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Abstract. The cosmological constant induced by quantum fluctuation of the graviton on a
given background is considered as a tool for building a spectrum of different geometries. In
particular, we apply the method to the Schwarzschild background with positive and negative
mass parameter. In this way, we put on the same level of comparison the related naked
singularity (—M) and the positive mass wormhole. We discuss how to extract information
in the context of a f (R) theory. We use the Wheeler-De Witt equation as a basic equation to
perform such an analysis regarded as a Sturm-Liouville problem . The application of the same
procedure used for the ordinary theory, namely f(R) = R, reveals that to this approximation
level, it is not possible to classify the Schwarzschild and its naked partner into a geometry
spectrum.

1. Introduction

Almost ten years ago, observation about type I supernovae data revealed that the Universe is
in an acceleration phase [1]. Since then, no satisfactory explanation has been given. Indeed if
the Friedmann-Robertson-Walker model of the universe, based on the Einstein’s field equations
is correct, the explanation of such an expansion should be due to approximately a 76% of what
is known as Dark Energy. Dark Energy is based on the following equation of state P = —p
(where P and p are the pressure pf the fluid and the energy density, respectively). Dark Energy
changes into Phantom Energy when P < —p. Nevertheless, neither Dark Energy nor Phantom
Energy models appear to be satisfactory. In this scenario, the idea that General Relativity could
be modified in something more general has been considered in recent years. In particular, the
Einstein-Hilbert action (k = 87G)

1
S = ﬂ/d4$ /__gR+Smatter (1)

is replaced by|[2]
1
S:ﬂ/dzlx /—_gf(R)_}_Smatter. (2)

It is clear that other more complicated choices could be done in place of f (R) [4]. In particular,

one could consider f (R, R, RF ,Rangaﬂ“f‘s, .. ) or f(R,G) where G is the Gauss-Bonnet

invariant or any combination of these quantities !. Note that in principle one could consider

! For a recent review on f (R), see Refs[3, 4], while a recent review on the problem of f (G) and f (R, G) can be
found in[5].
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the replacement R — 2A, — f (R) in such a way to avoid the use of the cosmological constant
A.. Tt is well known indeed, that there exists a factor of 120 orders of magnitude of discrepancy
between the observed and the computed value. This huge disagreement is known as cosmological
constant problem. It is important to remark that the cosmological constant plays an alternative
role with respect to Dark Energy and modified gravity theories in explaining the acceleration
of the Universe. Nevertheless, nothing forbids to consider them together in the context of the
Wheeler-DeWitt equation (WDW)[6]

HI=0, (3)
where 2
H = (2/4,) Gijklﬂ'ijﬂ'kl - \2/—5(3]% - 2Ac) ) (4)

3R is the scalar curvature in three dimensions and G'ijki is called the super-metric. H represents
the time-time component of the Einstein’s field equations without matter fields. It represents
a constraint at the classical level and the invariance under {ime reparametrization. One can
formally re-write the WDW equation as an eigenvalue problem

1Dy ¥ o) fyy Prhs¥lg) 1 (¥ |[fedahs|T) 5, 5
V. | Dlgi] ¥* [9i5] ¥ [945] % (T|T) Tk

where

]\2 = (2/&2) Gijkl’lrijﬂ'kl — \2/—53]2 (6)

and
V= /E Pry/3. (7)

It is clear that, what we interpret as an eigenvalue is an induced cosmological constant and,
as pointed out in Ref.[8], we can use such an eigenvalue evaluated to one loop in different
backgrounds as a tool to compute a geometrical “spectrum” based on Zero Point Energy (ZPE).
In particular, in Ref.[8],we have computed the induced cosmological constant generated by a
naked singularity associated to the Schwarzschild metric. The reason for such a choice is simple:
if the Schwarzschild solution is

oM 2MG\ !
ds? = — (1 - G) dt? + (1 - G) dr? + r2 (d92 + sin? 9d¢2) , (8)

T T

replacing M with —M = M, we obtain a naked singularity with the following line element
_ _ -1
2M G 2MG
ds® = — (1 n —) dt® + (1 + —) dr? + r* (d6? + sin” 0dg?) . (9)
T T

It is immediate to see there is no horizon protecting the singularity. An immediate consequence
of a negative Schwarzschild mass is that if one were to place two bodies initially at rest, one
with a negative mass and the other with a positive mass, both will accelerate in the same
direction going from the negative mass to the positive one. Furthermore, if the two masses are
of the same magnitude, they will uniformly accelerate forever . Another reason to consider a
naked singularity described by the line element 9 is that it naturally represents a form of “Dark
Energy” and therefore it deserves attention. In this paper we would like to extend the analysis

2 See Ref.[7] for more details.
3 See Ref.[9], for negative mass analysis in General Relativity. See also the problem of the Cosmic Censorship
Conjecture postulated by R. Penrose[10]
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of Ref.[8] to f (R) theories. Although the subject of this investigation is quite delicate, because
as far as we know the subject of f (R) theories combined with naked singularities has not been
considered even at the classical level, it seems quite reasonable to apply the scheme of Eq.(5) to
the negative Schwarzschild mass. Even in this case, we exclude the contribution of matter fields
and the final result will be due only to quantum fluctuations. In practice, we desire to compute

Ade = A7 =AY > () 0, (10)

where AV are the induced cosmological constant computed in the different backgrounds.
Moreover, the Schwarzschild solution for both masses, namely +£M is asymptotically flat.
Therefore we are comparing backgrounds with the same asymptotically behavior. Nevertheless,
in Eq.(3), surface terms never come into play because H as well as A./k are energy densities
and surface terms are related to the energy (e.g. ADM mass) and not to the energy density. We
want to point up that even in the case of f (R) theories, we are neither discussing the problem
of forming the naked singularity nor a transition during a gravitational collapse. Rather the
singularity is considered already existing. The semi-classical procedure followed in this work
relies heavily on the formalism outlined in Refs.[8, 15].

2. Positive and negative Schwarzschild mass in a f (R) = R theory
The Schwarzschild background is simply described by Eq.(8). In terms of the induced
cosmological constant of Eq.(5), we get

) ; (11)

where we have removed the ultraviolet divergence with the help of a zeta function regularization
and applied a Renormalization Group equation in order to avoid a dependence on the mass scale

73
We know that an extremum appears, maximizing the induced cosmological constant for

Noe (o) _ 1 (3MG>2ln 4 g
81G 6472 r3 3MG+/e

=1

3MG /e 1
g e 12)
and leading to
Ao, (Ho,m) _ 1
8rG den? (13)
or 4 ( ) )
Ao,c Mo, T 3MG 1 5
8rG ( 73 ) 6472 re [Tt’ Zrt] ' (14)
Therefore, it appears that there exists a bound for Ag

25672} =  8wG T 4096m2r}’

When we consider the naked Schwarzschild metric, we obtain an induced cosmological constant

of the form
AgEed (o, )

871G

* See Refs.[7, 8] for technical details concerning the reasons of why r € [rt, %rt].
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1 150G\’ In 4r3u2 . oG\’ In 43
6472 73 15MG+/e 73 IMG+/e

In order to find an extremum, it is convenient to define the following dimensionless quantity

. (16)

IMG./e
3z 5 (17)
"o
then Eq.(16) becomes
ApaFed (uo, ) pe T, 25 5z
: =— 1 —2?In (= 1
87G den? [:’: nrt g n(3) (18)
We find a solution when »s
p— — (3)* 20417 (19)
z=— (= ~ 0.
7 3)
corresponding to a value of
ARt (po,r) — pl 17 (2, T Ao (po, )
: AP —5(17)3(3%) ~ 0.328-L0 = (.32820c 0T 20
81G de2n2s 0 4e? 72 81G (20)
This means that red
Ana € ’,r.
ASe™ (0:m) _ o sog < 1. (21)

Ao,c (o, )

A comment to this inequality is in order. Eq.(21) shows that the Schwarzschild naked singularity
has a lower value of ZPE compared to the positive Schwarzschild mass. This means that, even if
the order of magnitude is practically the same, the naked singularity is less favored with respect
to the Schwarzschild wormhole. We now try to apply the same method to a modified gravity
theory of the form f (R).

3. Positive and negative Schwarzschild mass one loop energy for a generic f (R)
theory

In this section, we report the main steps discussed in Ref.[15] for a f (R) theory in connection
with the Sturm-Liouville problem of Eq.(5). Although a f(R) theory does not need a
cosmological constant, rather it should explain it, we shall consider the following Lagrangian
density describing a generic f(R) theory of gravity

L= \/__g (f (R) —24), with f” # 0, (22)

where f(R) is an arbitrary smooth function of the scalar curvature and primes denote
differentiation with respect to the scalar curvature. A cosmological term is added also in this case
for the sake of generality, because in any case, Eq.(22) represents the most general lagrangian
to examine. Obviously f” = 0 corresponds to GR. The generalized Hamiltonian density for the
f (R) theory assumes the form °

H=f"(R) [(2”) Gijm ! - g (V5 QAC)]

K

(F (R - 1)+ [V(P) + 207 (VaF (B),,].  (23)

2
2(26) | Gisrymidgkl 2 T
+ ( Kl) l PRI T + 4 2%

5 See Refs.[16, 15] for technical details.
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where
P=-6y3f (R) (24)
and
V(P) = g [Rf' (R) — f (R)]. (25)

When f(R) = R, V(P) = 0 as it should be. By imposing the Hamiltonian constraint and
integrating over the hypersurface Y, we obtain

/Ed?)iv { |:(2l<.‘,) Gijklﬂijﬂkl - £(3)R + (2/&‘,) lGZ]leZ]Wkl + 4 ] %
VP) \_ A [
ol B R 20

where we have assumed that f/ (R) # 0 and we have dropped a divergence form term. Eq.(26)
can be cast in the form of Eq.(5), by formally repeating the same procedure. Thus one gets

1 <\IJ ‘fz d3z [Ag)] ‘ ‘§[1> N 262 (f'(R) — 1) <\P ‘f): d3z [Gijklﬂ'ijﬂ'kl + 7r2/4] ‘ \I/>

4 (w]w) Vo (R (U]w)
3$ K /
P Ll V() RIE)_ A o

From Eq.(27), we can define a “modified” [\g ) operator which includes f’ (R). Thus, we obtain

(015 @ 7Dy w)|¥) | 5 (7 (R) = 1) (@ |y P 2] )

(T]w) V. ' (R) (T]w)
1 <\D‘f2d3z2lﬁ:f’ R)‘\I’> A
where
AL gy = (25) h(R) Gijrmin — \2/—5 3R, (29)
e 21/ (R) - 1
h(B) =1+ =g (30)

and where 3R"" is the linearized scalar curvature. Note that when f (R) = R, consistently it is
h(R) = 1. From Eq.(28), we redefine A,

Js &z grgy | ¥ Rf’() f(R)
2V< ‘E@m];) ) A+_/d3“’\f R (31)

where we have explicitly used the definition of V(P). In the same spirit of the previous section,
we find that by replacing Ag (10,7) with Af (po,7), the T'T tensors one loop contribution for a
f (R) theory is given by Eq.(11) and the extremum is given therefore by 67

Gug
2me?’

A=A+

Ag (o, 7) = (32)

6 For a complete derivation of the effective action for a f (R) theory, see Ref.[17].

" By a canomcal decomposition of the gauge part £, into a transverse part &2 with V*¢Z = 0 and a longitudinal
part §a with §a = Vg, it is possible to show that most of the contribution comes from the longitudinal part
(scalar). Evidence against scalar perturbation contribution in a Schwarzschild background has been discussed in
Ref.[18].
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with Z expressed by Eq.(12) . In terms of Ag (uo,Z), we find

1 3 Rf'( ) f(R)] _ Gug
and isolating Ag (uo,Z), we obtain

Note that Ag (10, Z) can be set to zero when

4 1
Vo g = b [ payg™ T, (35)

Let us see what happens when

f(R) = exp (—aR). (36)

This choice is simply suggested by the regularity of the function at every scale. In this case,
Eq.(35) becomes

3acexp (—aR) + 2 Gug 1 / 3
=— [ d 1 .
\/ aexp(—aR) w2 oV Jx /g (L +aR) (37)

For Schwarzschild, it is R = 0, and by setting « = G, we have the relation

2
4 _ e 1
="\ Bc+r2a (38)

It is clear that the passage to the naked singularity is straightforward, at least at formal level.
The result is identical to Eq.(32) with the replacement

Ap (o, 2) = AT (1o, 7) (39)

which means that also in Eq.(33) we have to replace Ag (uo,z) with AJ%e? (4o, 7). However,
also in this case we have the freedom to choose the r.h.s of Eq.(33) in such a way to cancel
ABaked (145, %). This means that also a naked Schwarzschild singularity predicts a vanishing
cosmological constant. Let us see the consequences on the renormalization point pg. If we
further proceed and we fix the form of f (R) like in Eq.(36), we get the relation

u(()nak:ed)4 — 0-328,”61 — #gaked = 0,757'[1,0 (40)

As we can see, it seems that a generic f (R) theory cannot be more different by the ordinary case,
namely when f (R) = R. This means that in this approach and at this level of approximation we
cannot discriminate the different geometries. The situation is more marked, if we had chosen as
a boundary condition for the naked singularity a privileged point rg = 2M G, namely a “fictitious
throat”. We use the term fictitious because there is no throat at all. Nevertheless, if one wishes
to fix such a boundary condition, there should not be difference at all between positive and
negative Schwarzschild mass. Therefore, it appears that we are in a position where we cannot
build a spectrum of geometries including a naked singularity. On the other hand, the impact of
this approach on the cosmological constant problem deserves further investigation.
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