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Coupled pendula show complex and unpredictable collective motions and provide
a suitable physical model for complex dynamical systems. Starting from the well-
known Fermi-Pasta-Ulam experiment non-linearly coupled oscillators are expected
to undergo spontaneous thermalisation, typical of multi-body systems with non-
linear interactions, and have been studied in order to investigate energy equipar-
tition and second principle of thermodynamics. By means of an automated video-
tracking apparatus we have monitored both single and collective motions occurring
in a chain of 24 non-linearly coupled pendula on varying the initial conditions (an-
harmonicity level, number and energy of excited pendula, etc.). Compared to the
original FPU model our chain is highly and quickly dissipative and thermalises very
early. The energy metric Ω [13], which is a an indicator of the ergodic entropy, was
studied: after an initial transitory phase, it decays as t−2 in all different initial config-
urations we investigated. Moreover, we have observed other noticeable phenomena,
e.g. some chaotic behaviour and intrinsic localised modes.
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Chapter 1

Introduction to FPU

1.1 Objective and purpose of the present Thesis

Coupled pendulum chains are subject to collective chaotic, solitonic and ergodic mo-
tions and provide a classical model for quite different complex dynamical systems
and phenomena, such as neural and IT networks, biological evolution of living be-
ing and ecosystems, flavour neutrino oscillation, chaotic gravitational systems, non-
linear atomic- molecular interaction in elastic media and atomic lattice in solid state
physics. Starting with the well-known computational simulation of the Fermi, Pasta
and Ulam (FPU) experiment, coupled pendula has been associated to spontaneous
thermalisation and ergodic recurrence of multi-body systems with non-linear inter-
actions, in order to better investigate the statistical behaviour of the energy equipar-
tition and of the second principle of thermodynamics. Quite differently from nu-
merical simulations, in the FPU literature very few FPU experimental realisations
are found [10, 27, 35]: one of them has been developed in the laboratories of the En-
gineering Department of the University of Bergamo. We monitor in space and time
the individual and collective motion of a chain of 24 coupled pendula, on varying
the initial conditions. The initial excitation energy is varied depending on the excited
oscillator number and initial angle, the excited normal modes and the anharmonicity
degree. The main activities of the project are: setup of the chain, design of the elec-
tromechanical releasing mechanism, optimisation of the videotracking algorithm,
writing of the algorithm for experimental data processing (including regression and
best fit techniques), measurement campaign, data analysis, system modelling and
finally physical data interpretation. Neglecting the openness of any real system,
the expected phenomena are in particular: thermalisation and energy equipartition,
asymptotic synchronisation, chaos footprint, Intrinsic Localised Modes and possibly
solitons. In particular we investigate the energy equipartition expected by the sec-
ond principle of thermodynamics, the coexistence of oscillation modes at both small
and large wavelengths, peculiar coherence and interference phenomena between
oscillators and evidence of chaotic and non-linear behaviour typical of complex dy-
namic systems. We are also interested in investigating possible applications of the
obtained results in different fields of applied physics and engineering. The expected
results of the research are to achieve:

• an initial understanding of a specific implementation of the FPU model in a
specific real case, at least from a phenomenological standpoint

• the optimisation of the measurement equipment in order to have an easy and
automatic gathering mechanism, providing high sensitive and precise results
for the physical quantities of interest
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• the physical interpretation and the quantitative and conceptual analysis for
the gathered data, the refinement of the corresponding theoretical model, the
disclosure of the obtained research findings.

As a feedback it is possible to obtain informations on how to optimise the geomet-
rical design of the system, the measurement instrument and the processing algo-
rithms, as required by the physical quantities of interest.

1.2 The FPU problem

In May 1955, Los Alamos Scientific Laboratory (as it was then known) released the
technical report LA-1940, titled “Studies of Nonlinear Problems: I.”, authored by
Enrico Fermi, John Pasta and Stanislaw Ulam [15, 17, 16, 14, 46]. At that time this
laboratory owned probably the most powerful machine available in the world to
perform numerical calculation, the so called Maniac (Mathematical Analyzer Nu-
merical Integrator and Computer) built for the nuclear bomb research going on. So
the investigation of theoretical problems became also possible. Fermi had long been
fascinated by a fundamental mystery of statistical mechanics that physicists call the
“arrow of time”. Now imagine the beginning of a game of billiards with the 15 balls
neatly racked up in a triangle and the cue ball hurtling in to send them careening all
over the table. Fermi believed that the key was nonlinearity, the departure from the
simple situation in which the output of a physical system is linearly proportional
to the input. With Pasta and Ulam (and the help of the mathematician Tsingou),
Fermi proposed to investigate what he assumed to be a very simple nonlinear dy-
namical system: a one dimensional chain composed of masses (in a number of 16
or 32 or 64) connected by springs with a pure longitudinal motion [9, 43]. In the
FPU’s ideal setup, masses and springs were not subject to any friction or internal
heating, oscillating forever without losing energy. The springs of this theoretical
system were such as the restoring force they produced was not linearly proportional
to the amount of compression or extension. Instead, FPU included nonlinear compo-
nents in the mathematical relation between amount of deformation and the resulting
restoring force: quadratic terms were present in theαmodel, while cubic terms in the
β model. It was kind of a simplified model of a solid where the atoms are tied in the
lattice structure. So the springs do not obey the Hooke law and the dynamic regime
is non linear. As a consequence the system is, from a theoretical standpoint, “not-
integrable”, non periodic and highly unpredictable. The key question FPU wanted
to study was the time needed to reach the equilibrium. FPU’s premise was that the
system could be started with the masses in just one simple mode of oscillation. With
nonlinear springs different modes of oscillation can become excited. FPU expected
that the system would “thermalise” over time: the vibrating masses would partition
their energy equally among all the different allowed oscillation modes (FPU chain
owns a finite number of oscillation modes, equal to the number of masses).
As an example this is the plot they published for the mechanical energy of each of
the first 5 modes over 30 thousands cycles, for 32 masses when considering the α-
model and an initial condition of a single sine wave (mode number 1). The higher
modes were excited less than 30 on this arbitrary scale. They were absolutely aston-
ished by the numerical results. Initially, energy was shared among several different
modes. After more (simulated) time elapsed, the system returned to the same initial
state, which is better known as a Poincarè recurrence.
One of the subtle effects of nonlinear physics was first observed in the 1830s by a
young engineer named John Scott Russell. He was along a channel and he saw a
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FIGURE 1.1: energy plot for an α-model with 32 masses

mass of water (moved by a boat) assuming the form of a large solitary elevation, a
rounded, smooth and well-defined heap of water, which continued its course along
the channel apparently without change of form or diminution of speed. In 1895, two
Dutch physicists derived a nonlinear partial differential equation, now known as the
Korteweg-de Vries (KdV) equation, that, they argued, could describe the results of
Russell’s experiments. This equation shows that the rate of change in time of the
wave’s height is governed by the sum of two terms: a nonlinear one (which gives
rise to amplitude-dependent velocities) and a linear one (which causes wavelength-
dependent dispersion). In particular, Korteweg and de Vries found a solitary-wave
solution that matched the strange wave Russell had met.
In the early 1960s N. Zabusky and M. Kruskal [49, 37] of Princeton University gen-
eralised the FPU experiment to continuous chains, employing infinitesimally small
springs and masses and obtaining from numerical simulations a near-recurrence and
soliton-like solutions. To describe their solutions to the Korteweg-de Vries (KdV)
equation, they invented what has become a widely used term for the solitary-wave
phenomenon: soliton. Up to now many other scientists obtained energy equiparti-
tion over a sufficiently long time scale with both simulations and theoretical analy-
sis. One of them is Eddie Cohen of Rockfeller University [7]: analysing FPU chain
at high energy, they discovered that there are two thresholds as a function of energy
for any oscillator. At the first threshold the system has a transition from a deter-
ministic regularity to a weak chaos; at the second one chaos becomes strong and
energy is forced to quickly distribute between different modes. They also found that
equipartition happens sooner if mass number is higher and so, growing the num-
ber of non-linear oscillators, equipartition happens for any initial energy. The initial
conditions of FPU simulation were below the chaos threshold and this could have
interfered with the thermalisation process and the equipartition of initial energy.
Today FPU problem inspires research on many other non-linear systems. In solid
state physics, they have been observed localised vibrational modes in perfect lat-
tices. Those modes, called ILMs (Intrinsic Localised Modes) or discrete breathers,
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FIGURE 1.2: ILM

can appear in widely extended or highly non-linear lattices, by playing a rôle sim-
ilar to the soliton in continuous physical systems. The main difference is that ILM
don’t have to move: they can vibrate in place. This was unvieled by Albert Sievers
and Shozo Takeno in 1988 [48] and subsequently analysed by Sergej Flach in 2005
[12]. In solid state physics localisation phenomenon is generally explained as a con-
sequence of an “extrinsic” chaos, that breaks the translational discrete invariance of
the perfect lattice. This idea has been rejected in the ’80s when ILM were discovered
in periodic non-linear systems.
The breather term was first used for a specific solution of “sine-Gordon” equation
(SGE), which is now one of the well-known solitonic equations

∂2θ

∂t2
− ∂2θ

∂x2
+ sin θ = 0 (1.1)

Despite their non-linearity, those equations have analytical solutions, because they
correspond to integrable hamiltonian systems. Let’s consider the non-linear oscilla-
tors with very weak interaction. We can start them with different energies, in a way
that most of the system energy is located in the first one. We can choose those ex-
cited states so that their frequencies are incommensurate. Then, after the initial state
where both are at the maximum amplitude, they will never get in synch again. This
property prevents first oscillator to get in resonance with the second and this makes
it very difficult for energy to flow from one to the other. Let’s consider a chain with
a high number of oscillators. Just one vibrates with a relatively large amplitude,
but with an incommensurate frequency with the other ones. The excited oscillator
will hardly transfer its energy to the closest ones and for this reason it will maintain
a large amplitude: this is an ILM. This property was formalised in Kolmogorov-
Arnold-Moser theorem on non-linear dynamical systems.

1.3 The FPU model

The Fermi-Pasta-Ulam model represents a system of N + 2 equal particles on a line
with mutual interactions between adjacent particles, provided by a potential of the
form

V (r) =
r2

2
+ α

r3

3
+ β

r4

4
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As boundary conditions, the two extreme particles are fixed. The normalized Hamil-
tonian of the system is

H =
N∑
i

[
p2
i

2
+

(qi+1 − qi)2

2
+ α

(qi+1 − qi)3

2
+ β

(qi+1 − qi)4

2

]
For α = β = 0 the system becomes linear and it can be reduced to a system of N in-
dependent harmonic oscillators (called normal modes) with well defined frequencies

ωj = 2 sin[jπ/(2(N + 1))], j = 1, ...., N

The corresponding equation of motions read as follows:

ẍj = (xj+1 + xj−1 − 2xj) + α[(xj+1 − xj)2 − (xj − xj−1)2]

or
ẍj = (xj+1 − xj−1 − 2xj)[1 + α(xj+1 − xj−1)]

in the α-model and

ẍj = (xj+1 + xj−1 − 2xj) + β[(xj+1 − xj)3 − (xj − xj−1)3]

in the β-model.

1.3.1 Connection to the KdV equation

The continuum limit of the governing equations for the cable (with the quadratic
force term) is the Korteveg-de Vries equation. If you define c =

√
κ/ρ to be the

wave speed, where κ = k/h is the Young’s module for the string and ρ = m/h3 is
the density, the previous equation for α-model (where k was equal to one due to
normalisation) reads:

ẍj =
c2

h2
(xj+1 − xj−1 − 2xj)[1 + α(xj+1 − xj−1)]

If u(x, t) is the displacement of the string at position x and time t we pose u(pj , t) =
xj(t) where pj are the equilibrium positions. Using the Taylor’s theorem the last
equation can be rewritten as follows(

xj+1 − xj−1 − 2xj
h2

)
=
u(x+ h, t) + u(x− h, t)− 2u(x, t)

h2
=

= uxx(x, t) +

(
h2

12

)
uxxxx(x, t) +O(h4)

Similarly, the second term in the third factor is:

α(xj−1 − xj−1) = 2αhux(x, t) +

(
αh3

3

)
uxxx(x, t) +O(h5)

Thus the continuous limit of the FPU system is:

1

c2
utt − uxx = (2αh)uxuxx +

(
h2

12

)
uxxxx(x, t) +O(αh2, h4)
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Keeping the O(h2) terms we obtain:

1

c2
utt − uxx = (2αh)uxuxx +

(
h2

12

)
uxxxx(x, t)

Considering the decomposition of traveling wave solutions (of the ordinary wave
equation, to which this reduces when α,h vanish) and taking into account the right
moving wave only, changing the coordinates to ξ = x− ct, τ = (αh)ct and y(ξ, τ) =
u(x, t), the equation becomes:

yξτ −
(
αh

2

)
yττ = −yξyξξ −

(
h

24α

)
yξξξξ

Taking the continuum limit, α/h tend to a constant and α and h tend to zero, putting
δ = limh→0

√
u/(24α), then

yξτ = −yξyξξ − δ2yξξξξ.

Taking v = yξ results in the KdV equation:

vτ + vvξ + δ2vξξξ = 0.

1.3.2 Modal energy in FPU model

The total energy E then reduces to the sum E =
∑

j Ej of the normal mode energies
Ej , which are independent integrals of motion: Ej(t) = Ej(0). When the nonlinear
interaction is active, the normal mode energies are no longer integrals of motion and
a standard arguments of classical statistical mechanics suggests that their time aver-
ages E∗j (t) = (1/t)

∫ t
0 Ej(τ)dτ should tend to a common value, thus realising what is

usually called the equipartition of energy. More precisely this is expected to occur for
almost all initial data with respect to the Gibbs measure, and in the thermodynamic
limit, i.e. the limit of an infinite system with a finite non vanishing specific energy
ε: N −→ ∞, E −→ ∞, E/N −→ ε > 0. In such a case, the common value of the
time averages of the normal mode energies is identified with the temperature T by
E∗j (t) −→ kBT , where kB is the Boltzmann constant. Correspondingly, the specific
heat (defined as the derivative of energy with respect to temperature) turns out to be
a constant, independent of temperature. The FPU problem consists in establishing
whether the dynamics actually leads to equipartition. They considered initial data
with energy given just to some low frequency modes. The thermalisation rate is the
rate at which energy flows to the high frequency modes.

1.3.3 The paradox

In physics the question of equipartition of energy has a foundational meaning, being
the one which gave rise to quantum mechanics. As a matter of fact it is experimen-
tally found that equipartition of energy is obtained in the limit of high temperatures
and/or low frequencies and it is not in the complementary region. As a reminder
equipartition of energy means that mean energy is independent of frequency and
specific heat is independent of temperature. Then in 1900 Planck found that the dis-
tribution of energy (per oscillator) U versus frequency ω at temperature T is given
by

U(ω, T ) =
h̄ω

eh̄ω/kBT − 1
= kBT

x

ex − 1
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where
x =

h̄ω

kBT

is the relevant dimensionless parameter. The Planck’s law can also be obtained by
the usual arguments of statistical mechanics if energy is assumed to be quantized.
This means that the energy of a harmonic oscillator can only assume values like
En = (n + 1

2)h̄ω where n ≥ 0. If energy is not quantized, one instead recover the
“classical” equipartition value U(ω, T ) = kBT . So the FPU result appeared as a
paradox.

1.3.4 Energy thresholds: Izrailev and Chirikov

In 1966 Izrailev and Chirikov [34] made a connection between the FPU problem
and the modern results of perturbation theory, i.e. KAM theorem [36, 1, 40]. The
point is that the perturbed system is proven to be qualitatively similar to the unper-
turbed one only if the perturbation is smaller than a certain threshold, which has to
be estimated in the specific case. In the FPU model the unperturbed system is the
linearised one with its N independent integrals and the perturbation is given by the
total energy: in fact the relative “size” of the nonlinearity tends to zero with the total
energy. So their idea was that the perturbed system would be qualitatively similar
to the unperturbed one if the total energy is smaller than a critical energy, say Ec:
the unexpected result obtained by Fermi was due to the initial energy small with
respect to this threshold. This paradox would disappear at all if we could prove
that this threshold vanishes in the thermodynamic limit. They conceived the idea
that the threshold should depend on the choice of the initial data and in particular
to an initial excitation of mode j there is a corresponding energy threshold Ecj . Ac-
cording to their estimate, the energy threshold would tend to zero, at least for the
case of large j. This result almost eliminates the paradox, because, at least for initial
data with excitations of the high frequency modes, in the thermodynamic limit, one
would always be above the threshold, so the system would have no relation with
the unperturbed one and thus would evolve to equipartition. In 1997 Shepelyansky
[47] stated that he accomplished the task to extend such a result to the case of small
j, taking into account certain resonances not considered by Izrailev and Chirikov.

1.3.5 Plank-like distributions: Bocchieri, Scotti and Loinger

In 1970 in Milan the team of Bocchieri, Scotti and Loinger [2, 20], stimulated by
Izrailev and Chirikov work, had the idea of checking numerically whether the spe-
cific critical energy εc = Ec/N vanishes in the thermodynamic limit or not. This
was done using initial excitations of the lowest mode. The energy threshold was
defined as the “final” stationary value of the time averages E∗j (t). It turned out that
there was a critical energy above which there was an apparent equipartition, while
it did not happen at lower energies. The critical energy Ec appeared to be propor-
tional to N and this implies the existence of the specific critical energy ε > 0. In
other terms, it was suggested that there is a relevant set of initial data, which lead to
“final” states not corresponding to equipartition of energy. The computations were
performed with Lennard-Jones interatomic potential with Argon specific values: in
this case the specific critical energy turned out to have of 4% of the depth of the
potential well. In 1972 an investigation was done by Galgani and Scotti [20] of the
distribution of energy for the “final” states that are found below the threshold for
the low frequency excitations. The expression of the final values E∗j in terms of the



8 Chapter 1. Introduction to FPU

corresponding frequencies ωj is rather well fitted by Planck-like distributions of the
form

E∗(ω,E) =
Aω

eβAω − 1

where β was depending on the total energy E as an inverse temperature should,
while A parameter appeared to be constant. Using the Argon specific molecular
parameters A turns out to have a value very close to Planck’s constant. Shortly later
Cercignani [5, 21] suggested there might be an analogy between energy thresholds
and quantum zero-point energy.

1.3.6 Relaxation times

If we denote by “freezing” the FPU qualitative phenomenon when the final distribu-
tion of energy is near the initial one (i.e. equipartition is not reached) if the initial one
corresponds to excitation of the very low frequency modes, this freezing is expected
to hold just below some energy threshold. Then the point is now if such a freezing
persists in the thermodynamic limit or not: if it does it is relevant for physics other-
wise not. It looks like Izrailev and Chirikov believe this, while the italian physicists
do not. But there are two points to be discussed. A clear definition for the freezing
with respect to the question of time involved, i.e. the size of the relaxation times in
relation to the observation time. The second has to do with the meaning of the no-
tion of “energy per oscillator”. Considering the first point, the perturbation theory
is strongly related to observation time. Indeed in order to prove that a certain sys-
tem is “similar” to another “unperturbed” one we have to preliminarily fix a time t
up to which the similarity should hold: such a time is the counterpart of the phys-
ical observation time. It is now agreed by the scientific community that taking into
account the observation time is a physically relevant requirements even in the FPU
problem. Equipartition state can be seriously studied if involved observation time
is accurately discussed. If experimental observation times are much shorter than
relaxation times equipartition cannot be observed. The KAM theorem refers to infi-
nite observation time. One can instead make reference to finite times: Nekhoroshev
thought how to deal with them in an efficient way [41, 23]. For example crystals and
polyatomic molecules as well as glasses and polymers might have a pretty rapid
relaxation to a metaequilibrium state which should last for a long time, while the
final relaxation to equipartition (Maxwell-Boltzmann equilibrium) might then occur
on a much longer time scale [19]. For the second problem, Boltzmann pointed out
that we cannot identify thermodynamic energy and mechanical energy. The obser-
vation time has to be declared in advance. The system has a certain mechanical
energy given by the initial conditions and its thermodynamic energy is the fraction
of the mechanical energy that the system can actually exchange with the measure-
ment instrument up to the given observation time. So one might have equipartition
of energy for the mechanical energy, but a Planck distribution for the exchangeable
energy.

1.3.7 Critical specific energy and the “natural packet”

In a later work Galgani [22] showed that for initial data of the FPU type, the re-
sults depend on the specific energy ε. There exists a critical specific energy εc such
that for ε > εc equipartition is obtained within a time that increases as an inverse
power of ε with decreasing ε. On the contrary, below the threshold, i.e. for ε < εc,
two time scales are met: in a short time a “natural packet” is formed that extends
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up to a maximal frequency ω(ε) proportional to ε1/4. Only on a much longer time
scale equipartition is reached. As Galgani and its team suggested [4, 3], probably the
FPU paradox cannot be eliminated because it has a deep physical meaning. Up to
the “short” times classical mechanics might qualitatively agree with quantum me-
chanics and only later they differentiate. Indeed, according to quantum mechan-
ics the Planck’s law is the final equilibrium distribution, while, apparently, accord-
ing to classical mechanics it might describe a meta-equilibrium distribution which
only over much longer glassy-like time scale would finally evolve to the “classical”
Maxwell-Boltzmann equilibrium: it is a problem of time scales.

To summarise, in the last fifty years, investigating the FPU problem and simi-
lar systems, great progresses have been done on a wide area of open problems and
original phenomena not completely understood in the fields of non linear dynamics,
statistical mechanics and computational physics. The present project draws inspira-
tion from this research line, which goes on all over the world by researchers with
different scientific backgrounds and methodological approaches: anyway almost all
of them are theoretical and numerical simulations rather than observation of a phys-
ical system in a laboratory.

1.3.8 Latest findings

Few years ago Miguel Onorato of the University of Turin published his research
[42] which provides a large contribution to solve the FPU problem: he resorts to
wave turbulence theory (interacting but not correlated waves), which can explain
the continuous energy transfer between short waves and long waves, predicting in
this way both the thermalisation mechanism and time rate. His approach was based
on the nonlinear interaction of weakly nonlinear dispersive waves with the main
assumption that irreversible transfer of energy in their spectrum is achieved by ex-
act resonant wave-wave interactions. Such resonant interactions are the base for the
so-called “wave turbulence theory” [50] and are responsible for the phenomenon
of thermalization. Working in a Fourier space he obtains for the α-FPU system an
evolution equation for the normal modes which has a Hamiltonian structure and
is characterized by a quadratic nonlinearity, i.e. a three-wave interaction system.
He shows that it is impossible to find nonzero wave numbers satisfying the reso-
nant condition. He states that the equipartition phenomenon is not to be expected
for the Fourier modes of the variables free to interact. He then builds a spectrum
characterised only by free modes, through ad hoc canonical transformations that
removes all non resonant interactions. To present a physical interpretation of the
canonical transformation, the initial state of a α-FPU system initialised by a single
mode k0 would then be characterised by the generation of the higher harmonics of
it. The reduced α-FPU model where three-wave interactions have been removed by
the canonical transformation have different four-wave solutions: trivial resonances,
responsible for frequency shift, but not for energy transfer between modes, and non-
trivial quadruplets, that are not, by the way, interconnected, cannot be accounted for
an effective energy mixing. So four-waves resonant interactions are isolated and no
efficient mixing (and thermalization) can be achieved via a four-wave process: this
result was first obtained Henrici and Kappeler in 2008 [28] following some ideas de-
veloped earlier by B. Rink [45, 44]. Five-wave interactions are nonresonant and can
be removed as above. And finally six-wave resonant sextuplets are interconnected
and they represent an efficient mechanism of spreading energy in the spectrum. Be-
cause of the existence of these exact resonant processes, equipartition is expected
to take place. The estimate of the timescale of equipartition is achieved using the



10 Chapter 1. Introduction to FPU

kinetic equation, which describes the time evolution of the average spectral energy
density. The time evolution turns out to be proportional 1/ε8, where

ε =
α

m

( γ
m

)1/4
√∑

k

ωk|ak(t = 0)|2

In the latter γ is the coefficient of the linear term, ak is the complex amplitude of a
normal mode defined as

ak =
1

2ωk
(Pk − iωkQk)

Qk are the Fourier amplitudes of the diplacement variables and Pk = Q̇k. If ε = 0 the
system is linear and Onorato study covers the weakly nonlinear regime only, i.e. ε�
1. So thermalisation should occur earlier for systems with stronger nonlinearities.

1.4 Second law of thermodynamics and equipartition theo-
rem

In the following we recall the existing connection between the two laws we fre-
quently mention and that are key in the physical interpretation of the behaviour of
the system. In classical statistical mechanics a system of N molecules has a volume
V and an internal energy between E and E + ∆. Its dynamics is determined by the
HamiltonianH(p, q) from which the canonical equation of motions can be obtained.
If we denote with

∑
(E) the states of the system at the energy E, defined by∑

(E) =

∫
H(p,q)<E

dpdq (1.2)

and with Γ(E) the space occupied in the phase space by the microcanonical ensem-
ble, such that Γ(E) =

∑
(E + ∆) −

∑
(E), we call ω(E) the density of states of

the system at the energy E, defined by ω(E) =
∂
∑

(E)

∂E
and the following relation

holds: Γ(E) = ω(E)∆. The system is described by the physical quantity called en-
tropy S(E, V ) which can be defined in different, but equivalent ways:

S = k log
∑

(E)

S = k log Γ(E)

S = k logω(E)

If we consider the first definition, we can notice that
∑

(E) is a not decreasing func-
tion of V and for this reason S is also a not decreasing function of V . In fact if the
volume V grows, also the integral in 1.2 is performed on a larger domain of integra-
tion. This is exactly the second law of thermodynamics.

Then we calculate the ensemble average of xi

(
∂H
∂xj

)
we can write:

〈xi
∂H
∂xj
〉 =

1

Γ(E)

∫
E<H<E+∆

dp dq xi
∂H
∂xj

=

=
∆

Γ(E)

∂

∂E

∫
H<E

dp dq xi
∂H
∂xj
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Noting that
∂E

∂xj
= 0, the last integral can be rewritten as follows

=

∫
H<E

dp dq xi
∂H
∂xj

=

∫
H<E

dp dq xi
∂

∂xj
(H− E) =

=

∫
H<E

dp dq
∂

∂xj
[xj(H− E)]− δij

∫
H<E

dp dq (H− E)

The first integral on the right side vanishes because it reduces to a surface integral
over the boundary of the region defined byH < E, and on this boundaryH−E = 0.
Substituting the latest result into the previous equation we obtain

〈xi
∂H
∂xj
〉 =

δij
ω(E)

∂

∂E

∫
H<E

dp dq (E −H) =

=
δij
ω(E)

∫
H<E

dp dq =
δij
ω(E)

∑
(E) =

= δij

∑
(E)

∂
∑

(E)/∂E
= δij

[
∂

∂E
log
∑

(E)

]−1

=

δij
k

∂S/∂E

that is
〈xi

∂H
∂xj
〉 = δijkT

This is the generalized equipartition principle.

1.5 Main steps of the experimental project

Neglecting its openness, the energy of the mechanical system described in Chapter
4, is expected to undergo thermalisation and equipartition of the available energy.
As a matter of fact one of the main objectives of the research project reported in
this thesis is to observe and study the time evolution of that system. A secondary
aim of the research is to study the dynamics of nonlinearly coupled oscillators when
dissipation is in place, particularly when short times are considered. In the following
the main steps of the research project are listed:

• a scrutinised study of the scientific literature regarding the subject and the ex-
isting results and the design of a preliminary theoretical model of the physical
process. This theoretical model is used to choose the best guidelines to build
the experimental system (in terms of materials to be used, sizing criteria and
technological equipment to be acquired) and the optimal conditions for mea-
surement activities.

• the implementation of the experiment in the laboratory and the collection of
the corresponding measurement data

• the analysis and physical interpretation of the results and the comparison be-
tween the outcomes of different runs

In order to achieve our goals we performed a number of intermediate steps detailed
as follows:
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• realisation of the oscillator chain and of the electromagnetic equipment used to
automatically release pendula, which act as exciters of the chain in several dif-
ferent initial configurations; arrangement of the test execution, measurement
activity and data gathering

• positioning of the GoPro Hero4 webcam (120fps framerate and fullHD Field
of View) for recording the whole motion and tuning of the technique used in
data acquisition through GoPro Hero4 webcam (120fps framerate and fullHD
Field of View) for recording and subsequent videotracking

• execution of an extensive measurement campaign including anharmonic ex-
citations (large angles), multiple pendula excitations (from 2 up to 24) and
“inverse modes”, when in the same initial configuration excited pendula are
alternately released on opposite sides of the system

• programming of the Mathematica code for data processing with a specific in-
terest for (mean and integral) physical quantities related to energy, such as the
“inverse metric” for thermalisation, as well as Fourier analysis. The analysis
of the thermalisation kinetics allowed us to understand the temporal response
of the system to the dissipative processes

• design of a physical model of the chain and of the interaction of the oscillators
through the coupling cable, represented by a number of oscillators (a discre-
tised version of the cable) connected by springs moving along a horizontal axis
and sustaining pendula performing small oscillations in the same direction

• physical explanation of the collected data, of the overall system interaction
with the surrounding environment and comparison with the theoretical model

1.6 Thesis plan

In Chapter 2 we first introduce the general theory of small oscillations: the simple
case of free oscillations is treated first and then forced and damped oscillations are
considered. Later on the anharmonic oscillations are covered in order to complete
the previous picture.
In Chapter 3 a model is proposed to describe a system of coupled pendula and a
preliminary result is given for the energy metric Ω to be later compared with exper-
imental results. After this theoretical introduction, in Chapter 4 the experimental
equipment is described: the setup of the chain is introduced as well as the electro-
magnetic mechanism use to excite pendula. Later on the videotracking methodology
is described in detail. Device specifications can be found in Appendix A, while the
videotracking source code in Appendix B and the processing algorithm developed
with Mathematica in Appendix C. And finally the measurement protocol is illus-
trated.
Going further in Chapter 5 a selection of experimental result is given with a number
of plots and tables produced by data processing.
Those results are discussed in detail in Chapter 6. First the physical quantities of
interest are listed, then the analysis is given for those points: time evolution of dis-
placement, energy metric evolution, dissipation process, chaos outbreak, decay time
estimate, Fourier analysis and horizontal analysis of amplitudes.
Finally in Chapter 7 the main findings of the research are summarised and further
possible investigation are proposed.
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Chapter 2

Small oscillations

2.1 Introduction

Our system is composed of a chain of oscillators with a non linear coupling, subject
to the gravity force, to air frictional force and to constrain reaction at the fixed ends
of the chain.

2.2 Free oscillations

Real mechanical systems experience what are called small oscillations about a posi-
tion of stable equilibrium. In the simplest case the system has only one degree of
freedom. Here we consider small displacements from the equilibrium position. We
can write the Lagrangian of the system executing small oscillations retaining the first
non vanishing term in the expansion of potential energy U(x) the form [38]:

L =
1

2
mẋ2 − 1

2
kx2 (2.1)

where x is the displacement from the equilibrium position and the minimum value
for the potential energy is set to zero, i.e. U(0) = 0. The Euler-Lagrange equation of
motion is

ẍ+ ω2x = 0 (2.2)

where

ω =

√
k

m

is a fundamental characteristic of the oscillations, called (angular) frequency, inde-
pendent of the initial conditions, but only dependent on the mechanical properties
of the system itself. The linear homogeneous differential equation 2.2 has the fol-
lowing general solution:

x = A cos(ωt+ α) (2.3)

where the arbitrary constants A and α are the amplitude and the phase determined by
initial conditions. Solution 2.3 can also be written in a different form using a complex
expression (which has a simpler use when differentiating):

x = Re[Ãeiωt] (2.4)

where
Ã = Aeiα
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The energy of such a system is given by

E =
1

2
mẋ2 +

1

2
kx2 =

1

2
mω2A2

It has a constant value, which depends on the square of the amplitude.
If the system has more than one degree of freedom (assume n), this theory can be
easily extended. The Lagrangian of a mechanical system oscillating with n degrees
of freedom takes the form:

L =

n∑
i,j=1

(
1

2
mij ẋiẋj −

1

2
kijxixj) (2.5)

where mij = mji and kij = kji. The Euler-Lagrange equation is therefore:

n∑
j=1

(mij ẍj + kijxj) = 0 (2.6)

for i = 1, ..., n. This is a system of n linear homogeneous differential equations with
constant coefficients and can be solved using the method of characteristics. Taking
into account eq. 2.4 we search for a set of n functions of the form:

xj = Re[Aje
iωt] (2.7)

where constants Aj have to be determined. By substituting 2.7 in 2.6 we obtain a
system of linear algebraic equations to be satisfied by Aj :∑

j

(−ω2mij + kij)Ak = 0

For this system to have non-zero solutions, the determinant of the coefficients must
be zero:

| kij − ω2mij |= 0 (2.8)

This is the characteristic equation of order n in ω2: in general it has n different real pos-
itive roots ωi, named as characteristic frequencies or eigenfrequencies of the system. The
roots are real positive, because otherwise the system would not be conservative. If
all ωi are different, Aj are proportional to the minors of the determinant 2.8: we de-
note them with ∆ij . The general solution can be written as the sum of the particular
solutions xj = ∆ijCie

iωit

xj = Re
∑
i

∆ijCie
iωit ≡

∑
i

∆ijΘi (2.9)

where
Θi = Re[Cie

iωit]

This means that each coordinate of the system changes in time as a superposition
of n simple periodic oscillations Θi, each one with its own defined frequency, but
arbitrary amplitude and phase. Coordinates Θi are new generalised coordinates,
named normal coordinates undergoing the normal oscillations of the system. In normal
coordinates the equations of motion become n independent equations:

Θ̈i + ω2
i Θi = 0
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that is, that normal oscillations of the system are completely independent.
In terms of normal coordinates the Lagrangian expressed reduces to a sum of La-
grangians describing one-dimensional oscillations with frequency ωi (see 2.1):

L =
∑
i

1

2
(Θ̇2

i − ω2
i Θ

2
i )

2.3 Forced oscillations

So far we have considered only free oscillations. If the oscillating system undergoes
a variable external force, it performs forced oscillations. We consider only weak forces
acting on the system, so that the forced (not resonant) oscillations remain small. Let
us consider the simple one dimensional case as in 2.1. This external force introduce
a new potential energy term in the Lagrangian, which can be expressed as a power
series of displacement x as follows:

Ue = Ue(0, t)− xF (t) +O(x)

being

F (t) = −∂Ue(x, t)
∂x

∣∣∣∣
x=0

Therefore the Lagrangian of the system writes

L =
1

2
mẋ2 − 1

2
kx2 + xF (t) (2.10)

giving the following equation of motion:

ẍ+ ω2x =
F (t)

m
(2.11)

where ω is the frequency of the free oscillations. The general solution of such non-
homogeneous linear differential equation with constant coefficients is the sum of
the general solution of the associated homogeneous equation and of a particular
solution of the non-homogeneous one.
When the external force is a simple periodic function of time with frequency γ, such
as F (t) = f cos(γt+ β) and γ 6= ω, the general solution of the equation is

x = a cos(ωt+ α) +

[
f

m
(ω2 − γ2)

]
cos(γt+ β)

Thus a system undergoing a periodic force performs a motion which is a combina-
tion of two oscillations, one with the intrinsic frequency ω of the system and one
with the frequency γ of the force.
By contrast when γ = ω, the general solution turns out to be endowed with a
resonant term:

x = a cos(ωt+ α) +
f

2mω
t sin(ωt+ β)

which makes the oscillation amplitude increasing linearly with time, so that the
small oscillation approximation does not hold anymore. As γ approaches ω the gen-
eral solution describes small oscillations of variable amplitude: the amplitude varies
periodically with frequency |γ − ω| yielding the so-called beats. We can rewrite the
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latter equation changing the variable (ξ ≡ ẋ+ iωx) so obtaining

dξ

dt
− iωξ =

F (t)

m
(2.12)

This first-order non-homogeneous differential equation has the following general
solution

ξ = eiωt
[∫ t

0

1

m
F (t)e−iωtdt+ ξ0

]
where ξ0 = ξ(0). The function x(t) is the imaginary part of

ξ

ω
. The energy of a

system performing forced oscillations is not conserved, since the force acting on the
system provides energy which can be obtained as:

E =
1

2m

∣∣∣∣∫ ∞
−∞

F (t)e−iωtdt

∣∣∣∣2
In other words the energy of the system depends of the modulus squared of the
Fourier component of the force with the intrinsic frequency of the system. Now
we can easily extend such forced oscillation theory to a n-dimensional oscillating
system using normal coordinates, which can be treated as a set of independent 1-
dimensional forced oscillations. The Lagrangian of the system can be written

L = L0 +
∑
i

Fi(t)xi

where L0 is the Lagrangian for free oscillations. In normal coordinates it becomes

L =
∑
i

1

2
mi(Θ̇

2
i − ω2

i Θ
2
i ) +

∑
i

fi(t)Θi

where
fi(t) ≡

∑
k

Fk(t)∆ik

The corresponding equations of motion are

Θ̈i + ω2
i Θi =

fi(t)

mi

Each equation involves one single unknown function Θi(t).

2.4 Damped oscillations

The motion of the oscillating system we are studying, rather than in vacuum, can in-
stead occur in a damping medium. The motion is retarded and the energy dissipated
is converted into heat. If we assume the oscillations happen with a frequency small
compared to those of the dissipative processes in the medium, we can assume the
body to be subject to a friction force which depends only on the velocity. Moreover,
if the velocity is small enough, we can express the frictional force as an expansion
of velocity powers. The first non-zero term is the first order term and, neglecting
the higher order terms, we can apply the Stokes law writing the frictional force as
follows (α > 0)):

ffr = −αẋ
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The equation of motion now contains a new term

mẍ = −kx− αẋ

and can be rewritten as:
ẍ+ 2λẋ+ ω2x = 0

where ω is as usual the free oscillation frequency and λ = α/2m is the so called
damping coefficient. This second order homogeneous differential equation has differ-
ent solutions depending on the ratio between λ and ω. If λ < ω (weak friction) the
general solution can be written as:

x = ae−λt cos(ω′t)

where ω′ ≡
√
ω2 − λ2 This solution describes the so-called damped oscillations, i.e.

harmonic oscillations with exponentially decreasing amplitude with time constant
λ. The frequency ω′ is smaller than ω , from which we deduce that friction slows
down motion. If λ << ω the mean energy of the system decreases according to

E = E0e
−2λt

where E0 is the initial energy. On the contrary if λ > ω (strong friction) the system
undergoes an aperiodic damping, i.e. approaches asymptotically the equilibrium po-
sition. We now extend this theory to n-dimensional systems. The frictional force has
n components which are linear functions of the velocities and can be written as:

ffr,i = −
∑
k

αikẋk

It can be shown that αik = αki; for this reason we can rewrite

ffr,i = − ∂F
∂ẋi

where F is a quadratic form

F =
1

2

∑
ik

αikẋiẋk

called dissipative function. Those frictional forces have to be added into the equation
of motion 2.6 obtaining ∑

k

(mikẍk + kikxk) = −
∑
k

αikẋk (2.13)

If we put xk = Ake
rt in these equations we obtain:∑

k

(mikr
2 + αikr + kik)Ak = 0

The corresponding characteristic equation then is:

|mikr
2 + αikr + kik| = 0

This is an equation in r of degree 2n with real coefficients: so all roots must have
negative real parts, as the dissipative forces produce a decrease in the overall energy.
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It can be shown that the time derivative of the mechanical energy of the system is
directly related to the dissipative function F as follows:

dE

dt
= −2F

This implies that F is a positive definite quadratic form.

2.5 Forced damped oscillations

Forced oscillations under friction for a one dimensional system are described by the
equation of motion:

ẍ+ 2λẋ+ ω2
0x = f(t)

where f(t) is an external force depending on time. When there is a simple peri-
odic external force, the general solution of the non homogeneous 2-order differential
equation is of the form:

x = a exp(−λt)cos(ω0t+ α) + bcos(γt+ δ)

where the first term decreases exponentially with time leaving the second term. Ex-
ponential decrease depends on λ damping coefficient, while the asymptotic steady
oscillations have an amplitude b which grows as γ approaches ω0, but does not be-
come infinite (as in resonance without friction) and is inversely proportional to the λ
coefficient. In order to consider an n-dimensional system we should take advantage
of normal coordinates ∑

k

(mikẍk + αikẋk + kikxk) = F (t) (2.14)

2.6 Anharmonic oscillations

If we want to study oscillations at a higher level of approximation (anharmonic or
non-linear oscillations), when we expand the potential and the kinetic energies of the
system in terms of coordinates and velocities, we have to retain higher order terms.
By doing this, some new phenomena are foreseen. If we write the Lagrangian con-
sidering expansion up to third-order terms, in the potential energy appears terms of
degree three in the coordinates xi and in the kinetic energy terms containing product
of velocities and coordinates of the form ẋiẋjxl. Thus the Lagrangian is of the form:

L =
1

2

n∑
i,k=1

(mikẋiẋk − kikxixk) +
1

2

n∑
i,k,l=1

liklẋiẋkxl −
1

3

n∑
i,k,l=1

niklxixkxl

where likl and nikl are constant coefficients. If we express the Lagrangian in the
normal coordinates of the linear approximation Θω, being that coordinate transfor-
mation linear, we obtain the following result:

L =
1

2

n∑
i=1

(Θ̇2
i − ω2

i Θ
2
i ) +

1

2

n∑
i,k,l=1

λiklΘ̇iΘ̇kΘl −
1

3

n∑
i,k,l=1

νiklΘiΘkΘl
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where again λikl and νikl are constant coefficients. The equations of motion for this
Lagrangian can be written in the form:

Θ̈i + ω2
i Θi = fi(Θ, Θ̇, Θ̈) (2.15)

where fi are second-order homogeneous functions of the normal coordinates and
of their time derivates. If we use the method of successive approximations, we can
express Θi as the sum:

Θi = Θ
(1)
i + Θ

(2)
i

where Θ
(2)
i is very small compared to Θ

(1)
i and Θ

(1)
i satisfies:

Θ̈
(1)
i + ω2

i Θ
(1)
i = 0

and thus are ordinary harmonic oscillations such as:

Θ
(1)
i = ai cos(ωit+ αi)

If we retain just second-order terms in the right-hand side of equations 2.15, we
obtain

Θ̈
(2)
i + ω2

i Θ
(2)
i = fi(Θ

(1), Θ̇(1), Θ̈(1)) (2.16)

This is a set of inhomogeneous linear differential equations in which the right-hand
side can be written as a sums of simple periodic functions.

Θ
(1)
i Θ

(1)
k = aiak cos(ωit+ αi) cos(ωkt+ αk) =

=
1

2
aiak{cos[(ωi + ωk)t+ αi + αk] + cos[(ωi − ωk)t+ αi − αk]}

So the right-hand sides of equations 2.16 consist of terms corresponding to oscilla-
tions whose frequencies are the sums and differences of the eigen-frequencies of the
system. In the second approximation, we conclude that additional oscillations with
frequencies

ωi ± ωk
are superimposed on the normal oscillations of the system (double frequency 2ωi
and frequency zero are included). These are called combination frequencies. But in
higher order approximation the fundamental frequencies are not the ones of the ”un-
perturbed” case ω(0)

i . For this reason the method of successive approximations must
be modified so that the periodic factors in the solutions shall contain the exact val-
ues of the frequency. As an example we consider an anharmonic oscillations in one
dimension and we express the exact frequency as ω = ω0 + ω(1) + ω(2) + ... If the
Lagrangian is written as follows:

L =
1

2
mẋ2 − 1

2
mω2

0x
2 − 1

3
mαx3 − 1

4
mβx4

and the corresponding equation of motion is:

ẍ+ ω0x = −αx2 + βx3
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It turns our that ω(1) = 0 (in order for the resonance to be absent in the right-hand
side), while

ω(2) =

(
3β

8ω0
− 5α2

12ω3
0

)
a2

Finally the combination oscillation of the third order is of the kind x = x(1) + x(2) +
x(3) where:

x(1) = a cosωt

x(2) = −αa
2

2ω2
0

+
αa2

6ω2
0

cos 2ωt

x(3) =
a3

16ω2
0

(
α2

3ω2
0

− 1

2
β

)
cos 3ωt
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Chapter 3

Small oscillations for coupled
pendula

3.1 Coupled pendula

We now study the system made of the pendula with the same mass (m1 = m2 = 1)
and length (l1 = l2 = 1) hanging at the same height. They undergo to the gravity
force with g = 1 and are interconnected by a mass-less spring of elastic constant k
and equilibrium length equal to distance d between the hanging points. This is a
system of coupled pendula. For the sake of simplicity we take d = 1. Considering

FIGURE 3.1: coupled pendula

small oscillations only, the system is described by the following Lagrangian:

L =
1

2
(θ̇2

1 + θ̇2
2)− 1

2

(
θ2

1 + θ2
2 + k(θ1 − θ2)2

)
(3.1)

In fact if we consider a reference frame where the hanging points have coordinates
(0, 0) and (0, d) respectively, pendulum positions are given by P1 = (sin θ1,− cos θ1)
and P2 = (d+ sin θ2,− cos θ2). Hence the elastic energy is given by:

Uel(θ1, θ2) =
1

2
k
(√

(d+ sin θ2 − sin θ1)2 + (− cos θ2 + cos θ1)− d
)2

=

=
1

2
k
(√

(d2 + 2 + 2d(sin θ2 − sin θ1)− 2 cos(θ1 − θ2)− d
)2

=

=
1

2
kd2

(√
(1 + 2d−1(θ2 − θ1)− 2d−2(θ2

1 + θ22 − 2θ1θ2)− 1

)2

+O(θ2) =

=
1

2
k
(
1 + θ2 − θ1 +O(θ2)− 1

)2
+O(θ2)
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Instead gravitational potential energy is given by

Ugr = − cos θ1 − cos θ2 = −1 +
1

2
θ2

1 − 1 +
1

2
θ2

2 +O(θ2) =

= const.+
1

2
θ2

1 +
1

2
θ2

2 +O(θ2)

This demonstrate the given expression of the Lagrangian.

3.1.1 Normal modes

This system has two normal modes with frequencies ω1 = 1 and ω2 =
√

1 + 2k. In
order to demonstrate this result the following coordinate change has to be defined:

Q1 =
θ1 + θ2

2
, Q2 =

θ1 − θ2

2

The Lagrangian 3.1 in those new coordinates rewrites:

L =
1

2
(Q̇2

1 + Q̇2
2)− 1

2
(ω2

1Q
2
1 + ω2

2Q
2
2)

where ω1 = 1 and ω2 =
√

1 + 2k. If Q2 = 0 (i.e. θ1 = θ2), then the pendula oscillate
in phase with frequency ω1 = 1 (no work done by the spring), while if Q1 = 0, then
the pendula oscillate with opposite phase and frequency ω2 =

√
1 + 2k.

3.1.2 Beats

If k � 1 energy is periodically transferred from first to second pendulum (beats).
Indeed the following initial conditions can be considered:

θ1 = θ2 = 0, θ̇1 = v θ̇2 = 0

i.e. the whole initial energy is concentrated in the first pendulum as kinetic energy.
Hence the initial condition in the new coordinates rewrites:

Q1 = Q2 = 0, Q̇1 = Q2 =
v√
2

and the following solution are obtained:

θ1(t) = v cos εt sinωt+O(k)

θ2(t) = −v cos εt sinωt+O(k)

where ε = (ω1 − ω2)/2 = k/2 +O(k2) and ω = (ω1 + ω2)/2 = 1 + k/2 +O(k2). The
solutions describe an oscillation mode with period T = 2π/ω, modulated by another
sinusoidal curve with a much longer period 2π/ε � 1. When t = 2π/ε, the motion
of θ1(t) is almost completely damped, while θ2(t) reaches the maximum amplitude
which is comparable with the initial amplitude of θ1(t).
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FIGURE 3.2: beats

3.2 Coupled pendula with external springs

In order to better approximate the system described in Chapter 4, the previous sys-
tem has to include to more springs connecting the pendula with lateral walls (at a
distance L). Moreover in general springs can contribute to internal forces with non
linear terms (with α and β coefficients). As a consequence the Lagrangian 3.1 be-
comes:

L =
1

2
m
(
ẋ1(t)2 + ẋ2(t)2

)
− mg

2l

(
x1(t)2 + x2(t)2

)
−

−k
2

(
x1(t)2 + 2(x2(t)− x1(t))2 + (L− x2(t))2

)
−

−α
(
x1(t)3 + 2(x2(t)− x1(t))3 + (L− x2(t))3

)
−

−β
(
x1(t)4 + 2(x2(t)− x1(t))4 + (L− x2(t))4

)
The corresponding Eulero-Lagrange equations are the following:

−12lβx1(t)3 + 3lx1(t)2(α+ 8βx2(t))− x1(t)
(
3kl + gm+ 12lαx2(t) + 24lβx2(t)2

)
+

+l
(
2kx2(t) + 6αx2(t)2 + 8βx2(t)3 −mẍ1(t)

)
= 0

−α
(
−3(L− x2(t))2 + 6(x1(t)− x2(t))2

)
+ k(L+ 2x1(t)− 3x2(t))− gmx2(t)

l
−

−β
(
−4(L− x2(t))3 + 8(−x1(t) + x2(t))3

)
−mẍ2(t) = 0

Solving the associated Cauchy problem, the energy metric Ω (see 6.3) can be calcu-
lated for different values of parameters α and β.
As an example for α = 1 and β = 0 the bilogaritmic plot for Ω is given by:

FIGURE 3.3: time evolution of Ω
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As it is shown, after a transient Ω behaviour can be approximated by a power law:
in particular Ω ∼ t−2. This result apply to a non-dissipative system.
In a further research the contribution of dissipation in determining the time evolu-
tion of Ω has to be better investigated.

3.3 Coupled pendula with discretised cable

The coupled pendula considered until now, are suspended to a rigid body which
does not act as a coupling device. A different system of coupled pendula is com-
posed by a cable sustaining the pendula and the pendula themselves. Contrary to
previous system, the cable can move and provides the coupling between the pen-
dula. In order to take into account the coupling contribution provided by the cable,
the mass of the cable is discretised. M is the pendulum mass, m the discrete mass
of a segment of cable, l is the discrete length of the cable and L is the length of the
pendulum. The following Lagrangian applies to a single pendulum connected to a
cable composed by 3 segments (the 2 discrete mass M are concentrated at the seg-
ment extremes). The motion is projected on the horizontal direction of oscillation of
both cable and pendulum.

L =
1

2
ml2

(
α̇(t)2 cosα(t))2 + (α̇(t) cosα(t) + β̇(t) cos2 β(t)

)
+

+
1

2
M

(
l

2
(2α̇(t) cosα(t) + β̇(t) cosβ(t)) + Lφ̇(t) cosφ(t)

)2

− MgL

2
φ(t)2

This Lagrangian could be studied in a further stage of the research.
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Chapter 4

Methods and Material

4.1 Mechanical system

FIGURE 4.1: 24 coupled pendula

The mechanical system depicted in figure 4.1 was designed and built in Dalmine
laboratories. It consists of a large aluminium framework, the hosted pendulum
chain and the releasing mechanism. The framework is 2 m long, 2 m high and 1 m
deep and was built using 40 x 80 mm and 40 x 40 mm aluminium extrusions. It
stands over four concrete blocks placed on the floor. A 5 m long 5 mm diameter
braided steel cable (0.1 kg/m linear density) crosses the cage and hangs from two
hooks in the short upper side of the cage; it is pretensioned with two 18.450 kg coun-
terweights. On the internal part of the cage a long 1 mm nylon rope was used to
hang each of the 24 pendula from the steel cable and to connect them all. Each pen-
dulum has a length of 1.145 mm and is coupled with the other pendula by that rope,
which transmits the interaction strains. Due to the pendula distributed mass, the
steel cable assumes approximately a catenary shape when the system is at rest. For
this reason the pendula have different height from soil: the externals are 90 cm high,
while the centrals are 80 cm high. Each pendulum consists of a red coloured iron
sphere: its mass is 480 g and its diameter is 5 cm. Each sphere has a boss with a
2 mm through hole where the nylon rope is inserted. We chose iron spheres, in order
to use an electromagnetic releasing mechanism. Moreover we have chosen the red
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colour for the pendula in order to better distinguish them from the background us-
ing video-tracking procedure to study the motion of the chain. This system, shown
in the previous picture 4.1 is sketched in the following plot: The upper corners of

FIGURE 4.2: System sketch

the framework have been connected to floor using tie rods in order to minimise the
energy lost by the system, because of vibrations of the framework itself.

4.2 Releasing mechanism

In order to release the required pendula at a specific angle at rest, we selected an
EclipseMagnetics electromagnets model M52172/24V DC. They have a 25 mm di-
ameter and a typical holding force of 150 N. This size is well suited for the iron
sphere, while the holding force is pretty high compared to the pendulum weight
(less than 5 N). But the magnetic pull decreases rapidly when the air gap grows; so
it is pretty strong at the contact point, but it is not in the surrounding because of
sphere curvature. See A for electromagnets specifications.
Those 24 electromagnets are connected in parallel to a Mean Well model RS-100-24
power supply (it produces a 24V DC voltage and offers a 108W rated power). See
A for power supply specifications. When they are energised, they hold the pendula
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which touch them.
Those electromagnets need to be moved on a vertical plane, depending on the se-
lected initial angle. For that purpose they are fixed to an aluminium bar, which can
be moved vertically along another aluminium frame. This mechanical structure is
placed on 4 wheels: this allow to move the electromagnets horizontally, both inside
(10◦ and 20◦) and outside the cage (30◦ to 50◦).
A number of electromagnets is used to hold the corresponding number of pendula
to a desired initial excitation angle. When the initial configuration is ready, video-
recording is started, the electromagnets are switched off and the excited pendula are
released.

FIGURE 4.3: Equipment sketch

FIGURE 4.4: Releasing mechanism
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4.3 VideoTracking procedure

4.3.1 Video recording

For that purpose we use a GoPro Hero4 Black webcam, fixed top-down in the upper
part of the framework. This webcam is slightly displaced on one side of the chain:
the position was chosen in order to take full advantage of the UltraWide FOV of
the webcam covering a 50◦ oscillations of both sides of the chain and minimising
the visibility of the cable and the consequent shadowing of the underlying pendula.
In our setup the horizontal axis of the webcam is aligned with the chain (118.2◦),
while the vertical axis is aligned with the direction of the oscillation (69.5◦): the po-
sition allows the webcam to see the chain in all planned initial configurations. In
order to better distinguish the outermost spheres, that otherwise looks very close to
one another due to perspective, we plugged into the webcam a Neewer(R) 52MM
0.45X Wide Angle High Definition Lens with Macro. http://www.neewer.com/
90083804.html The webcam records in fullHD (1920x1080) with a frame rate of
120 fps. This high frame rate is useful in order to track the high speed motion of
pendula released at high angles (from 50◦ to 30◦), but is replaced by a slower frame
rate (60 fps) when lower energy runs and slower pendula are considered. The we-
bcam records the chain motion for 2 hours, since the excited pendula are released:
recording is done on a Lexar 1000x microSDXC UHS-3 of capacity 128GB, which is
officially tested by GoPro with Hero4, as shown in GoPro website:

https://it.gopro.com/help/articles/Block/microSD-Card-
Considerations

That microSD offers up to 150MB/s read and 45MB/s write performance as stated
by Lexar on their website:

http://www.lexar.com/products/memory-cards/microsd/Lexar-
Professional-1000x-microSDHC-microSDXC-UHS-II-Cards.html

Despite the official data, we noticed the webcam replicates frame on a regular basis.
When recording at 120 fps: analysing the video duplicated frames are detected and
are estimated around to 20 to 25% (they are uniformly distributed over the record-
ing). When recording at 60 fps, the replication rate is lower and it is higher in the
very first phase than in the latter. Those replica are then automatically removed and
this operation does not have relevant consequences on the obtained measurements.

The GoPro Hero4 webcam uses chaptering as a safety precaution: in fact it splits
the footage in 3.9GB files (which corresponds to about 9 minutes of video at a time
at the 120 fps and to about 18 minutes at 60 fps), in order to minimise data loss in
case the file get corrupted for any reason. The produced files are named in sequence
with a unique id of the recoding session and a progressive number for the specific
file in that sequence: the segments can be easily and seamlessly rejoined in editing
software such as GoPro Studio or VLC. In order for the webcam to record for 2 hours
at highest frame rate and resolution settings, we removed the battery and we used
an USB attachment to the external power. In order to avoid webcam overheating we
also did not take advantage of the wireless connectivity to remotely start and stop
recording activity.

http://www.neewer.com/90083804.html
http://www.neewer.com/90083804.html
https://it.gopro.com/help/articles/Block/microSD-Card-Considerations
https://it.gopro.com/help/articles/Block/microSD-Card-Considerations
http://www.lexar.com/products/memory-cards/microsd/Lexar-Professional-1000x-microSDHC-microSDXC-UHS-II-Cards.html
http://www.lexar.com/products/memory-cards/microsd/Lexar-Professional-1000x-microSDHC-microSDXC-UHS-II-Cards.html
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4.3.2 Video editing

The following operations are needed in order to prepare a suitable video file to be
used by the video-tracking algorithm described later. When recording is stopped,
the file sequence stored in the microSD is imported on a pc (server) running Win-
dows 10 using GoPro Quik v2.3 software. Then using GoPro Studio the video files
are converted from the their highly compressed format into the Digital Intermediate
(DI) Cineform Codec, used by GoPro Studio for video editing. In the next stage VLC
Command Line Interface is used to merge (option #gather is used) all the .avi files
in the correct sequence in a single large .avi file. When this is done, VLC is used
to convert the large .avi file (in the Cineform Codec) to smaller .mp4 file. In order
to do so the Kolor CineForm HD plugin for VLC is needed, which allows to play
CineForm encoded videos in VLC.

4.3.3 Video tracking

When the 2 hours video file of the run is ready, we need to extract the position of the
24 pendula in every frame. In order to achieve this goal, OpenCV libraries are used.
OpenCV (Open Source Computer Vision) is a library of programming functions
mainly aimed at real-time computer vision. The library is cross-platform and free for
use under the open-source BSD license. Object video-tracking is one of main fields
in computer vision. Due to the availability of 2D and 3D high quality and low cost
webcams and to the growing need of automatic analysis of videos, there is a large
interest on video-tracking advanced algorithms. One of the basic step in video anal-
ysis is detection of selected moving objects and their tracking frame by frame. Object
tracking can be thought as the estimate of object trajectory on the image plane, by
assigning coherent labels to objects in different frame of the same video. OpenCV’s
application areas are pretty wide and include motion tracking. Open source tuto-
rial code written by Kyle Hounslow, University of British Columbia, and based on
OpenCV is available for download at the following website and the object-tracking-
tutorial was used.
https://github.com/kylehounslow/opencv-tuts
This C++ code was adapted to the specific needs of the experimental setup according
to the recommendations provided in specific tutorials [29, 30, 31, 32, 33]. In partic-
ular, despite it can be used for real-time processing, it was adapted to post-process
recorded videos and for this reason it was called “GoProTracking” algorithm. The
first operation performed by the code is colour filtering from RGB colorspace (used
by devices) to HSV (hue saturation value) colorspace (largely used in image process-
ing). So each video frame is converted into HSV first and than the image is filtered in
order to select the colours of interest between a MIN and MAX HSV threshold (it is a
set of 6 values: min and max Hue, min and max Saturation and min and max Value).
The thresholded image is a binary (black and white) image where the filtered object
appears in white. Looking at the binary image and searching for the 1s, the filtered
objects are found. Those HSV intervals can be narrow or large depending on the
both the colour and the lightning of the object. Having narrow intervals is prefer-
able, because it is unlikely to obtain noise in the HSV image. But even if the object of
interest is monochrome, it is a 3D object and it is hard to uniformly illuminate it on all
facets. This explains why the HSV intervals are easily large, even with monochrome
objects. Our chain is monochrome opaque red, but objects to be tracked are spheres.
This filtering methodology requires a good shading of the background in order for
the objects to be tracked: the whole webcam FOV has to be checked so as to prevent

https://github.com/kylehounslow/opencv-tuts
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noise. For this purpose we used several white clothes/tissues and a white carpet
to obtain a uniform background and to partially shade natural light and obtain a
stable lighting. If there is noise left in the binary image, the software perform few
morphological operations: small white spots in white space are “eroded” making
them smaller or not existent and then larger white spaces are “dilated”, making
them larger. Those operations are done using rectangular elements in order to be
less computationally intensive. When colour filtering is done, the second operation
performed by the code is contour finding. The contour is the outline of all objects
found in the binary image and in this case it should look like a circle. Then the algo-
rithm identifies the position in pixel of the center of each circle. The image is a 1920
x 1080 pixels. The x coordinate is the one following the motion, while the y coordi-
nate should be approximately constant at all time, but, due to setup imprecisions as
well as to fisheye image distortion, it does slightly change (of the order of few tens
of pixel), but anyway it can be considered as the pendulum position along the chain.
At this point the code uses some of the openCV drawing functions to draw crosshair
on each tracked object, to print its coordinates in pixel next to it and the frame num-
ber on each frame. This enriched frame is appended to a new output .avi file, with a
compression format CODEC DIV4 (MPEG4 modified for DIVX). At the same time a
new line is added to a text file, where frame number is in the first column and then
the following couple of columns show the x, y coordinates for each tracked object.

FIGURE 4.5: Example frame of the output file of the videotracking algorithm

4.3.4 Data processing

At this stage the text file with (t, x, y) coordinates is ready for processing. Two prob-
lems need to be solved:

• pixel coordinates have to be converted in meters and

• pendula ordering has to be correctly recognised despite fisheye effect: one of
the fisheye distortion effects is to bend pendula trajectories (both in x and in
y) in a such a way that the frame analysis can encounter the next pendulum
before the expected one (pendula ordering is based on growing y), because the
excited pendulum reach a position which has a lower y with respect to the non
excited neighbour.

In order to better explain this effect consider the following frame of a Logitech we-
bcam positioned on the floor and oriented upwards: when videotracking is per-
formed, frame scan is started from the upper left corner down to lower right corner.
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The first object found by the algorithm has coordinates (701, 76), while the second
has (397, 77): the two y coordinates are very close and a higher excitation would
produce a lower y coordinate for the excited pendulum with respect to the following
one. In that case the algorithm would mix the data of the two pendula, producing
spurious coordinate ”jumps”.

The data contained in the text file are imported in MS Excel: it is about 40 · 106

FIGURE 4.6: Sphere detection order with a Logitech webcam recording video

data. 1 Rows with more than the expected 49 columns have to be dropped (one or
more undesired objects have been tracked). On the other side, an ordering of the
overall data with respect to the last columns is done in order to identify rows with
less then 49 columns: those rows are dropped because at least one of desired pen-
dula was not tracked. Now the file is ready to be further analysed. On average the
number of deleted rows corresponds to about 5% percent of the overall data and
therefore it can be considered negligible. The calibration procedure described in the
following addresses both identified problems and it was repeated for each pendu-
lum. A metric beam was placed horizontally just under the examined pendulum
and it was aligned in the oscillation plane. Then while webcam recording was on,
for few seconds we held the examined pendulum over specific positions along that
metric beam, i.e. every 10 cm on each side of the chain starting from the rest position
up to a 1.2 m distance. This short video was then analysed with the video-tracking
algorithm in order to extract the pixel x, y coordinates of those known metric posi-
tions. Those 23 x coordinates with the corresponding known metric distances were
analysed in Excel in order to deduce the best transformation converting pixel into
meters. We found that a linear transformations is well suited to produce such a con-
version (R2 = 0.999). The same set of pixel x, y coordinates was used to trace the
pendulum trajectory in the horizontal plane. With no fisheye effect, the trajectory
is just a straight line, but the webcam and the macro lens introduce a fisheye effect
which bends that line at the extremes. Again the 23 couples of data was analysed in
Excel to obtain the best polynomial fitting of that curve: we found that a third order
polynomial is appropriate in order to fit those data. The pixel coordinates found in
the text file produced by the video-tracking algorithm are compared to those tra-
jectories in order to recognise which pendulum they belong to. The video tracking
results are then studied and analysed from a statistical and physical standpoint us-
ing Wolfram Mathematica.

17200 s x 120 fps x 48 coord/f=40 · 106 coord. This is for 120 fps recording. Half the value for 60 fps
recordings.
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FIGURE 4.7: The plot represents the trajectories of the 24 spheres, with as
many 3rd order polinomial

4.4 Measurement protocol

The measurement campaign followed a well defined protocol aimed to excite spe-
cific normal modes of the chain, in a wide frequency range. The pendula were ex-
cited to the following angles: 10◦, 20◦, 30◦, 40◦ and 50◦. Given a fixed excitation angle
we studied the initial conditions corresponding to the following excited pendula (if
not otherwise specified, normal mode excitation is considered):

• pendulum n. 8

• pendulum n. 16

• pendula n. 8 and 16

• pendula n. 8 and 16 (differential mode, i.e. opposite sides)

• pendula n. 6, 12 and 18

• pendula n. 4, 8, 12, 16 and 20

• pendula n. 9, 12 and 15

• pendula n. 3, 6, 9, 12, 15, 18 and 21

For the lowest angles (10◦ and 20◦) other initial configurations was studied:

• all pendula

• pendula from 1 to 12 on one side and from 13 to 24 on the opposite side

for an overall number of 44 runs with different initial conditions. A couple of runs
have been repeated with the same initial conditions to study the chaotic behaviour
of the system.
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Experimental results

5.1 Displacement x as a function of t

FIGURE 5.1: P08 50◦: normalised displacement
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FIGURE 5.2: P08 50◦: normalised displacement
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FIGURE 5.3: P08 50◦: normalised displacements



36 Chapter 5. Experimental results

FIGURE 5.4: P08 50◦: normalised displacements
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FIGURE 5.5: P08 10◦: normalised displacements
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FIGURE 5.6: P08 10◦: normalised displacements
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FIGURE 5.7: P08 10◦: normalised displacements
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FIGURE 5.8: P06-12-18 50◦: normalised displacements
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FIGURE 5.9: P06-12-18 50◦: normalised displacements
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FIGURE 5.10: P06-12-18 50◦: normalised displacements
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5.2 Chaos outbreak

FIGURE 5.11: P08-16 50◦: two runs overlap to show chaos outbreak
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FIGURE 5.12: P08 50◦: two runs overlap to show chaos outbreak
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FIGURE 5.13: P08 50◦: two runs overlap to show chaos outbreak
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5.3 Ω as a function of t

FIGURE 5.14: P08 50◦

FIGURE 5.15: P16 50◦

FIGURE 5.16: P08-16 50◦

FIGURE 5.17: P06-12-18 50◦
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FIGURE 5.18: P3-06-09-12-15-18-21 50◦

FIGURE 5.19: P06-12-18 40◦

FIGURE 5.20: P08 30◦

FIGURE 5.21: P08-16 30◦
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FIGURE 5.22: P04-08-12-16-20 30◦

FIGURE 5.23: P03-06-09-12-15-18-21 30◦

FIGURE 5.24: P09-12-15 20◦

FIGURE 5.25: PAll 20◦
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FIGURE 5.26: P08 10◦

FIGURE 5.27: P08-16 10◦
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5.4 Envelopes of the time evolution

FIGURE 5.28: P08 50◦

FIGURE 5.29: P16 50◦

FIGURE 5.30: P08 and16 50◦
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FIGURE 5.31: P06-12-18 50◦

FIGURE 5.32: P03-06-09-12-15-18-21 50◦
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FIGURE 5.33: P06-12-18 40◦

FIGURE 5.34: P03-06-09-12-15-18-21 30◦

FIGURE 5.35: P04-08-12-16-20 30◦
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FIGURE 5.36: P08-16 30◦

FIGURE 5.37: P08 30◦

FIGURE 5.38: P09-12-15 20◦

FIGURE 5.39: PAll 20◦



54 Chapter 5. Experimental results

5.5 Horizontal analysis: amplitude

FIGURE 5.40: maximum pendula amplitude
P08 50◦ (left) - P16 50◦ (right)

FIGURE 5.41: maximum pendula amplitude
P08-16 50◦ (left) - P06-12-18 50◦ (right)

FIGURE 5.42: maximum pendula amplitude
P03-06-09-12-15-18-21 50◦ (left) - P06-12-18 40◦ (right)
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FIGURE 5.43: maximum pendula amplitude
P08 30◦ (left) - P08-16 30◦ (right)

FIGURE 5.44: maximum pendula amplitude
P04-08-12-16-20 30◦ (left) - P03-06-09-12-15-18-21 30◦ (right)

FIGURE 5.45: maximum pendula amplitude
PAll 20◦ (left) - P09-12-15 20◦ (right)

FIGURE 5.46: maximum pendula amplitude
P08 10◦ (left) - P08-16 10◦ (right)
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5.6 Fourier analysis

FIGURE 5.47: P08 50◦
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FIGURE 5.48: P08 50◦
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FIGURE 5.49: P08 50◦



5.6. Fourier analysis 59

FIGURE 5.50: P08 50◦

main Fourier peaks (left) and excited pendula main peaks (right)

TABLE 5.1: P08 50◦ Main Fourier peaks

pendulum first second third pendulum first

1 0.4809 13 0.4701
2 0.4809 14 0.4704
3 0.4811 15 0.4704
4 0.4809 16 0.4704
5 0.4809 17 0.4811
6 0.4808 0.4811 18 0.4811
7 0.4787 19 0.4809
8 0.4706 0.4714 0.5411 20 0.4809
9 0.4626 0.4623 21 0.4809
10 0.4524 22 0.4809
11 0.4546 23 0.4809
12 0.4544 24 0.4809
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FIGURE 5.51: P06-12-18 50◦

main Fourier peaks (left) and excited pendula main peaks (right)

TABLE 5.2: P06-12-18 50◦ Main Fourier peaks

pendulum first second third pendulum first second third

1 0.4982 13 0.4777 0.5311
2 0.4982 14 0.5169 0.4590
3 0.4783 0.4982 15 0.4968
4 0.4982 16 0.4748 0.5074
5 0.4984 0.4719 17 0.4742 0.5170
6 0.5034 0.5441 0.6202 18 0.4933 0.6193 0.3505
7 0.4974 19 0.5007
8 0.4719 0.4974 0.4988 20 0.4740 0.5023
9 0.4976 21 0.5021
10 0.4976 22 0.4968
11 0.4976 23 0.4968
12 0.5042 0.4847 0.5429 24 0.4650 0.4969
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FIGURE 5.52: P04-08-12-16-20 30◦

main Fourier peaks (left) and excited pendula main peaks (right)

TABLE 5.3: P04-08-12-16-20 30◦ Main Fourier peaks

pendulum first second third pendulum first second third

1 0.4657 0.4368 0.4980 13 0.5112 0.3484 0.6426
2 0.4889 14 0.4913 0.4359 0.6431
3 0.4959 0.4645 0.6550 15 0.5141 0.6419
4 0.5191 0.3760 0.6471 16 0.4892 0.5153 0.3761
5 0.4963 17 0.5124 0.3523 0.6425
6 0.5185 18 0.5163
7 0.5185 19 0.4910 0.5188
8 0.5185 0.3755 0.6467 20 0.5191 0.3767 0.6474
9 0.4910 0.5179 0.4366 21 0.5126
10 0.4974 0.6194 0.6200 22 0.5160 0.5187
11 0.5156 0.6191 0.6416 23 0.5126 0.4497
12 0.5126 0.3779 0.6513 24 0.4963 0.4467
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FIGURE 5.53: PAll 20◦ - main Fourier peaks

TABLE 5.4: PAll 20◦ Main Fourier peaks

pendulum first second third pendulum first second third

1 0.4495 13 0.4356
2 0.4498 14 0.4489 0.4834
3 0.4499 15 0.4393 0.4841
4 0.4499 16 0.4358 0.4901
5 0.4636 0.4308 17 0.4358 0.4889
6 0.4358 18 0.4393 0.4312 0.4894
7 0.4358 0.4891 19 0.4308 0.4639
8 0.4356 0.4898 20 0.4607
9 0.4393 0.4358 0.4894 21 0.4566
10 0.4393 0.4845 22 0.4358
11 0.4393 0.4839 23 0.4498
12 0.4495 0.4839 24 0.4492
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FIGURE 5.54: P08-16 50◦

main Fourier peaks (left) and excited pendula main peaks (right)

FIGURE 5.55: P08-16 30◦

main Fourier peaks (left) and excited pendula main peaks (right)

FIGURE 5.56: P08-16 10◦

main Fourier peaks (left) and excited pendula main peaks (right)
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TABLE 5.5: P08-16 50◦ Main Fourier peaks

pendulum first second third pendulum first second third

1 0.4705 0.4863 13 0.4887 0.4854 0.5480
2 0.4705 0.4863 0.6218 14 0.4854
3 0.4408 0.4632 0.6216 15 0.4411 0.4887 0.4628
4 0.4863 0.6949 16 0.4966 0.6401 0.3335
5 0.4863 0.2856 0.2210 17 0.4890 0.2722
6 0.4898 0.4412 0.3524 18 0.4890 0.5875 0.3278
7 0.4895 0.4412 0.3524 19 0.4886 0.5872
8 0.4942 0.6409 0.3404 20 0.4851 0.4412
9 0.4880 0.3524 0.6171 21 0.4851 0.6142 0.2621
10 0.4886 0.6171 0.2621 22 0.4851 0.4399 0.2621
11 0.4886 0.6171 0.2621 23 0.4851 0.4399 0.2621
12 0.4885 0.2621 24 0.4714 0.4902 0.6220

TABLE 5.6: P08-16 30◦ Main Fourier peaks

pendulum first second third pendulum first second third

1 0.4905 13 0.4702 0.4951 0.5305
2 0.4905 14 0.4706 0.4955 0.5309
3 0.4699 0.4905 15 0.4711 0.4956 0.5307
4 0.4905 0.5305 16 0.5308 0.5051 0.3639
5 0.4709 0.4904 0.5305 17 0.4707 0.4959 0.5313
6 0.4711 0.5067 0.5312 18 0.5062 0.5304 0.4666
7 0.4705 0.4956 0.5312 19 0.5062 0.5304 0.4664
8 0.4911 0.5307 0.3639 20 0.4711 0.5304 0.4925
9 0.4705 0.4945 0.5311 21 0.4713 0.4925 0.5305
10 0.4705 0.4955 0.5311 22 0.4925 0.5305 0.4626
11 0.5058 0.5305 23 0.4925 0.4626 0.5305
12 0.5058 0.5305 0.4710 24 0.4709
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TABLE 5.7: P08 10◦ Main Fourier peaks

pendulum first second third pendulum first second third

1 0.4483 13 0.4513 0.5102
2 0.4483 0.5279 14 0.4517 0.5105
3 0.4483 0.5106 15 0.4484 0.5054
4 0.4482 16 0.5198 0.4668 0.4915
5 0.4487 0.5179 17 0.4524 0.5286
6 0.4520 0.5061 18 0.4522 0.4954 0.5199
7 0.4523 0.5287 19 0.4530
8 0.5201 0.4670 0.4903 20 0.4522
9 0.4483 0.4480 0.5000 21 0.4527 0.5111
10 0.4478 0.5020 22 0.4482
11 0.4526 0.5109 23 0.4526
12 0.4526 0.5109 24 0.4522 0.5113
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Physical interpretation of the
results

6.1 Measurements

Based on the data obtained through the videotracking algorithm, {ti, x1(ti), ..., x24(ti)},
we calculated the following physical quantities:

• time evolution plot for each pendulum,

• envelope of selected time evolution plots with decay time τ estimate,

• Fourier analysis and main frequency peaks,

• time evolution of total mechanical energy (and potential energy and kinetic
energy),

• energy metric evolution for potential energy

• horizontal plot of maximum amplitudes in the chain

6.2 Time evolution of pendulum displacement

We studied each oscillator motion for the whole run and we plotted the normalised
displacement (compared to the initial amplitude of the excited pendula) as a func-
tion of time (see 5.1). We found 3 different time scales beats from 1 minute to 30
minutes. If we consider runs with just one excited pendulum (whatever the excita-
tion angle), we recognise pulses of about 4 minutes in the each pendulum (e.g. 4th)
plot, but larger scale pulses (20 to 30 minutes) can be noticed in non excited pendu-
lum plots (e.g. 11th).
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Shorter beats of about 1 minute can be noticed when zooming in.
More complex structures can be observed when considering runs with higher en-

ergy. Those plots also frequently show some serious narrowing of the displacement:
in those intervals the considered oscillator is almost stack and almost all its energy
has flown to the other pendula, while later on the same pendulum restart acquiring
energy and covering wider trajectories.

6.3 Omega

Quantity Ω(t) provides the thermalisation rate of the system. We define it as the
arithmetic mean of the 24 squared difference between the time average (from ti = 0
to the generic instant ti = T ) of the potential energy Uj of the j-th oscillator (U j(T ))
and the arithmetic mean < U(T ) > over the chain, i.e. executed on the 24 time
averages of U j(T ). In other words Ω(T ) is the squared variance of quantity U j(T ).
Having said this, Ω can be defined as:

U j(T ) =
1

T

∫ T

0
Uj(t)dt

< U(T ) >=
1

24

24∑
j=1

U j(T )
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Ω(T ) =
1

24

24∑
j=1

[< U(T ) > −U j(T )]2

Dealing with time series, we adapt the definition of U j(T ) accordingly:

U j(T ) =
1

T

ti=T∑
ti=0

Uj(ti)[ti+1 − ti]

The energy metric Ω just defined derives from the theoretical foundations of multi-
particles systems [24, 25, 6] and it is here extended to chain of particles. Starting
from the ergodic hypothesis, over a large time scale the phase space average of an
observable coincides with its time average. Not knowing the probability distribu-
tion, we replaced the probabilistic average with the spacial, horizontal average over
the chain (assuming that increasing the number of particles in the chain, all possible
states are covered). For the same reason the integral over the phase space is replaced
by a sum over the N particles. The energy metric Ω is evaluated using the gravita-
tional potential energy and therefore the oscillation amplitude, because we assume
that it gives a good estimate of the oscillator energy.
The energy metric for integrable systems has a constant value and energy is not ex-
changed between different modes, while for ergodic systems it is expected to go to
zero for large values of t. Looking at the bi-logarithmic plots of Ω as a function of t
(see 5.3), we recognise an asymptotic phase, starting approximatively after the first
10 to 20 minutes, where the Ω(t) decreases as a constant power of t. Assume we
approximate its behaviour as follows:

Ω ∼ t−a + const

where a is an unknown constant. Estimating the best fit of this kind of function, we
obtained the following results for parameter a:

angle excited pendula a

50 8 1.92
16 1.96
8-16 1.97
6-12-18 1.94
3-6-9-12-15-18-21 1.80

40 6-12-18 1.91
30 8 1.91

8-16 1.96
4-8-12-20 1.75
3-6-9-12-15-18-21 1.81

20 9-12-15 1.83
All 2.00

10 8 1.82
8-16 1.84

Hence the average value is a = 1.9± 0.1.
Starting from the definition of Ω we can write it as follows:

Ω ∼ t−2tα
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where tα represents the behaviour of the squared variance. Based on our results
we can assume that α ∼ 0.1. This result means that our system experience a high
thermalisation rate, due to the system being open and to the energy which rapidly
and irreversibly flows from the system to the surrounding environment. In Ono-
rato’s paper ([42]) a totally different entropy coefficient is used, but we noticed in
the entropy bi-logarithmic plots a similar slope to the one we measured. We roughly
estimated a slope of about −2.3. We also notice that in Onorato work we don’t see
a complete thermalisation: as a matter of fact those entropy plots show after a long
time (corresponding to s(t) = 10−3) a maybe temporary stop in thermalisation. At
that time entropy starts oscillating around a non zero value.

6.3.1 Thermalization and dissipation

We could conclude that thermalisation is reached more quickly when dissipation
occurs: indeed the theoretical models of conservative nonlinear coupling give much
longer thermalisation time. The experimental results we gathered show how dissi-
pation or non adiabacity plays a further role in reaching equipartition and thermali-
sation, as open neural networks and complex multibody systems ”degrades” faster
that closed ones. As a matter of fact dissipation prevents Poincarè recurrence both
from a theoretical standpoint and from an experimental one, but it does not force a
priori the energy to be equally distributed on all nodes of the open net.

6.4 Dissipation

Our system turned out to be highly dissipative and the initial energy provided to
the excited pendula is quickly transferred to the whole system first and then to the
surrounding environment. We first estimate the quick loss of energy was due to the
air friction, but a straightforward computation based on Stoke’s law was sufficient to
understand that this time scale is very long compared to the one experienced by the
system. Stokes’ law describes the frictional force exerted on spherical objects with
very small Reynolds numbers in a viscous fluid. The force of viscosity on a small
sphere moving through a viscous fluid is given by:

F d = 6π η R v = βv

where:

• F d is the frictional force (acting on the interface between the fluid and the
particle)

• η is the dynamic viscosity

• R is the radius of the spherical object

• v is the flow velocity relative to the object and

• β = 6π η R

The dynamic viscosity of air at 20 ◦C is 1.81·10−5Pa · s and the radiusR of the spheres
is 2.5 cm. The work done by this frictional force over the first period T = 2π/ω =
2π
√
l/g can be estimated this way:

W =

∫ T

0
F d · ds = 6πηR

∫ T

0
v2dt
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If we consider the forces acting on each sphere: the tension T of the nylon rope, the
weight P of the ball itself and the frictional force F d, we get the following equation
of motion:

mlθ̈ = −mgsinθ − 6π η R lθ̇

Solving this second order differential equation and recalling that v = lθ̇, we obtain
the following estimate for the work of the frictional force over the first oscillation
period:

W = 4.8 · 10−5 J

If we compare this quantity with the initial energy of a sphere excited to 50◦, E = 2 J,
the overall duration (2h) of each run is not enough to dissipate the whole initial en-
ergy: the characteristic oscillation period is 2.2 s and during the run each pendulum
can perform about 3600 periods. Moreover consider that the work done on each
period decreases as the amplitude decreases. The mechanical energy is expected
to exponentially decrease due to air friction with a time constant τ = 2m/β with
β = 110−5Ns/m: such a coefficient is of the order of 27h. As a consequence air fric-
tion cannot be considered the main reason for the fast energy dissipation our system
experiences.
The steel cable does absorb energy, but it stores that energy as elastic potential en-
ergy due to the bending of the cable itself (on a direction perpendicular to the cable)
where the nylon rope is fastened. If we neglect torsion, traction and compression,
this elastic potential energy is stored and released alternatively from and to the os-
cillator and the overall mechanical energy is conserved, as long as the air friction
does dissipate that energy in an irreversible way. This bending force can be consid-
ered as the equivalent of the Hooke forces existing in the historical FPU experiment,
responsible for coupling. Among others, a difference between the FPU experiment
and our experiment is given by the external harmonic force, i.e. weight. For this
reason we can talk about oscillators coupled through elastic forces, but subject to
forced oscillations in presence of energy loss. The bending frequency

√
k/m (where

m is the effective mass of the segment subject to bending and k is the bending elas-
tic constant) is very high compared to gravitational frequency

√
g/l: if we take a

10 cm segment of a squared section cable we obtain a value of 6 · 1010 N/m. As a
consequence on a 100 g/m linear density cable the frequency would be of the order
of 2 · 106 s, 6 orders of magnitude greater that the gravitational frequency. Hence we
have not to expect beat phenomena related to those two frequencies.

As a consequence the total energy of a given oscillator involves a third term,
beyond the gravitational potential energy and the kinetic energy, which is the elastic
potential energy. This term is of the order of 1

2k δx
2 and it has an average value

higher than zero: neglecting this term entails to underestimate the total energy of
the oscillator. We have checked the order of magnitude of this term. For the sake of
simplicity we modelled a segment of the cable between neighbour pendula as a rod
with a rectangular section (the order of magnitude does not change with a round
section) with section b h and length L: this segment is considered to be hooked at
the ends. The bending produces an arch and the distance δx of the vertex of the arch
from the center is called ”arrow” and the bent surface is hL. Exploiting the Young
module of the material we can easily obtain the elastic constant k of cable:

k = 4bh3E/L3

Considering that E for steel is of the order of 200 GPa and assuming b ' h ' δx '
1 cm and L = 1 cm, we obtain an elastic potential energy of the order of a Joule.
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This is a missing energy we do not take into account when we calculate the total
mechanical energy of each pendulum.
For a better understanding of the energy loss process, we then studied the oscillation
of a single pendulum oscillating with the same nylon rope length suspended to a
concrete wall using a couple of hooks, in order to decouple it from the chain and see
the rate of the energy loss of the pendulum. We excited the pendulum at a 40◦ angle.
In the first 5 minutes the elongation lost a 25%, which correspond to a loss of a 50%
in height and to an equivalent loss in potential energy as shown in the two following
figures.

Comparing those results with the ones we got when we excite a single pendulum
of the chain we see a similar loss rate for the chain overall potential energy when
considering large angles, while we notice a lower loss rate for small angles as it is
shown in the two following figures:

TABLE 6.1: Total energy of the chain as a function of time: 8th pendu-
lum at 50 ◦ (left) and at 10◦ (right)

We could conclude that the high dissipation rate is also due to the way nylon rope
is fastened to the steel cable. Due to the bending of the cable k δx on the horizontal
plane, the force acting on the oscillator is not only the tension along the rope (which
performs a null work, being perpendicular to the path), but it also has a component
along the pendulum trajectory (arch of a circle), due to the bending of that segment
of the cable. This component can be calculated as kx cosφ, where φ is the angle of
the pendulum with the vertical. This tangent force is responsible for speeding up or
slowing down the motion of the oscillator from time to time, even sooner than air
friction and other dissipative forces. Moreover the deformation δx also depends on
all deformations δx of the remaining segments of the cable where the other pedula
are attached: this is due to the coupling of all pendula through the cable. Dissipation
plays an important role in our environment, because the initial energy is quickly lost
by the excited pendula. Most of it is dissipated at the constraint, because the rope
bends at the clamping point. This is shown by the following short term and long
term plot for the overall pendula mechanical energy. First plot shows that, when
high initial angles are considered, 90% of the initial pendula energy is lost in the
first 20 minutes. On the other side the second plot shows the very beginning of the
run when the system experiences a periodical energy exchange between the pendula
and the catenary, which oscillate as a consequence of the initial excitation.
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Probably the main contribution to dissipation is due to both torsion and slipping of
the steel cable, at the point where it is fastened to the aluminium cage. As we said
the cable is pre-tensioned with two opposite counterweights and it is suspended
through two hooks placed on the external side of the framework. Those counter-
weights balance the pendula weight. When one or more pendula are excited using
the electromagnets, the overall stress acting on the cable decreases and the cable tend
to stretch, slipping on the hooks. Moreover during the run the cable itself swings and
bends at the hook: this phenomenon produces an energy loss from the system to the
external environment.

6.5 Fourier Analysis

We obtained the Fourier Spectrum for each oscillator motion, as shown in the related
plots (5.6), where oscillation period is provided (inverse of frequency). T1 indicates
the dominant period. The dominant period T1 is approximately of 2.1 s, correspond-
ing to 2π

√
L/g, where L = 1.145 m, as expected for a simple gravity pendulum. Few

other pendula show two relevant secondary peaks. Hereafter we present the table
of calculated periods and the Fourier spectrum for one pendulum (7th), where red
dots identify the main peaks.

In order to perform Fourier analysis we had to take into account the replica that
were removed from the gathered data. This removal affect the highest frequencies
that can be detected by the system, which is not 120Hz, but that quantity reduced
proportionally to the percentage of detected replica. Hence in practice for a replica
percentage of 24% we could detect frequencies in the following range: from 1 · 10−6

(which corresponds to the 2 hours recording time) up to 46Hz. As it is shown in
the plots, the coupling between oscillators impinge on the modes shared between
different oscillators. Hence the motion of pendula has a time evolution which is
determined by the collective behaviour of the chain, despite the high dissipation of
energy. The normal modes of the system do not rule the damping process, but the
oscillatory part of the dynamics. All run show also low frequency peak at 2 ·10−4 Hz
that are related to the damping process on a much longer time scale (??).

Close frequencies can be noticed: they are responsible for the different beats seen
in the x(t) plots across all runs. For example in figure 6.1, different frequencies
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FIGURE 6.1: P08 50◦ Main Fourier peaks
0− 1 Hz (left) - 0.45− 0.54 Hz zoom (right)

TABLE 6.2: P08 50◦: Main Fourier peaks

pendulum first second third pendulum first

1 0.4809 13 0.4701
2 0.4809 14 0.4704
3 0.4811 15 0.4704
4 0.4809 16 0.4704
5 0.4809 17 0.4811
6 0.4808 0.4811 18 0.4811
7 0.4787 19 0.4809
8 0.4706 0.4714 0.5411 20 0.4809
9 0.4626 0.4623 21 0.4809
10 0.4524 22 0.4809
11 0.4546 23 0.4809
12 0.4544 24 0.4809
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with about 10−2 Hz distance can be found. Considering the semi-difference between
them, we find periods of the order of 3 minutes, while farthest apart frequencies cor-
respond to a period of 25s. Those multiple frequencies can be interpreted as combi-
natory frequencies, due to the non-linearity of the coupling between the oscillators
We can deduce that for higher values of the initial energy (i.e. more excited oscilla-
tors and/or higher initial angles) more cooperative effects appear and the number
of shared modes increases. If this cooperative behaviour would persist, we could
encounter Poincarè recurrences, but, having dissipation acting on the system, this
can not happen.

6.6 Relaxation time

In order to estimate the relaxation time for the excited pendula, i.e. the time constant
of the exponential loss of the initial energy, we evaluated the upper and lower back-
ground of the x(t) plot, we identified the local maxima for the upper background or
minima for the lower background and we calculated an exponential fit for those two
distinct set of points as follows:

f(t) = Ae−t/(120τ) +B

where A, B and τ are unknown constants. In related plots (5.4) all involved data are
shown: the blue area represents x(t), the green line the upper and lower background,
the red points the local maxima (or minima) of those background and finally black
lines are the two best fit exponential functions. In the two superimposed tables the
fitting parameters are reported.

FIGURE 6.2: P16 50◦

The values for τ vary from 3 to 14, where τ = 3 corresponds to 6 minutes and
τ = 14 to 28 minutes. We also point out that pendula with higher energy get damped
more quickly than the others and that the pendula at the end of the chain get less
energy than the others. This phenomenon could be related to the nearby constraints.
As an example we show the different envelopes for pendulum 4 In the left plot that
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angle excited pendula n. 4 6 8 9 11 12 13 16 17 18 24

50 8 3.2
16 12.0 3.9

8 16 5.8 4.8
6 12 18 5.5 4.3 6.7

3 6 9 12 15 18 21 5.9 5.0 6.9
40 6 12 18 5.8 5.4 5.1
30 3 6 9 12 15 18 21 9.5 9.9

4 8 12 16 20 7.7 6.5 7.5 14.0
8 16 6.2 6.8
8 16 13.0

20 9 12 15 9.0 9.0
All 9.6 7.5 5.8 9.2

FIGURE 6.3: pendulum 4 damping rate in different runs
P04-08-12-16-20 30◦ (left) - P08 30◦ (right)

pendulum is one of the excited pendula and it shows a lower value for τ , while in
the right one it is not excited and it shows a double value for τ . For most of the
pendula (τ ' 8) is around 14 minutes, but it also assumes much smaller or larger
values for specific pendula.

6.7 Horizontal Analysis

We performed 3 different runs, with the same excited pendula (8th and 16th), but
with different initial angles (30◦, 40◦ and 50◦). We calculated the maximum am-
plitude for each pendulum in those different runs: the obtained values are plotted
in the following figure using different colours. We can notice that the excited pen-

dulum does not transfer most its energy to its next, but rather to the ones next to
them. This is shown by local maxima that can be recognised for pendula 3, 13 and
20 or 21. Contrary to what we could expect the not excited pendulum with the high-
est amplitude is not number 12, but number 13. In [10], using collective excitation
on the lattice at high energies and angles, Denardo found similar results. Increas-
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ing the available energy and/or the number of pendula the symmetry of the system
grows, the cooperative behaviour of the system is amplified and a preferred position
is given to the central pendula.

6.8 Chaos

In order to investigate the occurrence of chaos we compared two runs with same
initial conditions (see 5.2) and we overlapped the two plots of normalised amplitude
as a function of time, as it is shown in the following figure for pendula 2nd and
15th. The difference of the two plots shows that the system is sensitive to small

variations to the initial conditions as it is expected for a chaotic system, but chaos
does not arise very early: hence we can conclude that the system has a low Lyapunov
exponent, even if a quantitative analysis has not been done. Finally we mention
some other chaotic behaviour that was noticed during observation of the system
dynamics. For example we noticed in different runs few pendula remaining stack
for a minute, while the two neighbours were oscillating with opposite phase. In
particular this was observed when exciting pendula on opposite sides of the system.
This phenomenon is very relevant, because it shows kind of a potential barrier. The
chain as a whole in that case shows modal zones where the energy of the collective
motion is almost null, being temporarily transferred to other parts of the chain. We
can think that those stack oscillators correspond to a maximum for the interaction
forces in the chain.
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Chapter 7

Conclusions

7.1 Summary

In the following we summarise the main steps of the present thesis. As a starting
phase the FPU literature was widely investigated for the purpose of understanding
the reasons of the FPU problem and its historical evolution, the intermediate results
and the latest achieved outcomes. As we already mentioned in the Introduction,
the first scientists interested in the thermalisation process in order to better under-
stand the open problem of the second law of thermodynamics were Fermi, Pasta and
Ulam. Based on a numerical simulation using one of the first computer in history,
they deduced the tendency of the system to periodically go back to a very close con-
dition to the initial one where all energy was concentrated in the main oscillation
mode. By the way their simulations did not last long enough to allow the achieve-
ment of equipartition of energy: as a matter of fact the physical parameters ruling
the thermalisation cynetics, i.e. the coupling between oscillators and their number,
were not sufficiently large.
Later on Kruskal and Zabusky started again that study and they realised that the
Poincarè recurrences observed by their predecessors could be explained if solitons
are taken into account. In particular they noticed the characteristic temporal stabil-
ity of solitons and their tendency to recreate themselves even after interacting with
each other. The latest fundamental finding is dated back in 1988 due to Sievers and
Takeno, who introduced the concept of ILM, which are do not have to propagate,
but can just vibrate maintaining their position.

Despite more than 60 years of research not all theoretical and practical conse-
quences of the FPU problem are completely understood and many questions are still
open: in particular the correlation between the second law of thermodynamics and
the collective motion with non linear coupling. In this theoretical and experimental
frame there are many phenomena to be investigated:

• chaos

• Poincarè recurrence

• solitons, ILM and breathers, beats

• asymptotic synchronisation

• thermalisation and equipartition

In order to deal with an experimental project, several practical problems have to
be faced and solved. As it should be clear at this point, many different competences
were involved in order to create from scratch the planned setup, to have it work-
ing as expected and to analyse the gathered data. In particular the videotracking
procedure required the setup to change accordingly:
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• in order to reduce the noise detected by the algorithm we were forced to change
the original 6 alternating colours of the chain to a single (red) colour and to
shade the surrounding with white materials

• to optimise and stabilise the light conditions of the system, which is exposed
to both natural and artificial light: we introduced dedicate ”soft” lights in the
aluminium framework in order to avoid reflection on the spherical surface and
we shaded the window with a curtain

• to reduce the synchronisation problems that multiple cooperating webcams
face we replaced the 5 previously planned Logitech webcam with a single Go-
Pro webcam with a macro lens to better distinguish the pendula at the extreme
of the chain

• to take into account the fisheye effect of the webcam we calibrated each single
pendulum trajectory with a very delicate and lengthy procedure.

After this long setup procedure, an extensive measurement campaign was car-
ried out: 40 runs were executed, 36 of which having different initial conditions and
few others were performed for studying chaos and repeated the same initial condi-
tions. In the meanwhile the data processing was performed: it took a pretty long
time, because the video treatment imply huge amount of data to be processed. To
summarise the results we can obtain from the elaborated data and plots are the fol-
lowing:

a) different beats existing at several time scales. In particular we notice ”super”
beats that last from 20 to 30 minutes, shorter beats which last 4 minutes and
third beats that last 1 minutes.

b) thermalisation of all pendula happens pretty fast and the energy metric Ω de-
crease regularly as Ω ∼ t−2 after the first phase

c) overall mechanical energy of the pendula is quickly transferred from our open
system to the surrounding environment

d) dissipation at the constraints has a high impact on the system and foster a
higher rate in thermalisation of the chain

e) chaos appears to happens in the first phase of each run and then it is displaced
by a quasi-periodic behaviour of the chain in the following

Energy dissipation plays a role in the thermalisation process and speeds up the
energy transfer from the excited pendula to the others and then to the environment.
As a matter of fact, all real systems are open and this reason makes such an experi-
mental research of a high interest, being much closer to reality.

The results of the research were shared and discussed with the scientific commu-
nity in different national and international conferences:

• Talk in European Nonlinear Dynamics Conference in Budapest (July 2017)

• Talk in Associazione Italiana di Meccanica Teorica e Applicata Congress in
Salerno (September 2017) and publication of the extended abstract in the Con-
ference Proceedings [26]

• Talk in Società Italiana di Fisica National Congress in Trento (September 2017)
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7.2 Further research

As a continuation of the present research the videotracking setup could be improved:
positioning the GoPro webcam upwards on the floor under the system we could
completely avoid the problem due to shadowing of the spheres by the nylon rope
that we faced in the actual setup. The experienced replica on the videorecording
have to be eliminated: for this reason a faster microSD has to be chosen. For the post-
processing activities, a higher level of automation is needed: after the video files are
copied to the hard disk where the elaboration takes place, the whole sequence of op-
erations of format conversion, merge of segments, re-conversion and videotracking
has to be executed automatically, checking each exit code before launching the fol-
lowing step. All those changes aim to minimise the experimental errors which can
be faced during measurement operations. From the mechanical standpoint a second
releasing mechanism has to be build and placed on the opposite side of the frame-
work: at that point it will be possible to excite different normal modes of the chain
with pendula excited on opposite side of the chain.

In order to generalise the obtained results a more flexible system would be needed:
the parameters of interest are mainly

• the coupling

• in the pendulum length

• the pendulum radius

• the number of pendula

• the effective dissipation

This last objective can be obtained setting up a different clamping method for both
the chain and the pendula. The best option we could think of is to have a shorter
steel cable clamped at the extremes with two grips. Those grips could be connected
to an oscillating rolling-element bearing.

From a theoretical standpoint the mathematical model of the physical system has
to be further developed and studied in order to better represent the real experimen-
tal system. This model could help in extending the research outcomes, changing
those parameters in the considered Lagrangian. In particular the cable needs to be
modelled as a continuum body rather than as a number of discrete masses. This
would help in better understanding the dynamics of the cable. Some experimen-
tal tests can be done for this purpose. In order to estimate its damping first of all
free vibrations tests have to be done with no pendula involved: cable tension and
vibration amplitude have to be considered as parameters of those tests. In order to
distinguish the different damping contributions (close to constraints and far from
them) forced vibrations tests have to be done. The damping estimate can be done
using the Inverse Standing Wave Ratio (ISWR) technique. At Politecnico of Milano
the team of prof. Martinelli is working on some simplified models in order to eval-
uate the structural damping of metal cables based on the energy dissipated during
transversal vibrations [39, 18, 11]. Finally the applications of the research to the dif-
ferent technological and theoretical areas have to be exploited: in particular in the
technological field the research outcomes can impact both the mechanical and the
civil engineering. Other applications can be found in the solid state physics. As an
example the results can shed light on polymer studies: as a matter of fact it was re-
cently found by prof. Salesi et al. [8] that their linear chains show oscillatory and
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dissipative behaviour and the higher is the energy of the chain the shorter is the
related dissipation time.
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Appendix A

Equipment specifications

A.1 EclipseMagnetic M52172/24VDC datasheet

A world leader in magnetic technology

www.eclipsemagnetics.com
Eclipse Magnetics Ltd, Atlas Way, Sheffield, S4 7QQ, England
T +44 (0)114 225 0600   F +44 (0)114 225 0525   E info@eclipsemagnetics.com 
While every effort has been made to ensure the accuracy of the information in this publication please note that specifications may change without notice.

If you have any more questions, require technical assistance and would like a quotation, simply contact us.

Description
 Mountings	 	 Threaded	holes	in	rear	face	

	 Finish	 	 Bright	nickel	plated	with		 	

	 	 	 machined	face	 	 	

	 Product weight	 	 66g

Technical Data
	 Typical holding force	 	 150N

	 εD rating	 	 100%

	 IP Rating	 	 54

 Standard operating voltage	 	 12VDC	(M52172/12VDC)

	 	 	 24VDC	(M52172/24VDC)

	 Current	 	 12V	-	180mA

	 	 	 24V	-	90mA

	 Power consumption	 	 2.16W

	

Connection type
	 12VDC and 24VDC	 Free	leads	(500mm	long)	

Recommended armature plate

	 Finish	 	 Bright	nickel	plated	

	 Diameter	 	 25mm

 Height  3mm

 Screw  M3

	 Part No.		 	 M52171/25ARM

	 Weight		 	 15g

	 	

Pull gaps

Dimensions

Tapped M4 coarse
x 10mm deep

LEADS:- 1 RED + 1 BLACK
0.3mm Square x 500mm Long

3 holes tapped
M3 coarse x 5mm deep
on 15mm P.C.D.

20mmØ25mm

Electro-holding magnet
Energise to hold - 25mm diameter

12VDC	or	24VDC	Operating	voltage

Part numbers
M52172/12VDC
M52172/24VDC

Air gap 
(mm)

Magnetic Pull*
(N)

0.00 150

0.09 51

0.18 22

0.27 12

0.36 8

0.59 4

1.00 2

* +/- 10% at	room	temperature

To	achieve	the	optimum	pull	force	100%	contact	area	must	be	achieved	using	the	
recommended	armature	plate.	The	force	will	be	affected	if	other	material	specifications,	
thicknesses	and	surfaces	are	used,	or	if	the	armature	fails	to	make	positive	contact	over	
the	full	diameter	of	the	face	of	the	magnet.	Where	misalignment	is	likely	to	be	an	issue	
we	recommend	that	an	oversized	armature	plate	is	used	to	ensure	100%	full	contact,	
this	however	will	reduce	the	stated	pull	force	by	approximately	10%.
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A.2 Mean Well RS-100-24 power supply datasheet

ENVIRONMENT

PROTECTION

SPECIFICATION

MODEL RS-100-3.3 RS-100-5 RS-100-12 RS-100-15 RS-100-24 RS-100-48

DC VOLTAGE

RATED CURRENT

CURRENT RANGE

RATED POWER

RIPPLE & NOISE (max.) Note.2

OUTPUT VOLTAGE ADJ. RANGE

VOLTAGE TOLERANCE Note.3

LINE REGULATION Note.4

LOAD REGULATION Note.5

SETUP, RISE TIME

HOLD UP TIME (Typ.)

VOLTAGE RANGE

FREQUENCY RANGE

EFFICIENCY (Typ.)

AC CURRENT (Typ.)
INPUT

INRUSH CURRENT (Typ.)

LEAKAGE CURRENT

SAFETY STANDARDS

WORKING TEMP.

WORKING HUMIDITY

STORAGE TEMP., HUMIDITY

TEMP. COEFFICIENT

VIBRATION

MTBF

DIMENSIONOTHERS

NOTE

PACKING

OVERLOAD

OVER VOLTAGE

3.3V 5V 12V 15V 24V 48V

20A 16A 8.5A 7A 4.5A 2.3A

0 ~ 20A 0 ~ 16A 0 ~ 8.5A 0 ~ 7A 0 ~ 4.5A 0 ~ 2.3A

66W 80W 102W 105W 108W 110.4W

80mVp-p 80mVp-p 120mVp-p 120mVp-p 120mVp-p 200mVp-p

3.2V ~ 3.5V 4.75 ~ 5.5V 11.4 ~ 13.2V 14.25 ~ 16.5V 22.8 ~ 26.4V 45.6 ~ 52.8V

3.0% 2.0% 1.0% 1.0% 1.0% 1.0%

0.5% 0.5% 0.5% 0.5% 0.5% 0.5%

2.0% 1.0% 0.5% 0.5% 0.5% 0.5%

500ms, 20ms/230VAC          1200ms, 30ms/115VAC at full load

100ms/230VAC          18ms/115VAC at full load

88 ~ 264VAC          125 ~ 373VDC (Withstand 300VAC surge for 5sec. Without damage)

47 ~ 63Hz

74%

3.8 ~ 4.45V 5.75 ~ 6.75V 13.8 ~ 16.2V 17.25 ~ 20.25V 27.6 ~ 32.4V 55.2 ~ 64.8V

77% 81% 82% 84% 84%

2.5A/115VAC          1.5A/230VAC

COLD START 40A/230VAC

<2mA / 240VAC

110 ~ 150% rated output power

Protection type : Hiccup mode, recovers automatically after fault condition is removed

UL60950-1, TUV EN60950-1 approved

Compliance to EN55022 (CISPR22) Class B, EN61000-3-2,-3

Compliance to EN61000-4-2,3,4,5,6,8,11, EN61000-6-2 (EN50082-2), heavy industry level, criteria A

-25 ~ +70 (Refer to "Derating Curve")

20 ~ 90% RH non-condensing

-40 ~ +85 , 10 ~ 95% RH

0.03%/ (0 ~ 50 )

10 ~ 500Hz, 5G 10min./1cycle, period for 60min. each along X, Y, Z axes

260.8Khrs min.      MIL-HDBK-217F (25 )

159*97*38mm (L*W*H)

1. All parameters NOT specially mentioned are measured at 230VAC input, rated load and 25 of ambient temperature.
2. Ripple & noise are measured at 20MHz of bandwidth by using a 12" twisted pair-wire terminated with a 0.1uf & 47uf parallel capacitor.
3. Tolerance : includes set up tolerance, line regulation and load regulation.
4. Line regulation is measured from low line to high line at rated load.
5. Load regulation is measured from 0% to 100% rated load.
6. The power supply is considered a component which will be installed into a final equipment. The final equipment must be re-confirmed that it still meets

EMC directives.

7. Length of set up time is measured at cold first start. Turning ON/OFF the power supply very quickly may lead to increase of the set up time.

For guidance on how to perform these EMC tests, please refer to �EMI testing of component power supplies.�
(as available on http://www.meanwell.com)

File Name:RS-100-SPEC   2011-08-19

Protection type : Hiccup mode, recovers automatically after fault condition is removed

0.6Kg; 24pcs/15.4Kg/0.7CUFT

100W Single Output Switching Power Supply RS-100 se r ies

WITHSTAND VOLTAGE

ISOLATION RESISTANCE

I/P-O/P:3KVAC     I/P-FG:1.5KVAC     O/P-FG:0.5KVAC

I/P-O/P, I/P-FG, O/P-FG:100M Ohms / 500VDC / 25 / 70% RH

SAFETY &

EMC
(Note 6)

Universal AC input / Full range

Protections: Short circuit / Overload / Over voltage

Cooling by free air convection

LED indicator for power on

100% full load burn-in test

All using 105

Withstand 300VAC surge input for 5 second

High operating temperature up to 70

Withstand 5G vibration test

High efficiency, long life and high reliability

3 years warranty

long life electrolytic capacitors

Features :

EMC IMMUNITY

EMC EMISSION

                                     MeanWell Direct 
Tel: +44 (0)118 970 3858  E-mail: sales@meanwelldirect.co.uk
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A.3 GoPro Hero4 Black datasheet

FIGURE A.1: datasheet page 1/2
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FIGURE A.2: datasheet page 2/2
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Appendix B

SphereTracking Software

The following code was used to process videos produced by GoPro webcam in order
to track the motion of the pendula.

B.1 file AutoColorFilter.cpp

1 // O r i g i n a l l y wri t ten by Kyle Hounslow and modified f o r Marta Grese l in with
GoPro

2

3 # include ”opencv\highgui . h”
4 # include ”opencv\cv . h”
5 # include <sstream>
6 # include <s t r i n g>
7 # include <iostream>
8 # include <fstream>
9 # include <vector>

10 # include <windows . h>
11 # include <memory>
12 # include ” Sphere . h”
13

14 using namespace cv ;
15 using std : : ofstream ;
16

17 // i n i t i a l min and max HSV f i l t e r values .
18 i n t H MIN = 0 ;
19 i n t H MAX = 2 1 7 ; // 1 7 9 ;
20 i n t S MIN = 8 6 ; // 5 9 ;
21 i n t S MAX = 2 5 5 ; // 1 9 9 ;
22 i n t V MIN = 1 0 1 ; // 6 7 ;
23 i n t V MAX = 2 2 7 ; // 1 2 9 ;
24 // d e f a u l t capture width and height
25 const i n t FRAME WIDTH = 1920 ;
26 const i n t FRAME HEIGHT = 1080 ;
27 //max number of o b j e c t s to be detec ted in frame
28 const i n t MAX NUM OBJECTS = 8 0 ;
29 //minimum and maximum o b j e c t area
30 const i n t MIN OBJECT AREA = 16 ∗ 1 6 ; // 18 ∗ 18;// 20 ∗ 2 0 ;
31 const i n t MAX OBJECT AREA = FRAME HEIGHT∗FRAME WIDTH / 1 . 5 ;
32 //names t h a t w i l l appear a t the top of each window
33 const s t r i n g windowName = ”GoPro” ;
34 const s t r i n g windowName2 = ” Thresholded Image” ;
35 SYSTEMTIME systime ;
36 s t r i n g strTemp ;
37 s t r i n g StrDay ;
38 VideoWriter oVideoWriter ;
39 s t r i n g f i lename ;
40

41 // Sphere t r a c k i n g procedure
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42 s t r i n g wordToString (WORD number ) {
43 std : : s t r ings t ream ss ;
44 ss << number ;
45 re turn ss . s t r ( ) ;
46 }
47 s t r i n g i n t T o S t r i n g ( i n t number ) {
48 std : : s t r ings t ream ss ;
49 ss << number ;
50 re turn ss . s t r ( ) ;
51 }
52 void drawObject ( vector<Sphere> theSpheres , Mat &frame ) {
53 f o r ( i n t i = 0 ; i<theSpheres . s i z e ( ) ; i ++) {
54 cv : : c i r c l e ( frame , cv : : Point ( theSpheres . a t ( i ) . getXPos ( ) , theSpheres . a t (

i ) . getYPos ( ) ) , 14 , cv : : S c a l a r ( 0 , 0 , 255) ) ;
55 cv : : putText ( frame , i n t T o S t r i n g ( theSpheres . a t ( i ) . getXPos ( ) ) , cv : : Point (

theSpheres . a t ( i ) . getXPos ( ) + 15 , theSpheres . a t ( i ) . getYPos ( ) + 0) , 1 , 1 ,
S c a l a r ( 0 , 255 , 0 ) ) ;

56 cv : : putText ( frame , i n t T o S t r i n g ( theSpheres . a t ( i ) . getYPos ( ) ) , cv : : Point (
theSpheres . a t ( i ) . getXPos ( ) + 15 , theSpheres . a t ( i ) . getYPos ( ) + 15) , 1 ,
1 , S c a l a r ( 0 , 255 , 0 ) ) ;

57 }
58 }
59 void morphOps ( Mat &thresh ) {
60 // c r e a t e s t r u c t u r i n g element t h a t w i l l be used to ” d i l a t e ” and ” erode ”

image .
61 //the element chosen here i s a 2px by 2px r e c t a n g l e
62 Mat erodeElement = getStructur ingElement (MORPH RECT, S ize ( 2 , 2 ) ) ;
63 // d i l a t e with l a r g e r element so make sure o b j e c t i s n i c e l y v i s i b l e
64 Mat di la teElement = getStructur ingElement (MORPH RECT, S ize ( 4 , 4 ) ) ;
65 erode ( thresh , thresh , erodeElement ) ;
66 erode ( thresh , thresh , erodeElement ) ;
67 d i l a t e ( thresh , thresh , di la teElement ) ;
68 d i l a t e ( thresh , thresh , di la teElement ) ;
69 }
70 void t r a c k F i l t e r e d O b j e c t ( Sphere theSphere , Mat threshold , Mat HSV, Mat &

cameraFeed , shared ptr<ofstream> &f i l e , i n t frame ) {
71 s t r i n g strFrame ;
72 vector <Sphere> spheres ;
73 Mat temp ;
74 threshold . copyTo ( temp ) ;
75 //these two v e c t o r s needed f o r output of findContours
76 vector< vector<Point> > contours ;
77 vector<Vec4i> hierarchy ;
78 //f ind contours of f i l t e r e d image using openCV findContours funct ion
79 f indContours ( temp , contours , hierarchy , CV RETR CCOMP,

CV CHAIN APPROX SIMPLE) ;
80 //use moments method to f ind our f i l t e r e d o b j e c t
81 double refArea = 0 ;
82 bool objectFound = f a l s e ;
83 i f ( h ierarchy . s i z e ( ) > 0) {
84 i n t numObjects = hierarchy . s i z e ( ) ;
85 // i f number of o b j e c t s g r e a t e r than MAX NUM OBJECTS we have a noisy

f i l t e r
86 i f ( numObjects<MAX NUM OBJECTS) {
87 f o r ( i n t index = 0 ; index >= 0 ; index = hierarchy [ index ] [ 0 ] ) {
88 Moments moment = moments ( ( cv : : Mat ) contours [ index ] ) ;
89 double area = moment . m00 ;
90 // i f the area i s l e s s than 20 px by 20px then i t i s probably j u s t

noise
91 // i f the area i s the same as the 3/2 of the image s ize , probably

j u s t a bad f i l t e r
92 //we only want the o b j e c t with the l a r g e s t area so we s a f e a

r e f e r e n c e area each
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93 // i t e r a t i o n and compare i t to the area in the next i t e r a t i o n .
94 i f ( area>MIN OBJECT AREA) {
95 Sphere sphere ;
96 sphere . setXPos (moment . m10 / area ) ;
97 sphere . setYPos (moment . m01 / area ) ;
98 sphere . setType ( theSphere . getType ( ) ) ;
99 sphere . setColour ( theSphere . getColour ( ) ) ;

100 spheres . push back ( sphere ) ;
101 objectFound = true ;
102 }
103 }
104

105 strFrame = t o s t r i n g ( frame ) ;
106 putText ( cameraFeed , strFrame , Point ( 0 , 15) , 1 , 1 , S c a l a r ( 0 , 0 , 255) ,

2 ) ;
107

108 // l e t user know you found an o b j e c t
109 i f ( objectFound ) {
110 (∗ f i l e ) << strFrame ;
111 f o r ( i n t i = 0 ; i < spheres . s i z e ( ) ; i ++) {
112 (∗ f i l e ) << ” ” + i n t T o S t r i n g ( spheres . a t ( i ) . getXPos ( ) ) + ” ” +

i n t T o S t r i n g ( spheres . a t ( i ) . getYPos ( ) ) ;
113 }
114 (∗ f i l e ) << endl ;
115 drawObject ( spheres , cameraFeed ) ;
116 }
117 }
118 e l s e putText ( cameraFeed , ”TOO MUCH NOISE ! ADJUST FILTER” , Point ( 0 , 40)

, 1 , 2 , S c a l a r ( 0 , 0 , 255) , 2 ) ;
119 }
120 }
121

122 i n t main ( i n t argc , char∗ argv [ ] )
123 {
124 vector<shared ptr<ofstream>> f i l e s ;
125 i n t frame ;
126 Mat cameraFeed ;
127 Mat HSV;
128 Mat threshold ;
129 VideoCapture capture ( ”C:/ Users/Docente/Videos/GoPro270617 . mp4” ) ;
130 // s e t height and width of capture frame
131 capture . s e t (CV CAP PROP FRAME WIDTH, FRAME WIDTH) ;
132 capture . s e t (CV CAP PROP FRAME HEIGHT, FRAME HEIGHT) ;
133 // s e t framesize f o r videoWriter
134 Size frameSize (FRAME WIDTH, FRAME HEIGHT) ;
135 cv : : namedWindow(windowName, WINDOWNORMAL) ;
136

137 cout << ” Recording s t a r t e d ” << std : : endl ;
138 GetLocalTime(& systime ) ;
139 StrDay = wordToString ( systime . wYear ) + ” ” ;
140 strTemp = wordToString ( systime . wMonth) ;
141 i f ( strTemp . s i z e ( ) == 1) StrDay += ”0” + strTemp + ” ” ;
142 e l s e StrDay += strTemp + ” ” ;
143 strTemp = wordToString ( systime .wDay) ;
144 i f ( strTemp . s i z e ( ) == 1) StrDay += ”0” + strTemp + ”−” ;
145 e l s e StrDay += strTemp + ”−” ;
146 strTemp = wordToString ( systime . wHour) ;
147 i f ( strTemp . s i z e ( ) == 1) StrDay += ”0” + strTemp + ” ” ;
148 e l s e StrDay += strTemp + ” ” ;
149 strTemp = wordToString ( systime . wMinute ) ;
150 i f ( strTemp . s i z e ( ) == 1) StrDay += ”0” + strTemp ;
151 e l s e StrDay += strTemp ;
152 // Impostazione dei f i l e d a t i
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153 f i l e s . c l e a r ( ) ;
154 f i lename = ”C:/ TrackingVideo/” + StrDay + ”−GoProData . t x t ” ;
155 f i l e s . push back ( shared ptr<ofstream >(new ofstream ( fi lename . c s t r ( ) ) ) ) ;
156 // Impostazione del f i l e video
157 oVideoWriter = VideoWriter ( ”C:/ TrackingVideo/” + StrDay + ”−GoPro . avi ” ,

CV FOURCC( ’D ’ , ’ I ’ , ’V ’ , ’ 4 ’ ) , 120 , frameSize , t rue ) ;
158 // i n i t i a l i z e the VideoWriter o b j e c t
159 i f ( ! oVideoWriter . isOpened ( ) )
160 {
161 cout << ”ERROR: Fa i l ed to i n i t i a l i z e video wri t ing ” << endl ;
162 //char c E x i t ;
163 //std : : c in >> c E x i t ;
164 //PostQuitMessage ( 1 ) ;
165 }
166 // s t a r t an i n f i n i t e loop where video i s copied to cameraFeed matrix
167 frame = 0 ;
168 while ( 1 )
169 {
170 // s t o r e image to matrix
171 bool bSuccess = capture . read ( cameraFeed ) ;
172 i f ( ! bSuccess ) {
173 cout << ”ERROR: Cannot read a frame from video f i l e ” << endl ;
174 break ;
175 }
176 //convert frame from RGB to HSB colorspace
177 cvtColor ( cameraFeed , HSV, COLOR BGR2HSV) ;
178 // s e t HSV values from user s e l e c t e d region
179 Sphere sphere ( ”” ) ;
180 inRange (HSV, S c a l a r (H MIN, S MIN , V MIN) , S c a l a r (H MAX, S MAX, V MAX) ,

threshold ) ;
181 morphOps ( threshold ) ;
182 //f ind spheres
183 t r a c k F i l t e r e d O b j e c t ( sphere , threshold , HSV, cameraFeed , f i l e s [ 0 ] ,

frame ++) ;
184 oVideoWriter . wri te ( cameraFeed ) ;
185 imshow (windowName, cameraFeed ) ;
186 i f ( waitKey ( 5 ) == 27) break ; // ’ esc ’ e x i t program
187 }
188 destroyWindow (windowName) ;
189 oVideoWriter . r e l e a s e ( ) ;
190 re turn 0 ;
191 }
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B.2 file Sphere.cpp

1

2 # include ” Sphere . h”
3

4 Sphere : : Sphere ( )
5 {
6 // s e t values f o r d e f a u l t c o n s t r u c t o r
7 setType ( ” n u l l ” ) ;
8 setColour ( S c a l a r ( 0 , 0 , 0 ) ) ;
9 }

10

11 Sphere : : Sphere ( s t r i n g name) {
12

13 setType (name) ;
14

15 i f (name==” sphere ” ) {
16 setHSVmin ( S c a l a r ( 0 , 59 , 67) ) ;
17 setHSVmax ( S c a l a r ( 1 7 9 , 199 , 129) ) ;
18 //RGB value f o r green :
19 setColour ( S c a l a r ( 0 , 0 , 2 5 5 ) ) ;
20 }
21 }
22

23 Sphere : : ˜ Sphere ( void )
24 {
25 }
26

27 i n t Sphere : : getXPos ( ) {
28

29 re turn Sphere : : xPos ;
30

31 }
32

33 void Sphere : : setXPos ( i n t x ) {
34

35 Sphere : : xPos = x ;
36

37 }
38

39 i n t Sphere : : getYPos ( ) {
40

41 re turn Sphere : : yPos ;
42

43 }
44

45 void Sphere : : setYPos ( i n t y ) {
46

47 Sphere : : yPos = y ;
48

49 }
50

51 S c a l a r Sphere : : getHSVmin ( ) {
52

53 re turn Sphere : : HSVmin ;
54

55 }
56 S c a l a r Sphere : : getHSVmax ( ) {
57

58 re turn Sphere : : HSVmax;
59 }
60
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61 void Sphere : : setHSVmin ( S c a l a r min ) {
62

63 Sphere : : HSVmin = min ;
64 }
65

66

67 void Sphere : : setHSVmax ( S c a l a r max) {
68

69 Sphere : : HSVmax = max ;
70 }



B.3. file Sphere.h (to be included for the compilation in C code) 93

B.3 file Sphere.h (to be included for the compilation in C
code)

1 #pragma once
2 # include <s t r i n g>
3 # include ”opencv\cv . h”
4 # include ”opencv\highgui . h”
5 using namespace std ;
6 using namespace cv ;
7

8 c l a s s Sphere
9 {

10 publ ic :
11 Sphere ( ) ;
12 ˜ Sphere ( void ) ;
13

14 Sphere ( s t r i n g name) ;
15

16 i n t getXPos ( ) ;
17 void setXPos ( i n t x ) ;
18

19 i n t getYPos ( ) ;
20 void setYPos ( i n t y ) ;
21

22 S c a l a r getHSVmin ( ) ;
23 S c a l a r getHSVmax ( ) ;
24

25 void setHSVmin ( S c a l a r min ) ;
26 void setHSVmax ( S c a l a r max) ;
27

28 s t r i n g getType ( ) { re turn type ;}
29 void setType ( s t r i n g t ) { type = t ;}
30

31 S c a l a r getColour ( ) {
32 re turn Colour ;
33 }
34 void setColour ( S c a l a r c ) {
35

36 Colour = c ;
37 }
38

39 p r i v a t e :
40

41 i n t xPos , yPos ;
42 s t r i n g type ;
43 S c a l a r HSVmin, HSVmax;
44 S c a l a r Colour ;
45 } ;
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Appendix C

Mathematica code

The following code was used to calculate all the physical quantities of interest based
on the data produced by the videotracking algorithm.

C.1 Load data

SetDirectory[“C:\\FPU\\elab FPU”];SetDirectory[“C:\\FPU\\elab FPU”];SetDirectory[“C:\\FPU\\elab FPU”];

L = 1.145;L = 1.145;L = 1.145;

g = 9.81;g = 9.81;g = 9.81;

fps = 120;fps = 120;fps = 120;

excPend = {8, 16};excPend = {8, 16};excPend = {8, 16};

GoProData = Import[“GoProData.txt”, “Table”];GoProData = Import[“GoProData.txt”, “Table”];GoProData = Import[“GoProData.txt”, “Table”];

InitialFrame = GoProData[[1, 1]]− 1;InitialFrame = GoProData[[1, 1]]− 1;InitialFrame = GoProData[[1, 1]]− 1;

yTrajectory[sphere ,pixel ]:=yTrajectory[sphere ,pixel ]:=yTrajectory[sphere ,pixel ]:=

Which
[
sphere==1, 1075.5876927974166− 0.18870066427474577pixel + 0.00006599017741519634pixel2 + 1.818711566426105410∧(−8)pixel3,Which
[
sphere==1, 1075.5876927974166− 0.18870066427474577pixel + 0.00006599017741519634pixel2 + 1.818711566426105410∧(−8)pixel3,Which
[
sphere==1, 1075.5876927974166− 0.18870066427474577pixel + 0.00006599017741519634pixel2 + 1.818711566426105410∧(−8)pixel3,

sphere==2, 1052.9584678309586− 0.19232907168373092pixel + 0.00005934422577072623pixel2 + 1.883190437885620710∧(−8)pixel3,sphere==2, 1052.9584678309586− 0.19232907168373092pixel + 0.00005934422577072623pixel2 + 1.883190437885620710∧(−8)pixel3,sphere==2, 1052.9584678309586− 0.19232907168373092pixel + 0.00005934422577072623pixel2 + 1.883190437885620710∧(−8)pixel3,

sphere==3, 1060.3524415001448 − 0.3286802665468743pixel + 0.0001947978699867646pixel2 − 2.490249666040940410∧(−8)pixel3,sphere==3, 1060.3524415001448 − 0.3286802665468743pixel + 0.0001947978699867646pixel2 − 2.490249666040940410∧(−8)pixel3,sphere==3, 1060.3524415001448 − 0.3286802665468743pixel + 0.0001947978699867646pixel2 − 2.490249666040940410∧(−8)pixel3,

sphere==4, 1015.7761525312723 − 0.2926508533900111pixel + 0.0001605467622795486pixel2 − 1.430379544325046510∧(−8)pixel3,sphere==4, 1015.7761525312723 − 0.2926508533900111pixel + 0.0001605467622795486pixel2 − 1.430379544325046510∧(−8)pixel3,sphere==4, 1015.7761525312723 − 0.2926508533900111pixel + 0.0001605467622795486pixel2 − 1.430379544325046510∧(−8)pixel3,

sphere==5, 973.3843397593116 − 0.317603745426182pixel + 0.00020462430677967595pixel2 − 3.55019074920459110∧(−8)pixel3,sphere==5, 973.3843397593116 − 0.317603745426182pixel + 0.00020462430677967595pixel2 − 3.55019074920459110∧(−8)pixel3,sphere==5, 973.3843397593116 − 0.317603745426182pixel + 0.00020462430677967595pixel2 − 3.55019074920459110∧(−8)pixel3,

sphere==6, 916.302206158762 − 0.24284225884879887pixel + 0.00013241129228379548pixel2 − 1.158837072579349810∧(−8)pixel3,sphere==6, 916.302206158762 − 0.24284225884879887pixel + 0.00013241129228379548pixel2 − 1.158837072579349810∧(−8)pixel3,sphere==6, 916.302206158762 − 0.24284225884879887pixel + 0.00013241129228379548pixel2 − 1.158837072579349810∧(−8)pixel3,

sphere==7, 851.9876076102589 − 0.16464840130395222pixel + 0.00006920662057300188pixel2 + 1.37262447933850810∧(−9)pixel3,sphere==7, 851.9876076102589 − 0.16464840130395222pixel + 0.00006920662057300188pixel2 + 1.37262447933850810∧(−9)pixel3,sphere==7, 851.9876076102589 − 0.16464840130395222pixel + 0.00006920662057300188pixel2 + 1.37262447933850810∧(−9)pixel3,

sphere==8, 831.1487077846357 − 0.20556699971490672pixel + 0.00010059828497002864pixel2 − 8.04908483546979510∧(−9)pixel3,sphere==8, 831.1487077846357 − 0.20556699971490672pixel + 0.00010059828497002864pixel2 − 8.04908483546979510∧(−9)pixel3,sphere==8, 831.1487077846357 − 0.20556699971490672pixel + 0.00010059828497002864pixel2 − 8.04908483546979510∧(−9)pixel3,

sphere==9, 744.9310374741791 − 0.10519272778655803pixel + 0.000025314603235718588pixel2 + 1.198309034530638410∧(−8)pixel3,sphere==9, 744.9310374741791 − 0.10519272778655803pixel + 0.000025314603235718588pixel2 + 1.198309034530638410∧(−8)pixel3,sphere==9, 744.9310374741791 − 0.10519272778655803pixel + 0.000025314603235718588pixel2 + 1.198309034530638410∧(−8)pixel3,

sphere==10, 685.9889859127799 − 0.06279941581873275pixel + 5.7612110302412710∧(−6)pixel2 + 9.3096318219362910∧(−9)pixel3,sphere==10, 685.9889859127799 − 0.06279941581873275pixel + 5.7612110302412710∧(−6)pixel2 + 9.3096318219362910∧(−9)pixel3,sphere==10, 685.9889859127799 − 0.06279941581873275pixel + 5.7612110302412710∧(−6)pixel2 + 9.3096318219362910∧(−9)pixel3,

sphere==11, 642.92701641342 − 0.08062974618563501pixel + 0.00003266070237496218pixel2 − 1.293304140127793210∧(−10)pixel3,sphere==11, 642.92701641342 − 0.08062974618563501pixel + 0.00003266070237496218pixel2 − 1.293304140127793210∧(−10)pixel3,sphere==11, 642.92701641342 − 0.08062974618563501pixel + 0.00003266070237496218pixel2 − 1.293304140127793210∧(−10)pixel3,

sphere==12, 560.4645306139125 + 0.029674990695285015pixel− 0.00004970775679033956pixel2 + 1.533235941924001310∧(−8)pixel3,sphere==12, 560.4645306139125 + 0.029674990695285015pixel− 0.00004970775679033956pixel2 + 1.533235941924001310∧(−8)pixel3,sphere==12, 560.4645306139125 + 0.029674990695285015pixel− 0.00004970775679033956pixel2 + 1.533235941924001310∧(−8)pixel3,

sphere==13, 504.8069725900765 + 0.06187314001185479pixel− 0.000067802124891285pixel2 + 1.650398149135626310∧(−8)pixel3,sphere==13, 504.8069725900765 + 0.06187314001185479pixel− 0.000067802124891285pixel2 + 1.650398149135626310∧(−8)pixel3,sphere==13, 504.8069725900765 + 0.06187314001185479pixel− 0.000067802124891285pixel2 + 1.650398149135626310∧(−8)pixel3,

sphere==14, 442.11798379333675 + 0.12252552075825367pixel− 0.00011362399569603218pixel2 + 2.74787490152028110∧(−8)pixel3,sphere==14, 442.11798379333675 + 0.12252552075825367pixel− 0.00011362399569603218pixel2 + 2.74787490152028110∧(−8)pixel3,sphere==14, 442.11798379333675 + 0.12252552075825367pixel− 0.00011362399569603218pixel2 + 2.74787490152028110∧(−8)pixel3,

sphere==15, 388.7757341551241 + 0.11342219324790266pixel− 0.00007198727552449685pixel2 + 6.27615556705457710∧(−9)pixel3,sphere==15, 388.7757341551241 + 0.11342219324790266pixel− 0.00007198727552449685pixel2 + 6.27615556705457710∧(−9)pixel3,sphere==15, 388.7757341551241 + 0.11342219324790266pixel− 0.00007198727552449685pixel2 + 6.27615556705457710∧(−9)pixel3,

sphere==16, 326.77704910261565 + 0.1576838099213499pixel− 0.00010196972724133125pixel2 + 1.317833818283237210∧(−8)pixel3,sphere==16, 326.77704910261565 + 0.1576838099213499pixel− 0.00010196972724133125pixel2 + 1.317833818283237210∧(−8)pixel3,sphere==16, 326.77704910261565 + 0.1576838099213499pixel− 0.00010196972724133125pixel2 + 1.317833818283237210∧(−8)pixel3,

sphere==17, 254.47933066255098 + 0.23276993397831905pixel− 0.0001541283072764384pixel2 + 2.344105219275677810∧(−8)pixel3,sphere==17, 254.47933066255098 + 0.23276993397831905pixel− 0.0001541283072764384pixel2 + 2.344105219275677810∧(−8)pixel3,sphere==17, 254.47933066255098 + 0.23276993397831905pixel− 0.0001541283072764384pixel2 + 2.344105219275677810∧(−8)pixel3,

sphere==18, 223.50656190183724 + 0.2007816812988414pixel− 0.0001136792332753662pixel2 + 7.00957774844677910∧(−9)pixel3,sphere==18, 223.50656190183724 + 0.2007816812988414pixel− 0.0001136792332753662pixel2 + 7.00957774844677910∧(−9)pixel3,sphere==18, 223.50656190183724 + 0.2007816812988414pixel− 0.0001136792332753662pixel2 + 7.00957774844677910∧(−9)pixel3,

sphere==19, 138.65636136913827 + 0.29369637192360226pixel− 0.00018238312399019804pixel2 + 2.38290182618732410∧(−8)pixel3,sphere==19, 138.65636136913827 + 0.29369637192360226pixel− 0.00018238312399019804pixel2 + 2.38290182618732410∧(−8)pixel3,sphere==19, 138.65636136913827 + 0.29369637192360226pixel− 0.00018238312399019804pixel2 + 2.38290182618732410∧(−8)pixel3,

sphere==20, 112.25697293941553 + 0.2586162190308203pixel− 0.00014247068055456567pixel2 + 9.4879192309134410∧(−9)pixel3,sphere==20, 112.25697293941553 + 0.2586162190308203pixel− 0.00014247068055456567pixel2 + 9.4879192309134410∧(−9)pixel3,sphere==20, 112.25697293941553 + 0.2586162190308203pixel− 0.00014247068055456567pixel2 + 9.4879192309134410∧(−9)pixel3,
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sphere==21, 63.829975806095824 + 0.25886563590781525pixel− 0.00011899342912254382pixel2 − 3.25757052471081810∧(−9)pixel3,sphere==21, 63.829975806095824 + 0.25886563590781525pixel− 0.00011899342912254382pixel2 − 3.25757052471081810∧(−9)pixel3,sphere==21, 63.829975806095824 + 0.25886563590781525pixel− 0.00011899342912254382pixel2 − 3.25757052471081810∧(−9)pixel3,

sphere==22,−16.413090518786678 + 0.35250715882528666pixel− 0.0001949924264625299pixel2 + 1.833489266742507410∧(−8)pixel3,sphere==22,−16.413090518786678 + 0.35250715882528666pixel− 0.0001949924264625299pixel2 + 1.833489266742507410∧(−8)pixel3,sphere==22,−16.413090518786678 + 0.35250715882528666pixel− 0.0001949924264625299pixel2 + 1.833489266742507410∧(−8)pixel3,

sphere==23,−44.77575212746545 + 0.3493348701936882pixel− 0.00020187483993629467pixel2 + 2.364680495335863410∧(−8)pixel3,sphere==23,−44.77575212746545 + 0.3493348701936882pixel− 0.00020187483993629467pixel2 + 2.364680495335863410∧(−8)pixel3,sphere==23,−44.77575212746545 + 0.3493348701936882pixel− 0.00020187483993629467pixel2 + 2.364680495335863410∧(−8)pixel3,

sphere==24,−91.69389667021399 + 0.2874225118862467pixel− 0.00008695482157617094pixel2 − 2.009457292403858310∧(−8)pixel3
]

;sphere==24,−91.69389667021399 + 0.2874225118862467pixel− 0.00008695482157617094pixel2 − 2.009457292403858310∧(−8)pixel3
]

;sphere==24,−91.69389667021399 + 0.2874225118862467pixel− 0.00008695482157617094pixel2 − 2.009457292403858310∧(−8)pixel3
]

;

initPix = Flatten[Table[Take[Flatten[Take[GoProData, 1]], {2n}], {n, 1, 24}]];initPix = Flatten[Table[Take[Flatten[Take[GoProData, 1]], {2n}], {n, 1, 24}]];initPix = Flatten[Table[Take[Flatten[Take[GoProData, 1]], {2n}], {n, 1, 24}]];

initPix[[8]] = Round
[

initPix[[7]]+initPix[[9]]
2

]
;initPix[[8]] = Round

[
initPix[[7]]+initPix[[9]]

2

]
;initPix[[8]] = Round

[
initPix[[7]]+initPix[[9]]

2

]
;

initPix[[16]] = Round
[

initPix[[15]]+initPix[[17]]
2

]
;initPix[[16]] = Round

[
initPix[[15]]+initPix[[17]]

2

]
;initPix[[16]] = Round

[
initPix[[15]]+initPix[[17]]

2

]
;

a1 = −0.0019367089632610765Part[initPix, 1];a1 = −0.0019367089632610765Part[initPix, 1];a1 = −0.0019367089632610765Part[initPix, 1];

a2 = −0.0018767495907569033Part[initPix, 2];a2 = −0.0018767495907569033Part[initPix, 2];a2 = −0.0018767495907569033Part[initPix, 2];

a3 = −0.0018509133203608076Part[initPix, 3];a3 = −0.0018509133203608076Part[initPix, 3];a3 = −0.0018509133203608076Part[initPix, 3];

a4 = −0.0018219686068335701Part[initPix, 4];a4 = −0.0018219686068335701Part[initPix, 4];a4 = −0.0018219686068335701Part[initPix, 4];

a5 = −0.0017671597800040316Part[initPix, 5];a5 = −0.0017671597800040316Part[initPix, 5];a5 = −0.0017671597800040316Part[initPix, 5];

a6 = −0.0017999580672171897Part[initPix, 6];a6 = −0.0017999580672171897Part[initPix, 6];a6 = −0.0017999580672171897Part[initPix, 6];

a7 = −0.0017734124373084716Part[initPix, 7];a7 = −0.0017734124373084716Part[initPix, 7];a7 = −0.0017734124373084716Part[initPix, 7];

a8 = −0.0017593549683131036Part[initPix, 8];a8 = −0.0017593549683131036Part[initPix, 8];a8 = −0.0017593549683131036Part[initPix, 8];

a9 = −0.001745207984827598Part[initPix, 9];a9 = −0.001745207984827598Part[initPix, 9];a9 = −0.001745207984827598Part[initPix, 9];

a10 = −0.0017434384385143385Part[initPix, 10];a10 = −0.0017434384385143385Part[initPix, 10];a10 = −0.0017434384385143385Part[initPix, 10];

a11 = −0.0017244128384490845Part[initPix, 11];a11 = −0.0017244128384490845Part[initPix, 11];a11 = −0.0017244128384490845Part[initPix, 11];

a12 = −0.001732645744717328Part[initPix, 12];a12 = −0.001732645744717328Part[initPix, 12];a12 = −0.001732645744717328Part[initPix, 12];

a13 = −0.0017207078280285452Part[initPix, 13];a13 = −0.0017207078280285452Part[initPix, 13];a13 = −0.0017207078280285452Part[initPix, 13];

a14 = −0.0016829333378576715Part[initPix, 14];a14 = −0.0016829333378576715Part[initPix, 14];a14 = −0.0016829333378576715Part[initPix, 14];

a15 = −0.0017053806178472261Part[initPix, 15];a15 = −0.0017053806178472261Part[initPix, 15];a15 = −0.0017053806178472261Part[initPix, 15];

a16 = −0.0017153610704472265Part[initPix, 16];a16 = −0.0017153610704472265Part[initPix, 16];a16 = −0.0017153610704472265Part[initPix, 16];

a17 = −0.0017260381114903283Part[initPix, 17];a17 = −0.0017260381114903283Part[initPix, 17];a17 = −0.0017260381114903283Part[initPix, 17];

a18 = −0.00172987921989900 Part[initPix, 18];a18 = −0.00172987921989900 Part[initPix, 18];a18 = −0.00172987921989900 Part[initPix, 18];

a19 = −0.001734915448719971Part[initPix, 19];a19 = −0.001734915448719971Part[initPix, 19];a19 = −0.001734915448719971Part[initPix, 19];

a20 = −0.00173735384841998Part[initPix, 20];a20 = −0.00173735384841998Part[initPix, 20];a20 = −0.00173735384841998Part[initPix, 20];

a21 = −0.0017744353782386893Part[initPix, 21];a21 = −0.0017744353782386893Part[initPix, 21];a21 = −0.0017744353782386893Part[initPix, 21];

a22 = −0.0017551559517549476Part[initPix, 22];a22 = −0.0017551559517549476Part[initPix, 22];a22 = −0.0017551559517549476Part[initPix, 22];

a23 = −0.0017901023418946675Part[initPix, 23];a23 = −0.0017901023418946675Part[initPix, 23];a23 = −0.0017901023418946675Part[initPix, 23];

a24 = −0.0018095883556454354Part[initPix, 24];a24 = −0.0018095883556454354Part[initPix, 24];a24 = −0.0018095883556454354Part[initPix, 24];

PixelToMx[sphere ,pixel ]:=Which[sphere==1, a1 + 0.0019367089632610765pixel,PixelToMx[sphere ,pixel ]:=Which[sphere==1, a1 + 0.0019367089632610765pixel,PixelToMx[sphere ,pixel ]:=Which[sphere==1, a1 + 0.0019367089632610765pixel,

sphere==2, a2 + 0.0018767495907569033pixel,sphere==2, a2 + 0.0018767495907569033pixel,sphere==2, a2 + 0.0018767495907569033pixel,

sphere==3, a3 + 0.0018509133203608076pixel,sphere==3, a3 + 0.0018509133203608076pixel,sphere==3, a3 + 0.0018509133203608076pixel,

sphere==4, a4 + 0.0018219686068335701pixel,sphere==4, a4 + 0.0018219686068335701pixel,sphere==4, a4 + 0.0018219686068335701pixel,

sphere==5, a5 + 0.0017671597800040316pixel,sphere==5, a5 + 0.0017671597800040316pixel,sphere==5, a5 + 0.0017671597800040316pixel,

sphere==6, a6 + 0.0017999580672171897pixel,sphere==6, a6 + 0.0017999580672171897pixel,sphere==6, a6 + 0.0017999580672171897pixel,

sphere==7, a7 + 0.0017734124373084716pixel,sphere==7, a7 + 0.0017734124373084716pixel,sphere==7, a7 + 0.0017734124373084716pixel,

sphere==8, a8 + 0.0017593549683131036pixel,sphere==8, a8 + 0.0017593549683131036pixel,sphere==8, a8 + 0.0017593549683131036pixel,

sphere==9, a9 + 0.001745207984827598pixel,sphere==9, a9 + 0.001745207984827598pixel,sphere==9, a9 + 0.001745207984827598pixel,

sphere==10, a10 + 0.0017434384385143385pixel,sphere==10, a10 + 0.0017434384385143385pixel,sphere==10, a10 + 0.0017434384385143385pixel,

sphere==11, a11 + 0.0017244128384490845pixel,sphere==11, a11 + 0.0017244128384490845pixel,sphere==11, a11 + 0.0017244128384490845pixel,
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sphere==12, a12 + 0.001732645744717328pixel,sphere==12, a12 + 0.001732645744717328pixel,sphere==12, a12 + 0.001732645744717328pixel,

sphere==13, a13 + 0.0017207078280285452pixel,sphere==13, a13 + 0.0017207078280285452pixel,sphere==13, a13 + 0.0017207078280285452pixel,

sphere==14, a14 + 0.0016829333378576715pixel,sphere==14, a14 + 0.0016829333378576715pixel,sphere==14, a14 + 0.0016829333378576715pixel,

sphere==15, a15 + 0.0017053806178472261pixel,sphere==15, a15 + 0.0017053806178472261pixel,sphere==15, a15 + 0.0017053806178472261pixel,

sphere==16, a16 + 0.0017153610704472265pixel,sphere==16, a16 + 0.0017153610704472265pixel,sphere==16, a16 + 0.0017153610704472265pixel,

sphere==17, a17 + 0.0017260381114903283pixel,sphere==17, a17 + 0.0017260381114903283pixel,sphere==17, a17 + 0.0017260381114903283pixel,

sphere==18, a18 + 0.001729879219899008pixel,sphere==18, a18 + 0.001729879219899008pixel,sphere==18, a18 + 0.001729879219899008pixel,

sphere==19, a19 + 0.001734915448719971pixel,sphere==19, a19 + 0.001734915448719971pixel,sphere==19, a19 + 0.001734915448719971pixel,

sphere==20, a20 + 0.001737353848419982pixel,sphere==20, a20 + 0.001737353848419982pixel,sphere==20, a20 + 0.001737353848419982pixel,

sphere==21, a21 + 0.0017744353782386893pixel,sphere==21, a21 + 0.0017744353782386893pixel,sphere==21, a21 + 0.0017744353782386893pixel,

sphere==22, a22 + 0.0017551559517549476pixel,sphere==22, a22 + 0.0017551559517549476pixel,sphere==22, a22 + 0.0017551559517549476pixel,

sphere==23, a23 + 0.0017901023418946675pixel,sphere==23, a23 + 0.0017901023418946675pixel,sphere==23, a23 + 0.0017901023418946675pixel,

sphere==24, a24 + 0.0018095883556454354pixel];sphere==24, a24 + 0.0018095883556454354pixel];sphere==24, a24 + 0.0018095883556454354pixel];

t = ParallelMap
[
#−InitialFrame

fps &,GoProData[[All, 1]]
]

;t = ParallelMap
[
#−InitialFrame

fps &,GoProData[[All, 1]]
]

;t = ParallelMap
[
#−InitialFrame

fps &,GoProData[[All, 1]]
]

;

xp = Table[GoProData[[All, 2sphere]], {sphere, 24}];xp = Table[GoProData[[All, 2sphere]], {sphere, 24}];xp = Table[GoProData[[All, 2sphere]], {sphere, 24}];

yp = Table[GoProData[[All, 2sphere + 1]], {sphere, 24}];yp = Table[GoProData[[All, 2sphere + 1]], {sphere, 24}];yp = Table[GoProData[[All, 2sphere + 1]], {sphere, 24}];

swap = {};swap = {};swap = {};

Do[If[Abs[yTrajectory[sphere + 1, xp[[sphere, i]]]− yp[[sphere, i]]] ≤ Abs[yTrajectory[sphere, xp[[sphere, i]]]− yp[[sphere, i]]]&&Do[If[Abs[yTrajectory[sphere + 1, xp[[sphere, i]]]− yp[[sphere, i]]] ≤ Abs[yTrajectory[sphere, xp[[sphere, i]]]− yp[[sphere, i]]]&&Do[If[Abs[yTrajectory[sphere + 1, xp[[sphere, i]]]− yp[[sphere, i]]] ≤ Abs[yTrajectory[sphere, xp[[sphere, i]]]− yp[[sphere, i]]]&&

Abs[yTrajectory[sphere, xp[[sphere + 1, i]]]− yp[[sphere + 1, i]]] ≤Abs[yTrajectory[sphere, xp[[sphere + 1, i]]]− yp[[sphere + 1, i]]] ≤Abs[yTrajectory[sphere, xp[[sphere + 1, i]]]− yp[[sphere + 1, i]]] ≤

Abs[yTrajectory[sphere + 1, xp[[sphere + 1, i]]]− yp[[sphere + 1, i]]],AppendTo[swap, {i, sphere}];Abs[yTrajectory[sphere + 1, xp[[sphere + 1, i]]]− yp[[sphere + 1, i]]],AppendTo[swap, {i, sphere}];Abs[yTrajectory[sphere + 1, xp[[sphere + 1, i]]]− yp[[sphere + 1, i]]],AppendTo[swap, {i, sphere}];

p = xp[[sphere, i]];p = xp[[sphere, i]];p = xp[[sphere, i]];

xp[[sphere, i]] = xp[[sphere + 1, i]];xp[[sphere, i]] = xp[[sphere + 1, i]];xp[[sphere, i]] = xp[[sphere + 1, i]];

xp[[sphere + 1, i]] = p], {i,Length[t]}, {sphere, 23}];xp[[sphere + 1, i]] = p], {i,Length[t]}, {sphere, 23}];xp[[sphere + 1, i]] = p], {i,Length[t]}, {sphere, 23}];

replica = {};replica = {};replica = {};

Do[j = 0; Do[If[xp[[sphere, i]]==xp[[sphere, i+ 1]], j++], {sphere, 24Do[j = 0; Do[If[xp[[sphere, i]]==xp[[sphere, i+ 1]], j++], {sphere, 24Do[j = 0; Do[If[xp[[sphere, i]]==xp[[sphere, i+ 1]], j++], {sphere, 24

}];}];}];

If[j == 24,AppendTo[replica, i]], {i,Length[t]− 1}];If[j == 24,AppendTo[replica, i]], {i,Length[t]− 1}];If[j == 24,AppendTo[replica, i]], {i,Length[t]− 1}];

replicaPer = Length[replica]/Length[t] ∗ 100.replicaPer = Length[replica]/Length[t] ∗ 100.replicaPer = Length[replica]/Length[t] ∗ 100.

26.5469

tOld = t;tOld = t;tOld = t;

xpOld = xp;xpOld = xp;xpOld = xp;

replica = Partition[replica, 1];replica = Partition[replica, 1];replica = Partition[replica, 1];

Clear[t, xp]Clear[t, xp]Clear[t, xp]

t = Delete[tOld, replica];t = Delete[tOld, replica];t = Delete[tOld, replica];

xp = Transpose[Delete[Transpose[xpOld], replica]];xp = Transpose[Delete[Transpose[xpOld], replica]];xp = Transpose[Delete[Transpose[xpOld], replica]];

x = Table[ParallelMap[PixelToMx[sphere,#]&, xp[[sphere]]], {sphere, 24}];x = Table[ParallelMap[PixelToMx[sphere,#]&, xp[[sphere]]], {sphere, 24}];x = Table[ParallelMap[PixelToMx[sphere,#]&, xp[[sphere]]], {sphere, 24}];

amp = Table
[

Max[x[[u]]]−Min[x[[u]]]
2

, {u, 24}
]

;amp = Table
[

Max[x[[u]]]−Min[x[[u]]]
2

, {u, 24}
]

;amp = Table
[

Max[x[[u]]]−Min[x[[u]]]
2

, {u, 24}
]

;

med = Table
[

Max[x[[u]]]+Min[x[[u]]]
2

, {u, 24}
]

;med = Table
[

Max[x[[u]]]+Min[x[[u]]]
2

, {u, 24}
]

;med = Table
[

Max[x[[u]]]+Min[x[[u]]]
2

, {u, 24}
]

;
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C.2 Potential energy U, mechanical energy E, energy metrics
Omega

u = Table
[
gL

(
1− Sqrt

[
1−

(
x[[sphere,i]]

L

)2])
, {sphere, 24}, {i,Length[t]− 1}

]
;u = Table

[
gL

(
1− Sqrt

[
1−

(
x[[sphere,i]]

L

)2])
, {sphere, 24}, {i,Length[t]− 1}

]
;u = Table

[
gL

(
1− Sqrt

[
1−

(
x[[sphere,i]]

L

)2])
, {sphere, 24}, {i,Length[t]− 1}

]
;

e = Table
[
1
2

(
x[[sphere,i+8]]−x[[sphere,i−8]]

t[[i+8]]−t[[i−8]]

)2
+ u[[sphere, i]], {sphere, 24}, {i, 9,Length[t]− 8}

]
;e = Table

[
1
2

(
x[[sphere,i+8]]−x[[sphere,i−8]]

t[[i+8]]−t[[i−8]]

)2
+ u[[sphere, i]], {sphere, 24}, {i, 9,Length[t]− 8}

]
;e = Table

[
1
2

(
x[[sphere,i+8]]−x[[sphere,i−8]]

t[[i+8]]−t[[i−8]]

)2
+ u[[sphere, i]], {sphere, 24}, {i, 9,Length[t]− 8}

]
;

eT = Transpose[e];eT = Transpose[e];eT = Transpose[e];

e0 = Flatten[Take[eT, 1]];e0 = Flatten[Take[eT, 1]];e0 = Flatten[Take[eT, 1]];

pP[list ]:=Prepend[list, e0];pP[list ]:=Prepend[list, e0];pP[list ]:=Prepend[list, e0];

eT = Flatten[Take[NestList[pP, eT, 8],−1], 1];eT = Flatten[Take[NestList[pP, eT, 8],−1], 1];eT = Flatten[Take[NestList[pP, eT, 8],−1], 1];

eN = Flatten[Take[eT,−1]];eN = Flatten[Take[eT,−1]];eN = Flatten[Take[eT,−1]];

aP[list ]:=Append[list, eN];aP[list ]:=Append[list, eN];aP[list ]:=Append[list, eN];

eT = Flatten[Take[NestList[aP, eT, 7],−1], 1];eT = Flatten[Take[NestList[aP, eT, 7],−1], 1];eT = Flatten[Take[NestList[aP, eT, 7],−1], 1];

e = Transpose[eT];e = Transpose[eT];e = Transpose[eT];

eAll = Table[Sum[e[[sphere, i]], {sphere, 24}], {i,Length[t]− 1}];eAll = Table[Sum[e[[sphere, i]], {sphere, 24}], {i,Length[t]− 1}];eAll = Table[Sum[e[[sphere, i]], {sphere, 24}], {i,Length[t]− 1}];

uAcc = Transpose[Accumulate[Transpose[Table[u[[sphere, i]](t[[i+ 1]]− t[[i]]), {sphere, 24}, {i,Length[t]− 1}]]]];uAcc = Transpose[Accumulate[Transpose[Table[u[[sphere, i]](t[[i+ 1]]− t[[i]]), {sphere, 24}, {i,Length[t]− 1}]]]];uAcc = Transpose[Accumulate[Transpose[Table[u[[sphere, i]](t[[i+ 1]]− t[[i]]), {sphere, 24}, {i,Length[t]− 1}]]]];

uMedia = Table
[
uAcc[[sphere, i]]t[[i]]−1, {sphere, 24}, {i,Length[t]− 1}

]
;uMedia = Table

[
uAcc[[sphere, i]]t[[i]]−1, {sphere, 24}, {i,Length[t]− 1}

]
;uMedia = Table

[
uAcc[[sphere, i]]t[[i]]−1, {sphere, 24}, {i,Length[t]− 1}

]
;

omega = Variance[uMedia];omega = Variance[uMedia];omega = Variance[uMedia];

ListLogLogPlotT[time , list , label ]:=ListLogLogPlot
[

Transpose
[{

time
60
, list

}]
, Joined→ False,Axes→ False, Frame→ True,ListLogLogPlotT[time , list , label ]:=ListLogLogPlot

[
Transpose

[{
time
60
, list

}]
, Joined→ False,Axes→ False, Frame→ True,ListLogLogPlotT[time , list , label ]:=ListLogLogPlot

[
Transpose

[{
time
60
, list

}]
, Joined→ False,Axes→ False, Frame→ True,

FrameLabel→ {“t (min)”, label},PlotStyle->{Blue},GridLines→ Automatic,PlotRange→ All];FrameLabel→ {“t (min)”, label},PlotStyle->{Blue},GridLines→ Automatic,PlotRange→ All];FrameLabel→ {“t (min)”, label},PlotStyle->{Blue},GridLines→ Automatic,PlotRange→ All];

ListLogLogPlotT[Take[t, {1,−2}], omega, “omega”];ListLogLogPlotT[Take[t, {1,−2}], omega, “omega”];ListLogLogPlotT[Take[t, {1,−2}], omega, “omega”];

Export[“LogLogPlotomega.jpg”,%, “JPEG”]Export[“LogLogPlotomega.jpg”,%, “JPEG”]Export[“LogLogPlotomega.jpg”,%, “JPEG”]

tEnd = Drop[t, fps ∗ 60 ∗ 20];tEnd = Drop[t, fps ∗ 60 ∗ 20];tEnd = Drop[t, fps ∗ 60 ∗ 20];

omegaEnd = Drop[omega, fps ∗ 60 ∗ 20];omegaEnd = Drop[omega, fps ∗ 60 ∗ 20];omegaEnd = Drop[omega, fps ∗ 60 ∗ 20];

funfitomega[s ]:=As∧(−a) +B;funfitomega[s ]:=As∧(−a) +B;funfitomega[s ]:=As∧(−a) +B;

fit = NonlinearModelFit[Transpose[{Take[tEnd, {1,−2}]/60, omegaEnd}], funfitomega[s], {a,A,B}, s,MaxIterations→ 1000000];fit = NonlinearModelFit[Transpose[{Take[tEnd, {1,−2}]/60, omegaEnd}], funfitomega[s], {a,A,B}, s,MaxIterations→ 1000000];fit = NonlinearModelFit[Transpose[{Take[tEnd, {1,−2}]/60, omegaEnd}], funfitomega[s], {a,A,B}, s,MaxIterations→ 1000000];

exp = fit[“ParameterTableEntries”];exp = fit[“ParameterTableEntries”];exp = fit[“ParameterTableEntries”];

LogLogPlot[fit[s], {s, 0, 120},PlotStyle→ {Red,Dashed},PlotRange→ {{.0001, 120}, {.00001, 3}}, FrameLabel→ {“t (min)”, “omega”},LogLogPlot[fit[s], {s, 0, 120},PlotStyle→ {Red,Dashed},PlotRange→ {{.0001, 120}, {.00001, 3}}, FrameLabel→ {“t (min)”, “omega”},LogLogPlot[fit[s], {s, 0, 120},PlotStyle→ {Red,Dashed},PlotRange→ {{.0001, 120}, {.00001, 3}}, FrameLabel→ {“t (min)”, “omega”},

Epilog→ {Inset[Grid[Thread[{a,Map[NumberForm[#, 2]&, exp[[1, {1}]], {2}]}], Frame→ True]]}, Frame→ True]Epilog→ {Inset[Grid[Thread[{a,Map[NumberForm[#, 2]&, exp[[1, {1}]], {2}]}], Frame→ True]]}, Frame→ True]Epilog→ {Inset[Grid[Thread[{a,Map[NumberForm[#, 2]&, exp[[1, {1}]], {2}]}], Frame→ True]]}, Frame→ True]

Show[%,ListLogLogPlotT[Take[t, {1,−2}], omega, “omega”]]Show[%,ListLogLogPlotT[Take[t, {1,−2}], omega, “omega”]]Show[%,ListLogLogPlotT[Take[t, {1,−2}], omega, “omega”]]

Export[“omega tangente.jpg”,%, “JPEG”];Export[“omega tangente.jpg”,%, “JPEG”];Export[“omega tangente.jpg”,%, “JPEG”];

eAll = Table[Sum[e[[sphere, i]], {sphere, 24}], {i,Length[t]− 1}];eAll = Table[Sum[e[[sphere, i]], {sphere, 24}], {i,Length[t]− 1}];eAll = Table[Sum[e[[sphere, i]], {sphere, 24}], {i,Length[t]− 1}];

uAll = Table[Sum[u[[sphere, i]], {sphere, 24}], {i,Length[t]− 1}];uAll = Table[Sum[u[[sphere, i]], {sphere, 24}], {i,Length[t]− 1}];uAll = Table[Sum[u[[sphere, i]], {sphere, 24}], {i,Length[t]− 1}];

amp = Table
[

Max[x[[sphere]]]−Min[x[[sphere]]]
2

, {sphere, 24}
]

;amp = Table
[

Max[x[[sphere]]]−Min[x[[sphere]]]
2

, {sphere, 24}
]

;amp = Table
[

Max[x[[sphere]]]−Min[x[[sphere]]]
2

, {sphere, 24}
]

;

med = Table
[

Max[x[[sphere]]]+Min[x[[sphere]]]
2

, {sphere, 24}
]

;med = Table
[

Max[x[[sphere]]]+Min[x[[sphere]]]
2

, {sphere, 24}
]

;med = Table
[

Max[x[[sphere]]]+Min[x[[sphere]]]
2

, {sphere, 24}
]

;

ListLinePlot[amp,PlotRange→ All]ListLinePlot[amp,PlotRange→ All]ListLinePlot[amp,PlotRange→ All]

Export[“ampiezze.jpg”,%, “JPEG”]Export[“ampiezze.jpg”,%, “JPEG”]Export[“ampiezze.jpg”,%, “JPEG”]
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ListPlotT[time , list , label , sphere ]:=ListPlot
[

Transpose
[{

time
60
, list

}]
, Joined→ False,Axes→ False, Frame→ True,ListPlotT[time , list , label , sphere ]:=ListPlot

[
Transpose

[{
time
60
, list

}]
, Joined→ False,Axes→ False, Frame→ True,ListPlotT[time , list , label , sphere ]:=ListPlot

[
Transpose

[{
time
60
, list

}]
, Joined→ False,Axes→ False, Frame→ True,

FrameLabel→ {“t (min)”, label},PlotStyle->{Red,Blue},GridLines→ Automatic,PlotRange→ {{0, 3},All},PlotLabel→ sphere];FrameLabel→ {“t (min)”, label},PlotStyle->{Red,Blue},GridLines→ Automatic,PlotRange→ {{0, 3},All},PlotLabel→ sphere];FrameLabel→ {“t (min)”, label},PlotStyle->{Red,Blue},GridLines→ Automatic,PlotRange→ {{0, 3},All},PlotLabel→ sphere];

lpx[sphere ]:=ListPlotT [t, x[[sphere]],"a/amax", sphere] ;lpx[sphere ]:=ListPlotT [t, x[[sphere]],"a/amax", sphere] ;lpx[sphere ]:=ListPlotT [t, x[[sphere]],"a/amax", sphere] ;

lpe[sphere ]:=ListPlotT[Take[t, {2,−1}], e[[sphere]], e];lpe[sphere ]:=ListPlotT[Take[t, {2,−1}], e[[sphere]], e];lpe[sphere ]:=ListPlotT[Take[t, {2,−1}], e[[sphere]], e];

lpk[sphere ]:=ListPlotT[Take[t, {2,−1}], e[[sphere]]− u[[sphere]], k];lpk[sphere ]:=ListPlotT[Take[t, {2,−1}], e[[sphere]]− u[[sphere]], k];lpk[sphere ]:=ListPlotT[Take[t, {2,−1}], e[[sphere]]− u[[sphere]], k];

lpu[sphere ]:=ListPlotT[Take[t, {2,−1}], u[[sphere]],u];lpu[sphere ]:=ListPlotT[Take[t, {2,−1}], u[[sphere]],u];lpu[sphere ]:=ListPlotT[Take[t, {2,−1}], u[[sphere]],u];

C.3 Plots export

For[sphere = 1, sphere ≤ 24, sphere++,Print[lpx[sphere]]];For[sphere = 1, sphere ≤ 24, sphere++,Print[lpx[sphere]]];For[sphere = 1, sphere ≤ 24, sphere++,Print[lpx[sphere]]];

For[sphere = 1, sphere ≤ 24, sphere++,For[sphere = 1, sphere ≤ 24, sphere++,For[sphere = 1, sphere ≤ 24, sphere++,

Export[p <> IntegerString[sphere] <> “x(t).jpg”, lpx[sphere], “JPEG”];Export[p <> IntegerString[sphere] <> “x(t).jpg”, lpx[sphere], “JPEG”];Export[p <> IntegerString[sphere] <> “x(t).jpg”, lpx[sphere], “JPEG”];

]]]

For[sphere = 1, sphere ≤ 24, sphere++,Print[lpe[sphere]]];For[sphere = 1, sphere ≤ 24, sphere++,Print[lpe[sphere]]];For[sphere = 1, sphere ≤ 24, sphere++,Print[lpe[sphere]]];

For[sphere = 1, sphere ≤ 24, sphere++,For[sphere = 1, sphere ≤ 24, sphere++,For[sphere = 1, sphere ≤ 24, sphere++,

Export[p <> IntegerString[sphere] <> “e(t).jpg”, lpe[sphere], “JPEG”]; ]Export[p <> IntegerString[sphere] <> “e(t).jpg”, lpe[sphere], “JPEG”]; ]Export[p <> IntegerString[sphere] <> “e(t).jpg”, lpe[sphere], “JPEG”]; ]

For[sphere = 1, sphere ≤ 24, sphere++,For[sphere = 1, sphere ≤ 24, sphere++,For[sphere = 1, sphere ≤ 24, sphere++,

Export[p <> IntegerString[sphere] <> “k(t).jpg”, lpk[sphere], “JPEG”];Export[p <> IntegerString[sphere] <> “k(t).jpg”, lpk[sphere], “JPEG”];Export[p <> IntegerString[sphere] <> “k(t).jpg”, lpk[sphere], “JPEG”];

]]]

For[sphere = 1, sphere ≤ 24, sphere++,For[sphere = 1, sphere ≤ 24, sphere++,For[sphere = 1, sphere ≤ 24, sphere++,

Export[p <> IntegerString[sphere] <> “u(t).jpg”, lpu[sphere], “JPEG”];Export[p <> IntegerString[sphere] <> “u(t).jpg”, lpu[sphere], “JPEG”];Export[p <> IntegerString[sphere] <> “u(t).jpg”, lpu[sphere], “JPEG”];

]]]

Export[“eAll.jpg”,ListPlotT[Take[t, {1,−2}], eAll, “eAll”], “JPEG”];Export[“eAll.jpg”,ListPlotT[Take[t, {1,−2}], eAll, “eAll”], “JPEG”];Export[“eAll.jpg”,ListPlotT[Take[t, {1,−2}], eAll, “eAll”], “JPEG”];

Export[“uAll.jpg”,ListPlotT[Take[t, {1,−2}],uAll, “uAll”], “JPEG”];Export[“uAll.jpg”,ListPlotT[Take[t, {1,−2}],uAll, “uAll”], “JPEG”];Export[“uAll.jpg”,ListPlotT[Take[t, {1,−2}],uAll, “uAll”], “JPEG”];

Export[“kAll.jpg”,ListPlotT[Take[t, {1,−2}], eAll− uAll, “kAll”], “JPEG”];Export[“kAll.jpg”,ListPlotT[Take[t, {1,−2}], eAll− uAll, “kAll”], “JPEG”];Export[“kAll.jpg”,ListPlotT[Take[t, {1,−2}], eAll− uAll, “kAll”], “JPEG”];

C.4 Fourier analysis

n = Length[t];n = Length[t];n = Length[t];

Solo se n è dispari

t = Drop[t,−1];t = Drop[t,−1];t = Drop[t,−1];

x = Transpose[Drop[Transpose[x],−1]];x = Transpose[Drop[Transpose[x],−1]];x = Transpose[Drop[Transpose[x],−1]];

n = Length[t];n = Length[t];n = Length[t];

x1 = Take[x, 1];x1 = Take[x, 1];x1 = Take[x, 1];

x2 = Take[x, {2}];x2 = Take[x, {2}];x2 = Take[x, {2}];

x3 = Take[x, {3}];x3 = Take[x, {3}];x3 = Take[x, {3}];

x4 = Take[x, {4}];x4 = Take[x, {4}];x4 = Take[x, {4}];

x5 = Take[x, {5}];x5 = Take[x, {5}];x5 = Take[x, {5}];
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x6 = Take[x, {6}];x6 = Take[x, {6}];x6 = Take[x, {6}];

x7 = Take[x, {7}];x7 = Take[x, {7}];x7 = Take[x, {7}];

x8 = Take[x, {8}];x8 = Take[x, {8}];x8 = Take[x, {8}];

x9 = Take[x, {9}];x9 = Take[x, {9}];x9 = Take[x, {9}];

x10 = Take[x, {10}];x10 = Take[x, {10}];x10 = Take[x, {10}];

x11 = Take[x, {11}];x11 = Take[x, {11}];x11 = Take[x, {11}];

x12 = Take[x, {12}];x12 = Take[x, {12}];x12 = Take[x, {12}];

x13 = Take[x, {13}];x13 = Take[x, {13}];x13 = Take[x, {13}];

x14 = Take[x, {14}];x14 = Take[x, {14}];x14 = Take[x, {14}];

x15 = Take[x, {15}];x15 = Take[x, {15}];x15 = Take[x, {15}];

x16 = Take[x, {16}];x16 = Take[x, {16}];x16 = Take[x, {16}];

x17 = Take[x, {17}];x17 = Take[x, {17}];x17 = Take[x, {17}];

x18 = Take[x, {18}];x18 = Take[x, {18}];x18 = Take[x, {18}];

x19 = Take[x, {19}];x19 = Take[x, {19}];x19 = Take[x, {19}];

x20 = Take[x, {20}];x20 = Take[x, {20}];x20 = Take[x, {20}];

x21 = Take[x, {21}];x21 = Take[x, {21}];x21 = Take[x, {21}];

x22 = Take[x, {22}];x22 = Take[x, {22}];x22 = Take[x, {22}];

x23 = Take[x, {23}];x23 = Take[x, {23}];x23 = Take[x, {23}];

x24 = Take[x, {24}];x24 = Take[x, {24}];x24 = Take[x, {24}];

tx1 = Transpose[Prepend[Part[x, {1}], t]];tx1 = Transpose[Prepend[Part[x, {1}], t]];tx1 = Transpose[Prepend[Part[x, {1}], t]];

tx2 = Transpose[Prepend[Part[x, {2}], t]];tx2 = Transpose[Prepend[Part[x, {2}], t]];tx2 = Transpose[Prepend[Part[x, {2}], t]];

tx3 = Transpose[Prepend[Part[x, {3}], t]];tx3 = Transpose[Prepend[Part[x, {3}], t]];tx3 = Transpose[Prepend[Part[x, {3}], t]];

tx4 = Transpose[Prepend[Part[x, {4}], t]];tx4 = Transpose[Prepend[Part[x, {4}], t]];tx4 = Transpose[Prepend[Part[x, {4}], t]];

tx5 = Transpose[Prepend[Part[x, {5}], t]];tx5 = Transpose[Prepend[Part[x, {5}], t]];tx5 = Transpose[Prepend[Part[x, {5}], t]];

tx6 = Transpose[Prepend[Part[x, {6}], t]];tx6 = Transpose[Prepend[Part[x, {6}], t]];tx6 = Transpose[Prepend[Part[x, {6}], t]];

tx7 = Transpose[Prepend[Part[x, {7}], t]];tx7 = Transpose[Prepend[Part[x, {7}], t]];tx7 = Transpose[Prepend[Part[x, {7}], t]];

tx8 = Transpose[Prepend[Part[x, {8}], t]];tx8 = Transpose[Prepend[Part[x, {8}], t]];tx8 = Transpose[Prepend[Part[x, {8}], t]];

tx9 = Transpose[Prepend[Part[x, {9}], t]];tx9 = Transpose[Prepend[Part[x, {9}], t]];tx9 = Transpose[Prepend[Part[x, {9}], t]];

tx10 = Transpose[Prepend[Part[x, {10}], t]];tx10 = Transpose[Prepend[Part[x, {10}], t]];tx10 = Transpose[Prepend[Part[x, {10}], t]];

tx11 = Transpose[Prepend[Part[x, {11}], t]];tx11 = Transpose[Prepend[Part[x, {11}], t]];tx11 = Transpose[Prepend[Part[x, {11}], t]];

tx12 = Transpose[Prepend[Part[x, {12}], t]];tx12 = Transpose[Prepend[Part[x, {12}], t]];tx12 = Transpose[Prepend[Part[x, {12}], t]];

tx13 = Transpose[Prepend[Part[x, {13}], t]];tx13 = Transpose[Prepend[Part[x, {13}], t]];tx13 = Transpose[Prepend[Part[x, {13}], t]];

tx14 = Transpose[Prepend[Part[x, {14}], t]];tx14 = Transpose[Prepend[Part[x, {14}], t]];tx14 = Transpose[Prepend[Part[x, {14}], t]];

tx15 = Transpose[Prepend[Part[x, {15}], t]];tx15 = Transpose[Prepend[Part[x, {15}], t]];tx15 = Transpose[Prepend[Part[x, {15}], t]];

tx16 = Transpose[Prepend[Part[x, {16}], t]];tx16 = Transpose[Prepend[Part[x, {16}], t]];tx16 = Transpose[Prepend[Part[x, {16}], t]];

tx17 = Transpose[Prepend[Part[x, {17}], t]];tx17 = Transpose[Prepend[Part[x, {17}], t]];tx17 = Transpose[Prepend[Part[x, {17}], t]];

tx18 = Transpose[Prepend[Part[x, {18}], t]];tx18 = Transpose[Prepend[Part[x, {18}], t]];tx18 = Transpose[Prepend[Part[x, {18}], t]];

tx19 = Transpose[Prepend[Part[x, {19}], t]];tx19 = Transpose[Prepend[Part[x, {19}], t]];tx19 = Transpose[Prepend[Part[x, {19}], t]];

tx20 = Transpose[Prepend[Part[x, {20}], t]];tx20 = Transpose[Prepend[Part[x, {20}], t]];tx20 = Transpose[Prepend[Part[x, {20}], t]];

tx21 = Transpose[Prepend[Part[x, {21}], t]];tx21 = Transpose[Prepend[Part[x, {21}], t]];tx21 = Transpose[Prepend[Part[x, {21}], t]];

tx22 = Transpose[Prepend[Part[x, {22}], t]];tx22 = Transpose[Prepend[Part[x, {22}], t]];tx22 = Transpose[Prepend[Part[x, {22}], t]];

tx23 = Transpose[Prepend[Part[x, {23}], t]];tx23 = Transpose[Prepend[Part[x, {23}], t]];tx23 = Transpose[Prepend[Part[x, {23}], t]];

tx24 = Transpose[Prepend[Part[x, {24}], t]];tx24 = Transpose[Prepend[Part[x, {24}], t]];tx24 = Transpose[Prepend[Part[x, {24}], t]];
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tx[i ]:=tx[i ]:=tx[i ]:=

If[i == 1, tx1,If[i == 1, tx1,If[i == 1, tx1,

If[i == 2, tx2,If[i == 2, tx2,If[i == 2, tx2,

If[i == 3, tx3,If[i == 3, tx3,If[i == 3, tx3,

If[i == 4, tx4,If[i == 4, tx4,If[i == 4, tx4,

If[i == 5, tx5,If[i == 5, tx5,If[i == 5, tx5,

If[i == 6, tx6,If[i == 6, tx6,If[i == 6, tx6,

If[i == 7, tx7,If[i == 7, tx7,If[i == 7, tx7,

If[i == 8, tx8, If[i == 9, tx9, If[i == 10, tx10,If[i == 8, tx8, If[i == 9, tx9, If[i == 10, tx10,If[i == 8, tx8, If[i == 9, tx9, If[i == 10, tx10,

If[i == 11, tx11, If[i == 12, tx12, If[i == 13, tx13, If[i == 14, tx14, If[i == 15, tx15,If[i == 11, tx11, If[i == 12, tx12, If[i == 13, tx13, If[i == 14, tx14, If[i == 15, tx15,If[i == 11, tx11, If[i == 12, tx12, If[i == 13, tx13, If[i == 14, tx14, If[i == 15, tx15,

If[i == 16, tx16, If[i == 17, tx17, If[i == 18, tx18, If[i == 19, tx19, If[i == 20, tx20,If[i == 16, tx16, If[i == 17, tx17, If[i == 18, tx18, If[i == 19, tx19, If[i == 20, tx20,If[i == 16, tx16, If[i == 17, tx17, If[i == 18, tx18, If[i == 19, tx19, If[i == 20, tx20,

If[i == 21, tx21, If[i == 22, tx22, If[i == 23, tx23, tx24]]]]]]]]]]]]]]]]]]]]]]];If[i == 21, tx21, If[i == 22, tx22, If[i == 23, tx23, tx24]]]]]]]]]]]]]]]]]]]]]]];If[i == 21, tx21, If[i == 22, tx22, If[i == 23, tx23, tx24]]]]]]]]]]]]]]]]]]]]]]];

FFTV1 = RotateRight[Fourier[tx[1][[All, 2]]], Floor[n/2]];FFTV1 = RotateRight[Fourier[tx[1][[All, 2]]], Floor[n/2]];FFTV1 = RotateRight[Fourier[tx[1][[All, 2]]], Floor[n/2]];

FFTV2 = RotateRight[Fourier[tx[2][[All, 2]]], Floor[n/2]];FFTV2 = RotateRight[Fourier[tx[2][[All, 2]]], Floor[n/2]];FFTV2 = RotateRight[Fourier[tx[2][[All, 2]]], Floor[n/2]];

FFTV3 = RotateRight[Fourier[tx[3][[All, 2]]], Floor[n/2]];FFTV3 = RotateRight[Fourier[tx[3][[All, 2]]], Floor[n/2]];FFTV3 = RotateRight[Fourier[tx[3][[All, 2]]], Floor[n/2]];

FFTV4 = RotateRight[Fourier[tx[4][[All, 2]]], Floor[n/2]];FFTV4 = RotateRight[Fourier[tx[4][[All, 2]]], Floor[n/2]];FFTV4 = RotateRight[Fourier[tx[4][[All, 2]]], Floor[n/2]];

FFTV5 = RotateRight[Fourier[tx[5][[All, 2]]], Floor[n/2]];FFTV5 = RotateRight[Fourier[tx[5][[All, 2]]], Floor[n/2]];FFTV5 = RotateRight[Fourier[tx[5][[All, 2]]], Floor[n/2]];

FFTV6 = RotateRight[Fourier[tx[6][[All, 2]]], Floor[n/2]];FFTV6 = RotateRight[Fourier[tx[6][[All, 2]]], Floor[n/2]];FFTV6 = RotateRight[Fourier[tx[6][[All, 2]]], Floor[n/2]];

FFTV7 = RotateRight[Fourier[tx[7][[All, 2]]], Floor[n/2]];FFTV7 = RotateRight[Fourier[tx[7][[All, 2]]], Floor[n/2]];FFTV7 = RotateRight[Fourier[tx[7][[All, 2]]], Floor[n/2]];

FFTV8 = RotateRight[Fourier[tx[8][[All, 2]]], Floor[n/2]];FFTV8 = RotateRight[Fourier[tx[8][[All, 2]]], Floor[n/2]];FFTV8 = RotateRight[Fourier[tx[8][[All, 2]]], Floor[n/2]];

FFTV9 = RotateRight[Fourier[tx[9][[All, 2]]], Floor[n/2]];FFTV9 = RotateRight[Fourier[tx[9][[All, 2]]], Floor[n/2]];FFTV9 = RotateRight[Fourier[tx[9][[All, 2]]], Floor[n/2]];

FFTV10 = RotateRight[Fourier[tx[10][[All, 2]]], Floor[n/2]];FFTV10 = RotateRight[Fourier[tx[10][[All, 2]]], Floor[n/2]];FFTV10 = RotateRight[Fourier[tx[10][[All, 2]]], Floor[n/2]];

FFTV11 = RotateRight[Fourier[tx[11][[All, 2]]], Floor[n/2]];FFTV11 = RotateRight[Fourier[tx[11][[All, 2]]], Floor[n/2]];FFTV11 = RotateRight[Fourier[tx[11][[All, 2]]], Floor[n/2]];

FFTV12 = RotateRight[Fourier[tx[12][[All, 2]]], Floor[n/2]];FFTV12 = RotateRight[Fourier[tx[12][[All, 2]]], Floor[n/2]];FFTV12 = RotateRight[Fourier[tx[12][[All, 2]]], Floor[n/2]];

FFTV13 = RotateRight[Fourier[tx[13][[All, 2]]], Floor[n/2]];FFTV13 = RotateRight[Fourier[tx[13][[All, 2]]], Floor[n/2]];FFTV13 = RotateRight[Fourier[tx[13][[All, 2]]], Floor[n/2]];

FFTV14 = RotateRight[Fourier[tx[14][[All, 2]]], Floor[n/2]];FFTV14 = RotateRight[Fourier[tx[14][[All, 2]]], Floor[n/2]];FFTV14 = RotateRight[Fourier[tx[14][[All, 2]]], Floor[n/2]];

FFTV15 = RotateRight[Fourier[tx[15][[All, 2]]], Floor[n/2]];FFTV15 = RotateRight[Fourier[tx[15][[All, 2]]], Floor[n/2]];FFTV15 = RotateRight[Fourier[tx[15][[All, 2]]], Floor[n/2]];

FFTV16 = RotateRight[Fourier[tx[16][[All, 2]]], Floor[n/2]];FFTV16 = RotateRight[Fourier[tx[16][[All, 2]]], Floor[n/2]];FFTV16 = RotateRight[Fourier[tx[16][[All, 2]]], Floor[n/2]];

FFTV17 = RotateRight[Fourier[tx[17][[All, 2]]], Floor[n/2]];FFTV17 = RotateRight[Fourier[tx[17][[All, 2]]], Floor[n/2]];FFTV17 = RotateRight[Fourier[tx[17][[All, 2]]], Floor[n/2]];

FFTV18 = RotateRight[Fourier[tx[18][[All, 2]]], Floor[n/2]];FFTV18 = RotateRight[Fourier[tx[18][[All, 2]]], Floor[n/2]];FFTV18 = RotateRight[Fourier[tx[18][[All, 2]]], Floor[n/2]];

FFTV19 = RotateRight[Fourier[tx[19][[All, 2]]], Floor[n/2]];FFTV19 = RotateRight[Fourier[tx[19][[All, 2]]], Floor[n/2]];FFTV19 = RotateRight[Fourier[tx[19][[All, 2]]], Floor[n/2]];

FFTV20 = RotateRight[Fourier[tx[20][[All, 2]]], Floor[n/2]];FFTV20 = RotateRight[Fourier[tx[20][[All, 2]]], Floor[n/2]];FFTV20 = RotateRight[Fourier[tx[20][[All, 2]]], Floor[n/2]];

FFTV21 = RotateRight[Fourier[tx[21][[All, 2]]], Floor[n/2]];FFTV21 = RotateRight[Fourier[tx[21][[All, 2]]], Floor[n/2]];FFTV21 = RotateRight[Fourier[tx[21][[All, 2]]], Floor[n/2]];

FFTV22 = RotateRight[Fourier[tx[22][[All, 2]]], Floor[n/2]];FFTV22 = RotateRight[Fourier[tx[22][[All, 2]]], Floor[n/2]];FFTV22 = RotateRight[Fourier[tx[22][[All, 2]]], Floor[n/2]];

FFTV23 = RotateRight[Fourier[tx[23][[All, 2]]], Floor[n/2]];FFTV23 = RotateRight[Fourier[tx[23][[All, 2]]], Floor[n/2]];FFTV23 = RotateRight[Fourier[tx[23][[All, 2]]], Floor[n/2]];

FFTV24 = RotateRight[Fourier[tx[24][[All, 2]]], Floor[n/2]];FFTV24 = RotateRight[Fourier[tx[24][[All, 2]]], Floor[n/2]];FFTV24 = RotateRight[Fourier[tx[24][[All, 2]]], Floor[n/2]];

FFTV[i ]:=FFTV[i ]:=FFTV[i ]:=

If[i == 1, FFTV1,If[i == 1, FFTV1,If[i == 1, FFTV1,

If[i == 2, FFTV2,If[i == 2, FFTV2,If[i == 2, FFTV2,

If[i == 3, FFTV3,If[i == 3, FFTV3,If[i == 3, FFTV3,

If[i == 4, FFTV4,If[i == 4, FFTV4,If[i == 4, FFTV4,

If[i == 5, FFTV5,If[i == 5, FFTV5,If[i == 5, FFTV5,
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If[i == 6, FFTV6,If[i == 6, FFTV6,If[i == 6, FFTV6,

If[i == 7, FFTV7, If[i == 8, FFTV8,If[i == 7, FFTV7, If[i == 8, FFTV8,If[i == 7, FFTV7, If[i == 8, FFTV8,

If[i == 9, FFTV9, If[i == 10, FFTV10, If[i == 11, FFTV11,If[i == 9, FFTV9, If[i == 10, FFTV10, If[i == 11, FFTV11,If[i == 9, FFTV9, If[i == 10, FFTV10, If[i == 11, FFTV11,

If[i == 12, FFTV12, If[i == 13, FFTV13, If[i == 14, FFTV14, If[i == 15, FFTV15,If[i == 12, FFTV12, If[i == 13, FFTV13, If[i == 14, FFTV14, If[i == 15, FFTV15,If[i == 12, FFTV12, If[i == 13, FFTV13, If[i == 14, FFTV14, If[i == 15, FFTV15,

If[i == 16, FFTV16, If[i == 17, FFTV17, If[i == 18, FFTV18, If[i == 19, FFTV19, If[i == 20, FFTV20,If[i == 16, FFTV16, If[i == 17, FFTV17, If[i == 18, FFTV18, If[i == 19, FFTV19, If[i == 20, FFTV20,If[i == 16, FFTV16, If[i == 17, FFTV17, If[i == 18, FFTV18, If[i == 19, FFTV19, If[i == 20, FFTV20,

If[i == 21, FFTV21, If[i == 22, FFTV22, If[i == 23, FFTV23, FFTV24]]]]]]]]]]]]]]]]]]]]]]];If[i == 21, FFTV21, If[i == 22, FFTV22, If[i == 23, FFTV23, FFTV24]]]]]]]]]]]]]]]]]]]]]]];If[i == 21, FFTV21, If[i == 22, FFTV22, If[i == 23, FFTV23, FFTV24]]]]]]]]]]]]]]]]]]]]]]];

deltaNu =
fps
n

(1− replicaPer/100.)deltaNu =
fps
n

(1− replicaPer/100.)deltaNu =
fps
n

(1− replicaPer/100.)

0.000130228

frequencyValues = Table[deltaNu ∗ (i− n/2), {i, 1, n}];frequencyValues = Table[deltaNu ∗ (i− n/2), {i, 1, n}];frequencyValues = Table[deltaNu ∗ (i− n/2), {i, 1, n}];

pPeaks = Table[FindPeaks[Table[Abs[FFTV[sphere][[i]]], {i, n/2 + 1000, n/2 + 12000}], 60], {sphere, 24}];pPeaks = Table[FindPeaks[Table[Abs[FFTV[sphere][[i]]], {i, n/2 + 1000, n/2 + 12000}], 60], {sphere, 24}];pPeaks = Table[FindPeaks[Table[Abs[FFTV[sphere][[i]]], {i, n/2 + 1000, n/2 + 12000}], 60], {sphere, 24}];

fapPeaks[sphere ]:=Table[{frequencyValues[[pPeaks[[sphere, i, 1]] + n/2 + 1000]],pPeaks[[sphere, i, 2]]},fapPeaks[sphere ]:=Table[{frequencyValues[[pPeaks[[sphere, i, 1]] + n/2 + 1000]],pPeaks[[sphere, i, 2]]},fapPeaks[sphere ]:=Table[{frequencyValues[[pPeaks[[sphere, i, 1]] + n/2 + 1000]],pPeaks[[sphere, i, 2]]},

{i,Length[pPeaks[[sphere]]]}]{i,Length[pPeaks[[sphere]]]}]{i,Length[pPeaks[[sphere]]]}]

po = Table[fapPeaks[sphere], {sphere, 24}];po = Table[fapPeaks[sphere], {sphere, 24}];po = Table[fapPeaks[sphere], {sphere, 24}];

ListPlot[po,PlotRange→ All, Filling→ Axis];ListPlot[po,PlotRange→ All, Filling→ Axis];ListPlot[po,PlotRange→ All, Filling→ Axis];

Export[“horizontal Fourier.jpg”,%, “JPEG”]Export[“horizontal Fourier.jpg”,%, “JPEG”]Export[“horizontal Fourier.jpg”,%, “JPEG”]

ListLinePlotPunti[sphere ]:=ListLinePlot[Table[{frequencyValues[[i]],Abs[FFTV[sphere][[i]]]}, {i, n/2 + 1000, n/2 + 12000}],ListLinePlotPunti[sphere ]:=ListLinePlot[Table[{frequencyValues[[i]],Abs[FFTV[sphere][[i]]]}, {i, n/2 + 1000, n/2 + 12000}],ListLinePlotPunti[sphere ]:=ListLinePlot[Table[{frequencyValues[[i]],Abs[FFTV[sphere][[i]]]}, {i, n/2 + 1000, n/2 + 12000}],

PlotRange→ All,Epilog→ {Red,PointSize[0.01],Point[po[[sphere]]]}]PlotRange→ All,Epilog→ {Red,PointSize[0.01],Point[po[[sphere]]]}]PlotRange→ All,Epilog→ {Red,PointSize[0.01],Point[po[[sphere]]]}]

For[sphere = 1, sphere ≤ 24, sphere++,Print[ListLinePlotPunti[sphere]]]For[sphere = 1, sphere ≤ 24, sphere++,Print[ListLinePlotPunti[sphere]]]For[sphere = 1, sphere ≤ 24, sphere++,Print[ListLinePlotPunti[sphere]]]

For[sphere = 1, sphere ≤ 24, sphere++,For[sphere = 1, sphere ≤ 24, sphere++,For[sphere = 1, sphere ≤ 24, sphere++,

Export[p <> IntegerString[sphere] <> “ftPEAKS.jpg”,ListLinePlotPunti[sphere], “JPEG”];Export[p <> IntegerString[sphere] <> “ftPEAKS.jpg”,ListLinePlotPunti[sphere], “JPEG”];Export[p <> IntegerString[sphere] <> “ftPEAKS.jpg”,ListLinePlotPunti[sphere], “JPEG”];

]]]

ListPlot[po,PlotRange->All, Filling→ Axis,Epilog→ Inset[ListPlot[po,PlotRange→ {{0.4, .8}, {0, 5}}, Filling→ Axis], {2, 4.5}]]ListPlot[po,PlotRange->All, Filling→ Axis,Epilog→ Inset[ListPlot[po,PlotRange→ {{0.4, .8}, {0, 5}}, Filling→ Axis], {2, 4.5}]]ListPlot[po,PlotRange->All, Filling→ Axis,Epilog→ Inset[ListPlot[po,PlotRange→ {{0.4, .8}, {0, 5}}, Filling→ Axis], {2, 4.5}]]

poOrdered = Table[Sort[po[[i]],#1[[2]] > #2[[2]]&], {i, 24}];poOrdered = Table[Sort[po[[i]],#1[[2]] > #2[[2]]&], {i, 24}];poOrdered = Table[Sort[po[[i]],#1[[2]] > #2[[2]]&], {i, 24}];

first3po = Table[Take[poOrdered[[i]], 3], {i, 24}];first3po = Table[Take[poOrdered[[i]], 3], {i, 24}];first3po = Table[Take[poOrdered[[i]], 3], {i, 24}];

poTable = Table[Partition[Flatten[Select[first3po[[i]],#[[2]] > 0.2&]], 2], {i, 24}];poTable = Table[Partition[Flatten[Select[first3po[[i]],#[[2]] > 0.2&]], 2], {i, 24}];poTable = Table[Partition[Flatten[Select[first3po[[i]],#[[2]] > 0.2&]], 2], {i, 24}];

ListPlot[first3po,PlotRange→ All, Filling→ Axis]ListPlot[first3po,PlotRange→ All, Filling→ Axis]ListPlot[first3po,PlotRange→ All, Filling→ Axis]

Export[“horizontal Fourier 3picchi.jpg”,%, “JPEG”]Export[“horizontal Fourier 3picchi.jpg”,%, “JPEG”]Export[“horizontal Fourier 3picchi.jpg”,%, “JPEG”]

horizontal Fourier 3picchi.jpg

ListPlot[poTable,PlotRange→ All, Filling→ Axis]ListPlot[poTable,PlotRange→ All, Filling→ Axis]ListPlot[poTable,PlotRange→ All, Filling→ Axis]

Export[“horizontal Fourier upto3picchialti.jpg”,%, “JPEG”]Export[“horizontal Fourier upto3picchialti.jpg”,%, “JPEG”]Export[“horizontal Fourier upto3picchialti.jpg”,%, “JPEG”]

horizontal Fourier upto3picchialti.jpg

ListPlot[{poTable[[8]],poTable[[16]]},PlotRange→ All, Filling→ Axis]ListPlot[{poTable[[8]],poTable[[16]]},PlotRange→ All, Filling→ Axis]ListPlot[{poTable[[8]],poTable[[16]]},PlotRange→ All, Filling→ Axis]

Export[“horizontal Fourier upto3picchialti soloexc.jpg”,%, “JPEG”]Export[“horizontal Fourier upto3picchialti soloexc.jpg”,%, “JPEG”]Export[“horizontal Fourier upto3picchialti soloexc.jpg”,%, “JPEG”]
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horizontal Fourier upto3picchialti soloexc.jpg

Export[“poTable.txt”,poTable, “Table”]Export[“poTable.txt”,poTable, “Table”]Export[“poTable.txt”,poTable, “Table”]

ListPlot[po,PlotRange→ All, Filling→ Axis]ListPlot[po,PlotRange→ All, Filling→ Axis]ListPlot[po,PlotRange→ All, Filling→ Axis]

For[sphere = 1, sphere ≤ 24, sphere++,Print[ListPlotFFT[sphere]]]For[sphere = 1, sphere ≤ 24, sphere++,Print[ListPlotFFT[sphere]]]For[sphere = 1, sphere ≤ 24, sphere++,Print[ListPlotFFT[sphere]]]
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