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INTRODUCTION 

The process of liquid drop evaporation has wide range of applicative fields like spray combustion, spray painting, 
fire control, medical applications, etc. [1]. The modelling of evaporation of liquid droplets in gaseous environment 
has been extensively studied since Maxwell proposed the first model [2]. The classical approach for modelling this 
problem includes some assumptions like drop sphericity, constant gas density and properties, ignoring the Dufour 
and Soret effects, etc. 1-D analytical approach for modelling evaporation of deformed droplet was developed in 
[3]. The effect of non-uniform drop surface temperature on the heating and evaporation of spheroidal droplet was 
initially studied in [4], which proposes an analytical solution for the steady-state species conservation equations 
and a numerical solution for the energy equation for spheroidal drops in gaseous mixture, imposing non-uniform 
drop temperature profiles. The results suggested that the correlation of the vapor flux as function of the Gaussian 
curvature [3] holds only with uniform drop temperature case. The application of the model to the study of the 
transient drop heating and evaporation was first proposed in [5], enlightening the contribution of drop temperature 
non-uniformity on heat and mass transport within the liquid phase. The present work extends the model to general 
non-uniform Dirichlet boundary conditions, including the variation of the drop temperature along the azimuthal 
angle, proposing a fully 3-D analytical solution of the species conservation equation for spheroidal drops. The 
next sections describe the mathematical modelling and the analytical solution proposed, followed by same 
samples of the results obtained applying the model to spherical and spheroidal geometries under different 
operating conditions. Extension to the solution of the energy equation will be part of a future work. 

MATHEMATICAL MODELLING 

CONSERVATION EQUATIONS 

The steady-state species conservation equations can be written in the general form for a binary system as: 
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0
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where the mass flux ( )α
jn (with α = (1, 2) for gas and vapour, respectively) assumes the form:
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ρ
=  is the mass fraction, Dv is the mass diffusivity and Uj is the Stefan flow velocity. Using 

equations (1) and (2) and accounting for ( ) ( )1 2
1χ χ+ =  yields the usual mass conservation equation 

( ) 0ρ∇ =j jU . Assuming still drop surface and neglecting gas diffusion within the liquid phase yields nil gas flux 

everywhere. Defining ( )( )2
ln 1 χ= −G , the equation (2) becomes: 

= ∇j v jU D G (3) 

and under further assumption of constant diffusion coefficient, the Laplace equation for the variable G is obtained: 
2
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The steady-state energy equation, neglecting minor terms like dissipation by viscous stress, and assuming 
constant transport properties within the gas mixture (refer to [6] for  the complete expression), can be written as:  
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Using equation (3), equation (5) becomes:
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The present model proposes an analytical solution of equation (4) for spherical and spheroidal drops, imposing 
non-uniform Dirichlet boundary conditions at the drop surface. 
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SOLUTION IN SPHERICAL AND SPHEROIDAL COORDINATE SYSTEMS 

                                                           (a)                                                                                                         (b) 

                    
Figure 1: (a) Spheroidal coordinate system configuration: oblate (left), prolate (right). (b) η-profiles of the variable G at the drop 

surface for the different test-cases investigated. 

The Laplace equation (4) was solved in spherical and spheroidal oblate and prolate coordinate systems, which 
definitions are given by the equations (7) (refer to figure 1a for a schematic configuration) [7]:  

2 2 2 21 cos ; 1 sin ;ζ α η φ ζ α η φ ζη= + − = + − =x a y a z a
(7) 

where α is equal to 0, -1, +1  for the spherical, prolate spheroidal and oblate spheroidal geometries, respectively. 
The drop surface is always defined by the equation ζ = ζ0, although it must be noticed that the coordinates η and 
ζ have different definitions in the different coordinate systems, as an example, ζ = R0/r and η = cosθ for the 
spherical coordinates, where R0 is the radius of the spherical particle defined by the equation ζ = 1 (i.e. ζ0 = 1). To 

notice that for a general shaped drop, an equivalent radius can be always defined as: 3
0 3 4R V π= , where V is 

the drop volume. In the following, the drop size will be always defined to maintain the same equivalent radius 
allowing a direct comparison of the evaporation characteristics of different shaped drops having the same volume. 

The scale parameter in equations (7) is defined as 
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ε =  is the deformation parameter 

defined with respect to the axial (az) and radial (ar) semi-axis. The analytical solution for the Laplace equation (4) 
assumes the following form [7]: 
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where ( )ηm
nP are the associated Legendre functions of the first kind [8] and the functions ( )ζnW depend on the 
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where m
nQ are the associated Legendre functions of the second kind [8].  

The coefficients gnm are calculated imposing the boundary conditions at the drop surface. The values of the drop 
temperature on the drop surface are imposed and the corresponding values of the variable G are calculated 
assuming that the vapour is saturated in the region close to the liquid/drop interface. To notice that the function G
on the surface is monotonically decreasing with surface temperature. The selected profile of the temperature and 
the function G at the drop surface should satisfy some constrains: the symmetry conditions at the pole 1η =

yields 0η∂ ∂ =G ; the symmetry at the equator yields ( ) ( ), ,η ϕ η ϕ= −s sG G . Furthermore the knowledge of the 

minimum and maximum values of the temperature profile, and then of the function G on the surface, assumed 
monotonic along the variable η, assures the closure of the problem. Figure 1(b) shows a sample of the distribution 
of G as function of the coordinate η along the drop surface, for three values of the azimuthal angle ϕ.   
Once the solution of the species conservation equation is obtained, the vapour fluxes can be calculated along 
each coordinate directions:  

( ), , ,ρ ζ η ϕ= ∇ =v j v jn D G with j (12) 

where the gradients of the variable G assume the form:  

( ) ( ) ( )'
,

,

1
cosζ

ζ

ζ η ϕ�∇ = m
n m n n

n m

G g W P m
h

(13a) 

( ) ( ) ( )'
,

,

1
cosη

η

ζ η ϕ�∇ = m
n m n n

n m

G g W P m
h

(13b) 

( ) ( ) ( ),
,

1
sinϕ

ϕ

ζ η ϕ�∇ = − m
n m n n

n m

G mg W P m
h

(13c) 

57



Modelling of heat and mass transfer from spheroidal

being '
nW the derivatives with respect to

RESULTS AND DISCUSSION
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arrows represent the flux vectors. The graphs shows that the flux is 
particular case with uniform temperature conditions
fourth root of the drop Gaussian curvature, as 
along the η-coordinate of the non-dimensional flux for the spherical and two spheroid
uniform temperature distribution at the drop surfac
distribution only function of the η-coord
temperature has a peak at the drop equator
vapour flux for the oblate drop reflects the imposed boundary condition
drop equator and minimum values at the drop poles. 
non-dimensional vapour flux is not reached at the poles
the curvature is higher at the drop poles. 

                                             (a)                                           

Figure 2: Non-dimensional vapour flux distribution at the drop surface for (a) prola
uniform temperature distribution
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Figure 3: Non-dimensional vapour flux profiles along 
(a) uniform temperature distribution and (b) temper
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The effect of more general temperature distribution
figure 4 for the three drop shapes. The 
along three azymuthal angles are reported in figure
temperature distribution reflects to the disuniform
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respect to ζ and 'm
nP �the derivative with respect to η. 

RESULTS AND DISCUSSION
The model has been applied to calculate the effect of different boundary conditions at the drop surfac
vapour flux distribution for spherical and spheroidal drops. Three different boundary conditions have bee
investigated, namely a uniform distribution of the surface temperature, a distribution only function o
and a distribution function both of the variable η and the azimuthal angle ϕ. The three distributions have been 

three drop shapes having the same volume: a spherical drop, a spheroidal prolate drop with 

0.5. Figure 1(b) shows the corresponding profiles of the variable

along the drop surface as function of the η-coordinate. The test-case with temperature and 
corresponds to the profile with ( ), / 2sG η ϕ π= , while for the test case with the temperature

ϕ, three profiles have been plotted as a sample, corresponding to 
shows the contour distribution of the ζ-component of the non-dimensional 

e drop surface imposing uniform drop temperature for the two spheroidal drops, while the

The graphs shows that the flux is depending on the drop curvature, and for the 
particular case with uniform temperature conditions at the drop surface the flux results to be proportio

drop Gaussian curvature, as found in [3]. This is confirmed in figure 3(a), which plots the profile 
dimensional flux for the spherical and two spheroidal drop shapes imposing the 

uniform temperature distribution at the drop surface. The corresponding profiles obtained imposing a t
coordinate (red profile of figure 1b) are reported in figure 

temperature has a peak at the drop equator (minimum of Gs) and a minimum at the poles
oblate drop reflects the imposed boundary conditions, with the maximum value reached at the 

drop equator and minimum values at the drop poles. For spherical and prolate drops the mi
dimensional vapour flux is not reached at the poles and this is more evident in the case of prolate dr

at the drop poles. 

(a)                                                                                          (b) 

                    
flux distribution at the drop surface for (a) prolate (ε = 1.5) and (b) oblate (
uniform temperature distribution as boundary conditions. 

              (a)                                                                              (b)                                            

          
dimensional vapour flux profiles along η-coordinate for spherical, prolate (ε = 1.5) and oblate (

(a) uniform temperature distribution and (b) temperature distribution function of 

The effect of more general temperature distribution on the non-dimensional vapour flux distribution is shown in 
figure 4 for the three drop shapes. The corresponding profiles of the variable Gs as function of the h
along three azymuthal angles are reported in figure 1(b). The results suggest that the complexity of t
temperature distribution reflects to the disuniformity of the vapour fluxes, and this is particularly evident for the 

uniform Dirichlet boundary conditions�

of different boundary conditions at the drop surface on the 
drops. Three different boundary conditions have been 

surface temperature, a distribution only function of the variable η
. The three distributions have been 

a spherical drop, a spheroidal prolate drop with ε = 1.5 and 

shows the corresponding profiles of the variable ( )( )2
ln 1 χ= −G , 

temperature and G only function of the 
while for the test case with the temperature and G

, three profiles have been plotted as a sample, corresponding to ϕ =0, π/2 and 
dimensional vapour flux defined as 

temperature for the two spheroidal drops, while the 

the drop curvature, and for the 
t the drop surface the flux results to be proportional to the 

(a), which plots the profile 
dimensional flux for the spherical and two spheroidal drop shapes imposing the 

e. The corresponding profiles obtained imposing a temperature 
b) are reported in figure 3(b). The imposed 

and a minimum at the poles (maximum of Gs). The 
ith the maximum value reached at the 

For spherical and prolate drops the minimum value of the 
 and this is more evident in the case of prolate drop where 

= 1.5) and (b) oblate (ε = 0.5) drop with 

(b)                                            

  
= 1.5) and oblate (ε = 0.5) drops with 

ature distribution function of η. 

dimensional vapour flux distribution is shown in 
as function of the h-coordinate 

 1(b). The results suggest that the complexity of the 
and this is particularly evident for the 
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Figure 4: Non-dimensional vapour flux distribution at the drop su

drop with non
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Figure 5: Non-dimensional vapour flux profiles along 
1.5) and (c) oblate (ε = 0.5) drop

CONCLUSION AND NEXT STEP IN RESEARCH

The steady-state analytical solution of the species conservati
spheroidal drops evaporating in stagnant air by accounting for
boundary conditions at the liquid/drop interface. T
for three drop shapes imposing different
to include the solution of the energy equation acco
drop evaporating in a gas mixture.  
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