that best approximates S0 differs from the true system.

� Variance: How much the identified model M (D) deviates from M∗, on

average over different training sets D.

We can think about the bias as how much our hypothesis spaceM is biased

away from the true target. Infact, the best model M∗ in M is only limited

in its ability to approximate S0 by the limitations of the model structure M
itself. The bias expresses both model bias (due to structural mismatch between

model and true system) and estimation bias (due to incorret parameters’

Appendix A. Topics in learning parametric models

Low variance High variance

L
o
w
 b
ia
s

H
ig
h
 b
ia
s

�

�

�

�

Figure A.1: Graphical representation of bias and variance

value estimation) [4]. The variance of the parameters indicates how much a

different training set D leads to a different learned model M (D). The learned

models have the same structure but a different value of the parameters. A

more flexible model family has typically smaller bias, since it is easier to be

closer to the true system. The tradeoff is that this model will have generally

higher variance, since a minimal variation in the data can led to a completely

different parameters’ estimate. In the case where S0 ∈M, if the mean of the

parameters’ estimator coincides with the true parameters’ values, the estimator

is said to be unbiased. In the aforementioned case, the PEM method leads

to unbiased models. For Gaussian noise sources, the PEM estimate is also

asymptotically efficient, provided that the model family M contains the true

system’s description. This means that, as N → ∞, the covariance matrix

of θ̂ will approach the Cramér-Rao limit, and so no other unbiased estimate

can be better than the PEM estimate. If S0 6∈ M, an unbiased estimate of

the B0(q)
A0(q)

part can still be obtained. Suppose that M is an ARX model and

S0 is ARMAX, with B0(q)
A0(q)

∈ B(q,θ)
A(q,θ)

. In this setting, the instrumental variable

method [3] can be employed to obtain unbiased estimates of the input-output

transfer function. The phenomenon of overfitting happens when decreasing the

in-sample error leads to increasing out-of sample error, Figure A.2. Overfitting

is primarly caused by the model’s variance, and can happen even if there is no

noise in the data, due to an excessive higher complexity of the unknown function

that has to be found, with respect to the chosen model’s complexity [10]. In

order to balance the bias and the variance components, different methods have

been developed, mainly by penalizing overly complex models.

122

Appendix A. Topics in learning parametric models

�������

���������	��
��

�
��
�
�

�����	�
�
�����

�
���

����	�
�
������

�
���

����
������

�

��������
������

�

Figure A.2: Representation of the overfitting phenomenon. In the region to the rigth
of the vertical dashed line, the model is overfitting the data

A.2 Model order selection

Suppose that the model’s structure has been fixed. Model order selection is a

way to prevent overfitting, by selecting the optimal model’s order, as defined

by a specific measure. In the case where there is a sufficient number of data,

cross-validation is the best method to assess the model’s performance. When

the data is limited, a number of measures have been introduced to estimate the

out-of-sample error using only training data. The simplest method for defining

this metric is to penalize the in sample error with a term that is proportional to

the complexity of the model. A common penalty term introduced to penalize

model’s flexibility is the Akaike Information Criterion (AIC) [5]:

AIC = ln
(
JN
(
θ̂;m

))
+ 2

m

N
, (A.1)

where θ̂ ∈ Rm×1 is the parameters’ estimate using the model order m. To

use AIC for model selection, we simply choose the model giving smallest AIC

over the set of models considered. Another similar penalty is (under Gaussian

disturbances) the Bayesian Information Criterion (BIC) [2, 159] or Rissanen’s

Minimum Description Length (MDL) criterion [160]:

BIC = ln
(
JN
(
θ̂;m

))
+ ln(N)

m

N
, (A.2)

123

Appendix A. Topics in learning parametric models

which tends to penalize complex models more heavily than AIC, when ln(N) >

2⇒ N > 8 (condition which is almost always met). A third technique is the

Final Prediction Error (FPE) method [3]:

FPE =
N +m

N −m
· JN

(
θ̂;m

)
, (A.3)

where, under the hypothesis that m� N , we have that ln(FPE) = AIC and

the two methods lead to the same result.

The AIC and BIC criteria are based on in-sample computation: the model

goodness is tested on the errors made on the same training data used to fit the

model. While this leds often to accurate model selection [4], it is not likely

that future data will be the same as the training ones. In order to test the

model’s performance on unseen data, i.e., its generalization capability, the

cross-validation method is preferable. The goal is to obtain an estimate of the

prediction capability of future data of the model in correspondence with different

choices of m. The selection of the parameters’ number is thus performed by

optimizing the estimated prediction score. Holdout validation is the simplest

form of CV: the available data are split in two parts, where one of them

(estimation set) is used to estimate the model, and the other one (validation

set) is used to assess the prediction capability. By ensuring independence of the

model fit from the validation data, the estimate of the prediction performance

is approximately unbiased. More advanced cross-validation techniques include

the k−fold cross-validation, where data are split in k parts instead of only two

parts. The model is trained for each combination of k − 1 folds and tested on

the remaining one. Then, the average error over k folds is computed. This

gives also an indication about the standard error of the mean estimate.

Bootstrap methods are an alternative to cross-validation. In particular, the

“.632+” estimator [161] can be used to assess the generalization performance

of the learned model. In both CV and bootstrap cases, the estimated error is

not strictly the out of sample error Eout(M
(D)), but rather the expected out of

sample error ED
[
Eout(M

(D))
]
, see [4].

A.3 Empirical Bayes

By casting the regularized regression problem into the Bayesian framework, we

have defined in (2.44) and (2.45) the variables γ2 and σ2. These variables are

defined as hyperparameters, since they govern how the unknown parameters

124

Appendix A. Topics in learning parametric models

are estimated. In most of the cases, the exact value of these hyperparameters is

not defined, since we do not know the noise’s variance or the prior’s variability.

It is then intuitive to put a prior also on the hyperparameters, leading to a

hierarchical model, where each layer is conditionally dependent from the layers

above [162]. This is called a Full Bayes approach. In this setting, the prediction

y∗ at a new point x∗ is given by the predictive distribution:

p(y∗|x∗, Y) =

∫∫∫
p(y∗|x∗, θ, σ)p(θ|Y, γ, σ)p(γ, σ|Y) dθ dγ dσ, (A.4)

where p(y∗|x∗, θ, σ) = N (x∗T θ, σ2) is the conditioned distribution of the data

(independent of γ and Y), the parameters’ posterior p(θ|Y, γ, σ) = N (µθ|Y ,Σθ|Y)

with µθ|Y ,Σθ|Y given by (2.50) and (2.51) respectively, and the posterior

distribution p(γ, σ|Y) that acts as the prior distribution on the hyperparameters.

The complete marginalization of the distribution (A.4) with respect to θ, γ, σ

is often analytically intractable. For this reason, a number of computational

methods have been developed to approximate the solution, such as Markov

Chain Monte Carlo (MCMC) [163] and Integrated nested Laplace approximation

(INLA) approaches [164]. An alternative approach is given by the Empirical

Bayes method [162, 165]. This approach is also known as type-2 maximum

likelihood [166], or generalized maximum likelihood [167], and in the machine

learning literature is also called the evidence approximation [168, 169]. If the

posterior distribution p(γ, σ|Y) is sharply peaked at values γ̂ and σ̂, then the

predictive distribution is obtained simply by marginalizing over θ, in which γ

and σ are fixed to the values γ̂ and σ̂, so that:

p(y∗|x∗, Y) ' p(y∗|x∗, Y, γ̂, σ̂) =

∫
p(y∗|x∗, θ, σ̂)p(θ|Y, γ̂, σ̂) dθ. (A.5)

The aim is therefore to find the hyperparameters’ values γ̂ and σ̂ which maximize

p(γ, σ|Y), and use them to compute the approximation (A.5). In order to do

this, it is possible to notice that from Bayes’ theorem:

p(γ, σ|Y) ∝ p(Y |γ, σ)p(γ, σ). (A.6)

Then, if the prior is quite flat, the values γ̂ and σ̂ are obtained by maximizing

the marginal likelihood function p(Y |γ, σ). This function directly assesses

the relative goodness of a model with respect to another one, expressing

the preference shown by the data for the different models. Two models

may differ, as an example, for a different value of their hyperparameters.

125

Appendix A. Topics in learning parametric models

The marginal likelihood can be effectively used as a model selection tool,

because it automatically incorporates a trade-off between model fit to data

and model complexity. By maximizing this function, we are able to find the

hyperparameters’ values that best balance these two conflicting aspects. The

marginal likelihood can be expressed as:

p(Y |γ, σ) =

∫
p(Y |θ, σ)p(θ|γ) dθ, (A.7)

and can be computed analytically in the linear Gaussian model case (2.19),

by referring to the relations (2.37) - (2.44) - (2.46). The minimization is then

performed by iterative schemes [30]. In equation (A.7), the term p(Y |γ, σ) is

nothing more than the marginal distribution of the data Y computed in the

bottom part of (2.37), where the dependence on the hyperparameters γ and σ

have been made explicit. The factor p(Y |θ, σ) is the conditional distribution of

the data (2.46) that depends on σ. The term p(θ|γ) is the prior distribution on

the parameters (2.44), which depends on its standard deviation γ. Therefore,

we are given p(θ) and p(Y |θ), and we want to find p(Y). Using (2.37), the

marginal likelihood (as a function of the hyperparameters’ vector η = [γ, σ]T)

is found to be:

p(Y |γ, σ) = N
(
0,Σy(η)

)
(A.8)

=
1

(2π)N/2
· 1(

det Σy(η)
)1/2 · e− 1

2

(
Y TΣ−1

y (η)Y
)
, (A.9)

where Σy(η) = σ2IN + Φγ2ImΦ
T . The equivalent solution which maximises the

evidence (A.8) can be found by minimizing the negative log-likelihood:

−ln
[
p(Y |γ, σ)

]
= −

[
−N

2
ln(2π)− 1

2
ln
[
det Σy(η)

]
− 1

2

(
Y TΣy(η)−1Y

)]
,

(A.10)

and the parameters’ estimate is obtained as in [21, 20]:

η̂ = arg min
η

Y TΣy(η)−1Y + ln
[
det Σy(η)

]
(A.11)

When it is not possible to compute analytically the marginal likelihood (A.7),

the Expectation Maximization (EM) method can be employed [30].

126

APPENDIX B

Functional analysis fundamentals

B.1 Vector spaces and linear operators

Definition B.1.1 A vector space over the real field R is a set V endowed with

two operations:

1. sum: V × V → V
(u,v) 7→ u+v

2. inner product: R× V → V
(λ,v) 7→ λv

and that satisfies the following axioms:

- u+ (v + w) = (u+ v) + w, ∀u, v, w ∈ V

- u+ v = v + u

- ∃ 0 ∈ V : v + 0 = v, ∀v ∈ V

- ∃ (−v) ∈ V : v + (−v) = 0, ∀v ∈ V

- λ1 (λ2v) = (λ1λ2) v, ∀λ1, λ2 ∈ R, v ∈ V

- ∃ 1 ∈ V : 1 · v = v, ∀v ∈ V

- λ (u+ v) = λu+ λv, ∀λ ∈ R, v, u ∈ V

- (λ1 + λ2) v = λ1u+ λ2v, ∀λ1λ2 ∈ R, v, u ∈ V

Appendix B. Functional analysis fundamentals

Suppose now that V and W are two vector spaces. Then, the following

definitions hold:

Definition B.1.2 F : V → W is a linear operator if, ∀λ1, λ2 ∈ R one has

that F (λ1u1 + λ2u2) = λ1F (u1) + λ2F (u2), ∀u1, u2 ∈ V

Definition B.1.3 A linear operator F : V → R is called linear form or

linear functional

Definition B.1.4 A bilinear form is a function a : V × V → R that is linear

in both the arguments, that is:

- a(u, ·) : V → R
v 7→ a(u,v)

is a linear functional, ∀u ∈ V (u is fixed)

- a(·, v) : V → R
u 7→ a(u,v)

is a linear functional, ∀v ∈ V (v is fixed)

Definition B.1.5 A bilinear form a is said to be symmetric if a(u, v) = a(v, u)

∀v, u ∈ V

Example: 2.1 (i) Linear operators

1. Be V = Rn, W = Rm, A ∈ Rm×n, then

f : Rn → Rm
v 7→ Av

is a linear operator. If m = 1, it is a linear form.

2. Be V = Rn, then

a : Rn × Rn → R
(u,v) 7→ uTAv

is a bilinear form; a is a symmetric form ⇐⇒ A is symmetric.

B.1.1 Banach spaces

Definition B.1.6 Let V be a vector space. A norm over V is a function

‖ · ‖ : V → R s.t. ∀u, v ∈ V and ∀λ ∈ R the following properties hold:

a) ‖u‖ ≥ 0; ‖u‖ = 0 ⇐⇒ u = 0

b) ‖λu‖ = |λ| · ‖u‖

c) ‖u+ v‖ ≤ ‖u‖+ ‖v‖

In this case we say that (V, ‖ · ‖) is a normed space.

128

Appendix B. Functional analysis fundamentals

Example: 2.1 (ii) Normed spaces

1. V = Rn, with the Euclidean norm: ‖ (u1, . . . , un) ‖2 =
√∑n

i=1 u
2
i

2. V = C ([a, b]) with the max norm: ‖u‖∞ = Max
x∈[a,b]

|u(x)|

3. V = C ([a, b]) with the Lp norm: ‖u‖p =
(∫ b

a |u(x)|p dx
) 1
p

Definition B.1.7 Let (V, ‖ · ‖) a normed space. A sequence {un} is said to

be:

- convergent, if ∃u ∈ V s.t. un → u, that is, lim
n→∞
‖un − u‖ = 0

- the sequence is a Cauchy sequence if ‖un − um‖ when n,m→∞

Proposition B.1.1 In a normed space, every convergent sequence is a Cauchy

sequence.

Proposition B.1.2 In Rn (with the euclidean norm), every Cauchy sequence

is convergent. There exist however normed spaces in which not all Cauchy

sequences are convergent.

Definition B.1.8 A normed space is said to be complete if every Cauchy

sequence converges (in the same space). A Banach space is a complete normed

space.

Example: 2.1 (iii) Complete spaces

1. V = Rn, with the Euclidean norm: ‖ (u1, . . . , un) ‖2 =
√∑n

i=1 u
2
i

2. V = C ([a, b]) with the max norm: ‖u‖∞ = Max|u(x)|
x∈[a,b]

3. V = C ([a, b]) with the Lp norm: ‖u‖p =
(∫ b

a |u(x)|p dx
) 1
p

4. V = Lp with the Lp norm

Examples 1., 2. and 4. are complete (and so they are Banach spaces), while 3. is not

complete. Notice that 2. and 3. are the same space but with a different norm, while

3. and 4. are different spaces with the same norm.

129

Appendix B. Functional analysis fundamentals

B.1.2 Hilbert spaces

Definition B.1.9 A pre-Hilbert space is a vector space V endowed with a

inner product, that is, of a bilinear symmetric form 〈 · , · 〉 : V × V → R
(u,v) 7→ 〈u,v〉

, s.t.

〈u, u〉 > 0 ∀u 6= 0.

The induced norm by the inner product is:

‖u‖ =
√
〈u, u〉. (B.1)

Proposition B.1.3 Let V be a pre-Hilbert space. Then, the following propositions

hold:

- Schwarz inequality: | 〈u, v〉 | ≤ ‖u‖ · ‖v‖ ∀u, v ∈ V .

- The induced norm is effectively a norm.

Definition B.1.10 A Hilbert space is a complete pre-Hilbert space (with respect

to the induced norm).

Example: 2.1 (iv) Hilbert spaces

1. Let V = Rn, 〈u, v〉 =
∑n

i=1 ui · vi. The induced norm is the euclidean one. The

space is complete, therefore V is a Hilbert space.

2. V = C ([a, b]), 〈u, v〉 =
∫ b
a u(x) · v(x) dx. The induced norm is the ‖ · ‖2 norm.

The space is not complete (see previous example). Then, V is a pre-Hilbert

space but not a Hilbert one.

Definition B.1.11 Let V be a Hilbert space and F : V → R a linear functional.

We say that F is continous in a point u ∈ V , if, for every sequence {un} ⊂ V

that converges to u, we have that F (un) converges to F (u). In formulas:

lim
n→∞

‖un − u‖ = 0 =⇒ lim
n→∞

|F (un)− F (u)| = 0. (B.2)

It can be shown that F is continous in every u ∈ V if and only if ∃M ∈ R
s.t. |F (u)| ≤M · ‖u‖.

Let now be V
′

the set of the continous and linear functional from V to R.

130

Appendix B. Functional analysis fundamentals

Example: 2.1 (v) Continous linear functional

Let V = R2 with inner product 〈u, v〉 = 〈(u1, v1) , (u2, v2)〉 = u1v1 + u2v2. Then,

F : R2 → R
(u1,u2) 7→ 2u1−u2

is a linear form, continous over R2.

Definition B.1.12 V
′

is called the dual space of V . If F ∈ V ′ we can define

its dual norm:

‖F‖V ′ = sup
‖u‖=1

|F (u)| (B.3)

Let now V be a Hilbert space, with fixed v ∈ V . Let Fv(u) = 〈u, v〉, that is

Fv = 〈·, v〉. Then, Fv : V → R
u 7→ 〈u,v〉

is linear (because 〈·, ·〉 is bilinear) and continous.

Infact | 〈u, v〉 | ≤ ‖u‖·‖v‖ (for the Schwarz inequality), and so |Fv(u)| ≤M ·‖u‖
(where M = ‖v‖). Therefore, we have that ∀v ∈ V , Fv ∈ V

′
, i.e. there is

a function Φ : V → V
′

v 7→ Fv
that maps each element of the space V to a linear

functional in V
′
.

Example: 2.1 (vi) Mapping from V to V
′

Let v1, v2 ∈ V . Then, the following relations hold:

Φ(v1) = Fv1(u) = 〈u, v1〉

Φ(v2) = Fv2(u) = 〈u, v2〉

It can be shown that Φ is a linear injective operator. A fundamental result

is the following:

Theorem B.1.1 Riesz’s representation theorem

The fuction Φ is surjective. This means that ∀F ∈ V ′ there exists v ∈ V
s.t. F = Fv.

The function Φ is both injective and surjective, then it is a bijection.

The results of the Riesz’s representation theorem make possible to express

every F ∈ V ′ in the form Fv, that is, every F (u) returns the same result as

Fv(u) = 〈u, v〉.

131

Appendix B. Functional analysis fundamentals

132

Bibliography

[1] L. Ljung and T. Glad, Modeling of dynamic systems. PTR Prentice Hall

Englewood Cliffs, 1994.

[2] L. Ljung, System Identification: Theory for the User. Pearson Education,

1998.

[3] T. Söderström and P. Stoica, System identification. Prentice-Hall, Inc.,

1988.

[4] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical

learning, vol. 1. Springer series in statistics New York, 2001.

[5] H. Akaike, “A new look at the statistical model identification,” IEEE

transactions on automatic control, vol. 19, no. 6, pp. 716–723, 1974.

[6] T. Chen, H. Ohlsson, and L. Ljung, “On the estimation of transfer

functions, regularizations and gaussian processes - revisited,” Automatica,

vol. 48, no. 8, pp. 1525–1535, 2012.

[7] G. Pillonetto, A. Chiuso, and G. De Nicolao, “Prediction error

identification of linear systems: a nonparametric gaussian regression

approach,” Automatica, vol. 47, no. 2, pp. 291–305, 2011.

[8] G. Pillonetto and G. De Nicolao, “A new kernel-based approach for linear

system identification,” Automatica, vol. 46, no. 1, pp. 81–93, 2010.

[9] H. Leeb and B. M. Pötscher, “Model selection and inference: Facts and

fiction,” Econometric Theory, vol. 21, no. 1, pp. 21–59, 2005.

Bibliography

[10] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H. T. Lin, Learning from

data. AMLBook New York, NY, USA, 2012.

[11] D. L. Phillips, “A technique for the numerical solution of certain integral

equations of the first kind,” Journal of the ACM (JACM), vol. 9, no. 1,

pp. 84–97, 1962.

[12] A. N. Tikhonov and V. Y. Arsenin, Solutions of ill-posed problems, vol. 14.

Winston, 1977.

[13] P. C. Hansen, “The truncated svd as a method for regularization,” BIT

Numerical Mathematics, vol. 27, no. 4, pp. 534–553, 1987.

[14] Y. Yao, L. Rosasco, and A. Caponnetto, “On early stopping in gradient

descent learning,” Constructive Approximation, vol. 26, no. 2, pp. 289–315,

2007.

[15] B. Scholkopf and A. J. Smola, Learning with kernels: support vector

machines, regularization, optimization, and beyond. MIT press, 2001.

[16] J. Shawe-Taylor and N. Cristianini, Kernel methods for pattern analysis.

Cambridge university press, 2004.

[17] C. E. Rasmussen and C. K. Williams, Gaussian processes for machine

learning, vol. 1. MIT press Cambridge, 2006.

[18] B. Schölkopf and A. J. Smola, Learning with kernels: support vector

machines, regularization, optimization, and beyond. MIT press, 2002.

[19] B. Efron and T. Hastie, Computer Age Statistical Inference, vol. 5.

Cambridge University Press, 2016.

[20] G. Prando, D. Romeres, G. Pillonetto, and A. Chiuso, “Classical vs.

bayesian methods for linear system identification: Point estimators

and confidence sets,” in Control Conference (ECC), 2016 European,

pp. 1365–1370, IEEE, 2016.

[21] G. Pillonetto, F. Dinuzzo, T. Chen, G. De Nicolao, and L. Ljung,

“Kernel methods in system identification, machine learning and function

estimation: A survey,” Automatica, vol. 50, no. 3, pp. 657–682, 2014.

[22] G. Pillonetto, M. H. Quang, and A. Chiuso, “A new kernel-based approach

for nonlinear system identification,” IEEE Transactions on Automatic

Control, vol. 56, no. 12, pp. 2825–2840, 2011.

134

Bibliography

[23] P. Van Overschee and B. De Moor, Subspace identification for linear

systems: Theory-Implementation-Applications. Springer Science &

Business Media, 2012.

[24] M. Verhaegen and V. Verdult, Filtering and system identification: a least

squares approach. Cambridge university press, 2007.

[25] R. Pintelon and J. Schoukens, System identification: a frequency domain

approach. John Wiley & Sons, 2012.

[26] M. A. H. Darwish, J. Lataire, and R. Toth, “Bayesian frequency domain

identification of LTI systems with OBFs kernels,” in 20th World Congress,

IFAC, 2017.

[27] N. Wiener, Extrapolation, interpolation, and smoothing of stationary time

series, vol. 7. MIT press Cambridge, MA, 1949.

[28] L. Ljung, “Prediction error estimation methods,” Circuits, Systems and

Signal Processing, vol. 21, no. 1, pp. 11–21, 2002.

[29] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, et al., “Least angle

regression,” The Annals of statistics, vol. 32, no. 2, pp. 407–499, 2004.

[30] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[31] F. P. Carli, “On the maximum entropy property of the first-order stable

spline kernel and its implications,” in Control Applications (CCA), 2014

IEEE Conference on, pp. 409–414, IEEE, 2014.

[32] G. Pillonetto and G. De Nicolao, “Kernel selection in linear system

identification part i: A gaussian process perspective,” in Decision and

Control and European Control Conference (CDC-ECC), 2011 50th IEEE

Conference on, pp. 4318–4325, IEEE, 2011.

[33] F. P. Carli, A. Chiuso, and G. Pillonetto, “Efficient algorithms for

large scale linear system identification using stable spline estimators,”

Proceedings of IFAC SYSID symposium, vol. 45, no. 16, pp. 119–124,

2012.

[34] T. Chen and L. Ljung, “Implementation of algorithms for tuning

parameters in regularized least squares problems in system identification,”

Automatica, vol. 49, no. 7, pp. 2213–2220, 2013.

135

Bibliography

[35] W. Rudin, Real and complex analysis. Tata McGraw-Hill Education,

1987.

[36] N. Aronszajn, “Theory of reproducing kernels,” Transactions of the

American mathematical society, vol. 68, no. 3, pp. 337–404, 1950.

[37] F. Cucker and S. Smale, “On the mathematical foundations of learning,”

Bulletin of the American mathematical society, vol. 39, no. 1, pp. 1–49,

2002.

[38] G. Wahba, Spline models for observational data. SIAM, 1990.

[39] R. Vert and J.-P. Vert, “Consistency and convergence rates of one-class

svms and related algorithms,” Journal of Machine Learning Research,

vol. 7, no. May, pp. 817–854, 2006.

[40] G. Kimeldorf and G. Wahba, “Some results on tchebycheffian spline

functions,” Journal of mathematical analysis and applications, vol. 33,

no. 1, pp. 82–95, 1971.

[41] T. Poggio and F. Girosi, “Networks for approximation and learning,”

Proceedings of the IEEE, vol. 78, no. 9, pp. 1481–1497, 1990.

[42] J. A. Suykens, T. Van Gestel, and J. De Brabanter, Least squares support

vector machines. World Scientific, 2002.

[43] C. Runge, “Über empirische funktionen und die interpolation zwischen

äquidistanten ordinaten,” Zeitschrift für Mathematik und Physik, vol. 46,

no. 224-243, p. 20, 1901.

[44] G. S. Kimeldorf and G. Wahba, “A correspondence between bayesian

estimation on stochastic processes and smoothing by splines,” The Annals

of Mathematical Statistics, vol. 41, no. 2, pp. 495–502, 1970.

[45] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural

networks architectures,” Neural computation, vol. 7, no. 2, pp. 219–269,

1995.

[46] C. R. Rojas and H. Hjalmarsson, “Sparse estimation based on a validation

criterion,” in Decision and Control and European Control Conference

(CDC-ECC), 2011 50th IEEE Conference on, pp. 2825–2830, IEEE, 2011.

136

Bibliography

[47] C. R. Rojas, B. Wahlberg, and H. Hjalmarsson, “A sparse estimation

technique for general model structures,” in Control Conference (ECC),

2013 European, pp. 2410–2414, IEEE, 2013.

[48] R. Frigola, F. Lindsten, T. B. Schön, and C. E. Rasmussen, “Bayesian

inference and learning in gaussian process state-space models with

particle mcmc,” in Advances in Neural Information Processing Systems,

pp. 3156–3164, 2013.

[49] R. Frigola and C. E. Rasmussen, “Integrated pre-processing for bayesian

nonlinear system identification with gaussian processes,” in Decision and

Control (CDC), 2013 IEEE 52nd Annual Conference on, pp. 5371–5376,

IEEE, 2013.

[50] J. Hall, C. Rasmussen, and J. Maciejowski, “Modelling and control

of nonlinear systems using gaussian processes with partial model

information,” in Decision and Control (CDC), 2012 IEEE 51st Annual

Conference on, pp. 5266–5271, IEEE, 2012.

[51] X. Zhu, “Semi-supervised learning,” in Encyclopedia of machine learning,

pp. 892–897, Springer, 2011.

[52] O. Chapelle, B. Schlkopf, and A. Zien, Semi-Supervised Learning. The

MIT Press, 1st ed., 2010.

[53] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,

vol. 1. MIT press Cambridge, 1998.

[54] D. P. Bertsekas, Dynamic programming and optimal control, vol. 1. Athena

scientific Belmont, MA, 1995.

[55] H. Ohlsson and L. Ljung, “Semi-supervised regression and system

identification,” in Three Decades of Progress in Control Sciences,

pp. 343–360, Springer, 2010.

[56] X. Yang, H. Fu, H. Zha, and J. Barlow, “Semi-supervised nonlinear

dimensionality reduction,” in Proceedings of the 23rd international

conference on Machine learning, pp. 1065–1072, ACM, 2006.

[57] M. Belkin, P. Niyogi, and V. Sindhwani, “On manifold regularization.,”

in AISTATS, p. 1, 2005.

137

Bibliography

[58] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A

geometric framework for learning from labeled and unlabeled examples,”

Journal of machine learning research, vol. 7, no. Nov, pp. 2399–2434,

2006.

[59] X. Zhu and A. B. Goldberg, “Semi-supervised regression with order

preferences,” Dept. Comput. Sci., Univ. Wisconsin-Madison, Madison,

WI, USA, Tech. Rep, vol. 1578, p. 10, 2006.

[60] V. Castelli and T. M. Cover, “The relative value of labeled and unlabeled

samples in pattern recognition with an unknown mixing parameter,”

IEEE Transactions on information theory, vol. 42, no. 6, pp. 2102–2117,

1996.

[61] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality

reduction and data representation,” Neural computation, vol. 15, no. 6,

pp. 1373–1396, 2003.

[62] L. Cayton, “Algorithms for manifold learning,” Univ. of California at

San Diego Tech. Rep, vol. 12, pp. 1–17, 2005.

[63] O. Chapelle, J. Weston, L. Bottou, and V. Vapnik, “Vicinal risk

minimization,” in Advances in neural information processing systems,

pp. 416–422, 2001.

[64] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural

Information Processing Systems 25 (F. Pereira, C. J. C. Burges, L. Bottou,

and K. Q. Weinberger, eds.), pp. 1097–1105, Curran Associates, Inc.,

2012.

[65] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond

empirical risk minimization,” arXiv preprint arXiv:1710.09412, 2017.

[66] Y. S. Abu-Mostafa, “Learning from hints,” Journal of Complexity, vol. 10,

no. 1, pp. 165–178, 1994.

[67] A. Isturiz, J. Vinals, S. Fernandez, R. Basagoiti, E. d. l. Torre Arnanz,

and J. Novo, “Development of an aeronautical electromechanical actuator

with real time health monitoring capability,” 2010.

138

Bibliography

[68] G.-A. Capolino, J. A. Antonino-Daviu, and M. Riera-Guasp, “Modern

diagnostics techniques for electrical machines, power electronics, and

drives,” IEEE Transactions on Industrial Electronics, vol. 62, no. 3,

pp. 1738–1745, 2015.

[69] D. van Schrick, “Remarks on terminology in the field of supervision,

fault detection and diagnosis,” in Preprints of the 3rd IFAC Symposium

on Fault Detection, Supervision and Safety for Technical Processes

SAFEPROCESS, pp. 959–964, 1997.

[70] J. Gertler, Fault Detection and Diagnosis in Engineering Systems.

Electrical Engineering and Electronics, Taylor & Francis, 1998.

[71] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N. Kavuri, “A

review of process fault detection and diagnosis: Part i: Quantitative

model-based methods,” Computers & chemical engineering, vol. 27, no. 3,

pp. 293–311, 2003.

[72] A. S. Willsky, “A survey of design methods for failure detection in dynamic

systems,” Automatica, vol. 12, no. 6, pp. 601–611, 1976.

[73] R. Isermann, “Model-based fault-detection and diagnosis–status and

applications,” Annual Reviews in control, vol. 29, no. 1, pp. 71–85, 2005.

[74] R. Isermann, “Process fault detection based on modeling and estimation

methods - a survey,” Automatica, vol. 20, no. 4, pp. 387–404, 1984.

[75] P. M. Frank and X. Ding, “Survey of robust residual generation and

evaluation methods in observer-based fault detection systems,” Journal

of process control, vol. 7, no. 6, pp. 403–424, 1997.

[76] J. Gertler, “Fault detection and isolation using parity relations,” Control

engineering practice, vol. 5, no. 5, pp. 653–661, 1997.

[77] J. J. Gertler, “Survey of model-based failure detection and isolation in

complex plants,” IEEE Control systems magazine, vol. 8, no. 6, pp. 3–11,

1988.

[78] P. M. Frank, “Fault diagnosis in dynamic systems using analytical

and knowledge-based redundancy: A survey and some new results,”

automatica, vol. 26, no. 3, pp. 459–474, 1990.

139

Bibliography

[79] R. Patton, J. Chen, and S. Nielsen, “Model-based methods for fault

diagnosis: some guide-lines,” Transactions of the Institute of Measurement

and Control, vol. 17, no. 2, pp. 73–83, 1995.

[80] E. Balaban, A. Saxena, S. Narasimhan, I. Roychoudhury, and K. Goebel,

“Experimental validation of a prognostic health management system for

electro-mechanical actuators,” in Infotech@ Aerospace 2011, p. 1518,

2011.

[81] M. A. Ismail, E. Balaban, and H. Spangenberg, “Fault detection and

classification for flight control electromechanical actuators,” in Aerospace

Conference, 2016 IEEE, pp. 1–10, IEEE, 2016.

[82] S. Choi, E. Pazouki, J. Baek, and H. R. Bahrami, “Iterative condition

monitoring and fault diagnosis scheme of electric motor for harsh

industrial application,” IEEE Transactions on Industrial Electronics,

vol. 62, no. 3, pp. 1760–1769, 2015.

[83] A. Giantomassi, F. Ferracuti, S. Iarlori, G. Ippoliti, and S. Longhi,

“Electric motor fault detection and diagnosis by kernel density estimation

and kullback–leibler divergence based on stator current measurements,”

IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1770–1780,

2015.

[84] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and K. Yin,

“A review of process fault detection and diagnosis: Part iii: Process

history based methods,” Computers & chemical engineering, vol. 27,

no. 3, pp. 327–346, 2003.

[85] Y. Lei, M. J. Zuo, Z. He, and Y. Zi, “A multidimensional hybrid intelligent

method for gear fault diagnosis,” Expert Systems with Applications, vol. 37,

no. 2, pp. 1419–1430, 2010.

[86] S. Narasimhan, I. Roychoudhury, E. Balaban, and A. Saxena, “Combining

model-based and feature-driven diagnosis approaches-a case study on

electromechanical actuators,” 2010.

[87] A. Cologni, M. Mazzoleni, and F. Previdi, “Modeling and identification

of an electro-hydraulic actuator,” in Control and Automation (ICCA),

2016 12th IEEE International Conference on, pp. 335–340, IEEE, 2016.

140

Bibliography

[88] F. Gustafsson, “Particle filter theory and practice with positioning

applications,” IEEE Aerospace and Electronic Systems Magazine, vol. 25,

no. 7, pp. 53–82, 2010.

[89] J. Blesa Izquierdo, F. Le Gall, C. Jauberthie, and L. Travé-Massuyès,

“State estimation and fault detection using box particle filtering with

stochastic measurements,” in DX 2015-26th International Workshop

on Principles of Diagnosis, 31 August-1 Septembrer, Paris (France),

pp. 67–73, 2015.

[90] X. Koutsoukos, J. Kurien, and F. Zhao, “Monitoring and diagnosis

of hybrid systems using particle filtering methods,” in International

Symposium on Mathematical Theory of Networks and Systems, 2002.

[91] S. Tafazoli and X. Sun, “Hybrid system state tracking and fault detection

using particle filters,” IEEE Transactions on Control Systems Technology,

vol. 14, no. 6, pp. 1078–1087, 2006.

[92] P. M. Reeves, G. Campbell, V. Ganzer, and R. Joppa, “Development

and application of a non-gaussian atmospheric turbulence model for use

in flight simulators,” 1974.

[93] Z. Korona and M. M. Kokar, “A fusion and learning algorithm for

landing aircraft tracking: Compensating for exhaust plume disturbance,”

IEEE transactions on aerospace and electronic systems, vol. 31, no. 3,

pp. 1210–1215, 1995.

[94] B. Armstrong-Hélouvry, P. Dupont, and C. C. De Wit, “A survey of

models, analysis tools and compensation methods for the control of

machines with friction,” Automatica, vol. 30, no. 7, pp. 1083–1138, 1994.

[95] A. Niglis and P. Öberg, “Modelling high-fidelity robot dynamics,” 2015.

[96] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial

on particle filters for online nonlinear/non-gaussian bayesian tracking,”

IEEE Transactions on signal processing, vol. 50, no. 2, pp. 174–188, 2002.

[97] N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to

nonlinear/non-gaussian bayesian state estimation,” in IEE Proceedings

F-Radar and Signal Processing, vol. 140, pp. 107–113, IET, 1993.

141

Bibliography

[98] Y. Ho and R. Lee, “A bayesian approach to problems in stochastic

estimation and control,” IEEE Transactions on Automatic Control, vol. 9,

no. 4, pp. 333–339, 1964.

[99] O. Cappé, S. J. Godsill, and E. Moulines, “An overview of existing

methods and recent advances in sequential monte carlo,” Proceedings of

the IEEE, vol. 95, no. 5, pp. 899–924, 2007.

[100] J. Lygeros, C. Tomlin, and S. Sastry, “Hybrid systems: modeling, analysis

and control,” preprint, 1999.

[101] Q. Zhang, “Optimal filtering of discrete-time hybrid systems,” Journal of

Optimization Theory and Applications, vol. 100, no. 1, pp. 123–144, 1999.

[102] N. De Freitas, R. Dearden, F. Hutter, R. Morales-Menendez, J. Mutch,

and D. Poole, “Diagnosis by a waiter and a mars explorer,” Proceedings

of the IEEE, vol. 92, no. 3, pp. 455–468, 2004.

[103] D. Zhou, Y. Xi, and Z. Zhang, “Non-linear adaptive fault detection filter,”

International journal of systems science, vol. 22, no. 12, pp. 2563–2571,

1991.

[104] H. Henao, G.-A. Capolino, M. Fernandez-Cabanas, F. Filippetti,

C. Bruzzese, E. Strangas, R. Pusca, J. Estima, M. Riera-Guasp, and

S. Hedayati-Kia, “Trends in fault diagnosis for electrical machines: A

review of diagnostic techniques,” IEEE industrial electronics magazine,

vol. 8, no. 2, pp. 31–42, 2014.

[105] M. E. H. Benbouzid, “A review of induction motors signature analysis as a

medium for faults detection,” IEEE transactions on industrial electronics,

vol. 47, no. 5, pp. 984–993, 2000.

[106] C. Combastel, S. Lesecq, S. Petropol, and S. Gentil, “Model-based and

wavelet approaches to induction motor on-line fault detection,” Control

Engineering Practice, vol. 10, no. 5, pp. 493–509, 2002.

[107] T. W. Rauber, E. M. do Nascimento, E. D. Wandekokem, and F. M.

Varejão, Pattern recognition based fault diagnosis in industrial processes:

review and application. INTECH Open Access Publisher, 2010.

[108] J. Zarei, “Induction motors bearing fault detection using pattern

recognition techniques,” Expert systems with Applications, vol. 39, no. 1,

pp. 68–73, 2012.

142

Bibliography

[109] P. J. Rousseeuw and C. Croux, “Explicit scale estimators with high

breakdown point,” L1-Statistical analysis and related methods, vol. 1,

pp. 77–92, 1992.

[110] A. Jordan, “On discriminative vs. generative classifiers: A comparison

of logistic regression and naive bayes,” Advances in neural information

processing systems, vol. 14, p. 841, 2002.

[111] D. M. Powers, “Evaluation: from precision, recall and f-measure to roc,

informedness, markedness and correlation,” 2011.

[112] G. C. Cawley and N. L. Talbot, “On over-fitting in model selection and

subsequent selection bias in performance evaluation,” Journal of Machine

Learning Research, vol. 11, no. Jul, pp. 2079–2107, 2010.

[113] D. Boley, “Principal direction divisive partitioning,” Data mining and

knowledge discovery, vol. 2, no. 4, pp. 325–344, 1998.

[114] D. Boley, M. Gini, R. Gross, E.-H. S. Han, K. Hastings, G. Karypis,

V. Kumar, B. Mobasher, and J. Moore, “Partitioning-based clustering for

web document categorization,” Decision Support Systems, vol. 27, no. 3,

pp. 329–341, 1999.

[115] D. Boley, “Hierarchical taxonomies using divisive partitioning,” tech.

rep., Technical Report TR-98-012, Department of Computer Science,

University of Minnesota, Minneapolis, 1998.

[116] E.-H. Han, D. Boley, M. Gini, R. Gross, K. Hastings, G. Karypis,

V. Kumar, B. Mobasher, and J. Moore, “Webace: a web agent for

document categorization and exploration,” in Proceedings of the second

international conference on Autonomous agents, pp. 408–415, ACM, 1998.

[117] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and

R. A. Harshman, “Indexing by latent semantic analysis,” JASIS, vol. 41,

no. 6, pp. 391–407, 1990.

[118] C. Lanczos, An iteration method for the solution of the eigenvalue problem

of linear differential and integral operators. United States Governm. Press

Office, 1950.

[119] G. H. Golub and C. F. Van Loan, Matrix computations, vol. 3. JHU

Press, 2012.

143

Bibliography

[120] M. Nilsson, “Hierarchical clustering using non-greedy principal direction

divisive partitioning,” Information Retrieval, vol. 5, no. 4, pp. 311–321,

2002.

[121] C. Kruengkrai, V. Sornlertlamvanich, and H. Isahara, “Refining a divisive

partitioning algorithm for unsupervised clustering.,” in HIS, pp. 535–542,

2003.

[122] S. M. Savaresi, D. L. Boley, S. Bittanti, and G. Gazzaniga, “Choosing

the cluster to split in bisecting divisive clustering algorithms,” tech. rep.,

Technical Report TR-00-53, 2002.

[123] S. Tasoulis and D. Tasoulis, “Improving principal direction divisive

clustering,” in 14th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD 2008), Workshop on Data

Mining using Matrices and Tensors, Las Vegas, USA, 2008.

[124] J. A. Hartigan and J. Hartigan, Clustering algorithms, vol. 209. Wiley

New York, 1975.

[125] J. MacQueen et al., “Some methods for classification and analysis of

multivariate observations,” in Proceedings of the fifth Berkeley symposium

on mathematical statistics and probability, vol. 1, p. 14, California, USA,

1967.

[126] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm

for discovering clusters in large spatial databases with noise.,” in KDD,

vol. 96, pp. 226–231, 1996.

[127] C. G. Chute and Y. Yang, “An overview of statistical methods for the

classification and retrieval of patient events.,” Methods of information in

medicine, vol. 34, no. 1-2, pp. 104–110, 1995.

[128] S. M. Savaresi and D. L. Boley, “A comparative analysis on the bisecting

k-means and the pddp clustering algorithms,” Intelligent Data Analysis,

vol. 8, no. 4, pp. 345–362, 2004.

[129] A. Isturiz, J. Vinals, J. M. Abete, and A. Iturrospe, “Health monitoring

strategy for electromechanical actuator systems and components. screw

backlash and fatigue estimation,” in Recent Advances in Aerospace

Actuation Systems and Components, vol. 5, 2012.

144

Bibliography

[130] A. Picot, Z. Obeid, J. Régnier, S. Poignant, O. Darnis, and

P. Maussion, “Statistic-based spectral indicator for bearing fault detection

in permanent-magnet synchronous machines using the stator current,”

Mechanical Systems and Signal Processing, 2014.

[131] T. W. Rauber, E. M. do Nascimento, E. D. Wandekokem, and F. M.

Varejão, “Pattern recognition based fault diagnosis in industrial processes:

Review and application,” in Pattern Recognition Recent Advances

(A. Herout, ed.), ch. 25, Springer, 2010.

[132] E. Balaban, P. Bansal, P. Stoelting, A. Saxena, K. F. Goebel, and

S. Curran, “A diagnostic approach for electro-mechanical actuators in

aerospace systems,” in Aerospace conference, 2009 IEEE, pp. 1–13, IEEE,

2009.

[133] R. A. Fisher, “The use of multiple measurements in taxonomic problems,”

Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[134] S. Theodoridis and K. Koutroumbas, Pattern Recognition. Academic

Press, 2009.

[135] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern

Recognition Letters, vol. 31, no. 8, pp. 651–666, 2010.

[136] J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy k-nearest neighbor

algorithm,” IEEE Transactions on Systems, Man and Cybernetics, no. 4,

pp. 580–585, 1985.

[137] D. Samson and P. J. Singh, Operations management: An integrated

approach. Cambridge University Press, 2008.

[138] L. G. Cooper, P. Baron, W. Levy, M. Swisher, and P. Gogos, “Promocast:

A new forecasting method for promotion planning,” Marketing Science,

vol. 18, no. 3, pp. 301–316, 1999.

[139] R. K. Ireland and C. Crum, Supply chain collaboration: How to implement

CPFR and other best collaborative practices. J. Ross Publishing, 2005.

[140] K. L. Ailawadi, J. P. Beauchamp, N. Donthu, D. K. Gauri, and V. Shankar,

“Communication and promotion decisions in retailing: a review and

directions for future research,” Journal of retailing, vol. 85, no. 1,

pp. 42–55, 2009.

145

Bibliography

[141] M. Holweg, S. Disney, J. Holmström, and J. Småros, “Supply chain

collaboration:: Making sense of the strategy continuum,” European

management journal, vol. 23, no. 2, pp. 170–181, 2005.

[142] E. Brynjolfsson, L. M. Hitt, and H. H. Kim, “Strength in numbers: How

does data-driven decisionmaking affect firm performance?,” Available at

SSRN 1819486, 2011.

[143] J. S. Armstrong, Principles of forecasting: a handbook for researchers

and practitioners, vol. 30. Springer Science & Business Media, 2001.

[144] W. Y. Lee, P. Goodwin, R. Fildes, K. Nikolopoulos, and M. Lawrence,

“Providing support for the use of analogies in demand forecasting tasks,”

International Journal of Forecasting, vol. 23, no. 3, pp. 377–390, 2007.

[145] T. Huang, R. Fildes, and D. Soopramanien, “The value of competitive

information in forecasting fmcg retail product sales and the variable

selection problem,” European Journal of Operational Research, vol. 237,

no. 2, pp. 738–748, 2014.

[146] Ö. G. Ali, S. Sayın, T. Van Woensel, and J. Fransoo, “Sku demand

forecasting in the presence of promotions,” Expert Systems with

Applications, vol. 36, no. 10, pp. 12340–12348, 2009.

[147] R. C. Blattberg and A. Levin, “Modelling the effectiveness and

profitability of trade promotions,” Marketing Science, vol. 6, no. 2,

pp. 124–146, 1987.

[148] M. M. Abraham and L. M. Lodish, “Promoter: An automated promotion

evaluation system,” Marketing Science, vol. 6, no. 2, pp. 101–123, 1987.

[149] D. Yang, G. S. Goh, S. Jiang, A. N. Zhang, and O. Akcan, “Forecast

upc-level fmcg demand, part ii: Hierarchical reconciliation,” in Big Data

(Big Data), 2015 IEEE International Conference on, pp. 2113–2121,

IEEE, 2015.

[150] M. Banek, D. Osrecki, M. Vranic, and D. Pintar, “Outlier detection as

the primary step for promotion planning in retail,” in Information and

Communication Technology, Electronics and Microelectronics (MIPRO),

2015 38th International Convention on, pp. 1405–1410, IEEE, 2015.

146

Bibliography

[151] S. Meeran, K. Dyussekeneva, and P. Goodwin, “Sales forecasting using

combination of diffusion model and forecast market–an adaption of

prediction/preference markets,” 7th IFAC Conference on Manufacturing

Modelling, Management, and Control (MIM), vol. 46, no. 9, pp. 87–92,

2013.

[152] C. Schwenke, J. Ziegenbalg, K. Kabitzsch, and V. Vasyutynskyy,

“Simulation based forecast of supermarket sales,” in Proceedings of 2012

IEEE 17th International Conference on Emerging Technologies & Factory

Automation (ETFA 2012), pp. 1–8, IEEE, 2012.

[153] P. W. Murray, B. Agard, and M. A. Barajas, “Forecasting supply chain

demand by clustering customers,” IFAC-PapersOnLine, vol. 48, no. 3,

pp. 1834–1839, 2015.

[154] T. Raeder, O. Stitelman, B. Dalessandro, C. Perlich, and F. Provost,

“Design principles of massive, robust prediction systems,” in Proceedings of

the 18th ACM SIGKDD international conference on knowledge discovery

and data mining, pp. 1357–1365, ACM, 2012.

[155] V. N. Azarskov, V. I. Skurikhin, L. S. Zhiteckii, and R. O. Lypoi, “Modern

control theory applied to inventory control for a manufacturing system,”

7th IFAC Conference on Manufacturing Modelling, Management, and

Control (MIM), vol. 46, no. 9, pp. 1200–1205, 2013.

[156] R. Abbou, C. Moussaoui, and J. J. Loiseau, “Effects of inventory control

on bullwhip in logistic systems under demand and lead time uncertainties,”

15th IFAC Symposium on Information Control Problems in Manufacturing

(INCOM), vol. 48, no. 3, pp. 266–271, 2015.

[157] J. R. Trapero, N. Kourentzes, and R. Fildes, “On the identification of

sales forecasting models in the presence of promotions,” Journal of the

Operational Research Society, vol. 66, no. 2, pp. 299–307, 2014.

[158] C. Tofallis, “A better measure of relative prediction accuracy for model

selection and model estimation,” Journal of the Operational Research

Society, vol. 66, no. 8, pp. 1352–1362, 2015.

[159] G. Schwarz et al., “Estimating the dimension of a model,” The annals of

statistics, vol. 6, no. 2, pp. 461–464, 1978.

147

Bibliography

[160] J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14,

no. 5, pp. 465–471, 1978.

[161] B. Efron and R. Tibshirani, “Improvements on cross-validation: the .632+

bootstrap method,” Journal of the American Statistical Association,

vol. 92, no. 438, pp. 548–560, 1997.

[162] J. M. Bernardo and A. Smith, “Bayesian theory, vol. 405,” JohnWiley &

Sons, 2009.

[163] J. Kruschke, Doing Bayesian data analysis: A tutorial with R, JAGS,

and Stan. Academic Press, 2014.

[164] M. Blangiardo and M. Cameletti, Spatial and spatio-temporal Bayesian

models with R-INLA. John Wiley & Sons, 2015.

[165] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B.

Rubin, Bayesian data analysis, vol. 2. CRC press Boca Raton, FL, 2014.

[166] J. O. Berger, Statistical decision theory and Bayesian analysis. Springer

Science & Business Media, 2013.

[167] G. Wahba, “A comparison of gcv and gml for choosing the smoothing

parameter in the generalized spline smoothing problem,” The Annals of

Statistics, pp. 1378–1402, 1985.

[168] S. F. Gull, “Developments in maximum entropy data analysis,” in

Maximum entropy and Bayesian methods, pp. 53–71, Springer, 1989.

[169] D. J. MacKay, “Bayesian interpolation,” Neural computation, vol. 4, no. 3,

pp. 415–447, 1992.

148

	Acknowledgements
	Index
	I System identification review and new research
	Introduction
	Parametric system identification
	Models of dynamic systems
	Regularization in static systems
	Frequentist interpretation of regularization
	Bayesian interpretation of regularization

	Regularization in dynamic systems

	Nonparametric system identification
	Reproducing Kernel Hilbert Spaces
	Regularization in RKHS
	System identification as function estimation

	Semi-supervised system identification
	Motivation
	Problem statement
	Manifold regularization
	The semi-supervised approach
	Unsupervised inputs selection
	Results and discussion
	Conclusions and future developments

	II Applications of statistical learning methods
	Health On Line Monitoring for Electromechanical actuator Safety
	Fault detection and EMA
	Experimental setup
	Fault implementation and test conditions
	Test profiles
	Collected and available measurements

	Holmes project - Model based approach
	Motivation for the particle filter algorithm
	System modeling
	Fault detection via particle filters
	Observation and Transition Particle Filter

	Results and discussion
	Simulation results
	Discussion

	Conclusions and future developments

	Holmes project - Data driven approach
	Data-driven fault detection strategy
	Feature extraction
	Feature selection and classifier design
	Classifier evaluation

	Results and discussion
	Conclusions and future developments

	Holmes project - Clustering
	Introduction
	Principal Direction Divisive Partitioning
	Modified PDDP based on statistical test
	Chi-squared goodness of fit test
	Modified PDDP

	Application to fault detection
	Conclusions and future developments

	Control-oriented modeling of SKU-level demand in retail food market
	Introduction
	Problem statement
	Sales prediction
	Covariate selection
	Missing data imputation

	Performance assessement
	Last-like promotion benchmark model
	ARMAX benchmark model
	Comparison of results

	Conclusions and future developments

	Conclusions

	Appendices
	Topics in learning parametric models
	Bias and variance
	Model order selection
	Empirical Bayes

	Functional analysis fundamentals
	Vector spaces and linear operators
	Banach spaces
	Hilbert spaces

