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Abstract
Department of Management, Economics and Quantitative Methods

Doctor of Philosophy

Stochastic Programming Models for Optimal Risk Control with Financial
Derivatives

by Vivek VARUN

Stochastic optimization models have been extensively applied to financial portfolios
and have proven their effectiveness in asset and asset-liability management; hardly
however they have been applied to decision universe including not only financial
but also derivatives written on the underlying, derivatives such as options or futures
with their dedicated risk profiles and associated modelling complexities. Including
options in the portfolio gives us the opportunity to hedge the underlying and to
speculate on them to increase the profit potential given a certain risk level.

The modelling of options in multi-stage stochastic programming framework would
have many advantages, for instance, a put option can be used for insuring a portfolio
against any downside movement in the market, high volatility in options prices is
risky but rewarding if captured accurately, in-the-money call/put options at matu-
rity can be used to buy/sell the underlying security at a price lower/higher than the
market price, optimally increasing and reducing inventory. We present here multi-
stage models to include cash and physical settled call and put options in a portfolio
along with other asset classes.
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Chapter 1

Derivatives and Stochastic
Programming

Stochastic optimization models have been extensively applied to financial portfolios
and have proven their effectiveness in asset and asset-liability management; hardly
however they have been applied to decision universe including not only financial
but also derivatives written on the underlying, derivatives such as options or fu-
tures with their dedicated risk profiles and associated modelling complexities. The
modelling of European type options in multi-stage stochastic programming frame-
work is a multi-utilitarian approach, such as a put option can be used for portfolio
insurance against any unfavourable outcome, a call option if exercised at maturity
can be used to buy an underlying at a lower price, this could be helpful in increasing
or reducing inventory. Options can be bought or sold before expiry, options premi-
ums are very volatile and so a risky but rewarding trading opportunity exists. We
discuss other benefits and state-of-the-art of options in multi-stage programming in
this chapter.

1.1 Introduction

Financial derivatives have been used for mitigating downside risk and enhancing
upside potential in portfolio management. Their different payoff structures give in-
vestors an appropriate instrument to model their risk-reward choice. Different types
of derivatives instruments can help in meeting different goals. For instance, when
buying/selling an asset a future/forward contract can be used to offset price fluc-
tuation risk. Options can be used to multiple purposes, a put option can be used to
provide hedge against a downside movement in the underlying price, whereas a call
option can be used to improve the upside potential of a long underlying position.
Other common financial derivatives are swaps, collateralized debt obligations and
credit default swaps. However, in this research we limit ourselves to option con-
tracts only.

Option contracts can either be cash settled contracts or physical settled contracts.
Most of the options in the market are physical settled contracts.

Physical settled contracts are options contracts whereby settlement requires the
actual physical delivery of the underlying asset. The most common physical settled
options are stock options, since, the delivery of underlying shares is easier due to
their liquidity. For instance, if an investor buys a call option on Google with strike
USD 500, at expiry of the option if the price of the Google share is above USD 500,
say USD 510, then the investor has the right to buy Google shares at USD 500 instead
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of USD 510, thereby, saving USD 10 compared to the market price on expiry. On the
other hand, if the call option expires out-of-the-money, i.e. price of the underlying
falls below USD 500 at expiry, then the investment in the option goes to zero. Sim-
ilarly, a put option can be used to sell the underlying at a predefined strike price if
the put option expires in-the-money. These physical settled options contracts allow
investors to bring down the average buying cost when the market is booming and
to bring up the average selling cost when the market is bearish. In the later part of
this thesis, we develop a model that utilizes options contracts to optimally reduce or
increase inventory when the market is bearish or bullish respectively.

The other type of options contracts are the cash settled contracts. These are con-
tracts where settlement happens via cash. These types of options are required where
physical delivery of the underlying assets is not possible or inconvenient or costly.
For instance, consider the index options Standard and Poor’s index (SPX) or the
volatility index (VIX). These type of options do not exist physically, we cannot buy
indexes, therefore, options on these types of financial instruments are cash settled.

The benefits of options are not limited to buy or sell the underlying at a certain
price, options contracts can be used to develop hedging strategies where the loss
is limited. Option contracts can also be used for speculation, out-of-the-money op-
tions cost much less as compared to the at-the-money options, small movement in
the underlying price reflects big relative changes in the option price. From hedging
to speculation, options meet the demand of all type of investors and to fit into their
portfolios despite the complexities of the market.

In this research, we consider the use of both physical and cash settled options
contracts. Multi-fold benefits of options contracts make this a hot topic for researchers.
Now, the questions arise how to fit options into a portfolio for a desired shape of the
portfolio returns; how to mitigate the overall risk of a portfolio using options; under
what mathematical settings to model options in a portfolio; can dynamic approach
be more efficient than the static ones; is it possible to buy/sell options before their
expiry; can there be an optimal amount allocated for speculation using options and
what are the implications of short-selling options contracts etc. We answer these
questions in our research. We develop models that give both mathematical and fi-
nancial meaning to the use of options contracts in multi-stage setting.

There have been many successful applications of dynamic stochastic program-
ming applied to portfolio optimization answering asset-liability management chal-
lenges. However, this research considers only the use of broad asset classes, such as
fixed income, equity, real estate etc. Very limited research has been developed where
options are treated as an asset class. At this stage, it is important to go through some
studies to understand the benefits of including options in a portfolio, some success-
ful applications of multi-stage stochastic programming and then finally their combi-
nation to study options in multi-stage setting.

1.2 Literature Review of Options in Portfolio Optimization

Over the last four decades, many studies have been conducted on studying options
in portfolio management, some researchers have focused on the hedging side of the
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options, some have focused on the speculative aspects and some researchers have
worked on combining different types of options to mimic certain investment poli-
cies. We present here some relevant contributions that motivate our research, we
start from the earliest contributions by Merton to all the way to the most recent
studies.

Merton, Scholes, and Gladstein, 1978 studied on options investments in put
options as term insurance to insure the portfolio against any possible loss, it was
proved that no put strategy or call strategy can dominate any other strategy if op-
tions are priced correctly. It was found that investors can use uncovered put option
writing and covered put option buying to produce patterns for returns on invest-
ments that cannot be proxied by any combination of equity and fixed income secu-
rities. Harrison and Pliska, 1981, talked about general hedging methods for options
in complete market. Follmer and Sondermann, 1986, discussed hedging strategies
in incomplete market.

Brennan and Cao, 1996, found that options/derivatives improve the Pareto effi-
ciency as the trading gets continuous as with multiple trading sessions uninformed
investors behave as rational trend followers. Aliprantis, Monteiro, and Tourky, 2004,
presented minimum cost portfolio insurance investment strategy, when derivative
markets are complete then holding a put option in conjunction with the reference
portfolio provides minimum cost insurance at arbitrary arbitrage free security prices.
It was analysed that if the asset span is a lattice-subspace, then the minimum-cost
portfolio insurance can be easily calculated as a portfolio that replicates the targeted
portfolio in a subset of states which is the same for every reference portfolio.

Haugh and Lo, 2001, showed that under certain conditions, a portfolio of a few
number of options can be a good proxy for more complex dynamic investment poli-
cies due to the fact the derivative securities are equivalent to specific dynamic trad-
ing strategies in complete market and this is the motivation behind constructing
buy-hold portfolios of options that mimic certain dynamic investment policies.

Liu and Pan, 2003, solved investment strategies in closed form given that in-
vestor has access to options along with stocks and bonds. It was shown that due the
volatile nature of derivatives they enable non-myopic investors to disentangle the
simultaneous exposure to diffusive and jump risks in the stock market.

Similarly, Muck, 2010, analysed trading strategies with derivatives when in-
vestor has full or partial access to the derivatives market, it’s the case when options
are not available on all the stocks in the portfolio. Potential benefits of adding deriva-
tives to the market are studied, it was found that diffusion correlation and volatility
or jump sizes may have a significant impact on the benefit of a new derivative prod-
uct even if the market price of risk remains unchanged. Increasing or decreasing
utility gains of the different types of options can be exploited for a more diversified
portfolio.

Driessen and Maenhout, 2007, studied the economic benefits of giving investors
access to index options in the standard portfolio problem, analysing both expected-
utility and nonexpected-utility investors in order to understand who optimally buys
and sells options.
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These studies focused on hedging aspects of the options or on replication of some
dynamic investment policy. Options have also been studied under condition of risk-
neutrality on the Greeks to obtain an arbitrage free profit.

Gondzio, Kouwenberg, and Vorst, 2003, presented stochastic optimization hedg-
ing (SOH) model to consider transaction costs, stochastic volatility and trading re-
strictions by introducing a dynamic trading strategy. The goal of the strategy is
to minimize the hedging errors at the first few trading dates. Traditional hedging
strategies like delta hedging or delta-vega hedging are not appropriate in this con-
text. The main drawback of the model is that the number of constraints grow expo-
nentially with the number of trading dates.

Papahristodoulou, 2004, formulated a linear programming model to select the
optimal hedging strategies unlike other approaches where hedging strategies are de-
fined in advance. The main advantage of this approach is that it makes investment
planning more rational and independent of market beliefs of the investor. Horasanlı,
2008, extended the work presented by Papahristodoulou, 2004 from a single asset to
a multi-asset portfolio with options on them and considered all the hedging strate-
gies using delta, gamma, theta, rho and vega. The model has many disadvantages
in dealing with the options, linear constraints are forced on options while their pay-
off is nonlinear. Despite limitations, model through linear programming provides
many advantages to the investor.

Gao, 2009, presented a general linear programming model with bounds on each
Greek letter and then performs a new post-optimality analysis of the model where
risks are adjusted by the investor to suit the market dynamics. With the model and
the method proposed, one can take the options strategies in terms of one’s subjective
personality, and meanwhile, adjust the risks to suit the needs of the market change.
Sinha and Johar, 2010, further extended this work by introducing quadratic pro-
gramming to tackle the non-linear payoff of the options, they formulated a quadratic
programming model and then approximated that with a linear programming model,
it was found that the risk of the portfolio can be hedged by reducing its delta gamma
and vega and at the same time it is possible to minimize the net premium to be paid
for the creation of the hedged portfolio.

Liang, Zhang, and Li, 2008, studied a mean-variance formulation for the port-
folio selection problem involving options. In particular, the portfolio in question
contains a stock index and some European style options on the index. A refined
mean-variance methodology is adopted in their approach to formulate this problem
as multi-stage stochastic optimization. It turns out that there are two different so-
lution techniques, both lead to explicit solutions of the problem: one is based on
stochastic programming and optimality conditions, and the other one is based on
stochastic control and dynamic programming.

Palma and Prigent, 2008, introduced a financial hedging model for global envi-
ronmental risks using financial and environmental assets. It was found that options
indeed provide a good hedge to the portfolio, however, there is a need to include
new type of options that combine both equity and environmental assets contrary to
current practice where two separate option markets are considered.
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These types of models can solve the hedging issues in a very limited way, since
these are the static approaches so they are not able to handle the fast-changing mar-
ket conditions. In addition, as the trading dates are increased the number of con-
straints on different hedging strategies grows exponentially. Dimson and Mussa-
vian, 1999, presented a historical review of option pricing techniques.

Scheuenstuhl and Zagst, 2008, proposed a mean-variance portfolio management
approach using stocks and options. In addition, they use additional investor prefer-
ences in terms of shortfall constraints to allow a more detailed portfolio specification.
Also, they utilize an approximation of the return distribution and develop econom-
ically meaningful conditions to transform the complex optimization problem into a
linear problem.

Zymler, Rustem, and Kuhn, 2011, proposed a novel robust optimization model
for designing portfolios including European-style options. Their proposed model,
which is on the basis of second-order cone programming, trades off weak and strong
guarantees on the worst-case portfolio return. Fonseca and Rustem, 2012, proposed
a robust formulation for the international portfolio management problem that max-
imizes the portfolio return for the worst possible outcome of returns. They further
incorporate forward contracts and quanto options to mitigate currency and market
risks. Since their proposed model is not linear, they reformulate both the uncertainty
set and the objective function as a semi-definite problem. Fonseca, Wiesemann, and
Rustem, 2012, used a similar robust approach to cope with the international port-
folio management. Instead of using currency forward contracts, they utilize equity
options for domestic assets.

In the literature, there has been some studies available where disadvantages of
including options in portfolio are discussed, Neuberger and Hodges, 2002, have
questioned the benefits of including options in a portfolio. They model an econ-
omy with a single risky asset, the model enables them to examine the benefits to
investor of using options to optimize their investments, it was found that includ-
ing options makes minor improvement in the portfolio performance but only when
it comes hedge the volatility. The risk-reward in holding options is not limited to
volatility risk, options may be a costly hedge to the volatility.

1.3 Literature Review of Stochastic Programming and its Ap-
plications

So far, we have discussed the advantages and successful applications of includ-
ing options in the portfolio. The approaches we have discussed are the static ap-
proaches, hence, there is a need to integrate the use options in multi-stage setting so
that dynamic and robust hedging or trading policies can be formulated. For this we
use multi-stage stochastic programming approach.

The approach is a mathematical framework for modelling optimization problem
that involves uncertainty. Unlike deterministic optimization problems where all the
parameters are known at the beginning of the optimization process. In stochastic
programming uncertainties are revealed with time and are not known at the begin-
ning of the optimization problem. As an example, here the decision maker takes
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some action in the first stage, after which a random event occurs affecting the out-
come of the first-stage decision. A recourse decision can then be made in the sec-
ond stage that compensates for any bad effects that might have been experienced
because of the first-stage decision. The optimal policy from such a model is a sin-
gle first-stage policy and a collection of recourse decisions (a decision rule) defining
which second-stage action should be taken in response to each random outcome.

This ability of stochastic programming makes it useful for solving finance and
economic related problems where the future prices are not known at the start of the
optimization process. As the prices are revealed, new decisions are taken to achieve
an objective. Another advantage of this approach is that it could be applied to any
model problems with any time horizon, for instance, its application to pension fund
planning, where a long-term horizon problem is solved with typical time horizon
expanding to as long as 30 years, on the other hand, it can also be applied to a port-
folio of few securities/assets that aim to achieve a target at the end of a year or six
months, stochastic optimization approach has proven to be helpful in many aspects.

It also has some assumptions, first, underlying stochastic processes are not influ-
enced by the values of the decision variables, second, decisions adapt to available
information at the time they are made, but do not depend (invariant wrt) on specific
projected future outcomes (no hindsight).

Fundamental components of a multi-stage stochastic program are: (Vladimirou,
SPXI tutorial 2007)

1. the description of the underlying (multivariate) discrete stochastic process for
the uncertain parameters, dynamic information structure (Scenario-tree Gen-
eration).

2. discrete time dynamic stochastic optimization program capturing the structure
of the decision process.

3. Mapping (1) & (2) in a logical conformable way.

4. Defining appropriate performance and risk measure for the problem under
uncertainty.

Figure 1.1 shows a sample scenario tree with discrete time stages, t = 0, 1, 2 &
3 are the time steps where a decision is made based on information realized. Each
atom in this scenario tree is called a node and each node is linked to a previous
node or parent node, this defines the basis of sequential decision process with the
information process capturing their connection. This makes easier to model cash
flow equations, asset balance equations and wealth equations in each scenario along
the planning horizon . Key advantages of stochastic programs are they can handle
multi-asset problem by determining optimal asset value at individual level, mod-
elling uncertainties irrespective of the type of distribution, can handle regulatory
policies as constraints and can alternatively use flexible risk measures or perfor-
mance objectives (coherent risk measures or utility functions)
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FIGURE 1.1: Scenario Tree Representation

Use of multi-stage stochastic programs started in early seventies, Ho and Manne,
1974. The first few applications were to optimize portfolio of multiple fixed in-
come securities, Bradley and Crane, 1975. Gradually, the stochastic optimization
technique was applied in many areas in finance and economics. We cite a few of
them. The first successful application of the stochastic programming in finance was
the famous Russell-Yasuda Kasai model, Carino et al., 1994 where an asset-liability
management model was developed using multi-stage stochastic techniques. It de-
termined an optimal investment strategy that incorporated a multi-period approach
and allowed decision maker to define risk in tangible operational terms. Regulatory
restrictions were implemented as constraints. The technique used yielded extra 42
bps in the fiscal year 1991 and 1992.

The approach then was further explored by the academic researchers and many
successful applications and advancements came. Nielsen and Zenios, 1996, devel-
oped a dynamic stochastic optimization model to tackle the uncertainties in liability
in insurance business. The model considered explicitly the uncertainties inherent
in this problem due to both interest rate volatility and the behaviour of individual
investors. Dert, 1995 applied this technique to analyse the investment policy and
funding policy of a pension fund and proved that probability of underfunding can
be reduced significantly.

Consigli and Dempster, 1998, developed a CALM model (Computer Aided Asset-
Liability Management) to deal with uncertainties affecting both assets (in either port-
folio or the market) and liabilities (in the form of scenario dependant payments or
borrowing costs). This randomness in the assets/liabilities demanded thorough in-
vestigation on the reliability of the scenario or event trees used to solve these multi-
stage programs. Poor scenarios can lead to bad investment decisions. Kouwenberg,
2001, talked about the reliability of scenario trees in this context. He used both ran-
domly sampled event trees and event trees fitting the mean and the covariance of the
return distribution for generating the coefficients of the stochastic program. Hence,
allowing to investigate the performance of the model and the scenario generations
conducted on rolling horizons. It was found that the performance of the model
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can be improved drastically if the right model is adopted to generate scenario trees.
Klaassen, 1998, talked about the use of arbitrage-free scenario trees in the optimiza-
tion procedure.

Since, policies are implemented as constraints in this programming framework,
so it is possible to study the effectiveness of the regulations under which a com-
pany is working. Høyland and Wallace, 2001, developed a multi-stage stochastic
optimization model for an insurance company where they showed how legal regu-
lations put by the government are in the interest of insurance holder or not.

It was intuitive and evident that bad scenarios would lead to bad outcomes and
poor investment decisions. Hence, there was need of good scenarios and sufficient
number of scenarios. Researchers then came up with arbitrage-free event trees and
with sufficient number of scenario trees to reduce the computational complexity
of the optimization problem. Mulvey, 1996 and Gaivoronski and De Lange, 2000
talked about the outcome of the optimization problem in context of economic pro-
jection model. Bertocchi, Moriggia, and Dupačová, 2000, Pflug, 2001, Dupačová,
2002, Römisch, 2009, Casey and Sen, 2005, Dupačová, Gröwe-Kuska, and Römisch,
2003, Heitsch and Römisch, 2007, Heitsch and Römisch, 2009, and Kuhn, 2008 have
discussed scenario reduction techniques.

1.4 Derivatives in Stochastic Programming Framework

So far, we have discussed the benefits of including options in a portfolio and stochas-
tic programming technique that allows us to come up with dynamic investment
policies. It’s now time to review the combination of two in the literature. Over
the last two decades, researchers have applied stochastic programming techniques
to options. Most of the applications are about hedging options, sine, SP techniques
can efficiently handle inclusion of multiple risk factors and at the same time it can
avoid myopic decisions, it becomes practical to use SP to apply to options hedging.
Wu and Sen, 2000, presented a stochastic programming model to hedge currency
options, American type options were studied where an importer wants to hedge
currency risk on a fixed amount of US dollars at some time in future. The model
includes some realistic features like sensitivity to delta and gamma, the objective
function incorporates delta and gamma tracking error with some other risk factors
to rebalance portfolio using different options contracts at the decision stages. It was
shown that the SP based hedging model can have significant advantages over tradi-
tional approaches for currency hedging. It was reported that modelling and solution
approach proposed can be applied to a very broad spectrum of the hedging prob-
lems related to contingent claims, like mortgage backed securities and some exotic
fixed-income derivatives, where the returns or payoffs are path-dependent and the
Monte Carlo simulation is widely adopted. King, 2002, analysed the hedging of
contingent claims in the discrete time, discrete state case from the perspective of
modelling the hedging problem as a stochastic program. The model was extended
to the analysis of options pricing when modelling risk management concerns and
the impact of spreads and margin requirements for writers of contingent claims. It
was found that arbitrage pricing in incomplete markets failed to model incentives to
buy or sell options. An extension of the model to incorporate pre-existing liabilities
and endowments revealed the reasons why buyers and sellers trade in options. The
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model also indicated the importance of financial equilibrium analysis for the under-
standing of options prices in incomplete markets.

Villaverde, 2004, studied hedging European and Barrier options in a discrete time
and discrete space setting by using stochastic optimization to minimize the mean
downside hedge error under transaction costs. Scenario trees were generated using
a method that ensured the absence of arbitrage and which matched the mean and
variance of the underlying asset price in the sampled scenarios to those of a given
distribution. It was shown that SP based method produced a lower mean downside
hedge error for both types of options for a range of transaction costs. The method-
ology was then implemented for the case where the underlying price was driven by
a discretized Varriance-Gamma process in which case delta hedging methods were
not readily available. The results were found to be similar to the case where the
underlying asset follows a discretized Geometric-Brownian motion. Barkhagen and
Blomvall, 2016, developed a more realistic model where they considered buying and
selling at observed bid-ask prices.The SP model developed relied on a realistic mod-
elling of the important risk factors for the application, the price of the underlying se-
curity and the volatility surface. Volatility surface was estimated from a cross section
of observed option quotes that contain noise and possibly arbitrage. Non-parametric
estimation approach was used to produce arbitrage free volatility surfaces. By using
a simple dynamic model of the squared LVS (local volatility surface) based on PCA
(principal component analysis), they built an SP model that captures the most im-
portant joint dynamics of a collection of option prices. It was shown that the model
presented is able to come up with a hedging strategy that performs better than both
delta and delta-vega hedging in terms of producing lower realized risk and costs.

Most of these applications discuss hedging of different types of options. There
are some studies that talk about profiting from including options in a portfolio in
multi-stage setting using SP techniques. Blomvall and Lindberg, 2003, presented
options in a portfolio of stock index and risk-free asset. They use stochastic pro-
gramming to analyse the performance of different portfolios, portfolio with stock
index, portfolio with stock index and a risk-free asset and a portfolio of stock index,
a risk-free asset and call options on stock index. It was found that portfolio with op-
tions contracts outperform the other portfolios in terms of mean and variance. They
develop a two-stage model, where second stage is the option expiry and therefore,
the horizon of the planning problem is never longer than a month. Portfolios are
rebalanced at daily frequency and only those options are considered which are near
the expiry.

Model presented is a very good starting point to study options in multi-stage
settings, however, model has some limitations. Options contracts premiums are
very lucrative, when options are out-of-the money, their premium is low, when they
are in-the-money their premium goes up. For pricing reasons Blomvall and Lind-
berg, 2003, did not consider extending the horizon of the problem, they used Black-
Scholes model to price the options. Formulation of a multi-stage model that tackles
buying and selling of options requires a proper pricing approach on scenario tree.
The model considers only call options in the portfolio, it would be interesting to in-
clude also put option, given the protective features of put options which can serve
as a low cost insurance to hedge a portfolio Aliprantis, Monteiro, and Tourky, 2004.
However, return of a put option can be replicated using underlying and call op-
tion. Hence, including put options from hedging perspective is more relevant than
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including options for speculating high portfolio returns. Blomvall and Lindberg,
2003, ran the program for the period Feb 1990-June 1999 rebalancing the portfolio
daily and running 80 scenarios each time. However, in-sample stability of the model
has not been discussed.

Second important contribution along these research lines was by Topaloglou,
Vladimirou, and Zenios, 2011, that became the basis of developing mathematical
models in multi-stage setting where options are considered. However, they con-
sider a single stage model where options expiry is equal to the planning horizon
of the problem. Unlike, Blomvall and Lindberg, 2003, where only call options are
considered in the portfolio, Topaloglou, Vladimirou, and Zenios, 2011, considered
both call and put options. As a result, it allows to formulate different strategies on
options contracts, such as long straddle, long strangle, strip and strap strategies.
Options have non-linear payoffs, when we model them in a single stage framework
(with the assumption that span of the planning problem is same as the maturity
of the options in the portfolio) it becomes simpler to model their payoffs, since the
value of option at the expiry depends solely on the value of the underlying. This
fact was beautifully exploited by the Topaloglou, Vladimirou, and Zenios, 2011, so
at the final stage either the option is in-the-money with a positive value or its worth
nothing if its out-of-the-money. This actually simplifies the model equations.

Topaloglou, Vladimirou, and Zenios, 2011, developed this model in order to opti-
mize an international portfolio with options and forwards. The main objective of the
model is control the overall risk exposure of the portfolio and to achieve a balance
between risk and reward of the portfolio. CVaR is identified as the risk and expected
return as reward. Options are included in the portfolio to hedge market risk in the
long underlying in the portfolio, whereas, forwards are included to hedge currency
risk since the portfolio has securities in multiple currencies. The single stage model
developed was able to achieve the risk-reward balance. However, it opened many
other questions about using options or other derivatives in a multi-stage setting and
specially looking into the case when maturity of the derivative is not same as the
span of the planning horizon. The successful implementation of the options hedg-
ing strategies motivated the researchers to look into the viability of such strategies
to generate profit in the short-run while keeping positions in the underlying for a
longer time period. Different options strategies are profitable in different market
scenarios. For instance, when you are on the underlying asset, a put option may be
useful when the market is bearish. A straddle may be useful when the market is
bullish. Each strategy implemented can be an answer to the market belief of the in-
vestor. A dynamic policy where different types of hedging strategies are used with
changing market conditions could yield better performance.

Topaloglou, Vladimirou, and Zenios, 2011, studied totally unhedged portfolios
where no derivatives are considered, currency risk protection using forward con-
tracts, control of market risk using options contracts, joint protection against market
risk and currency risk using forwards and options and finally the use of quantos to
protect the position in stock indices. It was reported that unhedged portfolio exhib-
ited the worst performance (lowest cumulative return and high volatility), whereas
the introduction of derivatives improves the portfolio performance in terms of ex-
pected return and volatility. These results attracted other researchers to extend this
work to a multi-stage setting. The work by Topaloglou, Vladimirou, and Zenios,
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2011 was extended by the Yin and Han, 2013b, they developed a multi-stage stochas-
tic model to include options in an integrated view. They moved from single-stage
model to a multi-stage model where options are available at each stage. This allows
investor to build options position at each stage along with the underlying, however,
the model considers options that expiring at the subsequent stage.

Multi-stage model can capture evolution of underlying series in a better way,
availability of call and put options would allow to effectively adopt options as per
the market scenario. Including options in the portfolio in multi-stage setting gives
more degree of freedom to the decision maker to dynamically rebalance his posi-
tions. The model developed has two main advantages over the model developed
by Topaloglou, Vladimirou, and Zenios, 2011, first, multi-stage extension with time-
varying investment opportunities and dynamic adjustment, second, they incorpo-
rate the overall risk management on five time varying Greek letters.

It was reported that overall risk management scheme improved when all the
five Greek letters are considered in multi-stage setting, empirical analyses validated
the effectiveness of the multi-stage model and the optimal solution of the model
dominated traditional hedging strategy. Though, the model developed by Yin and
Han, 2013b, is a multi-stage model with options available for purchase at each deci-
sion stage, it however, considered options that are expiring at the subsequent stage.
Hence, at each stage options are available that are expiring at the very next stage.
Therefore, at any decision stage the only options are available are the contracts ex-
piring at the next stage. This simply the inventory equations for options. At each
stage, we have new options, options that were bought in the previous stage do not
exist anymore and neither the options are available for a decision stage later than
the subsequent stage. Still, the question of holding options at any decision stage is
wide open.

Another work on the similar lines is presented by Davari-Ardakani, Aminnayeri,
and Seifi, 2016, they developed a multi-stage model where options are not expiring
at the subsequent stage. They exploit the fact that options can be traded before their
expiry that indeed could be a very lucrative thing. They extended the work by the
Yin and Han, 2013b, of multi-stage stochastic model for portfolio with options ex-
piring at the subsequent stage to a generic model where an option can be traded
before its expiry. Whilst, the authors have tried to answer a very interesting ques-
tion through their model, we do not agree with the model they have presented. The
equations presented in the model are confusing and are not correct according to us.
The authors talked about including European type call and put options in the port-
folio and then introduced decision variables on the number of positions on call and
put options to be exercised at a node in the scenario tree. If the options are in-the-
money then all the options positions should account to the profit, if not, then options
expire worthless. There is no point of having a decision variable on how many posi-
tions of options to exercise (for European options). Also, the model presented could
be redundant, they have talked about decision variables on amount of call/put op-
tions and number of positions on call/put options. This is confusing, it is not clear
whether the authors are referring to a nominal amount model or a monetary model.
They however, do not consider short-selling of options. Their research presented
positive outcomes of including options in the portfolio.

Our work is the answer to the open questions in this context, how and why to
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include and model options in a portfolio, how they should be implemented in a
multi-stage setting, what are the benefits of trading an option before it expiry, is
short-selling of option beneficial and risky.

We present in this study multi-stage stochastic optimization models that answer
all these questions. We start with a simple model where options are considered in
single stage setting and then extend the model to take into account the other com-
plexities of expiry at any stage on the planning horizon, we develop a model where
options are not necessarily expiring at the decision stage. We generalize the work
done by Topaloglou, Vladimirou, and Zenios, 2011 and Yin and Han, 2013b. We
develop a model that considers a separate inventory for the options contracts and
is parallel to the inventory of the underlying assets. We present a general model
that consider short selling of option contracts, we then finally, verify the model the-
oretically, how in special cases it reduces to the models presented by Topaloglou,
Vladimirou, and Zenios, 2011, and Yin and Han, 2013b. We present strong empirical
evidences of exploiting various options features.

We model optimization problems from the point of an investor who wishes to
maximize the wealth at the end of planning horizon, investor is open to include
options in the portfolio along with investments in equity index, fixed income index
and commodity index. Planning horizon of the problem is six months and frequency
of portfolio rebalancing is monthly. We develop models to maximize wealth at the
horizon by considering both cash settled contracts and physical settled contracts.
Figure 1.2 below summarizes how we extend the work in the literature and what
contribution each model brings to the research area.

FIGURE 1.2: State-of-the-art and possible extensions

We now discuss the application of these models in brief:

• Single stage model with options: - We develop a single stage stochastic model
to optimize a portfolio that includes European style call and put options along
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with the underlying assets. The goal of the options is to protect the portfo-
lio against market risk. A protective put option is used for insuring the un-
derlying against any bearish movement in the market. Similarly, other strate-
gies such as long straddle, long strangle, strip and strap are implemented and
tested using the combination of call and put options in the portfolio. These
strategies help in tackling different market conditions. Topaloglou, Vladimirou,
and Zenios, 2011 have proved that options can effectively used to contain mar-
ket risk.

• Multi-stage model with options in the model: - Next, we develop a multi-
stage model where options are available at each decision stage with the as-
sumption that options expire at the subsequent stage. The model is similar to
the model developed by Yin and Han, 2013b. The advantages of this model
are; it gives more degree of freedom to the investor at each decision stage as
options are available for investment along with other underlying assets, sec-
ondly, it makes the investment policy more dynamic and robust in terms of
changing market scenarios. Short-term hedged strategies could be profitable
here, figure 1.3.

FIGURE 1.3: Options Strategies

• Multi-stage model, options expiring at any stage: - Next, we extend this
model where we buy options that expire at any decision stage along the plan-
ning horizon. The advantage of this model is twofold: first, it allows investor
to hedge his position for different time stages without affecting the short run
profitability using options of shorter maturity. For example, at-the-money op-
tions with shorter maturity are cheaper than at-the-money options with longer
maturity, so they leave more space for speculation than options with higher
premiums. Secondly, inclusion of options with longer maturity insures the
portfolio to achieve/maintain a specific wealth level at distant horizon, since
long position in the options correspond to limited losses. So, this model guar-
antees insurance against any bearish movements in the underlying. Mathe-
matically, this model becomes more complicated than the model introduced
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by Yin and Han, 2013b, in that model options expire at the subsequent stage,
hence, there is no need of option inventory, each decision stage has fresh op-
tions expiring at the next stage. While in our model it is required to have
inventory of the options, as all the options are not expiring on the subsequent
stage, at any time it is possible that options bought in previous stage is held to
the next stages. Therefore, proper pricing of option prices is also required.

• Multi-stage model, buy/sell of long options is allowed: - In the previous
model we talk about hedging the underlying for a longer time. Now, let’s con-
sider the case where a put option is bought to hedge the underlying for six
months. After, the first month it was found that the put option bought at time
0 is in-the-money, as a result its premium would be higher. The model then
sells the options and buys a new put option to hedge the underlying for the
remaining period. Options premiums are very volatile and thus are risk and
rewarding at the same time. We develop a model to exploit this lucrative na-
ture of option premiums. Picture below shows how volatile option premiums
are, we plot S&P500 Index against call and put options expiring in December
2017 with strike price equal to 2500 for the period October 2016 to October
2017, figure 1.4. Index values are plotted on the left y-axis and option prices
are plotted on the right y-axis.

FIGURE 1.4: ATM Call and put options vs underlying index

• Multi-stage model, buy/short-sell of options is allowed: - We then develop a
model where short selling of options is allowed. Short selling of options allow
investor to model multiple hedging strategies, like bull call spread, bear call
spread etc. It gives the investor maximum degree of freedom to invest com-
pared to all the models discussed above. This sort of model is actually a gen-
eralization of the previous models and we show how it improves the chances
of achieving wealth targets for the investor. Each model discussed above is a
special case of this model, hence, this model is a summary and generalization
of all the models in this line.

• Multi-stage model, using options to update inventory: - This model is dif-
ferent from the models discussed above and to the best of our knowledge it is
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first of its kind. The multi-stage model uses physical settled options contract to
update the inventory of the underlying assets. The model gives flexibility to an
investor who wishes to increase his inventory when the market is bullish while
ensuring that the cost he pays is less than market price. In the same way, if an
investor holds a stock of underlying and anticipates that market is going to be
bearish then the model generates a trading strategy that helps him reducing
the inventory at a price higher than the average sell price in the market. This
type of model helps to accumulate inventory or reduce inventory dynamically.
This model has wide applications to commodity investors, share holders or
ETFs. This dynamic strategy can be applied to many areas.

FIGURE 1.5: Methodology

The methodology that we adopt is summarized in the figure 1.5.

• Data Collection: - We collect data through external sources Bloomberg and
Thomson Reuters Datastream.

• Statistical Modeling: - The data collected is then cleaned and used to develop
statistical model to fit for forecasting the underlying time series and the asso-
ciated risk factors. The statistical model is validated before passing it to the
scenario generation part. We forecast the data at discrete time steps as per the
planning horizon. The reliability of this forecasting model is tested by rolling
the model one period every time and seeing if the forecasted value at the first
step is within the forecasted range or not.
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• Simulator: - Once the statistical model is validated, it is then passed to the
simulator to generate scenario/event trees for the optimization model.

• MSP Solver: - The generated scenarios are then passed to the mathematical
standard program solver, which converts the scenario tree optimization to an
equivalent deterministic linear program. CPLEX solver is used to solve the
mathematical program in GAMS.

• Model Validation: - We then validate the model we developed. We go by each
constraint implemented in the model to check if we have achieved the desired
outcome or not. If a constraint is supposed to put bound on investment in
a particular asset then in the result that bound must be satisfied. If we imple-
ment a protective put strategy in the model on a certain underlying, then in the
result its effectiveness must be reflected when the market is bearish. So, we go
by all the variables and constraints to validate the model variables and model
equations. Once the model is validated for the equations and constraints we
then check the stability of the model. In-sample stability is checked by vary-
ing the number of scenarios passed to the optimization problem and observing
how the value of the objective function is changing and how the distribution
of the wealth is changing in the results. Once the model passes the stability
test then we move to the post-optimality analyses.

• Post-optimality Analyses: - When the results are validated we then analyse
them on various schemes such as wealth distribution, portfolio composition at
different time stages, portfolio performance in the mean and worst scenarios,
optimal trading strategy, consistency in the portfolio performance etc.

In the next chapter we are going to present the mathematical model to tackle
options in a portfolio, we start with a single stage model and gradually introduce
extensions to make it multi-stage model where option buying and selling is allowed
before the expiry.
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Chapter 2

Multi-stage Models for Portfolios
with Derivatives

So far, many successful applications of stochastic programming to asset-liability
management (ALM) have been published in the literature. Some famous applica-
tions of stochastic programming to asset liability management have been reported
e.g. in Nielsen and Zenios, 1996, Carino and Ziemba, 1998, Carino, Myers, and
Ziemba, 1998, Høyland, 1998, Consigli and Dempster, 1998 and Kouwenberg, 2001.
See also the collections Ziemba and Mulvey, 1998 and Zenios and Ziemba, 2004 and
the references therein. For a general introduction to stochastic programming we sug-
gest the reader to the official (COSP) stochastic programming site: www.stoprog.org.

These studies however, consider only traditional asset classes in the portfolio,
rarely, there have been any study that talks about using derivatives in multi-stage
stochastic programming framework. Topaloglou, Vladimirou, and Zenios, 2011s
have studied using options and forwards for managing international portfolios us-
ing stochastic programming techniques. The article introduces a single stage model
with options and forwards along with conventional asset classes. The study suggests
that use of derivatives improve the upside potential of the portfolio performance and
it also helps in reducing downside risk. We extend the research carried by them to
consider options in multi-stage setting.

The motivation for including options in a portfolio can either be hedging or spec-
ulation. Different objectives of using options would require to develop different
mathematical models. For instance, a long vanilla put option can be used to hedge
a position in the underlying, similarly, a call option can be used to speculate on the
price movements of the underlying. Both call and put option can be used together
to make a straddle or strangle. If an option is bought to hedge a position and be-
fore the planning horizon if its found to be in the money, then it can be sold and a
new option can be bought to hedge the position in the underlying. Since, the option
premiums are very volatile, their price movements are risky but can be lucrative at
the same time. Using options in a portfolio give rise to many possibilities, we de-
velop a mathematical model for each of them. We start with the single-stage model
presented by Topaloglou, Vladimirou, and Zenios, 2011.

2.1 Introduction to the Optimization Model with Options

The following model is similar to the model presented by Topaloglou, Vladimirou,
and Zenios, 2011. The optimization problem is considered for the US investor hav-
ing positions in some assets and options on them.The portfolio is composed of stock
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index, bond index and commodity index, then we have European call and put op-
tions on these indexes. The portfolio thus is exposed to market risk. We develop
scenario based approach to address risks involved here. The deterministic inputs
are initial position in each asset class and in options. European call and put options
available at time 0 with exactly the same expiry as the horizon.

The scenario generated data for asset prices (and its related risk factors described
later) defines the option payoffs at the horizon under each scenario. The model pre-
sented here is a nominal amount model and the decision variables (buy/sell) repre-
sent the quantity bought/sold in an asset class and option in a given node.

The model is a single-stage model, all decisions are taken at time t=0 of the plan-
ning horizon [0,T]. The objective is to maximize the expected wealth minus penal-
ized risk measure which is expected shortfall in our case.

We go by introducing sets, parameters and decision variables to formulate the
optimization model. The notations used are the following.

2.1.1 Sets, Parameters and Variables

Sets

• T , set of discrete time space indexed by t, T : t = {0, 1, 2..., T}

• N , Set of nodes in the scenario tree indexed by n, Nt is the set of nodes at time
stage t
(Every n ∈ Nt has a unique ancestor n− ∈ Nt−1 and for t ≤ T − 1 there exists
a non-empty set of nodes n+ ∈ Nt+1)

• I, set of financial assets, indexed by i

• O, set of vanilla options

– Oc & Op are set of call and put options respectively

– Ji, set of expiries of the options O, indexed by j, Oij represents the set of
options on asset i expiring at maturity j, Ji : j = {Ji1, Ji2...}

– Kji , set of strikes of the options in O, indexed by k, Ok Kj
i represents the

vector of strikes at maturity j on asset i, Kj
i : k = {Kj

i1,K
j
i2,K

j
i3....}

Input Parameters

• x̄i, initial position in asset i ∈ I

• C0, initial available cash

• C̄, is the initial available cash

• T , length of planning horizon

• χ+ and chi−, are the proportional transaction cost for purchase and sale in
underlying

• χ+
o , χ−o and χo, are proportional transaction costs on buying, selling and exer-

cising option respectively.
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• µ̄, user defined target

• vi0, current price of the asset i per unit face value

• Oci0(j, k), is the current price of the European call option on asset i with expiry
j and strike price k

• Opi0(j, k), is the current price of the European put option on the asset i with
expiry j and strike price k

Now, we introduce parameters that would model the flow of information along
the scenario tree.

Scenario Dependent Parameters

• p(n), probability of node n ∈ N such that
∑

n∈NT
p(n) = 1 and for every non-

terminal node p(n) =
∑

m∈n+ p(m), ∀n ∈ Nt, t ≤ T − 1.

• rn, is the annual risk-free rate in node n.

• vin, price of asset i, in node n.

• t(n), t(n−) and t(n+), represent the time stages of node n, its predecessor node
n− and its successor node n+.

• Ocin(j, k), is the price of the European call option on the asset i in node n, with
strike price equal to K(j, k),∀K(j, k) ∈ K that expires at tj , j ∈ J .

• Opin(j, k), is the price of the European put option on the asset i in node n, with
strike price equal to Kk, ∀Kk ∈ K that expires at tj = J, j ∈ J .

Computed Parameters

Value of the initial portfolio is the sum of position in each asset.

W_0 = C̄ +
∑
i

x̄ivi0, (2.1)

Assumption: there is no initial position in the options

Decision Variables

• x+
in, nominal amount of asset i purchased in node n, buying decision

• x−in, nominal amount of asset i sold in node n, selling decision

• xin, nominal amount of asset i held in node n in the revised portfolio, hold
decision

• cin(j, k), units purchased of a European call option on asset iwith expiry j and
strike price k, buying decision in call option

• pin(j, k), units purchased of a European put option on asset iwith expiry j and
strike price k, buying decision in put option

Auxiliary Variables

• Wn, value of portfolio in node n
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2.1.2 The Objective Function

The objective function of a mathematical program is the key for choosing good de-
cisions over the bad ones. It depends on the type of objective function that drives
optimal solution, if the objective is to maximize wealth at the planning horizon then
the procedure (sequence of decisions over stages) would try to move in the direc-
tion that maximizes wealth. If the objective is to find an optimal trade-off between
risk and reward then objective function would take the optimal solution that gives
a balance between risk and reward. We formulate the optimal decision problem as
multi-stage optimization problem with recourse(Birge and Louveaux, 1997, Demp-
ster and Ireland, 1988, Dupačová and Bertocchi, 2001).

We consider the following objective function which is the convex combination of
two parts (risk and reward):

max(1− λ)E[W T ]− λRζ (2.2)

A0X0 = D0 (2.3)

AnXn− +GnXn = Dn,∀n ∈ N (2.4)

The first part is the expected wealth (E[W T ]) (reward) at the planning horizon T
and the second part is a risk measure Rζ (risk), λ is the risk aversion coefficient that
defines how risk averse the investor is. Expected wealth is defined as

∑
pnWn, ∀n ∈

NT . We discuss risk measure in later part of this section. A,G & D are the constraint
matrices and define inventory balance equations, cash balance equations and other
constraints optimization model is subjected to. Xn are the control variables, this vec-
tor decides buy, sell and hold decision for each asset in each node of the tree. The
idea behind choosing this type of objective function is the trade-off between risk and
reward; as the future price of financial instruments is an uncertain phenomenon and
so the expected value of portfolio is not well defined, this convex combination of risk
and reward allows the investor to maximize their expected wealth while keeping a
check on the risk measure.

It is important to identify the correct risk measure for every financial planning
problem. Traditionally used tools for assessing and optimizing market risk assume
that the portfolio return is normally distributed. In this way, the two statistical mea-
sures, mean and standard deviation, can be used to balance return and risk. How-
ever, in certain cases distribution of portfolio returns is far from normal distribution.
Since, we are trying to achieve minimum return at the horizon, we consider Expected
Average Shortfall (EAS) as a risk measure. It was introduced by Dempster et al., 2007,
where minimum guaranteed return fund problem was solved. The advantage of
such risk measure is twofold; firstly, to manage the strategies of the fund and sec-
ondly to take into account guarantees given to the investors of the fund. Dempster
et al., 2007, averaged the shortfall at each decision stage, however, in our research
we consider expected average shortfall only at the horizon. The mathematical for-
mulation of the risk measure considered is the following:

Rζ =
∑

[µ̄−Wn]+pn, ∀n ∈ NT (2.5)
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Where, µ̄ is user defined target, any scenario that yields wealth (Wn) lower than
this target would be reflected in the expected shortfall, shortfalls are then weighted
by their probability (pn) to calculate the expected average shortfall (EAS).

In this research we formulate nominal amount model (where we deal with num-
ber of assets) to calculate the optimal investments in options and other securities.
The reason for choosing this particular approach is that it would help us in track-
ing the number of options contracts in the inventory. For instance, in a protective
put strategy, where we are going to use put options to hedge the position in the
underlying we need exactly same number of put options as the number of underly-
ing contracts. Consider in other cases, where we need to buy straddle or a strip or
strap, we need to have proportional number of call options and put options, nomi-
nal amount model makes calculation easier. In the case of monetary amount model
where inventory equations are modelled through investment in the assets, it would
bring additional complexity to the model to calculate number of options contracts
to hedge the underlying position. Let us also consider the case where we buy/sell
options to update underlying inventory, a nominal amount model would make it
trivial to handle the inventory equations, we show this later in Chapter 3.

2.1.3 Options Payoff Modelling Approach

Option payoff is a non-linear function unlike other asset, payoff is expressed as max
function. This max function if implemented in constraints in the optimization pro-
gram (GAMS) would make it non-linear. To avoid this, we define moneyness to
track the intrinsic value of the option. This would help us in modelling problems
where options expire before a decision stage.

We define moneyness (δ) of the call option on asset i with maturity j and strike k
in node n as:

δcin(j, k) = max(vin −Kj
ik, 0) (2.6)

Similarly, moneyness for put option would be:

δpin(j, k) = max(Kj
ik − vin, 0) (2.7)

2.2 Problem Formulation: Single Stage Models

As described earlier, options can be used for different purposes depending on the
need of the investor/trader, it can be either for hedging or speculation purposes. We
now present a nominal amount model to optimize a portfolio of stock, bond and
commodity indexes and European call and put options on them. Maturity of the
option is same as the planning horizon for single stage model, then we extend the
model to take into account additional complexities. Buy/sell decisions are made
at time t = 0 and the option payoff depends on the price of the underlying assets
evolved in the leaf nodes of the scenario tree. We first present a case where, options
on indexes are cash settled contracts. So, payoff of options (positive cash flow) from
option expiry adds to the cash available. All the computation here is done in the
context of a scenario tree optimization framework and therefore all the variables are
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scenario/node dependent to channel information flow.

Aim is to optimize a portfolio with index instruments and to buy options on
them to maximize profitability at the end of the planning horizon. Options expire at
the horizon and are cash settled. We present here next the set of decision variables
and constraints actually implemented to characterize the random constraint matri-
ces An, Gn, Dn, ∀n ∈ N and solve the problem.

We consider three types of constraints, to be satisfied: the inventory balance equa-
tions define the portfolio evolution over time; the cash balance constraints include in
each node all cash inflows and outflows generated by the current strategy; the upper
and lower bounds on the decision vector which define policy constraints on the adopt-
able strategy.

For each node n of the scenario tree and the asset/derivative i, the optimal strat-
egy is defined through the following possible decisions, xin is the nominal amount
held in asset i in node n; cin(j, k) and pin(j, k) is the nominal amount bought in call
and put options contract on asset i in node n with strike k and maturity j respec-
tively; xin+ refers to a buying decision in asset i in node n; while x−in refers to a selling
decision in asset i in node n. All the decision variables are constrained to be non-
negative.

At root node:

We first introduce inventory equation at root node n = 0, the quantity in root
node is equal to the sum of quantity held initially and quantity bought in the root
node less what is sold in that node.

xi0 = x̄i + x+
i0 − x

−
i0, ∀ i ∈ I (2.8)

Option Inventory:

ci0(j, k) = c+
i0(j, k),∀(j, k) (2.9)

pi0(j, k) = p+
i0(j, k), ∀(j, k) (2.10)

Option inventory at time 0 is due to any purchase decisions made at root node.

We impose cash constraint in the first stage decision (which is the only decision
in a single stage problem)

C0 = C̄ +
∑
i∈I

x−i0vi0(1− χ−)−
∑
i∈I

x+
i0vi0(1 + χ+)

−
∑
j=T,k

[c+
i0(j, k)Oci0(j, k) + p+

i0(j, k)Opi0(j, k)](1 + χ+
o )

(2.11)
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Cash in the root node would be the sum of cash that is held initially and value of
the assets sold in root node less the amount invested in assets and options.

W0 = C0 +
∑
i

xi0vi0 +
∑

i,j=T,k

[ci0(j, k)Oci0(j, k) + pi0(j, k)Opi0(j, k)] (2.12)

Wealth in root node is the sum of cash C0 (cash in root node after rebalancing),
value of assets and value of options in root node.

At node: n ∈ NT

In the node n, the inventory would be equal to what is held in the previous node
and what is bought in the current node less the amount sold in the current node.
Since, no buying or selling decision is allowed in the leaf node the amount held in
the parent node would be the same as amount held in the current node n.

xin = xi0, ∀ i ∈ I (2.13)

x+
in = x−in = 0 (2.14)

Option Inventory:

cin(j, k) = 0, ∀(i, j, k) (2.15)

pin(j, k) = 0, ∀(i, j, k) (2.16)

At node n the position in options will always be 0, as it the final stage and options
either expire in the money or expire worthless, there are no options in the portfolio
in the leaf nodes.

Cn = C0e
rn∆t +

∑
j,k

[ci0(j, k)max(0, vin −Kj
k) + pi0(j, k)max(0,Kj

k − vin)] (2.17)

Cash at node n is the sum of cash carried from the previous stage,(it is com-
pounded by the annual risk free rate rn over the time period ∆t = t(n) − t(n−),
expressed in years), and cash inflows from options expiring in-the-money. Wealth in
node n is the sum of cash available in that node and the value of assets held.

Wn = Cn +
∑
i∈I

xi0vin, ∀n ∈ N − {0} (2.18)
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We now introduce policy constraints to consider bounds in the investment in
various asset classes and options on them. These policy constraints also help in for-
mulating strategies such as straddle and other options strategies, we show this in
later part of this chapter. Let φL and φU be the set of lower and upper bounds on the
securities, φicL, φicU , φipL & φipU be the upper and lower bounds on investment in
call and put options on asset i respectively. All these φs are card(I) X 1 vectors of
values between 0 (no investment) and 1 (100% investment), this corresponds to up-
per or lower investment bound in the corresponding assets or derivatives, equation
2.19. These constraints can help limit investments in assets. Similarly, Equations
(2.20 and 2.21) define the upper and lower bounds on investment in derivatives.
Then we have non-negativity constraints (equations 2.22 & 2.23) to ensure that the
decision variables are positive on all the nodes of event tree. Equation 2.24, is the
cash constraint, γC is the fractional wealth that is allowed to be kept in the cash ac-
count. It is important to note the index 0 in all the constraints below, it corresponds
to the root node.

Policy Constraints:

φiLW0 ≤ xi0vi0 ≤ φiUW0, φL = {φiL}′, φiL ∈ [0, 1]

φU = {φiU}′, φiU ∈ [0, 1], ∀ i
(2.19)

φicLW0 ≤ ci0Oci0(j, k) ≤ φicUW0, φicL ∈ [0, 1], φicU ∈ [0, 1], ∀ i, j, k (2.20)

φipLW0 ≤ pi0Opi0 ≤ φipUW0, φipL ∈ [0, 1], φipU ∈ [0, 1],∀ i, j, k (2.21)

Non-negativity constraints:

x+
i0 ≥ 0, x−i0 ≥ 0, xi0 ≥ 0, ∀ i ∈ I (2.22)

ci0(j, k) ≥ 0, pi0(j, k) ≥ 0, ∀ j & k (2.23)

Cash Constraint:
0 ≤ C0 ≤ γCW0, γC ∈ [0, 1] (2.24)

This completes the single-stage model for optimizing a portfolio of multiple as-
set classes with options on them, the model is similar to Topaloglou, Vladimirou,
and Zenios, 2011 single stage model.

Possible Extension: Single stage model with options in the portfolio that are
expiring on or before the Horizon

Next, we extend the above model for a different possibility. It is possible that
options expire before the decision stage, in that case, we need to take the profit (if
options expire in-the-money) to the next decision stage at the risk free rate. We need
to know all the expiries between two rebalancing stages and the price of the under-
lying at those expiries. We need to define some variables to track the moneyness of
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the options.

Let τ(j) = [τ1, τ2, τ3..] be the maturities between [0, T ], a scenario based notation
would be τn(j), i.e. the maturities between [0, T ] in the nth scenario. Let Sτn(j) be
the price of the underlying on the intermediate maturity. Cash inflow from such ex-
piries Θn would be:

Θn =
∑

i,j∈τ(j)≤T,k

[ci0(j, k)δcin(j, k) + pi0(j, k)δpin(j, k)]ern(t−τn(j)) (2.25)

The new model that allows options expiry before horizon would have a modified
cash equation 2.17, all other features including asset balance equations and policy
constraints will remain the same. So, we just write the modified cash equation for
this particular case instead of repeating the entire model formulation.

Cn = C0e
rn∆t + Θn,∀n ∈ NT (2.26)

We can also rewrite this equation in terms of indicator variable δ and moneyness
λ defined earlier in this chapter.

Cn = C0e
rn∆t +

∑
i,j∈τ(j)≤T,k

[ci0(j, k)δcin(j, k) + pi0(j, k)δpin(j, k)]ern(t−τn(j)) (2.27)

This completes single stage model in this study. Single stage model presented
here is just a start to make things clearer when integrating this work in multi-stage
framework.

2.3 Multi-stage Model: Long Position in European Options

In this section we are going to talk about put and call options in a portfolio. There
could be many possibilities with options when discussing them in multi-stage set-
ting depending on the expiry of the options and whether selling of options is allowed
before expiry or not.

2.3.1 Multi-stage Model (Buying options expiring at the next decision
stage)

Now, we aim to optimize a portfolio where investor/trader along with assets has
European call and put options available on them, however, to avoid any volatility
risk investor/trader wants only those options that are expiring at the next stage, so
that any rebalancing stage no options are held in the portfolio and only buying deci-
sions in options contracts are made. We are going to extend the single-stage model
to a multi-stage model. At each node, new options are available that expire at sub-
sequent nodes (children nodes), Yin and Han, 2013b. The equations developed in
the previous model would change because of increased number of decision stages,
equations for multi-stage model are below:
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The asset inventory equation at root node would remain the same as in the single
stage model.

Asset Inventory Balance Equation

xi0 = x̄i + x+
i0 − x

−
i0, ∀ i ∈ I (2.28)

We keep the option inventory separate from the underlying assets’ inventory,
making it easier to track the position in options contracts.

Option Inventory Balance Equation

ci0(j, k) = c+
i0(j, k), ∀(j, k) (2.29)

pi0(j, k) = p+
i0(j, k),∀(j, k) (2.30)

The cash balance constraint is imposed for the first stage takes into account the
number of options contracts bought in the root node n.

C0 = c̄+
∑
i∈I

x−i0vi0(1− χ−)−
∑
i∈I

x+
i0vi0(1 + χ+)

−
∑

i,j=t+1,k

[c+
i0(j, k)Oci0(j, k) + p+

i0(j, k)Opi0(j, k)](1 + χ+
o )

(2.31)

We now write the equations and above constraints at node n (later than first
stage). The inventory balance constraints reflect the decision problem Markovian
structure: as time evolves, along each scenario, the portfolio evolution will be fully
specified in nominal value through holding, buying and selling decisions. Each such
decision generates, jointly with other commitments, cash flows in each node result-
ing in cash surpluses or deficits to be compounded to the following stage.

Asset Inventory Balance Equation: At node n ∈ N − {0}]

xin = xin− + x+
in − x

−
in, ∀ i ∈ I, (2.32)

Amount held in the current node is equal to amount held in the previous node
and the amount bought less the amount sold in the current node.

Option Inventory:

cin(j, k) = c+
in(j, k),∀(i, j, k) (2.33)

pin(j, k) = p+
in(j, k),∀(i, j, k) (2.34)
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The number of options held in a node are exactly same as the number of options
bought in that node. Any options held previously would be expiring on the cur-
rent decision stage, since, the model assumes option expiry same as the time length
between two consecutive decision stages which is constant for the entire planning
horizon.

Cash Balance Constraint in node n

Cn = Cn−e
rn∆t +

∑
i∈I

x−invin(1− χ−)−
∑
i∈I

x+
invin(1 + χ+)

−
∑

i,j=t(n+),k

[c+
in(j, k)Ocin(j, k) + p+

in(j, k)Opin(j, k)](1 + χ+
o )

+
∑

i,j=t(n),k

[cin−(j, k)max(0, vin −Kj
k) + pin−(j, k)max(0,Kj

k − vin)](1− χo)

(2.35)
Cash at node n would be the sum of cash carried from the previous stage,(it

is compounded by the annual risk free rate rn over the time period ∆t = t(n) −
t(n−), expressed in years), and cash inflows from options expiring in-the-money.
The above equation can be re-written in terms of δ.

Cn = Cn−e
rn∆t +

∑
i∈I

x−invin(1− χ−)−
∑
i∈I

x+
invin(1 + χ+)

−
∑

i,j=t(n+),k

[cin(j, k)Ocin(j, k) + pin(j, k)Opin(j, k)](1 + χ+
o )

+
∑

i,j=t(n),k

[cin−(j, k)δcin(j, k) + pin−(j, k)δpin(j, k)](1− χo)

(2.36)

Wealth at node n is the sum of the cash available in that node, value of asset in-
vestments and value of options held in that node.

Wn = Cn +
∑
i∈I

xinvin +
∑

i,j=t(n+),k

[cin(j, k)Ocin(j, k) + pin(j, k)Opin(j, k)], ∀ n ∈ N

(2.37)
The policy and non-negativity constraints remain same as in the previous model

with the exception that constraints now must hold for all the nodes on which a deci-
sion is taken i.e. n ∈ N0,T−1. We add one more constraint 2.46 to make sure that no
decision is taken on the leaf nodes, n ∈ NT .

Policy Constraints:

φLWn ≤ xinvin ≤ φUWn, φL = {φiL}′, φiL ∈ [0, 1],

φU = {φiU}′, φiU ∈ [0, 1], ∀ i ∈ I
(2.38)

φicLWn ≤ cinOcin(j, k) ≤ φicUWn, φicL ∈ [0, 1], φicU ∈ [0, 1], ∀ i, j, k (2.39)
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φipLWn ≤ pinOpin(j, k) ≤ φipUWn, φipL ∈ [0, 1], φipU ∈ [0, 1], ∀ i, j, k (2.40)

Non-negativity constraints:

x+
in ≥ 0, x−in ≥ 0, xin ≥ 0, ∀ i ∈ I, ∀ n ∈ N0,T−1 (2.41)

cin(j, k) ≥ 0, pin(j, k) ≥ 0, ∀ n ∈ N0,T−1 (2.42)

c+
in(j, k) ≥ 0, p+

in(j, k) ≥ 0, ∀ n ∈ N0,T−1 (2.43)

Cash Constraint:

0 ≤ Cn ≤ γCWn, ∀n ∈ N , γC ∈ [0, 1] (2.44)

Cash Constraint:

0 ≤ Cn ≤ γCWn, ∀n ∈ N , γC ∈ [0, 1] (2.45)

No decision is made on the leaf nodes:

x+
in = 0; x−in = 0; c+

in = 0, p+
in = 0, ∀ n ∈ NT , ∀ i ∈ I (2.46)

This completes the multi-stage model when options are expiring at the subse-
quent decision stage.

Model Validation: We here present some observations that validate the model
that we have presented. Let us consider a case where put option contracts are used
to hedge the long position in the underlying. Above model then would have call
option decision variable fixed at 0 and allowing purchase only in put options. We
set cin = 0 and pin ≤ xin to ensure that number of put options contracts are always
less than the number of assets.

TABLE 2.1: Model Validation: Protective Put Case

Month 1 2 3 4 5 6 7

Equity Index Value ($) 1870.85 1866.167 1891.48 1899.937 1958.478 1945.264 1910.727
Wealth ($) 100000 99980 101336.1 101789.1 104352.6 103648.4 103081.1
Units of Equity Index in the portfolio 0 53.57505 53.57505 53.28249 53.28249 52.99087 52.99087
Cash 100000 0 0 0 0 0 1830.01
Number of Call Options 0 0 0 0 0 0 0
Number of Put Options 0 0 0 53.28 0 52.99 0
% change in Equity na -0.0025 0.013564 0.004471 0.030812 -0.00675 -0.01775
% change in Wealth na -0.0002 0.013564 0.00447 0.025185 -0.00675 -0.00547
Cumulative Equity performance 0 -0.0025 0.011027 0.015548 0.046838 0.039776 0.021315
Cumulative Wealth performance 0 -0.0002 0.013361 0.017891 0.043526 0.036484 0.030811

To validate the model, we consider a scenario tree having 64 branches with
branching structure [1 2 2 2 2 2 2], each time step is equal to one month, monthly
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revision of the portfolio is allowed. Equity pricing model is used to generate prices
for equity index described in Chapter 4, we use Black-Scholes model to calculate
option prices, historical volatility of the underlying asset is used and risk free rate
is assumed to be 0. We consider only one asset in the portfolio and ATM options
on it. We analyse the worst case scenario (2.1), model buys put option in stage 6
to hedge equity positions, price does fall 1.775%, but because of put options in the
portfolio loss realized is only 0.5%. The constraints are implemented such that it is
not obliged to have options in the portfolio in each node, depending on how the
market evolves algorithm or optimization program decides when to buy and how
many to buy. The objective here is to see if the put option purchased actually serve
the hedging purpose or not. In our findings, it is validated that put options provide
protection against a downside movement.

Let us now consider a case where trader/investor is willing to adopt a strad-
dle strategy, strip or strap strategy. This would require to modify the constraints.
We know that number of call and put options in these strategies are proportional,
cin = [1, 2, 1/2]pin for straddle, strap and strip strategies respectively. We add this
constraint to the model and we see if the desired outcome is achieved or not.

TABLE 2.2: Model Validation: Straddle Strategy

Month 1 2 3 4 5 6 7

Equity Index Value ($) 1870.85 1862.765 1894.558 1877.791 1889.181 1876.274 1859.588
Wealth ($) 100000 99980.12 102215.2 101030.9 101030.9 101010.7 100112.4
Units of Equity Index in the Portfolio 0 53.06179 53.33754 0 0 53.83582 53.83582
Cash 100000 0 0 101031 101031 0 0
Number of Call Options 0 53.06 53.34 0 0 0 0
Number of Put Options 0 53.06 53.34 0 0 0 0
% change in Equity na -0.00432 0.017068 -0.00885 0.006065 -0.00683 -0.00889
% change in Wealth na -0.0002 0.022356 -0.01159 0 -0.0002 -0.00889
Cumulative Equity performance 0 -0.00432 0.012672 0.00371 0.009798 0.002899 -0.00602
Cumulative Wealth performance 0 -0.0002 0.022152 0.010309 0.010309 0.010107 0.001124

Model buys (2.2)a long straddle at the second month, equity price goes up by
1.7%, but because of call options in the straddle the realised return in wealth is
about 2.2%. At the very next stage it again buys a long straddle, the price of eq-
uity goes down by 0.8% but because of put options in the straddle strategy the loss
stays around 1.1% (because of the fact that a significant amount goes in buying the
options).

TABLE 2.3: Model Validation: Strip Strategy

Month 1 2 3 4 5 6 7

Equity Index Value ($) 1870.85 1862.765 1894.558 1877.791 1889.181 1876.274 1859.588
Wealth ($) 100000 99980 101686.2 100807.6 100807.6 100787.5 99891.13
Units of Equity Index in the Portfolio 0 53.6729 53.21964 0 0 53.71681 53.71681
Cash 100000 0 0 100807.6 100807.6 0 0
Number of Call Options 0 0 26.61 0 0 0 0
Number of Put Options 0 0 53.22 0 0 0 0
% change in Equity na -0.00432 0.017068 -0.00885 0.006065 -0.00683 -0.00889
% change in Wealth na -0.0002 0.017065 -0.00864 0 -0.0002 -0.00889
Cumulative Equity performance 0 -0.00432 0.012672 0.00371 0.009798 0.002899 -0.00602
Cumulative Wealth performance 0 -0.0002 0.016862 0.008076 0.008076 0.007875 -0.00109
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Model buys a strip anticipating that market would go down (2.3), it does. Per-
centage change in equity is -0.88% while in the portfolio with strip the percentage
change is -0.86%. Strip strategy is more effective when market is highly volatile.

TABLE 2.4: Model Validation: Strap Strategy

Month 1 2 3 4 5 6 7

Equity Index Value ($) 1870.85 1862.765 1894.558 1877.791 1889.181 1876.274 1859.588
Wealth ($) 100000 99980.18 103294.7 101494.6 101494.6 101474.3 100571.9
Units of Equity Index in the Portfolio 0 52.75175 53.58231 0 0 54.08288 54.08288
Cash 100000 0 0 101494.6 101494.6 0 0
Number of Call Options 0 105.5 107.16 0 0 0 0
Number of Put Options 0 52.75 53.58 0 0 0 0
% change in Equity na -0.00432 0.017068 -0.00885 0.006065 -0.00683 -0.00889
% change in Wealth na -0.0002 0.033151 -0.01743 0 -0.0002 -0.00889
Cumulative Equity performance 0 -0.00432 0.012672 0.00371 0.009798 0.002899 -0.00602
Cumulative Wealth performance 0 -0.0002 0.032947 0.014946 0.014946 0.014743 0.005719

Model buys a strap in month 2 (2.4), anticipating that price would increase, it
does, portfolio beats benchmark by 1.6% because of call options in the portfolio. At
the month 3, price decreases this time portfolio realised more 0.8% more loss than
the benchmark, as all the call options bought expired worthless. Similarly, other
strategies can be modified using different constraints.

Extension: Multi-stage model (Buying the options that are expiring on or be-
fore the next rebalancing stage)

Now, we add one more complexity to the above model. It is possible that options
are not expiring on the decision stages. So, we generalize cash equation for any node
n to account for cash flows coming in from any option expiry before the next rebal-
ancing stage.

Θn =
∑

i,j∈t(n)<τ(j)≤t(n+),k

[cin(j, k)δcin(j, k) + pin(j, k)δpin(j, k)]ern(t(n)−τn(j)) (2.47)

The new model in this case will have some equations different from the previous
model. The cash constraint at root node would be different in a way that now options
are available for purchase on expiry set [t, t+ 1], that is from t = 0 to t = 1, while in
the previous model options are available for purchase at expiry time t+ 1.

C0 = c̄+
∑
i∈I

x−i0vi0(1− χ−)−
∑
i∈I

x+
i0vi0(1 + χ+)

−
∑

i,t(n)≤j≤t(n+),k

[ci0(j, k)Oci0(j, k) + pi0(j, k)Opi0(j, k)](1 + χ+
o ), n = {0}

(2.48)

Cash constraint in node n would be different from the cash constraint in the
previous model in a sense that options are now available for purchase on the set
[t(n), t(n+)] and options are exercised on the interval (t(n−), t(n)]. The equation in
terms of δ can be written as:
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Cn = Cn−e
rn∆t +

∑
i∈I

x−invin(1− χ−)−
∑
i∈I

x+
invin(1 + χ+)

−
∑

i,t(n)≤j≤t(n+),k

[c+
in(j, k)Ocin(j, k) + p+

in(j, k)Opin(j, k)](1 + χ+
o )

+
∑

i,tn−<j≤t(n),k

[cin−(j, k)δcin(j, k) + pin−(j, k)δpin(j, k)]ern(t(n)−τn(j))(1− χo)

(2.49)
The third change from the previous model would be in the wealth equation.

Again, the time interval of existing options would be [t(n), t(n+)]. Wealth then
would Sum of cash held in the current node, investment in the assets and invest-
ment in the options.

Wn = Cn +
∑
i∈I

xinvin +
∑

i,t(n)≤j≤t(n+),k

[cn(j, k)Ocn(j, k) + pn(j, k)Opn(j, k)], ∀ n ∈ N

(2.50)
This completes the multi-stage model where options are expiring on or before

the next rebalancing stage.

Extension: Multi-stage model options expiring at any decision stage along the
planning horizon)

Now, we consider options in the portfolio that expire at any decision stage along
the planning horizon. Motivation behind having such a portfolio is that investor
may be looking to hedge his portfolio over a longer period. This brings another
complexity to the model, if an option contract has not expired then it must be re-
flected in the inventory equation in the children nodes. Comparing to the previous
models, now options inventory are going to have different structure. We assume
that purchasing of options contracts is allowed only at time 0.

We are now extending the model presented by Yin and Han, 2013b. This would
require us to modify cash constraints at root node as well as for the nth node. At
root node, time span for option purchase would now be between t = 0 and t = T .

C0 = C̄ +
∑
i∈I

x−i0vi0(1− χ−)−
∑
i∈I

x+
i0vi0(1 + χ+)

−
∑

i,j≤T,k
[ci0(j, k)Oci0(j, k) + pi0(j, k)Opi0(j, k)](1 + χ+

o )
(2.51)

The option inventory at time 0 would remain the same as in the previous model.

ci0(j, k) = c+
i0(j, k),∀(i, j, k) (2.52)

pi0(j, k) = p+
i0(j, k),∀(i, j, k) (2.53)
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However, at node n the inventory would be different. Since, no option pur-
chase is allowed at the decision stages and only options that are bought in root
node are allowed to carry to the next node, therefore, the position in the option
in the current node would simply be the option position in the previous node, pro-
vided that option contract has not expired. If option contracts have expired then
cin(j, k) = 0 & pin(j, k) = 0, otherwise

cin(j, k) = cin−(j, k),∀(j, k) (2.54)

pin(j, k) = pin−(j, k), ∀(j, k) (2.55)

This change in inventory equations must be reflected in cash constraint at node
n. So, the cash in node n would be the sum of cash carried from the previous node,
cash inflow and outflow due to purchase in the underlying assets and cash coming
in from the expiry of the options in that node.

Cn = Cn−e
rn∆t +

∑
i∈I

x−invin(1− χ−)−
∑
i∈I

x+
invin(1 + χ+)

+
∑

i,j=t(n),k

[cin−(j, k)δcin(j, k) + pin−(j, k)δpin(j, k)](1− χo)
(2.56)

Wealth in node n would be the sum of cash held and the investment in assets
and options in that node.

Wn = Cn +
∑
i∈I

xinvin +
∑

i,t(n)<j≤T,k

[cin(j, k)Ocin(j, k) + pin(j, k)Opin(j, k)], ∀ n ∈ N

(2.57)
This completes multistage model where we have options expiring at any deci-

sion stage along the planning horizon.

Extension: Multi-stage model for options expiring at any time point along the
planning horizon)

Next, we add a little complexity to the model that options are expiring at any
time point along the horizon (not necessarily on the decision stage). We would now
extend the previous model with the equations developed in the beginning to con-
sider options expiring before decision stages. The only equations that would change
are cash balance equation and wealth equation in node n.
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Cn = Cn−e
rn∆t +

∑
i∈I

x−invin(1− χ−)−
∑
i∈I

x+
invin(1 + χ+)

+
∑

i,t(n−)<j≤t(n),k

[cin−(j, k)δcin(j, k) + pin−(j, k)δpin(j, k)]ern(t(n)−τn(j))(1 + χo)

(2.58)
The difference here is the time interval on which the options are exercised, (t(n−), t(n)]

unlike at t(n) in the previous model. This completes a multi-stage model where op-
tions are expiring at any time point along the horizon.

2.3.2 Multi-stage model: Buying, selling (no short selling) and exercising
options at any time point along the horizon

Next, we introduce another complexity to the previous models. This time we allow
selling of the options that have not expired. This allows us to transfer risk from the
buyer of the option to writer of the option, for instance, we buy an option at time
0 to hedge our position before expiry at any decision stage the option was found to
be in the money, so we can sell this option and can profit from its premium and buy
another option to hedge our position. Option premiums are very lucrative, these are
risky but at the same time can be rewarding as well. This is what we try to capture
in the model discussed below, Davari-Ardakani, Aminnayeri, and Seifi, 2016 also
attempted to develop a model like this, however, we do not agree with some techni-
calities of the model.

Asset Inventory Equation at root node

xi0 = x̄i + x+
i0 − x

−
i0, ∀ i ∈ I (2.59)

Option Inventory Equation:

ci0(j, k) = c+
i0(j, k)− c−i0(j, k); (2.60)

pi0(j, k) = p+
i0(j, k)− p−i0(j, k); (2.61)

The options in the node n are equal to options bought (+ superscript) in that node
minus options sold (- superscript) in that node. Since no short selling is allowed con-
straints are introduced in the later part of the model.

Cash Balance Constraint at root node:

C0 = C̄ +
∑
i∈I

x−i0vi0(1− χ−)−
∑
i∈I

x+
i0vi0(1 + χ+)

−
∑

i,j≤T,k
[c+
in(j, k)Ocin(j, k) + p+

i0(j, k)Opi0(j, k)](1 + χ+
o )

(2.62)

While imposing cash balance constraint at root node, we make sure that no sell-
ing of options is allowed, as it is our assumption that there are no initial position in
options, selling at time 0 would refer to short selling which is not in the scope of this
model.
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Asset Inventory Equation: At node n ∈ N − {0}]

xin = xin− + x+
in − x

−
in, ∀ i ∈ I, (2.63)

Asset inventory would have the same Markovian structure as in the previous
multistage models.

Option Inventory Equations in node n ∈ N − {0}]

cin(j, k) =

 cin−(j, k) if j ≤ tn, ∀ k,

cin−(j, k) + c+
in(j, k)− c−in(j, k) if j > tn, ∀ k

pin(j, k) =

 pin−(j, k) if j ≤ tn,∀ k,

pin−(j, k) + p+
in(j, k)− p−in(j, k) if j > tn,∀ k

We replicate the inventory equations to formulate the option inventory equa-
tions. The only difference comes from the maturity of the options. If an option is at
maturity then the position in the option in the previous node is moved to the current
node as it is and it settled in the cash equation. If not, then buying and selling in that
option contract is allowed. The net position would be the sum of what is held previ-
ously and what is bought in the current node less what is sold in the current node.

Cash Balance Constraint in: n ∈ N − {0}]

Cn = Cn−e
rn∆t +

∑
i∈I

x−invin(1− χ−)−
∑
i∈I

x+
invin(1 + χ+)

−
∑

i,t(n)≤j≤T,k

[c+
in(j, k)Ocin(j, k) + p+

in(j, k)Opin(j, k)](1 + χ+
o )

+
∑

i,t(n)≤j≤T,k

[c−in(j, k)Ocin(j, k) + p−in(j, k)Opin(j, k)](1− χ−o )

+
∑

i,t(n−)≤j≤t(n),k

[cin(j, k)δcin(j, k) + pin(j, k)δpin(j, k)]ern(t(n)−τn(j))(1− χo)

(2.64)

Cash constraint clearly identifies cash outflow and inflow due to trade in under-
lying assets, any cash outflow due to options purchase, cash inflow due to options
selling and expiries. Wealth in node n then would simply be the sum of cash avail-
able in that node, value of the underlying assets and options contracts.

Wn = Cn +
∑
i∈I

xinvin +
∑

i,t(n)<j≤T,k

[cin(j, k)Ocin(j, k) + pin(j, k)Opin(j, k)], ∀ n ∈ N

(2.65)
Policy constraints remain the same as in the previous model, non-negativity con-

straints are now extended to c+
in, p

+
in, c

−
in&p−in.

Policy Constraints:
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φLWn ≤ xinvin ≤ φUWn, φL = {φiL}′, φiL ∈ [0, 1], (2.66)
φU = {φiU}′, φiU ∈ [0, 1], ∀ i ∈ I (2.67)

φicLWn ≤ cinOcin(j, k) ≤ φicUWn, φicL ∈ [0, 1], φicU ∈ [0, 1], ∀ i, j, k (2.68)

φipLWn ≤ pinOpin(j, k) ≤ φipUWn, φipL ∈ [0, 1], φipU ∈ [0, 1], ∀ i, j, k (2.69)

Non-negativity constraints:

x+
in ≥ 0, x−in ≥ 0, xin ≥ 0, ∀ i ∈ I, ∀ n ∈ N0,T−1 (2.70)

cin(j, k) ≥ 0, pin(j, k) ≥ 0,

∀ n ∈ N0,T−1 c+
in(j, k) ≥ 0, p+

in(j, k) ≥ 0,

c−in(j, k) ≥ 0, p−in(j, k) ≥ 0

(2.71)

x−i0 ≤ x̄i, ∀ i ∈ I (2.72)

Cash Constraint:

0 ≤ Cn ≤ γCWn, ∀n ∈ N , γC ∈ [0, 1] (2.73)

No decision is made on the leaf nodes.

x+
in = 0; x−in = 0; cin = 0, pin = 0, ∀ n ∈ NT , ∀ i ∈ I (2.74)

This completes the model where buying and selling of option is allowed before
expiry.

Model Validation

We now validate this model where buying and selling of options take place be-
fore their expiry. Table 2.5 shows how the price evolves in the scenario correspond-
ing to 75th percentile of the price distribution at the horizon. We have price for
equity, bond and commodity indexes and prices for ATM call and put options ex-
piring at 1 month, 3 month and 6 month time.It can be seen clearly that after the
maturity of options their price in the scenario is 0. Table 2.6, 2.7 and 2.8 show hold,
buy and selling decisions made in the model. Option payoffs at expiry is either 0 or
some positive value, depending on if it expires ITM or OTM. So, in the GAMS code
option payoff can be treated like a payoff of an asset that goes to 0 at a certain point,
forcing the algorithm to not buy when the price in the next node is 0 and sell all the
quantity if price in the next node is 0.

Table 2.6, 2.7 and 2.8 show that options were bought and sold before the expiry.
Call option on Equity with 6 month expiry was bought in the 3rd stage and then
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sold in the 4th stage, and was again bought in the 5th stage to drive the optimal
investment strategy.

TABLE 2.5: Mode Validation: Buy/Sell Options Price Evolution

Month 0 1 2 3 4 5 6

Equity 1870.8 1904.4 1845.5 2061.6 2060.3 2055.3 2103
Bond 1931.2 1931 1950.6 1944.1 1925.7 1928.6 1921.7
Commodity 5018.1 4997.7 4916.2 4830.4 4708.4 4573.3 4409.2
Eq_Call_1M 16.552 33.594 0 0 0 0 0
Eq_Call_3M 24.198 39.398 2.6274 190.75 0 0 0
Eq_Call_6M 33.178 48.527 12.228 193.43 191.66 185.46 232.18
Eq_Put_1M 16.552 0 0 0 0 0 0
Eq_Put_3M 24.198 3.6751 27.118 0 0 0 0
Eq_Put_6M 33.178 9.6151 34.013 0.0004548 6.70E-06 1.17E-10 0

TABLE 2.6: Model Validation: Buy/Sell options before expiry (holding
decisions)

Month 0 1 2 3 4 5 6

Equity 26.439 0 27.528 24.981 0 24.384 24.384
Bond 25.839 52.268 26.082 28.976 58.074 29.631 29.631
Commodity 0 0 0 0 0 0 0
Eq_Call_1M 26.439 0 0 0 0 0 0
Eq_Call_3M 0 0 27.528 0 0 0 0
Eq_Call_6M 0 0 0 24.981 0 24.384 24.384
Eq_Put_1M 0 0 0 0 0 0 0
Eq_Put_3M 0 0 0 0 0 0 0
Eq_Put_6M 0 0 0 0 0 0 0

The intrinsic value of the option is driven by the price of its underlying security
and time to maturity. When the price was declining the option was sold and when it
was increasing, it was held in the portfolio. This completes validation of the model
developed for selling options before their expiry.

2.4 A Generic Multi-Stage Model: Long/Short Positions in
Options

So, far we have talked about long position in options. Now, we are going to intro-
duce a generic model that considers short selling of options. Short-selling of options
would allow us to make profit the price movements in the underlying and it would
help us in implementing hedged strategies like butterfly spread.
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TABLE 2.7: Model Validation: Buy/Sell Options (buying decisions)

Month 0 1 2 3 4 5 6

Equity 26.439 0 27.528 0 0 24.384 0
Bond 25.839 26.429 0 2.8944 29.098 0 0
Commodity 0 0 0 0 0 0 0
Eq_Call_1M 26.439 0 0 0 0 0 0
Eq_Call_3M 0 0 27.528 0 0 0 0
Eq_Call_6M 0 0 0 24.981 0 24.384 0
Eq_Put_1M 0 0 0 0 0 0 0
Eq_Put_3M 0 0 0 0 0 0 0
Eq_Put_6M 0 0 0 0 0 0 0

TABLE 2.8: Model Validation: Buy/Sell Options (selling decisions)

Month 0 1 2 3 4 5 6

Equity 0 26.439 0 2.5467 24.981 0 0
Bond 0 0 26.186 0 0 28.443 0
Commodity 0 0 0 0 0 0 0
Eq_Call_1M 0 26.439 0 0 0 0 0
Eq_Call_3M 0 0 0 27.528 0 0 0
Eq_Call_6M 0 0 0 0 24.981 0 0
Eq_Put_1M 0 0 0 0 0 0 0
Eq_Put_3M 0 0 0 0 0 0 0
Eq_Put_6M 0 0 0 0 0 0 0

We are going to replicate the option inventory equations introduced in the above
model. However, we would separate inventory for long and short positions. We in-
troduce clin, c

l+
in , c

l−
in for hold, buy and sell decisions in long call options and csin, c

s+
in , c

s−
in

for hold, buy and sell decisions in short call options. Similarly, we have variables for
put options, plin, p

l+
in , p

l−
in , p

s
in, p

s+
in , p

s−
in for hold, buy and sell decisions in long and short

put options. The asset inventory equations remain the same. This model in special
cases should be equivalent to the models discussed by, Topaloglou, Vladimirou, and
Zenios, 2011 and Yin and Han, 2013b. The model goes as follows:

Asset Inventory Equation: At root node

xi0 = x̄i + x+
i0 − x

−
i0, ∀ i ∈ I (2.75)

The options in the node n are equal to options bought (+ superscript) in that node
minus options sold (- superscript) in that node.
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Options Inventory Equation:

For long position:

cli0(j, k) = cl+i0 (j, k)− cl−i0 (j, k); (2.76)

pli0(j, k) = pl+i0 (j, k)− pl−i0 (j, k); (2.77)

For short position:

csi0(j, k) = cs+i0 (j, k)− cs−i0 (j, k); (2.78)

psi0(j, k) = ps+i0 (j, k)− ps−i0 (j, k); (2.79)

The cash constraint in node 0 tackles cash inflow and outflow due to sale and
purchase in the underlying assets, any long position in call and put options is mod-
eled as cash outflow and short position in option is modeled as cash inflow.

Cash Constraint at node 0:

C0 = C̄ +
∑
i∈I

x−i0vi0(1− χ−)−
∑
i∈I

x+
i0vi0(1 + χ+)

−
∑

i,j≤T,k
[cl+in (j, k)Ocin(j, k) + pl+i0 (j, k)Opi0(j, k)](1 + χ+

o )

+
∑

i,j≤T,k
[cs+in (j, k)Ocin(j, k) + ps+i0 (j, k)Opi0(j, k)](1− χ−o )

(2.80)

Asset Inventory Equation: At node n ∈ N − {0}]
It remains the same as there are no modifications done on this part of the model.

xin = xin− + x+
in − x

−
in, ∀ i ∈ I, (2.81)

updating option inventory

For long Position:

clin(j, k) =

 clin−(j, k) if j ≤ tn, ∀ k,

clin−(j, k) + cl+in (j, k)− cl−in (j, k) if j > tn, ∀ k

plin(j, k) =

 plin−(j, k) if j ≤ tn,∀ k,

plin−(j, k) + pl+in (j, k)− pl−in (j, k) if j > tn,∀ k

For Short Position:
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csin(j, k) =

 csin−(j, k) if j ≤ tn,∀ k,

csin−(j, k) + cs+in (j, k)− cs−in (j, k) if j > tn,∀ k

psin(j, k) =

 psin−(j, k) if j ≤ tn, ∀ k,

psin−(j, k) + ps+in (j, k)− ps−in (j, k) if j > tn, ∀ k

We replicate the inventory equations to formulate the long/short option inven-
tory equations. The only difference comes from the maturity of the options. If an
option is at maturity then the position in the option in the previous node is moved
to the current node as it is and it settled in the cash equation. If not, then buying
and selling in that option contract is allowed. The net position would be the sum of
what is held previously and what is bought in the current node less what is sold in
the current node. However, the short position would need to take into account for
margin adjustments. This goes as follows.

mc
in(j, k) = csin(j, k)max(0, vin −Kj

i )

mp
in(j, k) = psin(j, k)max(0,Kj

i − vin)

Cash Constraint in node n:

Cn = Cn−e
rn∆t +

∑
i∈I

x−invin(1− χ−)−
∑
i∈I

x+
invin(1 + χ+)

−
∑

tn≤j≤T,k
[cl+in (j, k)Ocin(j, k) + pl+in (j, k)Opin(j, k)− cs+in (j, k)Ocin(j, k)− ps+in (j, k)Opin(j, k)]

+
∑

tn≤j≤T,k
[cl−in (j, k)Ocin(j, k) + pl−in (j, k)Opin(j, k)− cs−in (j, k)Ocin(j, k) + ps−in (j, k)Opin(j, k)]

+
∑

tn−≤j≤tn,k
[clin(j, k)max(0, vin −Kj

i ) + plin(j, k)max(0,Kj
i − vin)

− csin(j, k)max(0, vin −Kj
i ) + psin(j, k)max(0,Kj

i − vin)]

−
∑
k,j>tn

(mc
in(j, k) +mp

in(j, k)

(2.82)
The cash constraint here is the most complex of all the cash constraints discussed

so far. It is a combination of cash outflows and inflows due to sale or purchase in un-
derlying assets and long or short position in options, cash inflows from the options
expiry and in addition, any margin outflow.

Wealth in node n would be the sum of cash available and value of investments
in long assets and derivatives less the position in short derivatives contracts.
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Wn = Cn +
∑
i∈I

xinvin +
∑

tn<j≤T,k
[clin(j, k)Ocin(j, k)

+ plin(j, k)Opin(j, k)− csin(j, k)Ocin(j, k)− psin(j, k)Opin(j, k)], ∀ n ∈ N
(2.83)

Policy constraints remain the same as in the previous model, non-negativity con-
straints are extended to the new variables introduced.

Policy Constraints:

φLWn ≤ xinvin ≤ φUWn, φL = {φiL}′, φiL ∈ [0, 1], (2.84)
φU = {φiU}′, φiU ∈ [0, 1], ∀ i ∈ I (2.85)

φicLWn ≤ cinOcin(j, k) ≤ φicUWn, φicL ∈ [0, 1], φicU ∈ [0, 1], ∀ i, j, k (2.86)

φipLWn ≤ pinOpin(j, k) ≤ φipUWn, φipL ∈ [0, 1], φipU ∈ [0, 1], ∀ i, j, k (2.87)

Non-negativity constraints:

x+
in ≥ 0, x−in ≥ 0, xin ≥ 0, ∀ i ∈ I, ∀ n ∈ N0,T−1 (2.88)

clin(j, k) ≥ 0, plin(j, k) ≥ 0,

csin(j, k) ≥ 0, psin(j, k) ≥ 0,

∀ n ∈ N0,T−1 cl+in (j, k) ≥ 0, pl+in (j, k) ≥ 0,

cl−in (j, k) ≥ 0, pl−in (j, k) ≥ 0

∀ n ∈ N0,T−1 cs+in (j, k) ≥ 0, ps+in (j, k) ≥ 0,

cs−in (j, k) ≥ 0, ps−in (j, k) ≥ 0

(2.89)

x−i0 ≤ x̄i, ∀ i ∈ I (2.90)

Cash Constraint:

0 ≤ Cn ≤ γCWn, ∀n ∈ N , γC ∈ [0, 1] (2.91)

No decision is made on the leaf nodes.

x+
in = 0; x−in = 0; ncl+in = 0, npl+in = 0, ∀ n ∈ NT , ∀ i ∈ I (2.92)

This completes the model where buying and short selling of option is allowed
before expiry.
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2.4.1 Theoretical Validation of the Generic Model

The theoretical model developed above can be reduced to the single-stage model
we started with, or to the subsequent models we developed. As the asset inven-
tory equations remain the same throughout all these models and the only difference
comes from the options intricacies. We see the option inventory equation of the
generic model first and then start making reductions to it:

For long Position:

clin(j, k) =

 clin−(j, k) if j ≤ tn, ∀ k,

clin−(j, k) + cl+in (j, k)− cl−in (j, k) if j > tn, ∀ k

plin(j, k) =

 plin−(j, k) if j ≤ tn, ∀ k,

plin−(j, k) + pl+in (j, k)− pl−in (j, k) if j > tn, ∀ k

For Short Position:

csin(j, k) =

 csin−(j, k) if j ≤ tn,∀ k,

csin−(j, k) + cs+in (j, k)− cs−in (j, k) if j > tn,∀ k

psin(j, k) =

 psin−(j, k) if j ≤ tn,∀ k,

psin−(j, k) + ps+in (j, k)− ps−in (j, k) if j > tn,∀ k

We first remove the short-selling feature from this model, then we get rid of
cs, ps variables. The model reduces to the buy/sell (long) model with the following
inventory equations. (cl, pl are replace by c, p respectively)

cin(j, k) =

 cin−(j, k) if j ≤ tn,∀ k,

cin−(j, k) + c+
in(j, k)− c−in(j, k) if j > tn,∀ k

pin(j, k) =

 pin−(j, k) if j ≤ tn,∀ k,

pin−(j, k) + p+
in(j, k)− p−in(j, k) if j > tn,∀ k

Next we remove the selling feature from the model to reduce it to a multi-stage
model where options are expiring at any stage (bought only at time 0)

cin(j, k) = cin−(j, k),∀(j, k), j > t(n) (2.93)

pin(j, k) = pin−(j, k), ∀(j, k), j > t(n) (2.94)

Next we reduce it to a model where options are expiring at the subsequent stages,
Yin and Han, 2013b. The option inventory is due to the option bought in that node.

cin(j, k) = c+
in(j, k),∀(j, k), j = t(n+) (2.95)
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pin(j, k) = p+
in(j, k), ∀(j, k), j = t(n+) (2.96)

Finally, to a single stage model, where in node n, nc,np are equal to 0, Topaloglou,
Vladimirou, and Zenios, 2011.

c0n(j, k) = c+
0i−(j, k),∀(j, k), j = T (2.97)

p0n(j, k) = p+
0i(j, k), ∀(j, k), j = T (2.98)

Model Validation: Generic Model

We are now going to validate the model where short positions on options are
considered. To validate the model, we are going to put some constraints in the
model that would restrict the naked short selling of options. We are interested in
short selling but in a hedged environment, short position in options could expose
the portfolio to unlimited losses. Therefore, we implement a vertical spread (bull
call spread) strategy to check its implications in the optimization process.

A bull call spread is formed by buying a call option in-the-money and going short
on a call option which is out-of-the-money, with the same expiry. The constraint for
bull call spread would be:

∑
k∈K∗

cln(j, k) +
∑
k∈K∗∗

csn(j, k) ≤ φsWn, ∀j = t(n), n ∈ N (2.99)

cln(j, k) = csn(j, k), ∀(j, k), n ∈ N , (2.100)

where K∗ and K∗∗ are sets of in-the-money (ITM) and out-of-the-money (OTM)
options. We implemented this constraint in the model and validated it. In the figure
2.1, we show the payoff of a call bull spread formed using 5% ITM and OTM call op-
tions expiring in six months time. In the figure, x-axis and y-axis represent monthly
time steps and strategy payoff respectively. Both profit and loss are capped.

TABLE 2.9: Model Validation: Short Position in options (Hold deci-
sions)

Month 0 1 2 3 4 5 6

Equity 21.366 20.769 19.815 0 0 30.897 30.897
Bond 25.839 26.599 27.94 0 28.629 28.629 28.629
Commodity 0 0 0 0 0 0 0
call option (ITM) 106.83 103.85 99.076 0 0 0 0
CALL Option (OTM) -106.83 -103.85 -99.076 0 0 0 0
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FIGURE 2.1: Call Bull Spread Payoff

TABLE 2.10: Model Validation: Short Position in Options (Price)

Month 0 1 2 3 4 5 6

Equity 1870.8 1893.1 1944.2 1979.5 1927.4 1760.3 1759.9
Bond 1931.2 1917.1 1921.5 1929.3 1940.1 1930.9 1927.5
Commodity 5018.1 4956 4925.3 4902.1 4791.3 4743.6 4611.5
Call Option 5% ITM 95.65 116.34 166.86 202.18 150.05 3.86 0
Call Option 5% OTM 2.59 3.9 13.82 28.12 3.75 0 0

It can be seen from the table 2.9 & 2.10 that short and long positions in options
have changed as the price of the underlying was changing while the number of long
and short options are exactly the same at each time step, the position always re-
mained hedged. The buy/sell decisions in long/short positions in options drive the
optimal investment policy.

So far, we have discussed cash settled European options in the optimization mod-
els. In the next Chapter (3), we are going to discuss an optimization model to update
inventory using physical options.
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Chapter 3

Model Extension Based on
Derivatives’ Inventory

So far, we have discussed models and approaches where options contracts are cash
settled. In this chapter we explore physical settled options contracts in multi-stage
programming framework, this could have a wide applications across various mar-
kets. For instance, a production that needs copper to manufacture its products can
buy copper form a commodity exchange. Options contracts can be used to buy real
copper commodity at the strike price of the option. If options purchased expire in
the money at the maturity then the buyer would have the right to buy the underlying
at the strike price which would be lower than the market price, this way a firm can
accumulate more copper metal from the exchange at a better price than the price in
the retail metal market. On the other hand, for a firm that has copper in its inventory
fearing a decline in the prices of copper in future could use put options contracts to
sell underlying at a price higher than market price.

This approach is not limited to a commodity trader, let us consider a broker who
wants to purchase an amount of shares of a company XYZ over next few months for
his client at a price lower than the market price. He can use options contracts to ac-
cumulate stocks, the objective function in this optimization program gives flexibility
to the trader/broker to achieve an inventory with a certain buying cost, for instance,
VWAP (Volume Weighted Average Price).

Barbaros and Bagajewicz (2004) introduce a model to use inventory and options
to hedge financial risk, they analyze how the shape of the risk curves change when
options are introduced in capacity expansion problem. The study showed that the
usual assumption that with option contracts will by itself reduce the risk exposure at
small profits is not always true, and that proper risk management tools are needed
for this purpose as well. Some authors have also considered futures contracts to
manage inventory. This has seen wide applications where energy derivatives are
involved, (Bertochhi et al (2011)).

In this chapter we confine our research to the use options contracts. The rest
of the chapter is organized as follows. Section 1 of the chapter introduces sets and
parameters that are needed to formulate a stochastic programming model. Section 2
introduces a multistage model. In section 3 we discuss about possible extensions of
the model. Section 4 is dedicated to the model validation.
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3.1 Multi-stage model: Using options contracts to update the
inventory

3.1.1 Sets, Parameters and Variables

We describe here parameters and sets needed to setup multistage model.

Sets

• T , set of discrete time space indexed by t, T : t = {0, 1, 2..., T}

• N , Set of nodes in the scenario tree indexed by n, Nt is the set of nodes at time
stage t
(Every n ∈ Nt has a unique ancestor n− ∈ Nt−1 and for t ≤ T − 1 there exists
a non-empty set of nodes n+ ∈ Nt+1)

• I, set of financial assets, indexed by i

• O, set of vanilla options

– Oc & Op are set of call and put options respectively

– J , set of expiries of the options O, indexed by j, Oj represents the set of
options expiring at maturity j, J : j = {J1, J2...}

– K, set of strikes of the options in O, indexed by k, Ok represents the set of
options with strike price K, K : k = {K1,K2...}, Kj represents the vector
of strikes at maturity j, Kj = {Kj

1 ,K
j
2 ,K

j
3 ....} indexed by kj

Input Parameters

• x̄i, initial position in asset i ∈ I

• c̄, is the initial available cash

• T , length of planning horizon

• χ+ and chi−, are the proportional transaction cost for purchase and sale in
underlying

• χ+
o , χ−o and χo, are proportional transaction costs on buying, selling and exer-

cising option respectively.

• µ, user defined target

• vi0, current price of the asset i per unit face value

• Oci0(j, k), is the price of the European call option on asset i with expiry j and
strike price k

• Opi0(j, k), is the price of the European put option on the asset i with expiry j
and strike price k

Now, we introduce parameters that would model the flow of information along
the scenario tree.

Scenario Dependent Parameters
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• p(n), probability of node n ∈ N such that
∑

n∈NT
p(n) = 1 and for every non-

terminal node p(n) =
∑

m∈n+ p(m), ∀n ∈ Nt, t ≤ T − 1

• vin, price of asset i, in node n

• Ocin(j, k), is the price of the European call option on the asset i in node n, with
strike price equal to Kk,∀Kk ∈ K that expires at tj = J, j ∈ J

• Opin(j, k), is the price of the European put option on the asset i in node n, with
strike price equal to Kk,∀Kk ∈ K that expires at tj = J, j ∈ J

Computed Parameters

Value of the initial portfolio

W_0 = c̄+
∑
i

x̄ivi0, (3.1)

Decision Variables

• x+
in, nominal amount of asset i purchased in node n

• x−in, nominal amount of asset i sold in node n

• xin, nominal amount of asset i held in node n in the revised portfolio

• cin(j, k), units purchased of a European call option on asset iwith expiry j and
strike price k

• pin(j, k), units purchased of a European put option on asset iwith expiry j and
strike price k

We assume that there is no initial position in the options contracts.

c̄i0 = 0,∀i ∈ I, p̄i0 = 0, ∀i ∈ I (3.2)

Auxiliary Variables

• Wn, value of portfolio in node n

We consider a optimization problem to update inventory of the underlying assets
over a six month horizon with monthly rebalancing stages. We assume that options
that are available at a decision stage are expiring at the subsequent stage. This gives
us flexibility to look into choices available to update inventory at the nearest matu-
rity of the derivatives contracts. The optimal strategy is determined for the given
parameter λ, by adopting risk-reward function mentioned in Chapter 2.

max(1− α)E[W T ]− αRζ (3.3)

A0X0 = D0 (3.4)

AnXn− +GnXn = Dn, ∀n ∈ N (3.5)
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The first part is the expected wealth (E[W T ]) (reward) at the planning horizon T
and the second part is a risk measure Rζ (risk), λ is the risk aversion coefficient that
defines how risk averse the investor is. Expected wealth is defined as

∑
pnWn, ∀n ∈

NT . We discuss risk measure in later part in this section. A,G&D are the constraint
matrices and define inventory balance equations, cash balance equations and other
constraints model is subjected to. Xn are the control variables, this vector decides
buy, sell and hold decision for each asset in each node of the tree. The risk measure
Rζ adopted is expected shortfall and is defined as:

Rζ =
∑

[µ̄−Wn]+pn, ∀n ∈ NT (3.6)

Where, µ̄ is user defined target, any scenario that yields wealth (Wn) lower than
this target would be reflected in the expected shortfall, shortfalls are then weighted
by their probability (pn) to calculate the expected shortfall. (10). Portfolio revisions
imply, for t = 0, 1, 2...T − 1 a transition along the tree from the portfolio allocation at
the ancestor node to a new allocation through holding, buying and selling decisions
on individual securities. The last possible revision is at stage T − 1 with one period
to go.

Since, the feasibility region and the optimal strategy are scenario dependent
so their derivation requires the specification of the return coefficients and scenario
probabilities along the tree. We present here next the set of decision variables and
constraints actually implemented to characterize the random constraint matrices
An, Gn, Dn,∀n ∈ N and solve the problem.

We consider three types of constraints, to be satisfied: the inventory balance equa-
tions define the portfolio evolution over time; the cash balance constraints include in
each node all cash inflows and outflows generated by the current strategy; the upper
and lower bounds on the decision vector which define policy constraints on the adopt-
able strategy.

For each node n of the scenario tree and the asset/derivative i, the optimal strat-
egy is defined through the following possible decisions, xin is the nominal amount
held in asset i in node n; cin(j, k) and pin(j, k) is the nominal amount bought in call
and put options contract on asset i in node n with strike k and maturity j respec-
tively; xin+ refers to a buying decision in asset i in node n; while x−in refers to a selling
decision in asset i in node n. All the decision variables are constrained to be non-
negative.

Let x̄i be the initial holding in asset I then the inventory balance equation at root
node can be written as:

Inventory Balance Equation at root node

xi0 = x̄i + x+
i0 − x

−
i0, ∀ i ∈ I (3.7)

The inventory balance constraints reflect the decision problem Markovian struc-
ture: as time evolves, along each scenario, the portfolio evolution will be fully spec-
ified in nominal value through holding, buying and selling decisions. Each such
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decision generates, jointly with other commitments, cash flows in each node result-
ing in cash surpluses or deficits to be compounded to the following stage.

The cash balance constraint is imposed for the first stage in the following way; it
takes into account the number of options contracts bought in the root node n.

C0 =c̄+
∑
i∈I

x−i0vi0(1− χ−)−
∑
i∈I

x+
i0vi0(1 + χ+)

−
∑

j=t+1,k

[c0(j, k)Oc0(j, k) + p0(j, k)Op0(j, k)](1 + χ+
o )

(3.8)

3.1.2 Options Payoff Modeling Approach

Option payoff is a non-linear function unlike other asset, we need to break this non-
linearity somehow in order to make the problem simpler. We need to introduce some
variables that can tell us whether the option at expiry is in the money or not. The
advantage of such variables is two-fold, first, it would get rid of us of the max func-
tion in the equations, so that would translate the problem to a linear system making
it easier for computations etc. Secondly, we are considering nominal amount model
and these variables would help us in tracking number of options, that is going to be
a great help in inventory update problem using physical settled options, it is shown
in the later part of this chapter and then in Chapter 3 in more detail.

We define moneyness (δ) of the call option on asset i with maturity j and strike k
in node n as:

δcin(j, k) = max(vin −Kj
k, 0) (3.9)

Similarly, moneyness for put option would be:

δpin(j, k) = max(Kj
k − vin, 0) (3.10)

We then define an indicator variable λ to check if the options are in-the-money
or not, λ = 1, if δ ≥ 0, otherwise 0. λcin(j, k), λpin(k, j) are the indicator variables for
call and put option respectively having strike k ∈ K and expiring at j ∈ J . The
product of lambdacin(j, k) & δcin(j, k) is the option payoff at maturity.

We now write the equations and above constraints at node n (later than first
stage). The options purchased in the previous stage are going to update the inven-
tory (in case of in-the-money expiry of options). So, first we need to know if the
options have expired in the money or not. This we can track by the indicator vari-
ables defined in chapter 2. If the option expires in the money then λ takes value
equal to 1 otherwise 0. Buy decisions in options are define as cn and pn for call and
put options. Since, we have adopted a nominal amount model, these cn and pn are
actually number of options, therefore, if multiplied by λ we would know the quan-
tities to added or subtracted from the inventory.

Assumption

To make the problem simple, we assume that there exists only stock index in the
portfolio and options are available on stock index, I = {1}, now, we can rewrite
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cin(j, k) as cn(j, k).

Inventory Balance Equation at node n

xin = xin−+x+
in−x

−
in+cn−(j, k)λcn(j, k)−pn−(j, k)λpn(j, k), ∀ i ∈ I = {1}, n ∈ N−{0}

(3.11)
It is clear from the above equation that if a call option expires in-the-money then

it would increase inventory, on the other hand, if a put option expires in-the-money
then that would reduce the size of inventory. The variable λ defined in chapter 2
makes it very simple to model inventory equations.

Next, we write the cash balance constraint at node n.

Cash Balance Constraint at node n

Cn = Cn−e
rn∆t +

∑
i∈I

x−invin(1− χ−)−
∑
i∈I

x+
invin(1 + χ+)

−
∑

j=t(n+),k

[cn(j, k)Ocn(j, k) + pn(j, k)Opn(j, k)](1 + χ+
o )

+
∑

j=t(n),k

k[pn−(j, k)λpn(j, k)](1− χo)−
∑

j=t(n),k

k[cn−(j, k)λcn(j, k)](1 + chio)

(3.12)
This equation reflects the cash inflow and outflow due to purchase and sell of

underlying asset and options and options expiry which is leading to inventory mod-
ification. The j = t(n+) and j = t(n) refer expiries at the next node and the current
node respectively. We buy options that are expiring in the next node (as per our
assumption) and we exercise options at the current node. If call option expires in-
the-money, this would lead to cash outflow as inventory size is going to be increased.
It is reflected in the equation as strike price times the number of options purchased.
Similarly, put options expiring in-the-money reflect cash inflow, with reverse sign.

The wealth at node n is the sum of the market value times the units of all the
assets and derivatives held.

Wn = Cn +
∑
i∈I

xinvin +
∑

j=t(n+),k

[cn(j, k)Ocn(j, k) + pn(j, k)Opn(j, k)], ∀ n ∈ N (3.13)

where Sn = v1n is the price of the stock index (i = 1)

The model includes constraints on the upper and lower bounds on investment
in underlying security through equation 3.14. Let φL and φU be the set of lower and
upper bounds on the underlying. Constraints on options in this model would be
different from those discussed in Chapter 2. Now, the aim is to update inventory
using call and put options. Buying put options give right to sell the underlying at
strike price, therefore, we cannot have more physical put options in out portfolio
than the number of owned underlying assets. This is reflected in the equation 3.16.
It is important to note that we have only at-the-money strike options expiring at the
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next decision stage, this leaves us with exactly one type of option in the portfolio.

As for the call options, it gives us right to buy the underlying at strike price.
Given the self-financing portfolio we are optimizing, we need to limit the number of
call options we can buy to add underlying securities to our inventory at a decision
stage, we don’t want to run into a situation where we do not have enough cash to
buy the underlying in case of in-the-money expiry of the call option. It is not the
case where there is a choice of going for cash settlement or physical delivery. Only
physical options are considered in this model. Equation 3.17 ensures this, product
of strike price of the option and number of options is less then the cash available in
that node (Cn). Equation 3.20 is the cash constraint, γC is the fractional wealth that
is allowed to be kept in the cash account.

Policy Constraints:

φLWn ≤ xinvin ≤ φUWn, φL = {φiL}′, φiL ∈ [0, 1], (3.14)
φU = {φiU}′, φiU ∈ [0, 1], ∀ i ∈ I (3.15)

pn(j, k) ≤ xin, i = 1 (3.16)

k.cn(j, k) ≤ Cn, i = 1, (3.17)

Non-negativity constraints:

x+
in ≥ 0, x−in ≥ 0, xin ≥ 0, ∀ i ∈ I, ∀ n ∈ N0,T−1 (3.18)

cn(j, k) ≥ 0, pn(j, k) ≥ 0, ∀ n ∈ N0,T−1 (3.19)

Cash Constraint:

0 ≤ Cn ≤ γCWn, ∀n ∈ N , γC ∈ [0, 1] (3.20)

The following constraint imposes no decision on leaf node:

x+
in = 0; x−in = 0; cn = 0, pn = 0, ∀ n ∈ NT , ∀ i ∈ I (3.21)

3.2 Possible Extension

Let us consider a trader/broker who holds shares of a company and is willing to add
more shares of the same firm to his portfolio at a price lower than market price while
avoiding risk pf any possible downside movement in the underlying’s price. A pos-
sible solution to this problem would be to use call options to increase the inventory
and to use put options to hedge the underlying against downside movement. This is
a case where we mix of cash and physical settled contracts. In this case the equations
(9 and 10) would change, the new formulation would be:
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xin = xin− + x+
in − x

−
in + cn−(j, k)λcn(j, k), ∀ i ∈ I = {1}, n ∈ N − {0} (3.22)

Compared to equation (9), in equation (21) there is no reduction in inventory size
from the position in the put options. Hence, only call options adding to the inven-
tory.

Cn = Cn−e
rn∆t +

∑
i∈I

x−invin(1− χ−)−
∑
i∈I

x+
invin(1 + χ+)

−
∑

j=t(n+),k

[cn(j, k)Ocn(j, k) + pn(j, k)Opn(j, k)](1 + χ−o )

+
∑

j=t(n),k

[pn−(j, k)max(0, k − vin)](1− χ−o )−
∑

j=t(n),k

k[cn−(j, k)λcn(j, k)]

(3.23)
In equation (22) put options expiring in the money adds cash to the portfolio

while the cash outflow due to in-the-money expiry of the call options remains same
as in the equation (10).

In other scenario where a trader/broker wants to reduce his inventory can for-
mulate the model other way. In equation (23) only put option appears in the inven-
tory equation.

xin = xin− + x+
in − x

−
in − pn−(j, k)λcn(j, k), ∀ i ∈ I = {1}, n ∈ N − {0} (3.24)

In the cash constraint, call options contract is now cash settled, while the put
options are still physical settled.

Cn = Cn−e
rn∆t +

∑
i∈I

x−invin(1− χ−)−
∑
i∈I

x+
invin(1 + χ+)

−
∑

j=t(n+),k

[cn(j, k)Ocn(j, k) + pn(j, k)Opn(j, k)](1 + χ−o )

+
∑

j=t(n),k

[cn−(j, k)max(0, vin − k)](1 + χ−o ) +
∑

j=t(n),k

k[pn−(j, k)λcn(j, k)]

(3.25)



53

Chapter 4

Scenario Generation

A stochastic programming (SP) problem is a math programming problem, with val-
ues of some parameters replaced by distributions. SP can handle only discrete sam-
ples of limited size, so we need to approximate the distribution. The approximation
is called a scenario tree.

4.1 Scenario Generation: Underlying Assets

Scenario tree is an information flow along the planning horizon. Scenario genera-
tion is a part of the stochastic optimization process where all the underlying forecast
processes for assets and risk factors are translated to form a scenario tree that im-
poses information constraint on the decisions. The information flow is modelled by
a filtration of sigma fields At, t = 1.....T , which is associated to a stochastic input
process ξ = (ξT1 ) defined on a probability space (Ω,A,P). Typically, it is required
that the σ− field is generated by the random vector ξ1, ξ2, ....ξT . Then, the infor-
mation or the nonanticipativity constraint means measurability of the decisions xt
with respect toAt for every t = 1, 2, 3...T . t = 1 refers to the present or the root node
of the scenario tree, therefore,A1 = {∅,Ω}. Figure ?? presents a sample scenario tree.

FIGURE 4.1: A Sample Scenario Tree

Any scenario-based approximation of the underlying probability distribution P
of ξ has to reflect the growth of the σ−fields. Hence, the scenarios need to be tree-
structured. In general, there are two ways to generate scenario trees, namely, (i) a
tree-structure is prescribed and scenarios are generated via conditional distributions
for increasing t starting with a root at t = 1, or (ii) in a first step a number of scenar-
ios is generated for the whole horizon t = 1, ...T based on the distribution P and
according to some method, such as Monte Carlo simulation, Quasi-Monte Carlo,
Quadrature rules using sparse grids and optimal quantization of probability mea-
sure. Secondly, a tree structure is generated successively by bundling scenarios. In
our research, we rely on the first technique, we start from the root node, time t = 1
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and produce information using the underlying pricing models to develop an infor-
mation flow from root to leaf (NT ) of the scenario tree. The sequences of realization
are called scenarios at stage t ξ1, ξ2, ....ξt given the conditional probability distribution
of ξt conditioned by past realizations ξ1, ξ2....ξt−1

Having described what a scenario tree is and how the information flow is struc-
tured, we now move to the scenario generation of the underlying assets in our port-
folio. As we are modelling an optimization problem from the perspective of an in-
vestor who wishes to maximize his wealth at horizon, which is six months, the assets
in his portfolio are equity index, fixed income index and S&P GSCI index (formerly
known asGoldman Sachs Commodity Index). Options contracts are available on Equity
index. So, we need to introduce forecasting model for these assets.

We follow a two-layer approach to forecast these time series. The first layer is of
the risk factors, we identify risk factors that describe the underlying assets. The sec-
ond layer is an asset return formulation of the underlying time series derived from
the risk factors and some exogenous variables. We identify short rate (rn), long rate
(ln) and inflation rate (πn) as risk factors, j = 1, 2, 3 respectively. The second layer of
the process is to compute the values of the underlying processesBk

n where k = 1, 2, 3
denote equity, fixed-income and commodity indexes respectively. We assume Cox-
Ingersoll-Ross (CIR) dynamics for these risk factors. The coefficients αj , ωj,∗ and σj

denote, respectively, the mean reversion coefficients, the long-term equilibrium and
the standard deviation for each process, whereas, tn−tn− is the differential time step
between two consecutive nodes n and n−.

Correlation is introduced directly on the realizations ern of three standard normal
variables via the Cholesky elements crj of the correlation matrix. Given the initial
states ωj(0) as ωj0 for t ∈ T , n ∈ N , we have

ωjn = ωjn− + αj(ωj,∗n − ω
j
n−)(tn − tn−)

+ σj
√

(ωjn−)
√

(tn − tn−)(
∑

r=1,2,3

cj,re
r
n) (4.1)

The coefficients of the CIR process are estimated using Maximum Likelihood Method.
In Table 4.1 we report the coefficients that are generated using this mechanism.

We adopt the models developed by Consigli et al., 2012 to model equity and bond
index using these risk factors. Consider an equity benchmark that includes constant
volatility σn, while the drift µn is random and depends on the market prices of risk
λn and the interest rates rn. The coefficient λn is market specific and reflect a varying
risk aversion in the market. This is assumed to depend on the long interest rate ln,
inflation rate πn and the recent market performance (Bn/B̄).

µn = rn + σλn, (4.2)
λn = β0 + β1ln + β2πn + β3(Bn/B̄) + en (4.3)



4.1. Scenario Generation: Underlying Assets 55

B̄ represents the constant average price over a given time while en is the realiza-
tion of the standard normal variable. So, for given initial benchmark value B1

0 , the
following price transition along the tree are derived:

Bk
n = Bk

0 (1 + µn−(tn − tn−) + σ
√
tn − tn−), ∀k = 1 (4.4)

Using the risk factors we derive the fixed income benchmark tree model employ-
ing a duration-convexity approximation. Let D̄ and C̄ be the duration and convexity
of the fixed income benchmark respectively, the evolution of the fixed income bench-
mark is determined through the following equation:

Bk
n = Bk

n−(1− D̄(ln − ln−) + 0.5C̄(ln − ln−)2 + ln(tn − tn−)),∀k = 2 (4.5)

This completes our model for fixed income benchmark. Next, we introduce a
model for pricing GSCI commodity index. Instead of using any established model
for forecasting commodity, we adopt econometrics technique to develop a model
for GSCI index. This requires to identify the key factors that best approximate the
performance of GSCI index. We reviewed literature for this to know the drivers of
commodity index.

Historically, commodities have shown positive correlation with inflation rate and
change in inflation rate both in short-run and in long-run. Some studies have taken
a longer-run perspective. Gorton and Rouwenhorst, 2006 find that correlations be-
tween commodity futures returns and inflation tend to rise and become statistically
significant as the horizon lengthens. Adams et al., 2008 also conclude that correla-
tions between commodities, measured using GSCI excess returns, and U.S. inflation
rises with the investment horizon, although these positive correlations do not hold
consistently for inflation in the euro area and Asia. Worthington and Pahlavani, 2007
presented evidence of the long-run hedging properties of gold based on a positive
long-run relationship between gold and U.S. inflation in the post-war period.

Becker and Finnerty, 2000 attempted to incorporate futures leverage into the
analysis by constructing levered indexes, which scale futures returns by a multi-
plier. They find that commodity futures serve as an inflation hedge, with the degree
of protection increasing as the commodity futures are levered. This gives us the mo-
tivation to include inflation and change in inflation rate as the factors for developing
a model for GSCI index.

Commodities have also shown negative correlation with stocks and bond market
and therefore, been a good financial instrument for diversifying a portfolio. A high
negative correlation has existed between stock and commodity prices over the past
140 years, Zapata, Detre, and Hanabuchi, 2012. Some early observers of commod-
ity markets Bannister and Forward, 2002; Rogers, 2007 note that the history of U.S.
stock and commodity prices has been characterized by recurring super cycles that
last several decades. These observations make it evident to include the performance
of the stock and bond market as drivers for commodity index. Since, commodities
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prices are heavily driven by demand and supply in the physical market, it is neces-
sary to include lagged variables of dependent variable in order to derive the return
dynamics.

We reviewed different approaches to estimate this model, Vector Autoregressive
method (VAR), Vector Error Correction Mechanism (VECM), and the third method
where we formulate an autoregressive distributed lagged (ARDL) model.

The classical VAR method and VECM method are used to generate scenarios.
The key concern here is the number of parameters estimated in VAR and VECM
methods that the model could actually be inefficient and in that case it owuld be vul-
nerable to type II error. Conventional regression estimators, including VARs, have
good properties when applied to covariance-stationary time series, but encounter
difficulties when applied to non-stationary or integrated processes which is the case
here. These difficulties were illustrated by Granger and Newbold, 1974 when they
introduced the concept of spurious regressions. If we have two independent random
walk processes, a regression of one on the other will yield a significant coefficient,
even though they are not related in any way. VECM method is the extension of VAR
method where two or more time series are co-integrated. The model is fit to the
first differences of the non-stationary variables, but a lagged error-correction term is
added to the relationship. This addition of term leads to loss in degree of freedom.

Next, we consider ARDL (autoregressive distributed lags) method where we in-
clude one lagged variable of GSCI index with a constant term, we include equity
market performance and fixed income market performance as exogenous variables
and inflation rate as a risk factor. The equation for modelling GSCI index returns
(j = 4) is the following:

ωjn = βj0 + βj1(B1
n −B1

n−)/B1
n− + βj2(B2

n −B2
n−)/B2

n− + βj3ω
j=3
n + βj4ω

j
n−

+ β5(ωj=3
n − ωj=3

n− ) + σj
√
tn − tn−en

(4.6)

Bk
n = Bk

n−(1 + ωj=4
n ) (4.7)

We estimated the parameters of the above model using OLS method. On the
next page we present the model coefficients for the period May 2008 to May 2014,
first we transform the monthly data to annual data points by taking annual returns
at monthly frequency on rolling basis. It turns out that the performance of the eq-
uity index, change in inflation rate and lagged variable of first order of GSCI index
returns are significant in approximating GSCI returns. The model has an impressive
R-squared value and the error terms did not show autocorrelation upto 12th order
that is significant at 99% confidence level.

GSCI Model: OLS, using observations 2008:05–2014:05 (T = 73)
Dependent variable: GSCI
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Coefficient Std. Error t-ratio p-value

SP500 0.173856 0.0542959 3.2020 0.0021
dinfl 7.03558 1.87614 3.7500 0.0004
GSCI_1 0.813304 0.0394863 20.5971 0.0000

Mean dependent var −0.010112 S.D. dependent var 0.269500
Sum squared resid 0.496064 S.E. of regression 0.084182
R2 0.905274 Adjusted R2 0.902568
F (3, 70) 222.9916 P-value(F ) 9.65e–36
Log-likelihood 78.60761 Akaike criterion −151.2152
Schwarz criterion −144.3438 Hannan–Quinn −148.4768
ρ̂ −0.119793 Durbin’s h −1.087260

LM test for autocorrelation up to order 12 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 1.62913
with p-value = P (F (12, 58) > 1.62913) = 0.108659

We calibrate and run the above models for the period May 2008 to March May
2014. The figures 4.2- 4.7 below show the effectiveness of the models presented.
Table 4.1 presents the estimates of the parameters obtained by fitting Cox-Ingersoll-
Ross model. These parameters are used in set of equations 4.1. Starting from 15th
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TABLE 4.1: Estimates of the CIR model fitted on the risk factors

Cholesky Matrix Speed Level Sigma

Short Rate 1.1417 0 0 0.8265 0.6885 0.5538
Long Rate 0.6558 0.4583 0 0.6019 3.3989 0.3954
Inflation Rate 0.4665 -0.1847 1.4898 0.01 0.2057 0.0476

May 2014, we simulate rates and prices for risk factors and indexes for the next six
months at monthly time step by taking into account history from May 2008. We
adopt [1 10 3 3 3 3 3] tree structure for the scenario generation process. The fan plot
shows the distribution of the rates or index prices over the next six months. The
red zone in the fan plot is the region where most of the scenarios are realized. The
yellow ones have low regional density. The dark black line in the plots is the mean
scenario which is defined as the 50th percentile of the distribution of the terminal
stage values. The blue dotted line is the actual market dynamics, it extends from
12 data points in the past (one year history) to the next six data points in the future
(monthly values).

FIGURE 4.2: Short Rate

FIGURE 4.3: Long Rate
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FIGURE 4.4: Inflation Rate

FIGURE 4.5: S&P500 Equity Index

FIGURE 4.6: US-AGG Bond Index
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FIGURE 4.7: GSCI Index

What is more relevant from the above figures is that first month value was cap-
tured in all the simulations for all the risk factors and as well as for all the indexes.

4.2 Scenario Generation: Options

To price options on a scenario tree has been a challenging and debatable topic for
researchers for many years. Starting from the Black-Scholes formulation to price op-
tions in a risk neutral environment the literature has expanded to many empirical
studies. Several empirical studies show that Black-Scholes mis-price the deep OTM
options, Rubinstein, 1985.

Dempster and his collaborators (Dempster, Hutton, and Richards, 1998; Demp-
ster and Hutton, 1999; Dempster and Richards, 2000) developed and tested many
techniques to price American options within Black-Scholes framework. So far the
volatility had been treated as a constant parameter. The structure of asset prices
is then calibrated using binomial and trinomial lattices. Rubinstein, 1994, Jackw-
erth and Rubinstein, 1996 and Derman, Kani, and Chriss, 1996 worked on these
approaches. While in the late 90s when stochastic optimization was becoming pop-
ular a little work had been done price derivatives on a multinomial scenario tree.

Topaloglou, Vladimirou, and Zenios, 2008b talked about two techniques for pric-
ing options on a scenario tree. Starting with multinomial tree where an optimization
program needs to be run to calculate the risk neutral probabilities. Hence, it gets
computationally inefficient as the size of the underlying tree expands. The second
method however, is an empirical approach that extends the Black-Scholes frame-
work to take into account higher moments (skewness and kurtosis). So, the calcu-
lation of the option prices becomes much simpler. As the price of an option can be
expressed in a simple linear equation.

So far in the literature, where stochastic optimization techniques have been used
on a portfolio that includes options, either multinomial tree approach has been used
or Black-Scholes model or moment matching methods have been used. Most of the
researchers, have considered options expiring at the next decision stage and there-
fore, it becomes less relevant to price option, as there is no worth of the options at
the subsequent decision stage, either they expire in-the-money adding cash to the
cash account or they expire worthless.

It becomes more relevant to price options in multi-stage stochastic programming
framework when options are not expiring at the next stage. As they carry a value
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that needs to be correctly calculated to avoid any spurious profits or losses.

We use here a simple yet effective approach to price options on a scenario tree.
We utilize the Greeks information of options to price them. The Greeks are the
quantities representing the sensitivity of the price of derivatives such as options to
a change in underlying parameters on which the value of an instrument or port-
folio of financial instruments is dependent. We use Delta-Gamma approximation,
Estrella and Kambhu, 1997 and it works well for pricing options at one month time
step which is consistent with the discrete time steps of planning horizon of our in-
vestment planning problem.

In general, in-the-money options will move more than out-of-the-money options,
and short-term options will react more than longer-term options to the same price
change in the stock. This fluctuation of prices with maturity and moneyness add
more complexity to the option pricing. Since, OTM options have low premium, so
even a small absolute change in the option price value would reflect a higher change
in relative terms. An OTM option trading at $2.5 if has a positive absolute change
of $0.5 that means it has sored up 20%, while the absolute change is small. Such op-
tions can proved to be very lucrative if the price of the underlying security moves in
favorable direction. However, pricing of such options on scenario tree can generate
spurious profits and loss.

The delta-gamma approximation is used to estimate option price movements if
the underlying stock price changes. This approach is better than the delta approxi-
mation approach which is linear and since the option price is a non-linear function
of the stock price we need to introduce another sensitivity parameter that can tackle
this non-linearity. To take account of this we can use gamma to make our option
price estimate more precise. Delta-gamma makes our approximation non-linear.

The delta-gamma approximation for call options is can be expressed with the
following equation.

c(ST+1) = c(ST ) + ∆(ST )(ST+1 − ST ) + 0.5Γ(ST )(ST+1 − ST )2 (4.8)

where, ∆(ST ) is the delta of the stock option on the underlying series S at time
T

where, Γ(ST ) is the gamma of the stock option on the underlying series S at time
T

∆(ST ) is approximated using Black-Scholes probabilities d1 and d2, whereN(d1)
is the delta of the call option and N(d2) is the probability that option would expire
in the money.

Gamma of call option is expressed as:

Γ = K exp−rt φ(d2)/(S2σ
√
t) (4.9)

The same formula can also be used for put options, delta of put option is neg-
ative, so if the price of the underlying would increase means the price of the put
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option would decrease. We tested the reliability of this approach on options market
data and found it quiet consistent. We present below some results to make it clear for
the readers that this approach can be used in scenario tree nodal framework. Then
we move on to the nodal formulation of these equation to make it consistent with
the optimization models presented earlier.

We test the accuracy of this approach on real market data. The method is applied
to call and put options, both in-the-money and out-of-the-money of different strikes
and maturities. The figure below shows market price of call and put options and
the model price, the second subplot in the figures show tracking error with respect
market price. Each bar in the figures is names as ’Call12142000’, which corresponds
to European type call option expiring in December 2014 that has strike price 2000.
The first four characters correspond to type of European option, next two characters
correspond month of expiry, then the following two characters correspond to year
of expiry and the last four characters are the strike price of the option.

In the figure 4.8, call option prices are predicted on 15th July,2014 for 15th Au-
gust, 2014. Since, we have planning horizon of six months with monthly rebalancing
stages, so it becomes more relevant to check the accuracy of this method at monthly
frequency. It can be seen from the figure that options that are deep out-of-the-money
have the highest tracking error in price prediction. We define tracking error as cur-
rent market price less the model price divided by the current market price. As ex-
plained earlier, when the price value is small then even a small absolute change
would be reflected as a high relative change, this is clearly seen in the OTM options
price prediction here. Options trading at USD 2 are predicted to have price around
USD 3.5, which is actually 75% more than the market price. While in the case of
at-the-money or in-the-money options the tracking error remains quite small. As
the price of the option increases accuracy of the delta-gamma price approximation
increases.

The same behaviour in price prediction (fig 4.9) is observed in call options price
prediction on 25th August, 2014 at 24th September, 2014. Higher the option pre-
mium, lower the tracking error. The same is observed with put options prices (fig-
ures 4.10 and 4.11). It is interesting to note that in most of the cases tracking error
remains lower than 5%, the delta-gamma approximation may be a rough approach
to option pricing but still comparable to the approaches discussed by Topaloglou,
Vladimirou, and Zenios, 2008b, we observe more error when we price out-of-the-
money options.
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FIGURE 4.8: Call Option Price Prediction

FIGURE 4.9: Call Option Price Prediction
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FIGURE 4.10: Put Option Price Prediction

FIGURE 4.11: Put Option Price Prediction
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A less relevant analysis in this context is the option price prediction on daily ba-
sis, this however, has shown impressive results. Fig 4.12 and Fig 4.13 shows market
price and the model price in the upper subplot, on the right y-axis is the performance
of the underlying S&P500 index. In the lower subplot, we plot the tracking error and
it is found to be within 5% from the actual price. This motivates that shorter the price
prediction time step, more accurate the price would be. This also motivates to follow
this approach where we have nested simulation in the event tree or when optimiza-
tion problem has frequent rebalancing stages.

FIGURE 4.12: Daily price prediction using Delta-Gamma Approxima-
tion

FIGURE 4.13: Daily price prediction using Delta-Gamma Approxima-
tion
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4.2.1 Nodal Representation of Delta-Gamma Approximation for Option
Pricing

It is important to map the delta-gamma approximation in a logical conformable way
to the description of the underlying process and the discrete time dynamic stochas-
tic optimization program in order to complete the definition of a stochastic program.

Let cin(j, k) be the price of call option on asset i in node n having maturity j and
strike k. Let ∆c

in(j, k) and Γcin(j, k) be the delta and gamma Greeks of that option in
node n. The equation then can be rewritten as:

cin(j, k) = cin−(j, k) + ∆c
in(j, k)(vin − vin−) + 0.5Γcin(j, k)(vin − vin−)2 (4.10)

Similarly, the equation for pricing put option would be:

pin(j, k) = pin−(j, k) + ∆p
in(j, k)(vin − vin−) + 0.5Γpin(j, k)(vin − vin−)2 (4.11)

4.3 Arbitrage Free Pricing and In-sample Stability Analysis

It is important to check the scenarios for arbitrage opportunities. Any such opportu-
nity would generate spurious profits in the wealth distribution obtained from the op-
timization program, hence, making it difficult to analyse actual realised returns, we
may see unrealistic gains in the that make no sense in the real world. No-arbitrage
scenario generation has been discussed by many researchers. Some famous studies
were, Klaassen, 1997,Klaassen, 1998, Dupačová, Consigli, and Wallace, 2000,Høy-
land and Wallace, 2001 and Consiglio, Carollo, and Zenios, 2016.

We adopt Klaassen, 2002 approach for precluding arbitrage opportunities in multi-
stage scenario tree. In Ingersoll, 1987, two types of arbitrage opportunities are dis-
cussed, type 1, where it is possible to construct a zero investment portfolio that has
non-negative payoff in all states of the world and type 2 arbitrage opportunities,
where we construct a portfolio with negative wealth and end up with non-negative
payoff in at least one state of the world. The inclusion or exclusion of type 1 ar-
bitrage opportunity does not imply inclusion or exclusion of type 2 arbitrage op-
portunity. Hence, both opportunities should be checked while generating scenario
trees. Klaassen, 2002 presented a single check by which it is possible to check both
type of arbitrage opportunities at the same time. If the set of equations 4.12 has a
strictly positive solution then arbitrage opportunities of type 1 and type 2 do not ex-
ist, where N is the number of children nodes at the subsequent decision stage, Rn is
the return in children nodes. If there exists a solution (X > 0) to this system of linear
equation then scenario tree between between time t and t + 1 is arbitrage free. It is
important to note that the method assumes equally probable scenarios in the future
states of the world and this may not be the case in real world. Consiglio, Carollo, and
Zenios, 2016, discussed two types of system of equations where they considered sce-
narios with equal and different probabilities. We do not get into this approach and
limit ourselves to equally probable scenarios and adopt Klaassen, 2002 approach.

The set of equations 4.12, guarantees arbitrage free scenario tree from time t to t+
1. In multi-stage setting, this needs to be checked for all the stages before the horizon.
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The methodology we follow is shown in the pseudo-code 1. We generate a scenario
tree at first node by generating risk factors and the price of the underlying securities
discussed in section 4.1, we check for arbitrage opportunities, if exist, we generate
the scenario tree again until we get arbitrage free scenario tree. Once we obtain
an arbitrage free scenario tree at the first node, we proceed to the next node and
generate arbitrage free for its children nodes. We do this until we have populated all
the nodes of the scenario tree for all the underlying assets. Once, we have generated
underlying asset scenario tree, we can compute option prices in all the nodes using
delta-gamma approximation discussed earlier. Another important aspect here is to
discuss any arbitrage opportunities due to options in the investment universe. This
can be checked while solving the optimization problem, we set no constraints on
the investment in options and if this gives us an unbounded solution then it means
arbitrage opportunities exist.

N∑
n=1

vn(1 +Rni,t+1) = 1, ∀ i = 1, 2, 3.. (4.12)

Algorithm 1 Arbitrage-free scenario tree generation (Underlying assets)

1: given αj , ωj,∗, σj

2: given ωj(0) and Bk(0) ∀j = 1, 2, 3 and k = 1, 2, 3
3: N0,T−1: Set of nodes from stage 1 to stage T-1
4: procedure NOARBITRAGETREE(N0,T )
5:
6: for each item n in N0,T−1 do
7: N ← children nodes of n
8: while No arbitrage do
9: given ωj(n−) and Bk(n−) ∀j = 1, 2, 3 and k = 1, 2, 3

10: compute ωj(n) and Bk(n) ∀j = 1, 2, 3 and k = 1, 2, 3
11: Solve equations 4.12
12: if X > 0 then
13: No arbitrage = True
14: end if
15: end while
16: end for
17: end procedure

4.3.1 In-sample Stability

In optimization framework arbitrage free event trees are required to produce real-
istic results by avoiding any spurious profits arising from arbitrage opportunities.
However, solution to these optimization problem depends on the distribution of the
scenario tree. Different distribution can give different results, therefore, we must
generate enough scenarios such that going beyond a certain number of scenarios the
optimal solution does not change significantly. Hence, in-sample stability of these
models is required.

We run the optimization program for different number of scenarios. Investment
universe includes S&P 500 equity index, US Aggregate bond index, S&P GSCI com-
modity index and at-the-money call and put options on equity index, expiring in the
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TABLE 4.2: Value of the objective function vs number of scenarios

Scenarios Model Status Value of the Objective Function % Change in Obj Function Value

972 1 37318
1215 1 37536 0.005824688
1458 1 38274 0.019470342
1701 1 37714 0.014739436
1944 1 37726 0.000318134
2187 1 37635 0.002415043

subsequent decision stages. We test the model discussed in section 2.3.1.

Table 4.2 shows how the value of the objective function changes with the num-
ber of scenarios. We adopt [1 4 3 3 3 3 3] branching structure. At each iteration,
we increase the value of the first stage branching degree by 1. First column shows
the number of scenarios, increasing from 972 to 2187 scenarios. Second column has
got model status, its value equal to 1 means optimal solution has been achieved.
Third column has the value of the objective function at optimality and the last col-
umn has the percentage change in the value of the objective function (wrt previous
value) when we increase the number of scenarios. As we move from 972 number of
scenarios to 2187, we see that value of the objective function does not change much
when we reach 1701 number of scenarios. At 2187 scenarios, value of the objective
function has changed 0.2% and this change is acceptable given a reasonably large
number of scenarios. Next, we run the optimization program 50 times for different
set of scenarios with the branching structure [1,9,3,3,3,3,3].

FIGURE 4.14: Value of the objective function

Figure 4.14 shows the value of the objective function for 50 different set of sce-
narios. It is found that the optimal value does not change significantly. Figure 4.15
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FIGURE 4.15: Value of the objective function

shows the deviation of each of the optimal objective function value from the mean of
the 50 objective function value. It can be seen that the deviation is within the range
of 2% and it confirms that in-sample results are pretty stable.

In the next chapter, we discuss results of the optimization models discussed in
the previous chapter using the scenario generation techniques discussed here.
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Chapter 5

Numerical Results

In this chapter we present results generated from the models discussed in the previ-
ous chapters, we collect some evidences from them. We start with the model where
options are expiring in the next stage. We study the in-sample results of this model,
then we check its performance on three year data (June 2014 - March 2017, in out-of-
sample analysis case). We then present results for the model where options selling is
allowed before their expiry and for the model where short position in options con-
tracts are considered. Finally, we produce results for the inventory update model
using derivatives and close the chapter with the summary of this research work and
its possible extensions in future.

5.1 Multistage Model-Options Expiring at the next stage

We first present results of the multi-stage model where options are assumed to be ex-
piring on the next decision stage. We model the problem from the perspective of an
investor who wishes to maximize his wealth at the end of planning horizon which
is six months. Investor is open to invest in equity, bond, commodity and options on
equity index. We use the multi-stage model discussed in chapter 2. We go by doing
the statistical analysis to generate scenario tree, branching structure considered for
the scenario tree is [1 9 3 3 3 3 3], that generates 2187 scenarios for equity, bond, com-
modity and options. The model used for pricing these securities are discussed in
chapter 4. Target set at the end of six months is 110000 USD. The objective function
used is maximization of wealth penalized by a risk measure(expected average short-
fall), risk aversion coefficient equal to 0.5. We use monthly data to develop statistical
models. The available cash at the beginning is 100000$ and there is no position in
any security. Data from May 2008-March 2017, is collected from Datastream5.1. We
divide the data into two parts to carry out the in-sample and out-sample analysis.
We truncate the data at May 2014 to see what adopted strategies have yielded in the
future data. All the computation is done on Matlab 2013a and GAMS 2.7 platforms.

We consider a simple case where only equity and equity options are there in
the portfolio. We see how the wealth distribution changes when we adopt dif-
ferent strategies. We test long straddle, strap, strip and protective put strategy.
These strategies have been discussed by Topaloglou, Vladimirou, and Zenios, 2011
in stochastic programming framework. The model here we adopt is the one dis-
cussed in section 2.3.1, which is equivalent to the model presented by Yin and Han,
2013b. Table 5.1 shows the portfolio composition in the worst case scenario. We con-
straint the number of call and put options in our portfolio to not be more than the
units of underlying equity index.



72 Chapter 5. Numerical Results

TABLE 5.1: Equity and long straddle on equity options

Month 1 2 3 4 5 6 7

Cash 0 4.59 9802.78 0 0 0 1847.2
Equity 99980.00131 99975.4133 90176.23932 99976.1059 99975.9037 99975.39972 98128.01214

Call Option 596.843014 601.8528273 542.1821531 613.1618504 607.1774831 609.0012182 0
Put Option 554.7901763 549.9272523 496.6752633 539.1974147 544.9805089 543.2367488 0

Wealth 101131.6345 101131.7834 101017.8767 101128.4652 101128.0617 101127.6377 99975.21214

Table 5.1 shows the portfolio composition in the worst scenario, we identify
worst scenario corresponding to 0th percentile of wealth distribution at the leaf
nodes (terminal stage). The first row in the table is the cash held at each decision
stage, the second row gives the position in equity, 3rd and 4th row give position
in call and put option, respectively, and the last row is the wealth of the portfolio
over time. Month 0 correspond to decision taken at time 0, then subsequent decision
stages are followed at one month frequency. We observe from the table that wealth
decreases by 0.025% in the worst scenario over six months time, i.e. in the worst case
if we are not able to make then at least we are not loosing a significant part of the
wealth. Let us also have a look at the distribution of wealth at the final stage. We
plot cumulative distribution function and histogram to see the frequency distribu-
tion. Fig 5.1 and 5.2 show CDF and histogram plot respectively.

FIGURE 5.1: CDF plot: Equity Index and Long Straddle

FIGURE 5.2: Wealth Distribution: Equity Index and Long Straddle

The distribution shows profit in most of the cases at horizon, maximum loss ob-
served was 0.025%, however the probability of this event is very small. Most of
the scenarios are centred around 25% gain. Distribution show more upside poten-
tial than downside risk. We present here next portfolio composition and wealth
corresponding distribution and histograms in different cases, when strap, strip and
protective put strategies are considered.
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TABLE 5.2: Equity and strap strategy on equity options

Month 1 2 3 4 5 6 7

Cash 0 4.59 9802.78 0 0 0 1847.2
Equity 99980.00131 99975.4133 90176.23932 99976.1059 99975.9037 99975.39972 98128.01214

Call Option 1193.686028 1203.705655 1084.364306 1226.423516 1214.256813 1217.905601 0
Put Option 554.7901763 549.9272523 496.6752633 539.1974147 544.9805089 543.2367488 0

Wealth 101728.4775 101733.6362 101560.0589 101741.7268 101735.141 101736.5421 99975.21214

TABLE 5.3: Equity and strip strategy on equity options

Month 1 2 3 4 5 6 7

Cash 0 0 0 0 0 0 266.89
Equity 99980.00131 100118.1976 104033.0241 104901.5653 105248.5099 110088.7424 109955.2816

Call Option 1193.686028 1224.945622 1260.171555 1265.481166 1262.063972 1322.614478 0
Put Option 1109.580353 1083.059334 1137.222063 1151.8253 1162.857949 1213.891629 0

Wealth 102283.2677 102426.2025 106430.4177 107318.8718 107673.4318 112625.2485 110222.1716

TABLE 5.4: Equity and protective put strategy on equity index

Month 1 2 3 4 5 6 7

Cash 0 4.59 9802.78 0 0 0 1847.2
Equity 99980.00131 99975.4133 90176.23932 99976.1059 99975.9037 99975.39972 98128.01214

Call Option 0 0 0 0 0 0 0
Put Option 554.7901763 549.9272523 496.6752633 539.1974147 544.9805089 543.2367488 0

Wealth 100534.7915 100529.9306 100475.6946 100515.3033 100520.8842 100518.6365 99975.21214

It can be seen from the figures 5.1-5.8, that wealth distribution in each case is
more concentrated in the upper region where wealth is higher than the starting
wealth level which is 100000. The probability of facing losses is small. Almost, in all
the scenarios wealth is seen to be increasing, may be because of arbitrage, we discuss
later. We present worst case scenario for protective put case. We observe a decrease
in wealth by 0.025%, it is however not less in magnitude as compared to other cases
where loss was around 0.025% in the worst case. A protective put strategy is a sort of
insurance against any down-trending market. Maximum loss in this strategy is the
net premium paid to buy put option. Next, we plot distributions in various cases.
Interestingly, when we double the number of put option as compared to call option
(strip strategy) we see significant changes in the portfolio wealth in the worst case.
In the worst case, when equity market is bearish, put options are proving profitable.
We present a comparative analysis of all these strategies in fig 5.9 and 5.10.
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Figure 5.9 and 5.10 summarize the four strategies, it is found that on the same set
of scenarios protective put strategy has the least risk but at the same time it has the
lowest profitability. Other strategies have outperformed protective put, strip gives
the best returns in most of the scenarios, however, it is a scenario dependent phe-
nomenon, had scenario of equity been increasing then strip was going to perform
better. It is evident from the plots that protective put does give good protection but
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limits the upside potential, hence a mix of strategies could be more profitable here.

FIGURE 5.9:
CDF plot
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Now, we analyse a portfolio where we have equity, bond and commodity indexes
and options available on equity index. We consider minimum 60% fixed income se-
curities in our portfolio, commodities are capped at 15% and equity is free take any
value between 0 to 40%. The cash account is also set free, there is no minimum cash
requirement or liquidity issues. Table 5.5 shows the portfolio composition in the
worst scenario where no options were included in the portfolio. Figure 5.11 and 5.12
plot the wealth distributions. We then consider cases where options are considered
in the portfolio through straddle, strap, strip and protective put strategy using call
and put options on equity index.

TABLE 5.5: Portfolio of equity, bond and commodity indexes (Worst
scenario)

Month 1 2 3 4 5 6 7

Cash 0 24503.9 0 0 0 0 0
Equity 39980.00837 0 0 0 39953.15358 0 0
Bond 60000.00862 58809.34899 97674.37646 99230.25875 59929.73094 99025.86802 98921.67495

Commodity 0 14702.36145 0 0 0 0 0
Call Option 0 0 0 0 0 0 0
Put Option 0 0 0 0 0 0 0

Wealth 99980.017 98015.61044 97674.37646 99230.25875 99882.88452 99025.86802 98921.67495
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TABLE 5.6: Equity, Bond, Commodity and equity options straddle
strategy (worst scenario)

Month 1 2 3 4 5 6 7

Cash 0 0 0 0 0 103.54 0
Equity 39980.00837 40475.54377 0 0 0 37386.07574 35200.85535
Bond 60000.00862 60713.32762 98850.87892 99804.42491 59956.76313 61503.08741 60783.29137

Commodity 0 0 0 0 0 0 0
Call Option 238.6701948 239.8675324 0 0 0 227.1170084 0
Put Option 221.8537812 226.2348624 0 0 0 203.666453 0

Wealth 100440.541 101654.9738 98850.87892 99804.42491 59956.76313 99423.48661 95984.14672

TABLE 5.7: Equity, Bond, Commodity and Strap Strategy on equity
options (worst scenario)

Month 1 2 3 4 5 6 7

Cash 0 0 0 0 0 103.73 0
Equity 39980.00837 40549.94618 0 0 0 37454.78275 35265.54643
Bond 60000.00862 60824.92141 99032.56676 99987.86537 60066.95793 61616.12253 60895.00359

Commodity 0 0 0 0 0 0 0
Call Option 477.3403896 480.7514527 0 0 0 455.1034566 0
Put Option 221.8537812 226.6609168 0 0 0 204.0996016 0

Wealth 100679.2112 102082.28 99032.56676 99987.86537 60066.95793 99833.83834 96160.55002

TABLE 5.8: Equity, bond, commodity and strip strategy on equity
options (worst scenario)

Month 1 2 3 4 5 6 7

Cash 0 0 0 0 0 197.96 0
Equity 39980.00837 40475.54377 39754.18136 39498.36149 40332.52468 35740.20808 33651.18884
Bond 60000.00862 60713.32762 59631.2688 59247.53969 60498.79243 67109.34652 66323.93812

Commodity 0 0 0 0 0 0 0
Call Option 238.6701948 239.8675324 239.5366994 239.340033 242.44296 217.1667524 0
Put Option 443.7075624 452.5762384 436.8645321 431.5268514 444.3539371 389.4005556 0

Wealth 100662.3948 101881.3152 100061.8514 99416.76807 101518.114 103654.0819 99975.12696

TABLE 5.9: Equit, Bond, Commodity and Protective Put strategy us-
ing equity options (worst scenario)

Month 1 2 3 4 5 6 7

Cash 0 0 0 0 0 105.22 0
Equity 39980.00837 40401.1604 0 0 39897.7177 37992.44971 35771.78669
Bond 60000.00862 60601.73383 98669.19108 99620.98445 59846.56833 62500.63061 61769.15991

Commodity 0 0 0 0 0 0 0
Call Option 0 0 0 0 0 0 0
Put Option 221.8537812 225.8088081 0 0 219.7500106 206.9583821 0

Wealth 100201.8708 101228.703 98669.19108 99620.98445 99964.03604 100805.2587 97540.9466
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Figures 5.11 -5.20 show optimal wealth distribution when options are used through
straddle, strap, strip and protective put strategy in the portfolio. In all the distribu-
tions, wealth is increasing significantly at the planning horizon. However, this may
not be the case in reality, we talk about this in the later part of this chapter. We also
present a comparative analysis of all these strategies. Figures 5.21 and 5.22 show the
wealth distribution in various strategies. It can be clearly seen that no option port-
folio is trailing behind all other portfolios, while maintaining a close gap with pro-
tective put strategy. While the left tail of the no-option portfolio is longer than pro-
tective put portfolio. Other strategies however, have shown a different but expected
behaviour. Straddle, Strip and Strap tend to outperform the other two portfolios.
It is to be noted that these three strategies have longer left tails than the protective
put strategy. It is because of the fact that these strategies work under certain market
conditions. For instance, a straddle would have profit potential if the market experi-
ences high volatility. If not, the investment in options to achieve a straddle strategy
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would be worthless. The same applies to other strategies. It is to be noted that op-
tions are considered only on equity index, whilst we have other two securities in our
portfolio as well. Considering options on individual security would definitely yield
better results. Since, the equity fraction in this portfolio is capped at 40%, the effects
of including options are minor but significant from risk management perspective.
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Having seen the performance of this model on simulated data, its now time to
check the out-of-sample performance of the multistage model where options are
expiring at the next decision stage. Keeping the above constraints and initial param-
eters same, we run this algorithm for the period May 2014- March 2017. Figure 5.23
shows the portfolio performance using different strategies.

We test straddle, strip, strap and protective put strategies, we report their perfor-
mance along with the equity, bond and fixed-mix strategy (where equity constitutes
25%, bond, 60% and commodity 15% of the portfolio ). We also add one more strat-
egy where we allow speculation on call options on the basis of event trees generated

FIGURE 5.23: Out-of-sample: Portfolio performance of Equity, Bond,
Commodity and Equity Options
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FIGURE 5.24: Out-of-sample: Portfolio composition of Equity, Bond,
Commodity and Equity Options

at each rebalancing stage, we restrict investment in options at 1 basis point wealth
of the portfolio.

Call options when used for speculation seem more profitable but also make port-
folio more volatile. Portfolio where call options were bought for speculation has
more volatility than the volatility of the equity index. However, the returns of this
portfolio are correlated to the equity returns. Showing that, even a small amount of
wealth used in call option made the portfolio more exposed to its underlying. While,
bond index has minimum 60% weight in the portfolio, the returns are seen to be far
from fixed income benchmark. Please see figure 5.24. On the other hand, protective
put strategy tends to give good protection to the portfolio. The wealth level over
three years remain more or less the same, it increased due to price increase of the
underlying instruments. Speculation through options can have multi-fold advan-
tages for traders depending on the risk-reward profile of the traders/investors. Fig-
ure 5.24 shows the portfolio composition in the protective put strategy. The option
amount is not reflected in the chart, as it is really small compared to the investments
in equity, bond and commodity indexes. It is important to note that straddle, strip
and strap strategy have not given positive returns as found in the in-sample anal-
yses. It is because of the fact that call and put options were not bought at every
decision stage, a decision is made on the basis of forecasted data on the planning
horizon and it doesn’t seem to be very accurate forecast here. These strategies were
also discussed by Topaloglou, Vladimirou, and Zenios, 2011 and they reported pos-
itive performance of the portfolio using these strategies.

5.2 Multistage model, Trading long options positions

So far, we have discussed models for optimization where options were expiring at
the subsequent decision stage, in this section we are going to present results on trad-
ing long position on options, we have already discussed and validated a model for
this in chapter 2. We assume the same initial conditions as in the cases discussed
earlier in this chapter. The only dimension added is that the investor is now able
sell options before their expiry. For this we consider that ATM equity options of 1



5.2. Multistage model, Trading long options positions 81

month, 3 month and 6 month expiry are available at time 0. We run the optimization
model using the scenario generation models discussed in the previous chapters. We
consider three different cases to understand the buy/sell effects on the portfolio. To
study this it is important to allow portfolio to invest in options at different levels.
Since, we have some position in the equity, we assume that only those many options
contracts (both call and put) can be traded as the number of underlying equity units
in the portfolio, that’s the first case, in the second case, we increase this number to
5 times and then in the third case we increase this number to 10 times. Table 5.10
shows the portfolio composition in the mean scenario when as many options con-
tracts are available for trading as the units of equity in the portfolio. Table 5.11 and
5.12 show the 2nd and 3rd case respectively. Figures 5.25 - 5.30 plot wealth distribu-
tions in these three cases.

TABLE 5.10: Options Buy/Sell (Mean Scenario)

Month 1 2 3 4 5 6 7

Cash 100000 40029.83 0 0 106293.49 0 0
Equity 0 0 39920.52577 0 0 41187.28114 42249.15858
Bond 0 59850.47151 59924.89573 105331.7368 0 64894.04202 65839.46927

Commodity 0 0 0 0 0 0 0
Call_Equity_1Month 0 0 0 0 0 0 0
Call_Equity_3Month 0 0 0 0 0 0 0
Call_Equity_6Month 0 0 29.40630226 0 0 0 0
Put_Equity_1Month 0 0 0 0 0 0 0
Put_Equity_3Month 0 0 0 0 0 0 0
Put_Equity_6Month 0 0 0 0 0 0 0

Wealth 100000 99880.30151 99874.8278 105331.7368 106293.49 106081.3232 108088.6279

TABLE 5.11: options Buy Sell (constrained to less than 5 times of un-
derlying units )

Month 1 2 3 4 5 6 7

Cash 0 0 0 0 0 0 0
Equity 37332.21308 37664.17547 41838.16268 44136.91916 36361.9765 32336.69082 31057.21995
Bond 59880.2356 58978.59533 62922.42605 67679.59641 73901.04421 80073.52605 79334.22409

Commodity 0 0 0 0 0 0 0
Call_Equity_1Month 0 0 0 0 0 0 0
Call_Equity_3Month 2587.95272 0 0 0 0 0 0
Call_Equity_6Month 0 0 110.1298039 0 0 0 0
Put_Equity_1Month 0 0 0 0 0 0 0
Put_Equity_3Month 0 1654.898604 0 0 0 0 0
Put_Equity_6Month 0 0 0 982.8007893 12905.39231 12524.02817 18988.81613
Wealth 99800.4014 98297.6694 104870.7185 112799.3164 123168.413 124934.245 129380.2602

TABLE 5.12: Options Buy Sell (constrained to less than 10 times of
underlying units)

Month 1 2 3 4 5 6 7

Cash 0 0 0 0 0 0 0
Equity 35059.37354 43164.46825 47218.32734 46833.79426 43651.20269 34762.22767 35058.12733
Bond 59880.2356 65048.86604 72149.96867 75857.7575 82027.63057 97525.48715 98014.29226

Commodity 0 0 0 0 0 0 0
Call_Equity_1Month 0 0 0 0 0 0 0
Call_Equity_3Month 4860.789229 0 0 0 0 0 0
Call_Equity_6Month 0 0 881.6431919 3738.045668 11033.88732 20246.50842 23000.1167
Put_Equity_1Month 0 0 0 0 0 0 0
Put_Equity_3Month 0 201.4413795 0 0 0 0 0
Put_Equity_6Month 0 0 0 0 0 0 0

Wealth 99800.39837 108414.7757 120249.9392 126429.5974 136712.7206 152534.2232 156072.5363
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From the tables 5.10-5.12 we see that wealth increases sharply as we increase the
amount invested in options. In the first case, a return of 9% was observed, in the
second case when the amount invested in options increased to five times, the profit
rises to 29% and finally in the third case it hits 56%. It should be noted that when we
are increasing the investment in options by 5 or 10 times, the absolute change is in-
vestment is still relatively small compared to the portfolio value. In the three cases,
higher volatility is observed with the increase in options investments. We now see
the comparative results of these cases.

We plot CDFs for four different cases, when there are no options in the port-
folio and other three cases are where option trading is allowed and we gradually
increase the investment amount in that case. Wealth distribution plot of no-option
portfolio is clearly trailing by other portfolios where options are allowed to buy/sell
before expiry. As we increase the number of options available for trade the wealth
distribution stretches towards right side, significantly. On the simulated data, it has
outperformed the previous model where options were bought and exercised at the
very next decision stage. Please see figure 5.32. Interestingly, the left tail of the dis-
tributions also move towards right. However, high investment in options is seen to
make portfolios more volatile. This is evident from the wealth trajectory in the mean
scenarios.
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5.3 Multistage model- Trading short options positions

In this section, we present results where we run a multistage model that takes into
account short selling of options contracts. Since, short selling of options can lead to
unlimited loses, so we restrict ourself from entering naked short positions on options
contracts. Therefore, we implement strategies like bull call spread (as discussed in
chapter 2) and put bear spread. We keep all the initial conditions same as in the
cases discussed earlier in this chapter. Since, we test the model for different levels
of moneyness to achieve bull call spreads. We take 5%, 10% and 15% ITM and OTM
options to achieve bull call spread strategy.

Table 5.5 shows performance of the portfolio when no options are available for
long/short selling. Table 5.13 shows portfolio composition and performance when
call bull spread strategy is considered with options 15% moneyness levels, we build
a call bull spread strategy using ITM and OTM options that are 15% in-the-money
and 15% out-of-the-money. Figure 5.33 and 5.34 show wealth distributions in vari-
ous cases. It is observed in all the cases that when options included in the portfolio
its performance has improves significantly. Portfolio return in mean scenario is in-
creasing as the moneyness level of ITM and OTM options increases. At the same
time, volatility of the portfolio increases with increase in moneyness levels of op-
tions, it is evident from the fact that OTM options have high volatility in prices.
We present a comparative analysis of all these strategies, figure 5.33 and 5.34 show
wealth distribution of various strategies, portfolio without options, bull call spread
of 5-10-15 % moneyness levels and portfolio that has access to both bull call spread
and put bear spread.

TABLE 5.13: Portfolio of equity, bond, commodity and call bull
spread on equity options, moneyness of the options 15% (mean sce-

nario)

Month 1 2 3 4 5 6 7

Cash 499.42 0 0 0 0 0 0
Equity 34539.93204 0 0 35031.8528 35045.36272 33457.23263 35146.99602
Bond 59581.18928 99470.19898 99247.52086 59914.09494 60911.45718 66090.49009 66152.98496

Commodity 0 0 0 0 0 0 0
Call Bull Spread 5180.861736 0 0 4910.875948 5562.287721 7265.203518 8954.981897

Wealth 99801.40305 99470.19898 99247.52086 99856.82369 101519.1076 106812.9262 110254.9629

FIGURE 5.32: Wealth Distributions: Portfolio of Equity, Bond, Com-
modity and Long Options
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FIGURE 5.33: CDF Plots: Portfolio of Equity, Bond, Commodity and
Long and Short position in Options through bull and bear spreads

FIGURE 5.34: Wealth Distribution: Portfolio of Equity, Bond, Com-
modity and Options

All the portfolios with options outperform the portfolio that has no access to
trade options. A clear pattern is observed in the CDF plot, when we increase the
moneyness levels of the options, distribution curves shift towards right. In the strat-
egy, where put bear spread and call bear spread both are considered have outper-
formed all the strategies. As it gives access to vertical spreads on both call and put
options and hence able to make profit out of bullish and bearish market conditions.

5.4 Multi-stage Model to update inventory using options

In this section, we present results for the inventory update model. We consider a
problem where investor is willing to increase his holdings in equity at a price lower
than market price. His planning horizon is six months, monthly rebalancing is al-
lowed on the portfolio. We apply the multistage model developed in chapter 4. We
run the algorithm for the period May 2014- March 2017 and see how it has per-
formed.

Figure 5.35 shows the months where algorithm achieved to update inventory
using options. The y-axis is the buying cost with respect to the market price, WAP is
the weighted average price of the equity index, as we have two possibilities to buy
the equity index, one directly at the market price, second, by exercising call options.
WAP is the weighted average price of the two. It can be seen from the figure that
sometimes, algorithm bought equity at 6% lower than the market price. Maximum,
saving observed was 10% in December’14. On average, 1.75% less price was paid
compared to the market price. We have considered call option in this case study,
profitability of this strategy relies on market momentum. If the market is bullish, it
is going to be profitable.
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FIGURE 5.35: Inventory Update using Options

We include GAMS code for various cases in the appendix, readers may refer to
it. Appendix A shows model that is used for optimizing portfolio of stocks, bonds,
commodity with options available on equity that are expiring at the next decision
stage, GAMS code for buying/selling of long options contracts and GAMS code for
physical settled options contracts to update inventory.
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Conclusion and Future Research

In this research, we discussed multi-stage stochastic programming techniques, cons
and pros of including options in a portfolio and the combination of two. We re-
viewed the recent developments in the field of stochastic programming and options
in general. Our motivation for the study was to explore both cash and physical
settled options contracts within the framework of stochastic programming. We thor-
oughly reviewed work done Blomvall and Lindberg, 2003, Topaloglou, Vladimirou,
and Zenios, 2011 and Yin and Han, 2013b and Davari-Ardakani, Aminnayeri, and
Seifi, 2016 who developed single and multiple stage models to include options in
a portfolio. We take some big steps in extending the work presented by these re-
searchers. So, far in the literature only cash settled options contracts were consid-
ered, we extended it to physical settled contracts, where we actually show through
out-of-sample results that inventory can actually be updated using call and options,
depending on the objective of the investor.

We explored cash settled options contracts in detail. Other researchers had only
considered buying and exercising features of the options, while we extend the litera-
ture to trade both long and short positions on call and put options. We have showed
it through multiple models in this research report. We start with a single stage model
where options expire at the horizon, then we extend the model to consider options
expiring in the very next decision stage, a model similar to the model developed by
Yin and Han, 2013b. Then we extend the model to consider options that are expiring
at any decision stage along the planning horizon.

Difficulty to introduce such models lies in options pricing on scenario tree, many
researchers have expressed their concern with this. We reviewed the work done by
Topaloglou, Vladimirou, and Zenios, 2008b to price options on a scenario tree, where
they talk about multinomial tree and numerical extension of Black-Scholes formula.
To address this issue of option pricing on scenario tree, we relied on relatively simple
technique. We introduce delta-gamma approximation for option pricing, as options
payoff are non-linear, the non-linearity is captured by the gamma of the options in
pricing formula, the technique sounds naive but has performed well in this context.

Once, we had an option pricing technique on scenario tree, we went on intro-
ducing more complexities to stochastic optimization models to play with options
contracts. We then extended the model where we allow sell decision variables on
options inventory, giving more degree of freedom to investors/traders. We then fi-
nally present a model we consider short selling of options, something that has not
been touched by any researcher, to the best of our knowledge. We call it a generic
model and we verify the model theoretically, how it reduced to multi-stage models
or single stage model with options by setting a few variables equal to 0. We also
present numerical validation for each model, where we actually verify that desired
objective is achieved through equation implemented in the models.
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Finally, we present some numerical results collected from these models. To run
the models, we needed a statistical model for the underlying, we referred to Consigli
et al., 2012 for equity and bond index model and we rely on econometrics technique
to develop a first order autoregressive distributed lag model where we considered
inflation, equity and performance of the bond index as exogenous variables. On the
basis of these models we generate scenarios for the optimization program and col-
lect some evidences.

Our research finds that options can increase profitability potential of a portfolio
by many-fold, if included in a portfolio in the right amount. Options in all the port-
folio optimization models have shown good performance, portfolio with options
have outperformed portfolio without options. Protective put has provided protec-
tion to portfolio, while speculating through options have generated huge profits, at
the same time they made the portfolio more volatile. Hence, it is a still a question
if there can ba an optimal amount that can be assigned for speculation through op-
tions. We have seen in out out-of-sample results that minor speculation through
options outperformed all other strategies significantly.

We also saw that options premiums are very lucrative and buying and selling
them before expiry could be a profitable strategy. We saw that as we allocate more
wealth for buying and selling in options our profit increases by up t0 50%, while the
amount that is invested in the options is still relatively small compared to the port-
folio value. We then finally introduce bull call spread and bear put spread strategies
through general model that we developed. As we have mentioned before, we avoid
taking naked short positions in options. We implemented vertical spread strategies
and found that they have performed quite well compared to the portfolio where no
options were considered. We considered both call bull spread and put bear spread
and saw how well the portfolio performed, as it was protected from shocks in the
market in either direction. In summary, our finding is that options should be in-
cluded in a portfolio to improve profitability and to provide protection to portfolios.

We have taken some big steps forward from the existing literature, however,
there are still many questions remain to be answered. Contribution of this PhD
dissertation is in the modelling of dynamic stochastic programming models that can
tackle options of different expiries and maturities. Most of the results that we pre-
sented here are in-sample results and we do not discuss any arbitrage opportunities
arising from including options in the portfolio. In-sample results presented make
money in almost all the scenarios, it is because of the strict constraints we are us-
ing on various asset classes and options, as a result, the in-sample results were not
in sync with the out-sample results we observed. The other side of the problem is
proper pricing of options which we have not touched in this thesis. The model we
adopt should relate the volatility of the underlying process to the option pricing.
This was not in the scope of this dissertation, so, we aim to accomplish that in our
future research and we expect that with good option pricing method (such as the one
recently discussed by Barkhagen and Blomvall, 2016) we should see more realistic
results on the out-sample data.
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GAMS code for options expiring at the next stage 

$SET OnDebug N 

 

$ONEMPTY 

 

* OPTIONS 

$EOLCOM // 

$INLINECOM /* */ 

 

$INCLUDE "AllSets.inc"; 

$INCLUDE "Policy.inc"; 

$INCLUDE "Constants.inc"; 

 

alias (Tree,p,p2); 

Node(Tree)=Yes; 

 

alias (Node,n,n2,m); 

set scenario(Tree); 

alias (Scen, s); 

alias (Stage, t); 

alias (classSet,k); 

alias (Security, i,j); 

 

$INCLUDE "Price.inc"; 

$INCLUDE "StageofNode.inc"; 

$INCLUDE "NodeAncestor.inc"; 

$INCLUDE "NPM.inc"; 

$INCLUDE "Init_asset.inc"; 

$INCLUDE "class.inc"; 

$INCLUDE "Probability.inc"; 

$INCLUDE "Constants.inc"; 

$INCLUDE "delta_call.inc"; 

$INCLUDE "delta_put.inc"; 

Scalar Stage_Max; 

       Stage_Max=smax(p,StageofNode(p)); 

 

* Define some sets 

Set root(tree), leaf(tree); 

root(tree)$(Ord(tree)=1) = Yes; 

leaf(tree)$(StageOfNode(tree) eq Stage_Max) = Yes; 

 

Set SpecGrade(i), InvGrade(i),equity(i),bond(i),gsci(i),callgrade(i),putgrade(i); 

SpecGrade(i)$(class(i) ge 4)=Yes; 

InvGrade(i)$(class(i) le 3)=Yes; 

equity(i)$(class(i)eq 1)=Yes; 

bond(i)$(class(i)eq 2)=Yes; 

gsci(i)$(class(i)eq 3)=Yes; 

callgrade(i)$(class(i)eq 4)=Yes; 

putgrade(i)$(class(i)eq 5)=Yes; 

 

scalar NFO; 

NFO=2; 

 

*scalar CapIniz; 
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*CapIniz = 100000; 

 

* Initial Wealth definition 

Parameter Wealth_0(tree); 

 

          Wealth_0(root)= CapIniz + sum(i,Init_asset(i)*Price(i,root)); 

 

POSITIVE VARIABLES 

 buy(p, i) 

 sell(p, i) 

 hold_asset(p, i) 

 hold_debt(p) 

 cash_hold(p) 

 debt(p) 

 debt_minus(p) 

 debt_plus(p) 

 shortfall 

 nc(p) 

 np(p) 

 beta(p) 

 

VARIABLES 

    Expected_Wealth 

    Wealth(p) 

    reward 

    risk 

    xyz(p) 

 

**** Objective function value ******************** 

    z            Objective function value type 

 

EQUATIONS 

    Inventory_Asset_Balance_Eq_0 

    Inventory_Liab_Balance_Eq_0 

    Cash_Flow_Balance_Eq_0 

    Inventory_Asset_Balance_Eq 

    Inventory_Liab_Balance_Eq 

    Cash_Flow_Balance_Eq 

    Def_Wealth 

    Def_Expected_Wealth 

 

*   Portfolio composition constraint 

    Security_maximum_speculativ 

    Security_minimum_speculativ 

    Security_maximum_inv_grade 

    Security_minimum_inv_grade 

    expected_shortfall 

    Cash_max 

*    policy1 

*    policy2 

     policy3 

     policy4 

    equity_min 

    equity_max 

    bond_min 
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    bond_max 

    gsci_min 

    gsci_max 

 

 

    Def_risk 

    Def_reward 

    ObjDef Objective function definition type; 

 

* Inventory balance (nominal terms) 

*** Asset Balance 

 

Inventory_Asset_Balance_Eq_0(i,root)       .. 

     hold_asset(root,i) =e= Init_asset(i) 

     + buy(root,i) - sell(root,i); 

 

Scalar chi_plus; 

chi_plus=0.0002; 

Scalar chi_minus; 

chi_minus = 0.0002; 

 

display i; 

 

*nc.FX(n)=0; 

*np.FX(n)=0; 

buy.FX(n,callgrade(i))=0; 

buy.FX(n,putgrade(i))=0; 

sell.FX(n,callgrade(i))=0; 

sell.FX(n,putgrade(i))=0; 

*buy.FX(n,bond(i))=0; 

*buy.FX(n,gsci(i))=0; 

*sell.FX(n,bond(i))=0; 

*sell.FX(n,gsci(i))=0; 

 

* cash flow balance 

Cash_Flow_Balance_Eq_0(root) .. 

cash_hold(root)=e= CapIniz 

- sum(i, buy(root,i)*Price(i,root)*(1+chi_plus)) 

+ sum(i, sell(root,i)*Price(i,root)*(1-chi_minus)) 

-sum(i$(class(i) eq 4), nc(root)*Price(i,root)*(1+0.0001)) 

-sum(i$(class(i) eq 5), np(root)*Price(i,root)*(1+0.0001)); 

 

******************************** 

*     next stage equations     * 

******************************** 

Alias (parent, p, child); 

Set anc(parent,child); 

anc(parent,child) = Yes $(Ord(child) > 1 And Ord(parent) = NodeAncestor(child)); 

 

Inventory_Asset_Balance_Eq(i,anc(m,n))$(not root(n)) .. 

hold_asset(n, i) =e= (hold_asset(m, i)+ buy(n, i) - sell(n, i) ); 

 

Scalar riskfree_rate; 

riskfree_rate=0; 

Scalar Sstep; 
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Sstep=1/12; 

 

 

 

Cash_Flow_Balance_Eq(anc(m,n)) .. 

cash_hold(n) =e= cash_hold(m)*(1+riskfree_rate*Sstep) 

-sum(i, buy(n, i)*Price(i,n )*(1+chi_plus)) 

+sum(i, sell(n, i)*Price(i,n)*(1-chi_minus)) 

+sum(i$(class(i) eq 1), (nc(m))*delta_call(n)*(Price(i,n)-Price(i,m))*(1-0.0001)) 

+sum(i$(class(i) eq 1), (np(m))*delta_put(n)*(Price(i,m)-Price(i,n))*(1-0.0001)) 

-sum(i$(class(i) eq 4), nc(n)*Price(i,n)*(1+0.0001)) 

-sum(i$(class(i) eq 5), np(n)*Price(i,n)*(1+0.0001)); 

 

 

Wealth.FX(root) = Wealth_0(root); 

*Def_Wealth(anc(m,n)) .. 

Def_Wealth(anc(m,n)) .. 

Wealth(n) =e= cash_hold(n) + sum(i, hold_asset(n,i)*Price(i,n)) 

+sum(i$(class(i) eq 4), nc(n)*Price(i,n)) 

+sum(i$(class(i) eq 5), np(n)*Price(i,n)); 

 

* Last Stage Constraints 

buy.FX(leaf(n),i) = 0; 

sell.FX(leaf(n),i) = 0; 

nc.FX(leaf(n))=0; 

np.FX(leaf(n))=0; 

beta.FX(leaf(n))=0; 

 

*Security_minimum_speculativ(n) ..  sum(SpecGrade(i), hold_asset(n,i)*Price(i,n)) =G= 0*sum(i, hold_asset(n,i)*Price(i,n)); 

*Security_maximum_speculativ(n) ..  sum(SpecGrade(i), hold_asset(n,i)*Price(i,n)) =L= 1*sum(i, hold_asset(n,i)*Price(i,n)); 

 

*Security_minimum_inv_grade(n) ..  sum(InvGrade(i), hold_asset(n,i)*Price(i,n)) =G= 0*sum(i, hold_asset(n,i)*Price(i,n)); 

*Security_maximum_inv_grade(n) ..  sum(InvGrade(i), hold_asset(n,i)*Price(i,n)) =L= 1*sum(i, hold_asset(n,i)*Price(i,n)); 

 

equity_min(n) ..  sum(equity(i), hold_asset(n,i)*Price(i,n)) =G= 0.0*Wealth(n); 

equity_max(n) ..  sum(equity(i), hold_asset(n,i)*Price(i,n)) =L= 1*Wealth(n); 

 

bond_min(n) ..  sum(bond(i), hold_asset(n,i)*Price(i,n)) =G= 0.6*Wealth(n); 

bond_max(n) ..  sum(bond(i), hold_asset(n,i)*Price(i,n)) =L= 1*Wealth(n); 

 

gsci_min(n) ..  sum(gsci(i), hold_asset(n,i)*Price(i,n)) =G= 0*Wealth(n); 

gsci_max(n) ..  sum(gsci(i), hold_asset(n,i)*Price(i,n)) =L= 0.15*Wealth(n); 

 

*policy1(n) .. sum(i$(class(i) eq 4), nc(n)*Price(i,n))=L= 0.025*Wealth(n); 

*policy2(n) .. sum(i$(class(i) eq 5), np(n)*Price(i,n))=e= 0.025*Wealth(n); 

*policy1(n) .. sum(i$(class(i) eq 4), nc(n)*Price(i,n))+sum(i$(class(i) eq 5), np(n)*Price(i,n))=g= 0.0*sum(equity(i), 

hold_asset(n,i)*Price(i,n)); 

*policy2(n) .. sum(i$(class(i) eq 4), nc(n)*Price(i,n))+sum(i$(class(i) eq 5), np(n)*Price(i,n))=l= 1*sum(equity(i), 

hold_asset(n,i)*Price(i,n)); 

 

policy4(n) .. np(n) =l= 1*sum(equity(i), hold_asset(n,i)); 

policy3(n) .. nc(n)=e=1*np(n); 

 

Scalar Target; 

Target = 110000; 
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expected_shortfall .. shortfall =g= sum(leaf(n), Probability(leaf)*(Target - Wealth(leaf))); 

 

 

Cash_max(n) .. cash_hold(n) =l= 1*Wealth(n); 

 

 

* Expected Final Wealth definition 

Def_Expected_Wealth  .. Expected_Wealth =e= 

sum(leaf(n), Wealth(leaf)*Probability (leaf)); 

 

Def_risk .. risk=e=shortfall; 

 

Def_reward .. reward=e=(Expected_Wealth); 

 

Scalar Lambda; 

Lambda = 0.5; 

 

ObjDef  .. z  =e= (1-Lambda)*(reward) - Lambda *risk; 

 

MODEL Derivatives_basic / 

    Inventory_Asset_Balance_Eq_0, Cash_Flow_Balance_Eq_0, 

    Inventory_Asset_Balance_Eq, Cash_Flow_Balance_Eq, 

    Def_Wealth,Def_Expected_Wealth, 

*    Security_maximum_speculativ, 

*    Security_minimum_speculativ, 

*    Security_maximum_inv_grade, 

*    Security_minimum_inv_grade, 

    expected_shortfall, 

    cash_max, 

    Def_risk,Def_reward, 

    equity_min, 

    equity_max, 

    bond_min, 

    bond_max, 

    gsci_min, 

    gsci_max, 

 

*    policy1, 

*policy2, 

policy4, 

policy3, 

    ObjDef 

/; 

 

GAMS code for options expiring at any stage 
 

$SET OnDebug N 

 

$ONEMPTY 

$OFFDIGIT 

 

* OPTIONS 

$EOLCOM // 

$INLINECOM /* */ 
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$INCLUDE "AllSets.inc"; 

$INCLUDE "Policy.inc"; 

$INCLUDE "Constants.inc"; 

 

alias (Tree,p,p2); 

Node(Tree)=Yes; 

 

alias (Node,n,n2,m); 

set scenario(Tree); 

alias (Scen, s); 

alias (Stage, t); 

alias (classSet,k); 

alias (Security, i,j); 

 

$INCLUDE "Price.inc"; 

$INCLUDE "StageofNode.inc"; 

$INCLUDE "NodeAncestor.inc"; 

$INCLUDE "NPM.inc"; 

$INCLUDE "Init_asset.inc"; 

$INCLUDE "class.inc"; 

$INCLUDE "Probability.inc"; 

$INCLUDE "Constants.inc"; 

*$INCLUDE "delta_call_equity.inc"; 

*$INCLUDE "delta_put_equity.inc"; 

*$INCLUDE "delta_call_bond.inc"; 

*$INCLUDE "delta_put_bond.inc"; 

*$INCLUDE "delta_call_gsci.inc"; 

*$INCLUDE "delta_put_gsci.inc"; 

 

Scalar Stage_Max; 

       Stage_Max=smax(p,StageofNode(p)); 

 

* Define some sets 

Set root(tree), leaf(tree); 

root(tree)$(Ord(tree)=1) = Yes; 

leaf(tree)$(StageOfNode(tree) eq Stage_Max) = Yes; 

 

Set SpecGrade(i), InvGrade(i), equity(i),bond(i),gsci(i),putgrade(i),callgrade(i),unput(i); 

SpecGrade(i)$(class(i) ge 4)=Yes; 

InvGrade(i)$(class(i) le 3)=Yes; 

equity(i)$(class(i)eq 1)=Yes; 

bond(i)$(class(i)eq 2)=Yes; 

gsci(i)$(class(i)eq 3)=Yes; 

putgrade(i)$(class(i) ge 7)=Yes; 

callgrade(i) = SpecGrade(i)-putgrade(i); 

unput(i) = (InvGrade(i) + putgrade(i)); 

 

display SpecGrade, InvGrade; 

 

Scalar CapIniz; 

CapIniz = 100000; 

 

* Initial Wealth definition 

Parameter Wealth_0(tree); 
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          Wealth_0(root)= CapIniz + sum(i,Init_asset(i)*Price(i,root)); 

 

POSITIVE VARIABLES 

 buy(p, i) 

 sell(p, i) 

 hold_asset(p, i) 

 hold_debt(p) 

 cash_hold(p) 

 debt(p) 

 debt_minus(p) 

 debt_plus(p) 

 shortfall 

 nc(p) 

 np(p) 

 beta(p) 

 buys(p,i) 

 sells(p,i) 

 

 

 

VARIABLES 

    Expected_Wealth 

    Wealth(p) 

    reward 

    risk 

    xyz(p) 

 

 

**** Objective function value ******************** 

    z            Objective function value type 

 

EQUATIONS 

    Inventory_Asset_Balance_Eq_0 

    Inventory_Short_0 

    Inventory_Short_Eq 

    Inventory_Liab_Balance_Eq_0 

    Cash_Flow_Balance_Eq_0 

    Inventory_Asset_Balance_Eq 

    Inventory_Liab_Balance_Eq 

    Cash_Flow_Balance_Eq 

    Def_Wealth 

    Def_Expected_Wealth 

 

*   Portfolio composition constraint 

    Security_maximum_speculativ 

    Security_minimum_speculativ 

*    Security_maximum_inv_grade 

*    Security_minimum_inv_grade 

    expected_shortfall 

    Cash_max 

    policy 

    equity_min 

    equity_max 

    bond_min 
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    bond_max 

    gsci_min 

    gsci_max 

 

    policy1 

    policy2 

    policy3 

    policy4 

 

    Def_risk 

    Def_reward 

    ObjDef Objective function definition type; 

 

* Inventory balance (nominal terms) 

*** Asset Balance 

 

*if(Price(i,root)=0, 

*              buy(root,i)=0; 

*); 

 

Inventory_Asset_Balance_Eq_0(i,root)       .. 

     hold_asset(root,i) =e= Init_asset(i) 

     + buy(root,i) - sell(root,i); 

* + sells(root,SpecGrade(i)); 

 

 

*Inventory_Short_0(SpecGrade(i),root)                 .. 

*hold_asset(root,i) =e= Init_asset(i) + buys(root,i) - sells(root,i); 

 

 

Scalar chi_plus; 

chi_plus=0.002; 

Scalar chi_minus; 

chi_minus = 0.002; 

 

nc.FX(n)=0; 

np.FX(n)=0; 

*buy.FX(n,SpecGrade(i))=0; 

*sell.FX(n,SpecGrade(i))=0; 

 

* cash flow balance 

Cash_Flow_Balance_Eq_0(root) .. 

cash_hold(root)=e= CapIniz 

- sum(i, buy(root,i)*Price(i,root)*(1+chi_plus)) 

+ sum(i, sell(root,i)*Price(i,root)*(1-chi_minus)); 

 

 

Alias (parent, p, child); 

Set anc(parent,child); 

anc(parent,child) = Yes $(Ord(child) > 1 And Ord(parent) = NodeAncestor(child)); 

 

Loop( anc(m,n), 

         hold_asset.FX(m,i)$(Price(i,n) eq 0)=0; 

         buy.FX(m,i)$(Price(i,n) eq 0)=0; 

); 
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Inventory_Asset_Balance_Eq(i,anc(m,n))$(not root(n)) .. 

hold_asset(n, i) =e= (hold_asset(m, i)+ buy(n, i) - sell(n, i) ); 

 

 

Scalar riskfree_rate; 

riskfree_rate=0; 

Scalar Sstep; 

Sstep=1/12; 

 

 

 

Cash_Flow_Balance_Eq(anc(m,n)) .. 

cash_hold(n) =e= cash_hold(m)*(1+riskfree_rate*Sstep) 

-sum(i, buy(n,i)*Price(i,n )*(1+chi_plus)) 

+sum(i, sell(n,i)*Price(i,n)*(1-chi_minus)); 

 

 

Wealth.FX(root) = Wealth_0(root); 

*Def_Wealth(anc(m,n)) .. 

Def_Wealth(anc(m,n)) .. 

Wealth(n) =e= cash_hold(n) + sum(i, (hold_asset(n,i))*Price(i,n)); 

 

* Last Stage Constraints 

buy.FX(leaf(n),i) = 0; 

sell.FX(leaf(n),i) = 0; 

nc.FX(leaf(n))=0; 

np.FX(leaf(n))=0; 

beta.FX(leaf(n))=0; 

 

*Security_minimum_speculativ(n) ..  sum(SpecGrade(i), hold_asset(n,i)) =G= 0*sum(i$(class(i) eq 1), hold_asset(n,i)); 

*Security_maximum_speculativ(n) ..  sum(SpecGrade(i), hold_asset(n,i)) =L= 0.01*sum(i$(class(i) eq 1), hold_asset(n,i)); 

 

*Security_minimum_inv_grade(n) ..  sum(InvGrade(i), hold_asset(n,i)*Price(i,n)) =G= 0*sum(i, hold_asset(n,i)*Price(i,n)); 

*Security_maximum_inv_grade(n) ..  sum(InvGrade(i), hold_asset(n,i)*Price(i,n)) =L= 1*sum(i, hold_asset(n,i)*Price(i,n)); 

 

equity_min(n) ..  sum(equity(i), hold_asset(n,i)*Price(i,n)) =G= 0*sum(i, hold_asset(n,i)*Price(i,n)); 

equity_max(n) ..  sum(equity(i), hold_asset(n,i)*Price(i,n)) =L= 1*sum(i, hold_asset(n,i)*Price(i,n)); 

 

bond_min(n) ..  sum(bond(i), hold_asset(n,i)*Price(i,n)) =G= 0.6*sum(i, hold_asset(n,i)*Price(i,n)); 

bond_max(n) ..  sum(bond(i), hold_asset(n,i)*Price(i,n)) =L= 1*sum(i, hold_asset(n,i)*Price(i,n)); 

 

gsci_min(n) ..  sum(gsci(i), hold_asset(n,i)*Price(i,n)) =G= 0*sum(i, hold_asset(n,i)*Price(i,n)); 

gsci_max(n) ..  sum(gsci(i), hold_asset(n,i)*Price(i,n)) =L= 0.15*sum(i, hold_asset(n,i)*Price(i,n)); 

 

*policy(n) .. sum(SpecGrade(i), hold_asset(n,i))=L= 1*sum(i$(class(i) eq 1), hold_asset(n,i)); 

policy(n) .. sum(i$(class(i) ge 4), hold_asset(n,i))=L= 1*sum(i$(class(i) eq 1), hold_asset(n,i)); 

*policy(n) .. sum(SpecGrade(i), hold_asset(n,i)*Price(i,n))=L= 0.0001*Wealth(n); 

 

 

Scalar Target; 

Target = 110000; 

 

expected_shortfall .. shortfall =g= sum(leaf(n), Probability(leaf)*(Target - Wealth(leaf))); 

Cash_max(n) .. cash_hold(n) =l= 1*Wealth(n); 
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* Expected Final Wealth definition 

Def_Expected_Wealth  .. Expected_Wealth =e= 

sum(leaf(n), Wealth(leaf)*Probability (leaf)); 

 

Def_risk .. risk=e=shortfall; 

 

Def_reward .. reward=e=(Expected_Wealth); 

 

Scalar Lambda; 

Lambda = 0.5; 

 

ObjDef  .. z  =e= (1-Lambda)*(reward) - Lambda *risk; 

 

MODEL Derivatives_basic / 

    Inventory_Asset_Balance_Eq_0, Cash_Flow_Balance_Eq_0, 

    Inventory_Asset_Balance_Eq, Cash_Flow_Balance_Eq, 

    Def_Wealth,Def_Expected_Wealth, 

*Inventory_Short_0, 

*Inventory_Short_Eq, 

*    Security_maximum_speculativ, 

*    Security_minimum_speculativ, 

*    Security_maximum_inv_grade, 

*    Security_minimum_inv_grade, 

    expected_shortfall, 

    cash_max, 

    Def_risk,Def_reward, 

    equity_min, 

    equity_max, 

bond_min, 

bond_max, 

gsci_min, 

gsci_max, 

 

policy, 

    ObjDef 

/; 

 

GAMS code for inventory update model 

 
$SET OnDebug N 

 

$ONEMPTY 

 

* OPTIONS 

$EOLCOM // 

$INLINECOM /* */ 

 

$INCLUDE "AllSets.inc"; 

$INCLUDE "Policy.inc"; 

$INCLUDE "Constants.inc"; 

 

alias (Tree,p,p2); 

Node(Tree)=Yes; 
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alias (Node,n,n2,m); 

set scenario(Tree); 

alias (Scen, s); 

alias (Stage, t); 

alias (classSet,k); 

alias (Security, i,j); 

 

$INCLUDE "Price.inc"; 

$INCLUDE "StageofNode.inc"; 

$INCLUDE "NodeAncestor.inc"; 

$INCLUDE "NPM.inc"; 

$INCLUDE "Init_asset.inc"; 

$INCLUDE "class.inc"; 

$INCLUDE "Probability.inc"; 

$INCLUDE "Constants.inc"; 

$INCLUDE "delta_call.inc"; 

$INCLUDE "delta_put.inc"; 

Scalar Stage_Max; 

       Stage_Max=smax(p,StageofNode(p)); 

 

* Define some sets 

Set root(tree), leaf(tree); 

root(tree)$(Ord(tree)=1) = Yes; 

leaf(tree)$(StageOfNode(tree) eq Stage_Max) = Yes; 

 

Set SpecGrade(i), InvGrade(i),equity(i),bond(i),gsci(i),callgrade(i),putgrade(i); 

SpecGrade(i)$(class(i) ge 4)=Yes; 

InvGrade(i)$(class(i) le 3)=Yes; 

equity(i)$(class(i)eq 1)=Yes; 

bond(i)$(class(i)eq 2)=Yes; 

gsci(i)$(class(i)eq 3)=Yes; 

callgrade(i)$(class(i)eq 4)=Yes; 

putgrade(i)$(class(i)eq 5)=Yes; 

 

Scalar CapIniz; 

CapIniz = 100000; 

 

* Initial Wealth definition 

Parameter Wealth_0(tree); 

 

          Wealth_0(root)= CapIniz + sum(i,Init_asset(i)*Price(i,root)); 

 

POSITIVE VARIABLES 

 buy(p, i) 

 sell(p, i) 

 hold_asset(p, i) 

 hold_debt(p) 

 cash_hold(p) 

 debt(p) 

 debt_minus(p) 

 debt_plus(p) 

 shortfall 

 nc(p) 

 np(p) 

 beta(p) 
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VARIABLES 

    Expected_Wealth 

    Wealth(p) 

    reward 

    risk 

    xyz(p) 

 

**** Objective function value ******************** 

    z            Objective function value type 

 

EQUATIONS 

    Inventory_Asset_Balance_Eq_0 

    Inventory_Liab_Balance_Eq_0 

    Cash_Flow_Balance_Eq_0 

    Inventory_Asset_Balance_Eq 

    Inventory_Liab_Balance_Eq 

    Cash_Flow_Balance_Eq 

    Def_Wealth 

    Def_Expected_Wealth 

 

*   Portfolio composition constraint 

    Security_maximum_speculativ 

    Security_minimum_speculativ 

    Security_maximum_inv_grade 

    Security_minimum_inv_grade 

    expected_shortfall 

    Cash_max 

    policy1 

    policy2 

    equity_min 

    equity_max 

    bond_min 

    bond_max 

    gsci_min 

    gsci_max 

 

 

    Def_risk 

    Def_reward 

    ObjDef Objective function definition type; 

 

* Inventory balance (nominal terms) 

*** Asset Balance 

 

Inventory_Asset_Balance_Eq_0(i,root)       .. 

     hold_asset(root,i) =e= Init_asset(i) 

     + buy(root,i) - sell(root,i); 

 

Scalar chi_plus; 

chi_plus=0.002; 

Scalar chi_minus; 

chi_minus = 0.002; 

 

*nc.FX(n)=0; 
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*np.FX(n)=0; 

buy.FX(n,callgrade(i))=0; 

buy.FX(n,putgrade(i))=0; 

*buy.FX(n,bond(i))=0; 

*buy.FX(n,gsci(i))=0; 

 

* cash flow balance 

Cash_Flow_Balance_Eq_0(root) .. 

cash_hold(root)=e= CapIniz 

- sum(i$(class(i) le 3), buy(root,i)*Price(i,root)*(1+chi_plus)) 

+ sum(i$(class(i) le 3), sell(root,i)*Price(i,root)*(1-chi_minus)) 

-sum(i$(class(i) eq 4), nc(root)*Price(i,root)*(1+0.0001)) 

-sum(i$(class(i) eq 5), np(root)*Price(i,root)*(1+0.0001)); 

 

******************************** 

*     next stage equations     * 

******************************** 

Alias (parent, p, child); 

Set anc(parent,child); 

anc(parent,child) = Yes $(Ord(child) > 1 And Ord(parent) = NodeAncestor(child)); 

 

Inventory_Asset_Balance_Eq(i,anc(m,n))$(not root(n)) .. 

hold_asset(n,i) =e= hold_asset(m, i)+ buy(n, i) - sell(n, i) + (nc(m)*delta_call(n))$(class(i) eq 1); 

Scalar riskfree_rate; 

riskfree_rate=0; 

Scalar Sstep; 

Sstep=1/12; 

 

 

 

Cash_Flow_Balance_Eq(anc(m,n)) .. 

cash_hold(n) =e= cash_hold(m)*(1+riskfree_rate*Sstep) 

-sum(i$(class(i) le 3), buy(n, i)*Price(i,n )*(1+chi_plus)) 

+sum(i$(class(i) le 3), sell(n, i)*Price(i,n)*(1-chi_minus)) 

+sum(i$(class(i) eq 1), (nc(m))*delta_call(n)*(Price(i,n)-Price(i,m))*(1-0.0001)) 

+sum(i$(class(i) eq 1), (np(m))*delta_put(n)*(Price(i,m)-Price(i,n))*(1-0.0001)) 

-sum(i$(class(i) eq 4), nc(n)*Price(i,n)*(1+0.0001)) 

-sum(i$(class(i) eq 5), np(n)*Price(i,n)*(1+0.0001)); 

 

 

Wealth.FX(root) = Wealth_0(root); 

*Def_Wealth(anc(m,n)) .. 

Def_Wealth(anc(m,n)) .. 

Wealth(n) =e= cash_hold(n) + sum(i$(class(i) le 3), hold_asset(n,i)*Price(i,n)) 

+sum(i$(class(i) eq 4), nc(n)*Price(i,n)) 

+sum(i$(class(i) eq 5), np(n)*Price(i,n)); 

 

* Last Stage Constraints 

buy.FX(leaf(n),i) = 0; 

sell.FX(leaf(n),i) = 0; 

nc.FX(leaf(n))=0; 

np.FX(leaf(n))=0; 

beta.FX(leaf(n))=0; 

 

*Security_minimum_speculativ(n) ..  sum(SpecGrade(i), hold_asset(n,i)*Price(i,n)) =G= 0*sum(i, hold_asset(n,i)*Price(i,n)); 
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*Security_maximum_speculativ(n) ..  sum(SpecGrade(i), hold_asset(n,i)*Price(i,n)) =L= 1*sum(i, hold_asset(n,i)*Price(i,n)); 

 

*Security_minimum_inv_grade(n) ..  sum(InvGrade(i), hold_asset(n,i)*Price(i,n)) =G= 0*sum(i, hold_asset(n,i)*Price(i,n)); 

*Security_maximum_inv_grade(n) ..  sum(InvGrade(i), hold_asset(n,i)*Price(i,n)) =L= 1*sum(i, hold_asset(n,i)*Price(i,n)); 

 

equity_min(n) ..  sum(equity(i), hold_asset(n,i)*Price(i,n)) =G= 0*sum(i, hold_asset(n,i)*Price(i,n)); 

equity_max(n) ..  sum(equity(i), hold_asset(n,i)*Price(i,n)) =L= 0.3*sum(i, hold_asset(n,i)*Price(i,n)); 

 

*bond_min(n) ..  sum(bond(i), hold_asset(n,i)*Price(i,n)) =G= 0.5*sum(i, hold_asset(n,i)*Price(i,n)); 

*bond_max(n) ..  sum(bond(i), hold_asset(n,i)*Price(i,n)) =L= 1*sum(i, hold_asset(n,i)*Price(i,n)); 

 

*gsci_min(n) ..  sum(gsci(i), hold_asset(n,i)*Price(i,n)) =G= 0*sum(i, hold_asset(n,i)*Price(i,n)); 

*gsci_max(n) ..  sum(gsci(i), hold_asset(n,i)*Price(i,n)) =L= 0.15*sum(i, hold_asset(n,i)*Price(i,n)); 

 

policy1(n) .. nc(n)=L= sum(equity(i),hold_asset(n,i)); 

policy2(n) .. np(n)=L= sum(equity(i),hold_asset(n,i)); 

 

Scalar Target; 

Target = 120000; 

 

expected_shortfall .. shortfall =g= sum(leaf(n), Probability(leaf)*(Target - Wealth(leaf))); 

 

 

Cash_max(n) .. cash_hold(n) =l= 1*Wealth(n); 

 

 

* Expected Final Wealth definition 

Def_Expected_Wealth  .. Expected_Wealth =e= 

sum(leaf(n), Wealth(leaf)*Probability (leaf)); 

 

Def_risk .. risk=e=shortfall; 

 

Def_reward .. reward=e=(Expected_Wealth); 

 

Scalar Lambda; 

Lambda = 0.5; 

 

ObjDef  .. z  =e= (1-Lambda)*(reward) - Lambda *risk; 

 

MODEL Derivatives_basic / 

    Inventory_Asset_Balance_Eq_0, Cash_Flow_Balance_Eq_0, 

    Inventory_Asset_Balance_Eq, Cash_Flow_Balance_Eq, 

    Def_Wealth,Def_Expected_Wealth, 

*    Security_maximum_speculativ, 

*    Security_minimum_speculativ, 

*    Security_maximum_inv_grade, 

*    Security_minimum_inv_grade, 

    expected_shortfall, 

    cash_max, 

    Def_risk,Def_reward, 

    equity_min, 

    equity_max, 

*bond_min, 

*bond_max, 

*gsci_min, 
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*gsci_max, 

 

    policy1, 

policy2, 

    ObjDef 

/; 
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