
Space-time clustering for identifying population

patterns from smartphone data

Clustering spazio-temporale per dati smartphone sulla

distribuzione della popolazione

Francesco Finazzi and Lucia Paci

Abstract In this work we aim at studying spatio-temporal patterns of the popula-

tion movement across a large city. We exploit the information on people position

collected by the smartphone application of the Earthquake Network project and we

adopt a dynamic model-based clustering approach to identify the patterns. The ap-

proach is applied to smartphone data collected in Santiago (Chile) over the period

February-April 2016. Some preliminary results are presented and discussed.

Abstract L’obiettivo di questo lavoro è studiare i pattern spazio-temporali di movi-

mento della popolazione su una grande città. Sfruttiamo l’informazione sulla po-

sizione delle persone raccolta dall’applicazione smartphone del progetto Earth-

quake Network ed applichiamo un approccio di clustering dinamico per identificare

i gruppi. L’approccio è applicato ai dati smartphone raccolti per la città di Santi-

ago (Cile) lungo il periodo febbraio-aprile 2016. Alcuni risultati preliminari sono

presentati e discussi.

Key words: Finite mixture models, Markov chain Monte Carlo, spatio-temporal
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1 Introduction

Detecting population dynamics over short periods (e.g. daily movements) may pro-

vide the public with useful information to improve traffic infrastructure associated

with spatio-temporal commuting patterns, upgrade accessibility or attractiveness of
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areas interested by less people than others, enhance public transportation according

to infrastructure/open space utilization. Indeed, population patterns are character-

ized by drastic changes during the day according to several activities such as educ-

tion, working, recreation, visiting and shopping activities, among others.

Customary, population studies are based on census data that do not allow to cap-

ture population movements in short periods. Rather, mobile-based data collected

over a given region at high temporal scale offers new opportunities to study popula-

tion distribution and movement patterns over such region. For instance, Secchi et al

(2015) proposed a non-parametric method for the analysis of spatially dependent

functional mobile network data to identify subregions of the metropolitan area of

Milan sharing a similar pattern along time, and possibly related to activities taking

place in specific locations and/or times within the city.

Alternatively, we can identify potential partitions of the space and study their

evolution over time to extract useful and concise information from smartphone-

based data that is helpful to investigate population dynamics. Recently, Paci and

Finazzi (2017) proposed a model-based approach to identify clusters in data col-

lected at fixed spatial locations and time steps. Within finite mixture modeling,

spatio-temporally varying mixing weights are introduced to allocate observations

at nearby locations and consecutive time points with similar cluster’s membership

probabilities. As a result, a clustering varying over time and space is accomplished.

Conditionally on the cluster’s membership, a state-space model is deployed to de-

scribe the temporal evolution of the sites belonging to each group.

In this work we employ the dynamic space-time clustering approach to explore

population dynamics and motion patterns over the city of Santiago (Chile) using

data coming from the Earthquake Network project (www.earthquakenetwork.

it). The project implements a crowdsourced earthquake early warning system

based on smartphones networks (Finazzi and Fassò, 2016) and it requires to col-

lect the precise location in space of smartphones at regular time steps. Here, it is

assumed that the smartphone location is also the position in space of its owner.

2 Bayesian space-time mixture modeling

Let yt(s) be a response variable observed at time t (t = 1, ...,T ) and location s ∈R
2.

We assume that observation yt(s) comes from a finite mixture model, that is

f (yt(s) | π,Θ) =
K

∑
k=1

πt,k(s) f (yt(s) |Θ k) (1)

where K is the number of components. The distribution under the k-th component

(k= 1, . . . ,K) is denoted by f (· |Θ k) where f is a density function of specified form

and Θ k denotes the set of parameters of each component distribution. The mixing

probability πt,k(s) is the probability that the location s belongs to component k at

time t and it satisfies πt,k(s)> 0 with ∑
K
k=1πt,k(s) = 1 for each s and t.
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As usual in Bayesian analysis, a hierarchical formulation of the mixture model is

exploited to facilitate the computation. For each observation, we introduce a latent

allocation variable, wt(s), that identifies the component membership of yt(s), that
is Pr(wt(s) = k) = πt,k(s). In other words, we assume that the allocation variables

wt(s) are conditionally independently distributed given πt,k(s) and they come from

a multinomial distribution. Given the latent wt(s), the observations yt(s) are inde-

pendent with f
(

yt(s) | wt(s) = k,Θ
)

= f
(

yt(s) |Θ k

)

. As customary in model-based

clustering, we interpret each mixture component as a cluster, such that observations

are partitioned into mutually exclusive K groups.

The mixing probabilities, πt,k(s), are allowed to vary from observation to obser-

vation, i.e., across space and over time. Space-time dependence in the observations

is introduced through the prior distribution of the weights such that observations

corresponding to nearby locations and consecutive time points are more likely to

have similar allocation probabilities than observations that are far apart in space and

time. For each location s and time t, the weights take the form

πt,k(s) =
exp

(

x
′
t(s)β k+φt,k(s)

)

∑
K
l=1 exp

(

x
′
t(s)βl+φt,l(s)

) (2)

where xt,k(s) is a p×1 vector of covariates, φt,k(s) are spatio-temporal random ef-

fects and β 1 = 0 and φt,1(s) = 0 (t = 1, . . . ,T ) to ensure identifiability. The logistic-

type transformation in (2) guarantees that the two conditions mentioned in Section

2 are satisfied (Fernández and Green, 2002). When available, covariates may help

in predicting group membership’s probabilities while random effects provide ad-

justment in space and time to the explanation provided by covariates. Therefore,

the response distribution is allowed to vary in flexible ways across time, space and

covariate profiles.

To allow for dynamics over time and dependence over space we assume, for

k = 2, . . . ,K,

φt,k(s) = ρkφt−1,k(s)+ζt,k(s) (3)

where ζt,k(s) are independent-in-time spatially correlated errors coming from a

zero-mean Gaussian Process (GP) equipped with an exponential spatial covariance

function. Although the K−1 spatio-temporal random effects φt,k(s) are assumed to

be independent, the corresponding weights are not independent given their definition

in (2). The space-time structure of random effects φt,k(s) allows to borrow strength

information from nearby sites and consecutive time steps. As a result, similar out-

comes at near space and time points are assigned with similar cluster membership’s

probabilities.

Model (1) requires the specification of the sampling density f (yt(s) |Θ k). The
approach pursued in this work is based on dynamic linear modeling, often referred to

as state-space models. In particular, we assume a dynamic linear model to describe

the temporal dynamic evolution of all the sites within component k.

Let yt = (yt(s1), . . . ,yt(sn))
′
be the n×1 observation vector at time t, where n is

the number of locations. Conditionally on the allocation variables, the space-state

model is provided by
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yt = Htzt + ε t (4)

zt = Gzt−1+η t (5)

where zt = (zt,1, . . . ,zt,K)
′
is the K× 1 state vector, Ht is a n×K matrix defined

below, and G is a K ×K stable transition matrix. Finally, ε t ∼ N(0,σ2In) is the

n×1 measurement error vector and η t ∼ N(0,Ση) is the K×1 innovation vector.

We now turn to matrix Ht . Suppose that site s belongs to component k at time

t. Then, the i-th row of matrix Ht contains a single element equal to one at posi-

tion k, while all the other elements are filled with zeros (Inoue et al, 2007; Finazzi

et al, 2015). Note that, the one-zero structure of matrix Ht is allowed to vary over

time according to mixing probabilities πt,k(s). Also, we benefit from the borrowing

strength of information of all sites belonging to component k at time t, since they all

contribute in estimating the common latent state zt,k. Given the specification in (5),

the desired temporal pattern of cluster k is represented by latent state zt,k.

Fully inference is provided under a Bayesian framework. The hierarchy of the

model is completed by independent noninformative prior distributions for all the hy-

perparameters and Monte Carlo Markov Chain (MCMC) algorithms are employed

to approximate the joint posterior distribution; see Paci and Finazzi (2017) for all

fitting details and posterior computation. Model fitting is carried out using the MAT-

LAB code DYSC available online at the web page https://github.com/

graspa-group/DYSC.

3 Analysis of smartphone data

Smartphones taking part in the Earthquake Network project send a heartbeat signal

to a central server every around 30 minutes. Signals include the geographic location

of the smartphones that is used to estimate the state of the network at any given time.

In this work, we exploit the information carried by the heartbeat signals to study

the population movement across the city of Santiago. We consider 24′900 smart-

phones and we assume they are representative of the entire Santiago population. We

partition the city of Santiago into a uniform lattice of N = 354 sites and for each site

we consider the number of signals on a hourly basis. For each hour of the day, we

aggregate signals observed over the period February-April 2016, assuming that the

daily motion patterns of the population are stable over the 3 months. Moreover, we

distinguish between working days and weekend in order to investigate possible dif-

ferences. The aggregation leads to two N×T matrices for the working days and the

weekend, respectively, with T = 24. Since we aim at studying the motion patterns

independently from the number of signals, we standardize each time series with re-

spect to its own mean and variance. This implies that sites are directly comparable.

Hence, at each time step, the time series is interpreted in the following way: a neg-

ative value means that the number of signals coming from the site is below the site

average, while a positive value means that the number of signals is above average.
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Figure 1 shows the standardized number of signals received from each site during

working days (left panel) and weekend (right panel) over the study period.

At each time step, thus, we apply model described in Section 2 to cluster sites

which behave in a similar way with respect to their average and then we explore

how the clusters evolve over the 24 hours of the day. We employ the diagnostic tool

provided by Paci and Finazzi (2017) to select the number of clusters. The analysis

suggests that only two clusters are needed. This is a consequence of the fact that

time series are standardized and the number of signals from each sites can be either

below or above average. Figure 2 shows the Posterior 95% credible interval of the

temporal patterns zt,k for working day signals (left panel) and weekend signals (right

panel), where each temporal pattern is related to a cluster. During working days, the

separation between the temporal patterns is lower at 7 a.m. and 7 p.m., namely when

people commute from home to work and vice-versa. During these hours, signals are

more evenly distributed across city than in any other hour of the day. During the

weekend, the same effect can be found at 10 a.m. and at midnight.

To provide the clustering, we assign each observations to their most likely group

according to the maximum a posteriori probability (MAP) rule. In Figure 3 cluster-

ing result can be appreciated for 12 a.m., 8 a.m. and 8 p.m. and for both working

days and the weekend. For any given hour of the day, blue and red points are sites

with a number of signals below and above the average, respectively. During working

days, the number of signals from the city center is below average at night and above

average during the day. This pattern is disrupted during the weekend when people

tend to move later in the morning and to return home later in the night.
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Fig. 1 Number of signals collected from each cell during working days (left panel) and weekend

(right panel) over the period February-April, 2016.
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Fig. 2 Posterior 95% credible interval of the temporal patterns zt,k for working day signals (left

panel) and weekend signals (right panel).
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Fig. 3 Clustering result for working day (top row) and the weekend (bottom row) at 12 a.m. (left

column), 8 a.m. (middle column) and 8 p.m. (right column). Blue and red dots refer to the blue and

red temporal patterns in Figure 2, i.e., below and above the average, respectively.
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