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Introduction 

Spray processes for particle and powder production typically are performed within an enclosed environment 
(spray tower or spray chamber). To synthesize metal and metal-oxide particles in nanoscale range, the flame 
spray pyrolysis (FSP) process can be applied and, in order to design advanced nanomaterials and to improve 
their properties, as well as to increase the production rate of the process, variations of such process and 
reactor/atomizer design have been analysed in several studies [1–5]. Most previous investigations on FSP 
process [6-9] consider an open reactor configuration which leads to a specific gas entrainment that primarily is 
controlled by the jet strength. However, with this setup, the control of the combustion environment is not so easy 
[10] and, depending on the requested particle characteristics, it might be hard to achieve them. Enclosing the 
reactor and applying a oxidizer co-flow gas allows to control the fuel-to-oxidizer ratio [11] in situations where it is 
required, such as for the synthesis of carbon black [12] and/or production of pure metal-oxide nanoparticles [13–
15]. By enclosing the reactor, however, higher flame temperatures (since natural entrainment, and, therefore, its 
quenching effect is suppressed) and larger nanoparticles (since the particle coagulation and sintering are 
temperature-dependent) are observed [16]. In the conventional FSP process, a liquid precursor is dissolved in an 
organic fuel which is atomized into a spray of fine droplets. These droplets evaporate, and the vapor is 
instantaneously ignited due to the energy provided by a support flame. The fuel combustion produces enough 
energy to decompose and oxidize the precursor, resulting in a supersaturated environment of metallic oxide vapor 
which induces the particle nucleation and growth [17]. The spray formation and its propagation are affected by the 
shape and size of the enclosure as well as the amount of co-flowing gas, and, therefore, these phenomena in the 
enclosing spray chamber are to be controlled by flow control measures as, for instance, the superficial secondary 
gas flow. 
In this contribution, spray processes for powder production – e.g. FSP process for nano-sized particle synthesis – 
is analyzed numerically by computational fluid dynamics (CFD) simulations. The role of the entrainment flow and 
recirculation areas in the enclosure is highlighted. In this sense, the influence of geometrical setups (open and 
enclosed reactor) at different operating conditions on the flame temperature and spray behavior as well as on the 
reactor temperature and temperature-residence-time distribution of the gas and the particles are investigated. 
Based on the natural gas entrainment into the spray flame, the appropriate amount of co-flowing gas satisfying 
the entrainment requirement of the spray is derived. Supplying this amount of co-flowing gas to the enclosed 
reactor setup results in a quite similar flame behavior as found for the open reactor. On the other hand, reducing 
the co-flow gas rate, strong vortex and recirculation zones are formed, which are typically observed in confined 
jets with reduced co-flow [18], and the temperature increases considerably, resulting in larger nanoparticle sizes 
[19]. The numerical results are analyzed and compared to the findings of previous studies. 

Reactor Geometry and Numerical Domain 

Figure 1 depicts a sketch of the two reactor setups used in this work. Figure 1a presents the open configuration, 
which consists of a twin-fluid atomizer surrounded by a support flame that is positioned in the center of a metallic 
plate. In the enclosed configuration, Figure 1b, the metallic plate is smaller and is surrounded by a porous plate, 
through the which the co-flowing gas is fed, positioned on the bottom of enclosure tube. The enclosure consists of 
a quartz tube with inner diameter of 0.1 m, height of 0.5 m and thickness of 0.003 m. The atomizer nozzle used 
here is described in detail by Mädler et al. [6]. The computational simulations are performed using a bi-
dimensional (2D) axisymmetric approach, Figure 1c, in a numerical grid of ~175,000 hexahedral cells, considering 
a cylindrical domain with 0.1 m of diameter and 0.5 m of height. The applied computational mesh is refined in the 
region closest to the atomizer nozzle, where large gradients of velocity, temperature, and chemical species are 
found.  
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Figure 1. Sketch of FSP reactor in (a) open setup and (b) enclosed configuration; (c) 2D axisymmetric numerical domain.

Operating and Boundary Conditions 

In this study, the boundary conditions (Table 1) are adjusted as adiabatic and impermeable wall for the nozzle 
and metallic plate walls; fixed mass flow for oxidant, support flame inlet and co-flow gas; and pressure boundary 
(fixed static pressure and zero gradients for the remaining variables) for the top and side limits (open reactor). 
Regarding the simulation setup applied to the enclosed configuration, heat transfer through the reactor walls must 
be considered since overestimation in the temperature distribution is expected when the reactor walls are 
adjusted to adiabatic condition, as has been demonstrated in the previous investigation [20]. The liquid phase 
consists of a precursor solution of zirconium n-propoxide (70 wt-% in n-propanol) and ethanol, with a total 
zirconium concentration of 0.5 mol/L. This solution is feed with a constant flow rate of 5 mL/min to the reactor and 
is atomized by 5 L/min dispersion oxygen, which gives a gas-to-liquid mass ratio (GLMR) of 1.7. The nozzle gap 
is adjusted to maintain a pressure drop of 1.5 x 105 Pa. The reactor operates either in open or enclosed condition, 
both at atmospheric pressure. In the enclosed configuration, air is supplied as co-flowing gas. From the open 
setup, the entrainment mass flow rate of gas is estimated. Several simulations (varying the gas co-flow rate) with 
the enclosed configuration are performed. These co-flow rates are 400 L/min (derived from estimations of 
entrainment gas with the open setup), 100 and 40 L/min. The liquid phase is already injected in the domain as 
spray droplets. The initial spray droplet size distribution is correlated by means of a Rosin-Rammler-Sperling-
Bennet (RRSB) function to obtain the relevant parameters for the model setup and a stochastic Discrete Random 
Walk (DRW) model is applied to predict the turbulent droplet dispersion [21]. Proper droplet size distributions are 
obtained from previous studies [11, 22, 23]. 

Table 1. Boundary conditions assumed for numerical simulations. 

Boundary name Type Value Chemical composition 

Dispersion gas Mass-flow-inlet 1.19 x 10-4 kg/s (5 L/min) 100 wt-% O2

Metallic plate Wall No-slip / Adiabatic – 
Nozzle wall Wall No-slip / Adiabatic – 

Outlet Pressure-outlet 0 Pa 77 wt-% N2 + 23 wt-% O2

Support flame Mass-flow-inlet 9.41 x 10-5 kg/s (4.7 L/min) 19 wt-% CH4 + 81 wt-% O2

Porous plate [a] Wall No-slip / Adiabatic – 

Porous plate [b] Mass-flow-inlet 
8.50 x 10-3 kg/s (400 L/min) 
2.13 x 10-3 kg/s (100 L/min) 
8.50 x 10-4 kg/s (40 L/min) 

77 wt-% N2 + 23 wt-% O2

Reactor wall [a] Pressure outlet 0 Pa 77 wt-% N2 + 23 wt-% O2

Reactor wall [b] Wall No-slip / Adiabatic – 
[a]

 For open reactor setup. 
[b]

 For enclosed reactor setup. 
  

Results and Discussion 

Figure 2 presents CFD results concerning the gas velocity fields (a, c-e), gas entrainment (b) and gas 
recirculation (f) in a spray reactor. The mass flow of gas entrainment from the ambient – which is dragged into the 
spray region – increases with increasing the axial distance from the atomizer. Ricou and Spalding [24] proposed a 
linear correlation for the total mass flow rate of gas entrainment, �� , for a diffusion gas flame. Analysing the open 
setup (Figure 2a), the entrainment ratio at several heights above the burner, HAB, can be estimated (Figure 2b). 
By supplying sufficient amount of co-flow gas that satisfies the entrainment requirement of the spray – in this case 
~400 L/min (Figure 2c) – a similar spray flow behavior and morphology as found in the open setup and negligible 
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Figure 3. Simulated temperature fields
primary particle diameter (f) for the 

Nomenclature 

�� � initial mass flow rate [kg s-1]
�� � recirculation mass flow rate 
��  mass flow rate [kg s-1] 
CFD computational fluid dynamics
DRW Discrete Random Walk model
ER entrainment ratio  

on in Open and Enclosed Reactors 

observed. In contrast, decreasing the co-flow rate (Figure 2d-e) strong vortex and recirculation 
observed in confined jets with reduced co-flow [18]. 

pen (a) and enclosed FSP reactor (c-e); analysis of entrainment ratio (b) 
in an open FSP reactor and recirculation mass flow ratio (f) in an enclosed 
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FSP flame spray pyrolysis 
GLMR gas-to-liquid mass ratio 
HAB height above the burner [m] 
PRT particle-residence-time [s] 
RRSB Rosin-Rammler-Sperling-Bennet function 
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