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Abstract

In this dissertation, two relevant aspects of routing in the urban environment are stud-

ied. In the first part of the thesis, the implications of considering release dates when

planning for delivery from distribution centers are discussed. The routing problems

with release dates are contextualized in the class of routing problems, and in particu-

lar, in the class of routing problems in which timing decisions must be considered. The

Traveling Salesman Problem with release dates and completion time minimization is

studied. Properties are introduced for the problem and a formulation is proposed.

Two variants of a heuristic algorithm are tested against the optimal solution and

shown to provide high quality results. The benefits of considering release dates are

assessed by comparing the results with those obtained disregarding the release dates

and delivering the parcels as soon as they arrive to the distribution center. The study

on routing problems with release dates is then expanded to consider the stochastic

and dynamic nature of the release dates. A reoptimization technique is proposed to

tackle the dynamic aspect of the problem. Three reoptimization policies are proposed,

with increasing reoptimization frequency, together with two models for the solution

of the problem. The first is a stochastic model, considering the entire probabilistic

information available for the release dates, and the second is a deterministic model,

where a point estimation is used. The stochastic model is shown to perform better

than the deterministic model, at the expense of the computational time required to
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evaluate any of the solutions explored.

The second part of the thesis is focused on the management of the loading and

unloading areas in the city center. Urban distribution requires vehicles to temporarily

stop to perform the last leg of the delivery by foot. If a spot is not available, vehicles

resort to double parking which is a known cause of road congestion. Two booking

management systems and the arising routing problems are presented. The solutions

provided by the two systems are compared with the current state of the distribution.

ii



Acknowledgements

I owe my gratitude, and perhaps more, to many people, but I am not very good at

being thankful on paper, so I will be brief.

I wish to thank my supervisor Prof. M. Grazia Speranza, who patiently guided

me in these years, and Prof. Claudia Archetti, for her patience and support.

I also wish to thank Prof. Dominique Feillet, who co-authored two fo the works

presented in this thesis and hosted me in the Ecole de Mines the Saint-Etienne, and

Prof. Harilaos N. Psaraftis, who hosted me at the Technical University of Denmark.
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Chapter 1

Introduction

1.1 Context

Although the numbers vary with the source, it is of wide consensus that the percentage

of the population living in urban areas is increasing. This trend has the effect of

centralizing the expression of transportation needs, both of people and of goods, at

rate unmatched by the transportation infrastructure. This phenomenon has been

further worsened with the advent of e-commerce and the wide adoption of home

delivery, which have caused a change in the paradigm of goods distribution from

customers going to goods to goods going to customers. It is therefore becoming

increasingly important to efficiently satisfy the transportation requests in the urban

environment, to minimize the negative effects on traffic, pollution, and, broadly, to

improve the quality of the service provided to the citizens, the livability of the urban

environment and the quality of life in general. The broad scientific field that studies

this subject is called city logistics.

Various approaches to the problem have been proposed and studied on the liter-
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ature of operations research. With respect to the reduction of the emissions and the

improvement of the distribution in terms of vehicle routing and loading, one of the

most valued approaches consists in the design of multi-echelon distribution networks

and the implementation of distribution centers, allowing for a better consolidation of

the parcels before the delivery is performed in the city center.

Improvements in the road network use can also be envisioned with the aid of

technological advancement, especially in two prominent directions. A better use of

the capacity of the current network, resulting in more vehicles being able to travel on

the same road, can be predicted with the advent of automated and connected vehicles.

The adoption of such vehicles would allow, for instance, a reduction in safety distances

and potentially even the dismissal of traffic lights, resulting in a higher vehicle density

on the road, a higher congestion threshold, and reduced probability of disruptions

caused by accidents. A reduction in the need of road freight transportation, at least

for small and light packages, could be achieved with the introduction of unmanned

aerial vehicles to perform the last leg of the delivery.

The ultimate cause of the pollution resulting from freight transportation is the

use of fossil fuel powered vehicles. A sensible reduction in the air pollution has been

made available with the introduction of alternative fuel vehicles and even more, also

in terms of noise pollution, with electric powered vehicles. The former, however, suffer

from a general lack of refueling stations and the latter from slow recharging times and

short traveling range. As the adoption of these vehicles gets wider, however, these

downsides could be mitigated by an increased economic viability of this solution and

technological advancements.

Another important aspect in the strive to improve the efficiency of network us-

age, with perhaps more immediate effects and less investments required than the other

approaches discussed, is represented by the trends in road use over time, characterized



1.2. CONTRIBUTIONS 5

by daily peaks at rush hours. One way to discourage freight transportation in such

hours is represented by dynamic road pricing based on traffic level. Another way to

smoothen transportation demand in the city center through the day, both spatially

and temporally, is the adoption of limited entrance zones.

1.2 Contributions

In this dissertation, two relevant aspects of the distribution in city centers are studied.

As above introduced, an important role in the reduction of the negative effects

and the overall improvement of the efficiency of the distribution in the city centers

is parcels consolidation. One way this could be achieved is through the introduction

of distribution centers where the parcels for customers are delivered and consolidated

before delivery. The advantages of the introduction of distribution centers is twofold.

The first benefit is the reduced circulation of large long haul trucks in the city center,

in favor of small short range vehicles, often powered by electricity. The second benefit

is to allow for an overall reduction of the number of vehicles required to perform the

distribution, as parcels can be batched together and delivered in a more efficient way.

An important role in the viability of distribution centers is represented by the efficiency

in the processing and delivery of the parcels. In this sense, the implementation of

distribution centers must not represent a bottleneck in the distribution in the city or

the cause of a degradation in the quality of service perceived by the customers.

A key aspect to better plan the deliveries in the city from a distribution center

is to take into account the time at which the parcels reach the distribution centers

and are ready to be delivered. Such time is called the release date of the parcel. The

study of the implication of considering release dates for the parcels of customers when

planning the routing for the delivery is the subject of Chapters 2, 3, and 4.
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In Chapter 2 the subject of vehicle routing problems (VRP) with release dates

is contextualized in the literature of routing problems. A classification of the VRPs

is proposed based on the decisions to be taken when planning for the distribution.

After presenting various classes of routing problems based on this criterion, the class

of problems where timing decisions must be considered in addition to the more tra-

ditional characteristics of VRPs is discussed. This class of routing problems includes

the periodic routing problem, the inventory routing problem, the routing problems

with release dates, and the multi-trip routing problems. A review of the literature on

these problems is presented.

To better understand the effects of considering release dates in routing problems

when planning for the distribution, Chapter 3 focuses on the study of the Traveling

Salesman Problem (TSP) with release dates, where a single uncapacitated vehicle

delivers goods arriving at the distribution center over time, seeking the minimization

of the total time required for the completion of the distribution, given by the sum

of the travel times for the deliveries to customers and waiting times at the depot for

the parcels to be delivered to the distribution center. Properties are introduced for

the problem and a mixed integer formulation is proposed. A heuristic is presented

based on an iterated local search where the perturbation is performed by means of

a destroy-and-repair method. Two alternative repair operators, one simple and fast

and the other based on a mathematical programming model, are proposed, which give

rise to two variants of the heuristic. The mathematical formulation is used to find the

optimal solution on instances with up to 20 customers, built from benchmark instances

for the classical TSP. The two variants are shown to provide high quality solutions

compared to the optimal solutions. Further comparison is reported on larger instances

and the benefits of considering release dates is shown by comparing the results of the

heuristic with the solution obtained by disregarding known arrival times and delivering
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the parcels as soon as they reach the distribution center.

In Chapter 4, the study of the TSP with release dates is expanded to consider

the stochastic and dynamic nature of the release dates as the representation of the

arrival times of vehicles delivering parcels to the distribution center, subject to delays

and uncertainty in travel times but also able, with the aid of connected devices, to

provide updates on the estimated time of arrival. A reoptimization technique is pro-

posed to tackle the dynamic aspect of the problem. Three reoptimization policies are

introduced, with increasing reoptimization frequency. The benefits and drawbacks of

considering stochastic release dates are highlighted by comparing the results of the

stochastic model proposed for the problem, considering the entire stochastic informa-

tion for the release dates, and a deterministic model, where a point estimation for the

release dates is used.

In Chapter 5 a different problem arising in the context of city logistics is con-

sidered. As above discussed, one of the issues in the distribution in urban areas is the

inefficient use of the transportation network. Most literature discussing city logistics,

however, focuses solely on the use that vehicles make of the network when traveling,

disregarding the moments in which the vehicles must stop to load, unload and for the

delivery to take place and therefore assuming that a parking spot is always available

or that the vehicle resorts to double parking if none is found. In practice, however,

space is a scarce resource for the allocation of loading and unloading areas as it is for

the road infrastructure. Not considering the effects of double parking on traffic when

discussing the distribution problems of urban areas can cause more issues that the

ones that were aimed to be solved.

Conclusions and future research are presented in Chapter 6.
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Chapter 2

Vehicle routing problems over

time: a survey

This chapter is based on the homonymous article currently submitted for publication.

The work therein has been performed by the author in collaboration with Prof. M.

Grazia Speranza.

2.1 Abstract

In this chapter the literature on vehicle routing problems (VRPs) that include a timing

decision in addition to the more classical characteristics of this class of problems, is

reviewed. After discussing the different kinds of decisions taken in different classes

of vehicle routing problems, the class where decisions have to be taken about when

the routes start from the depot is considered. This class of problems, that we call

VRPs over time, includes the periodic vehicle routing problems, the inventory routing

problems, the routing problems with release dates, the multi-trip routing problems.

9
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2.2 Introduction

Vehicle routing problems (VRPs) are among the most studied problems in the field

of combinatorial optimization. Despite the long tradition, the literature on routing

problems is expanding at a faster-than-ever pace (Eksioglu et al. (2009) reports an

exponential growth with an annual growth rate of 6%), with more variants being

introduced and faster and better solution methods being devised. The knowledge

gained on these problems and the technological advancements have allowed researchers

to tackle more complex variants, also narrowing in this way the gap between the

scientific literature and real life applications. In this context, it is of great importance

to have surveys and classifications of the scientific contributions that organize the

literature and, on one hand help, understanding what has been achieved and, on the

hand, what are the open and promising directions for future research.

Taxonomies and surveys on VRPs have been published over the years aimed at

classifying the VRPs and overview recent evolutions and trends. A recent taxonomy

of VRPs is provided in Braekers et al. (2016), updating and expanding the work of

Eksioglu et al. (2009). The authors classify the papers based on five macro-categories:

type of study, scenario characteristics, problem physical characteristics, information

characteristics and data characteristics. A classification of routing problems that

takes into account the management components of the problem is briefly introduced

in Lahyani et al. (2015) for the rich VRPs. The authors consider the cases where

routing decisions are taken together with inventory, location, driver scheduling and

production and distribution planning.

One may think about the Traveling Salesman Problem (TSP) as the most basic

problem of the class of the VRPs. In fact, in the VRPs a vertex is a depot and the

other vertices are customers. Each customer has a demand and vehicles, with limited
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capacity, are available to serve the customers. The most basic problem of the class

of the VRPs is considered to be the capacitated VRP, sometimes simply called the

VRP, where a set of customers, each with a given demand, have to be served with a

fleet of identical vehicles. Each vehicle performs exactly one route. The number of

vehicles/routes is given. All routes start and end at a depot. The VRP consists in

assigning customers to routes and in sequencing the customers in each route in such

a way that the total routing cost is minimized. Many extensions and variants of the

capacitated VRP have been studied with the largest number of VRPs focused on the

assignment and sequencing decisions.

In this chapter, the VRPs are classified according to the additional, with respect

to the assignment of customers to routes and the sequencing of customers in each

route, decisions to be taken. Such additional decisions usually imply a substantial

change in the mathematical programming formulation and the design of substantially

different solution approaches. This classification is aimed at identifying the class of

the VRPs over time for which we will overview the literature. In the VRPs over

time, the decision about when a vehicle starts from the depot has to be taken. This

implies that not all routes start at the same time from the depot. The VRPs over

time include the periodic vehicle routing problems, the inventory routing problems,

the routing problems with release dates, the multi-trip routing problems.

The chapter is organized as follows. In Section 2.3 we describe some of the

classes of VRPs that arise when different decisions are considered. In Section 2.4 the

class of VRPs over time is surveyed.
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2.3 Classes of vehicle routing problems

In this section we structure the VRPs according to the kinds of decisions that have to

be taken to solve them. We start from the most classical VRPs, where customers are

assigned to vehicles and ordered. Then, we consider other classes of VRPs, such as

the VRPs where the decision about which customers to serve (not necessarily all) has

to be also taken, or the VRPs where the decision about the quantity (not necessarily

total demand) to be served has to be taken. The main goal is to identify as a specific

class, that of the VRPs over time, to which Section 2.4 is devoted. In the following,

if not specified, for the sake of simplicity, we will refer to distribution problems where

customers are delivery customers while in most cases we could also refer to collection

problems where customers are pickup customers.

With which vehicle? In which order? The most classical VRPs include the

Capacitated VRP (CVRP). In this problem, each vehicle starts and returns to the

same depot. The number of vehicles available is given and coincides with the number

of routes. It is understood that each vehicle performs exactly one route. We may say

that a vehicle starts from the depot or, equivalently, that a route starts from the depot.

All routes can start at the same time. All customers must be served. The demand of

each customer is entirely served by one route. One single commodity is considered.

Formally, the basic CVRP, as described in Toth and Vigo (2014), is defined on a

directed graph G = (V,A) where the set of vertices V is composed of the depot,

vertex 0, and the set N = {1, . . . , |N |} of customers. The demand of customer i ∈ N

is indicated as qi, expressing the weight or the volume of goods to be delivered. The set

of vehicles available for the distribution is denoted by K = {1, . . . , |K|}. The vehicles

are homogeneous and have a capacity Q. The cost of traveling from i to j is denoted

by cij. Routes must be created, that is, customers must be assigned to vehicles and the
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customers assigned to each vehicle must be ordered. The minimization of the routing

cost is sought while satisfying the following constraints: all customers are served,

each vehicle departing from the depot serves a subset of customers and returns to the

depot, each vehicle performs at most one route, the total demand of the customers

served in the same route does not exceed the vehicle capacity, and no customer is

visited more than once.

The VRPs in this class, that we call the classical VRPs, include all the problems

where the decisions to be taken concern the assignment of customers to routes and

the sequencing of the customers assigned to each route. These problems extend the

CVRP with additional constraints or features on the vehicles or on the customers,

and include, for example, the CVRP with time windows and several variants of the

CVRP with pick-ups and deliveries.
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Figure 2.1: Decisions of the classical VRPs.
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Which customers to serve? In the classical VRPs, all customers must be served.

This implies that a decision about which customers to serve has already been taken

at an earlier stage. In general, the customers to be served in a day may be decided on

the basis of convenience or urgency. Also, customers, offered by other companies or

web sites, may be accepted or not. When the decision about which customers to serve

is considered, we have the class of the VRPs with profits. Examples of VRPs with

profits are the orienteering problem and the team orienteering problem (see Archetti

et al. (2014b) for a review).

How much to a customer? In the classical VRPs all customers are visited once.

This implies that the demand of a customer does not exceed the capacity of a vehicle.

No decision about the quantity to deliver to a customer has to be taken as the entire

demand is served by one vehicle. While this is often a realistic assumption, it may be

beneficial to visit customers more than once, even when the demand does not exceed

the capacity of a vehicle.

The Split Delivery Vehicle Routing Problem (SDVRP) is the CVRP where the

quantity to be delivered to a customer by a vehicle has to be decided, which implies

that a customer may be visited by multiple vehicles. A survey on the classes of VRPs

with split deliveries can be found in Archetti and Speranza (2012).

What commodity? Only one commodity is considered in the classical VRPs. This

does not mean that in the real-life applications of the models only one commodity

is delivered but that one modeled commodity is sufficient to model the whole set of

real commodities. This is possible under the assumption that each vehicle can deliver

anything and the depot contains everything that has to be distributed to customers.

The total demand of the customers, possibly of multiple real commodities, and the
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capacity of the vehicles are measured with the same unit of measure, typically weight

or volume.

There are interesting relevant vehicle routing applications that can be modeled

only by explicitly considering multiple commodities. This happens, for example, when

the vehicles have multiple compartments, each with limited capacity, to keep multiple

commodities separated (see Yahyaoui et al. (2018) for a recent review of the litera-

ture). Also, when different commodities are available for the distribution in different

locations, multiple commodities have to be explicitly modeled. In these cases, an

additional decision to be taken concerns the commodity to be loaded on a vehicle. To

the best of our knowledge, no survey is available on the class of VRPs with multiple

commodities.

When does a route start? In the classical VRPs, all routes (or vehicles, given that

each vehicle performs one route) start from the depot at the same time. Thus, these

models consider a period of time where all vehicles start their route at the same time

and assume that the decision on which customers to serve in that period has already

been taken.

There are applications where it is worth considering multiple routes of the same

vehicle, that can be for example limited by a total time duration, or that there is

some flexibility on the period of time where to serve a customer. In such cases, an

additional kind of decision has to be taken, that is when a route should start. We call

VRPs over time the class of problems which consider the decision of when to start

a route. Problems of this class are attracting increasing interest in the last decades.

The next section is devoted to the VRPs over time.
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2.4 Routing over time

In the classical VRPs, the decisions are how to assign customers to vehicles and in

which order each vehicle serves the customers assigned to it. As already mentioned,

these problems may take into consideration, for example, capacity constraints or con-

straints on the order of visits in a route, e.g., backhaul, pick-up and delivery. In the

VRPs over time, an additional decision can and has to be taken, that is, when to

start a route. The reason to consider the time aspect lies in the specific setting of the

problem. It might be a consequence of the characteristics of customers requests, re-

quiring the distributor to consider when or how each customer has been served in the

past. It may also be the result of the resources available to perform the distribution.

A consequence of taking into account the dimension of time in routing problems

is that, while in the classical VRPs routes can start all together, in the VRPs over

time routes can start separately from one another, as a result of the peculiarities of

the problem that make evaluating the decision on routing over time necessary. While

in the classical VRPs, the decision about when to serve customers has been taken

beforehand, in the VRPs over time the decision is taken jointly with the decisions

about assignment of customers to routes and order of visit in each route.

In this section we overview the contributions to VRPs over time by organizing

the discussion according to the characteristics of the studied problems. We will focus

on the characteristics that make these problems different from the classical VRPs and

different from each other. The literature on Periodic Routing Problems (PRPs) will

be reviewed first (see Section 2.4.1), followed by the literature on Inventory Routing

Problems (IRPs) (see Section 2.4.2). These two types of problems cover the majority

of the contributions. In both cases, a homogeneous fleet of capacitated vehicles is

available. In the PRPs possible sequences of days of visit (schedules) are pre-defined
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for each customer. Moreover, given a sequence of days for a customer, the quantity to

be delivered to that customer is given. In the IRPs different solutions may have the

same times of visit but different quantities delivered. While in the PRPs the decision

is when to visit, and this decision implies the quantity to deliver, in the IRPs both

decisions about when and how much to deliver have to be taken. Other two types

of VRPs over time will then be discussed, namely the VRPs with release dates (see

Section 2.4.3) and the multi-trip VRPs (see Section 2.4.4). In the former case there

is a lower bound, that is the release date, on the time a vehicle can start its route to

visit a customer, in the latter the same vehicle can perform multiple routes.

2.4.1 Periodic routing problems

The PRPs are characterized by the fact that each customer is required to be visited

in multiple periods of a planning horizon. Such periods can be specified in different

ways but typically are either the result of a given frequency for the visits (e.g. every

two days), of a given number of visits within the planning horizon (e.g. twice a week),

or of a fixed set of periods specified by the customer (e.g. Monday and Thursday

or Tuesday and Friday). We call each possible set of periods (e.g., Monday and

Thursday) a visiting option. The most common objective is the minimization of

the routing cost. The decision about the visiting option of each customer, among

the possible alternatives, is taken jointly with the decisions about the assignment of

customers to routes and the sequencing of customers in each route. The quantity to

be delivered to customers is not a decision to be taken, is implicit and fixed.

The basic PRP, as defined in Campbell and Wilson (2014), is the problem of

assigning to each customer one of its feasible visiting options over a planning horizon

with the following requirements: the route of each vehicle starts and ends at the

same depot, the amount of goods to be delivered to each customer is known and is
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Figure 2.2: Periodic Routing Problem: an example.

entirely served by one vehicle, the size of the available fleet is given, and the total

travel time of each vehicle is limited. Formally, let G = (V,A) be a directed graph,

where the set of vertices V is composed of the vertex 0, denoting the depot, and

the set of vertices N = {1, . . . , |N |}, denoting the customers. Over a discretized

planning horizon T = {1, . . . , |T |}, each customer i ∈ N is characterized by a set

of feasible visiting options, where each visiting option is a subset of T . The set of

vehicles available for the distribution is denoted by K = {1, . . . , |K|}. The vehicles

are homogeneous and have a capacity Q. The cost of traveling from i to j is denoted

by cij. One visiting option for each customer must be chosen and routes for each

period must be created. The objective is to minimize the total routing cost over the

planning horizon. The solution of a PRP is exemplified in Figure 2.2.

The introduction of the first routing problem which is periodic in nature is

credited to Beltrami and Bodin (1974), where the problem was motivated by an

application in the context of waste collection. The paper also introduces heuristics

for the problem. The definition of the problem is extended in Russell and Igo (1979).

The first paper to identify the problem as a PRP is Christofides and Beasley (1984).

The instances proposed therein have become part of the standard benchmark instance
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set that newly devised algorithms are tested on.

The most recent survey on PRPs is provided in Campbell and Wilson (2014).

The authors discuss the advancements since the paper of Beltrami and Bodin (1974).

Several contributions have been proposed after the survey Campbell and Wilson

(2014), mostly on variants of the basic PRP. The PRP with time windows (PRPTW)

is a variant of the PRP in which customers are allowed to be served within a specific

time interval of each period. A generational genetic algorithm is proposed for the

PRPTW in Nguyen et al. (2014). A study of the performance of a particle swarm

optimization approach is presented in Norouzi et al. (2015) for the PRPTW in a

competitive environment, in which a fraction of the customer demand is served by

the first competitor to arrive at the customer location.

Another variant that has received considerable interest is the multi-depot PRP

in which the customers are allowed to be served from multiple depots, where the

vehicle returns at the end of a route. A heuristic for the problem is investigated in

Mirabi (2014) combining elements derived from the mechanics of electromagnetism

and simulated annealing. The fleet sizing problem faced when dealing with a multi-

depot PRPTW is investigated in Rahimi-Vahed et al. (2015).

Typically, in the basic PRP the problem faced by the distributor is either to

deliver goods or to pickup goods at customer locations. A variant of the basic PRP is

introduced in Jayakumar N. et al. (2016), where the additional issue of dealing with

both the pickup and the delivery phases is considered.

In Archetti et al. (2015b) the multi-period VRP with due dates (MPVRPD) is

studied. The problem considers the case in which a set of customers is characterized

by a release and a due date. These express the first and last period in which each

customer must be served, respectively. The problem can be seen as a PRP as each
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period between the release and the due date is a visiting option and the amount to be

delivered to the customers is given. The multi-depot periodic VRP with due dates and

time windows is considered in Cantu-Funes et al. (2018). The work is inspired by a

real case of a brewing company. Heterogeneous vehicles are used to serve distribution

centers from multiple depots. Due to the fact that empty bottles are collected at the

distribution center, only one distribution center can be served in each route. However,

each vehicle is allowed to perform multiple routes in each period. Deliveries must be

performed within a time window, specified for each customer, which is the same in each

period. The request of each customer must be fulfilled before a due date, expressed

as the last period in which the customer can be served. Again, each period before the

due date can be seen as a visiting option.

While the basic PRP and the above mentioned contributions refer to problems

defined on graphs where customers are represented by vertices, recently, problems

where customers are represented by arcs have received some interest. The Periodic

Capacitated Arc Routing Problem (PCARP) is introduced in Lacomme et al. (2005)

as extension to a periodic setting of the Capacitated Arc Routing problem, as the PRP

is for the VRP. The authors describe several versions of the PCARP, a classification

scheme for the problem, and a memetic algorithm based on a crossover operator

considering both planning and scheduling decisions. In recent years the PCARP has

been investigated in Zhang et al. (2017), proposing a memetic algorithm together

with a route decomposition operator, and in Riquelme-Rodŕıguez et al. (2014). The

authors pose an adaptive large neighborhood search is presented for the PCARP with

inventory constraints. The problem arises in open-pit mines, where unpaved roads

have to be watered to prevent the dust from damaging the equipment. A maximum

capacity is considered for the water depot and water demand is modeled as a function

of time and humidity level.
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2.4.2 Inventory routing problems

The IRPs are problems characterized by the fact that deliveries take place over time

without pre-defined schedules and the quantity to be delivered to any customer at any

time is a decision variable. The quantity to be delivered is such that the inventory

capacity of the customer is not exceeded. In the IRPs several decisions are simulta-

neously taken: when to visit customers, how much to deliver to customers, how to

assign customers to routes and how to order customers visit in a route.

In the terminology of the IRP often a supplier has the role of the depot and

retailers the role of customers. We will use both terms in this section. The basic

IRP is defined on a directed graph where a vertex represents a supplier and the other

vertices the retailers. A discretized planning horizon is given. The quantity available

at the supplier and demanded by each retailer in each period of the horizon is known.

Each retailer has an inventory holding capacity that cannot be exceeded. Supplier

and retailers may incur inventory holding costs. Stock-out situations are not allowed,

that is, the inventory at each retailer must be sufficient to satisfy the demand in each

period. The objective is to minimize the total distribution cost which includes the

routing cost and, if relevant, the inventory cost. The basic IRP with a single vehicle

was introduced in Archetti et al. (2007). The problem is formally defined as follows.

LetG = (V,A) be a directed graph, where the vertex 0 represents the common supplier

and the set of vertices N = {1, . . . , |N |} the retailers. The set of vehicles available for

the distribution is denoted by K = {1, . . . , |K|}. The vehicles are homogeneous and

have a capacity Q. The cost of traveling from i to j is denoted by cij. At each period

t over the planning horizon T = {1, . . . , |T |} the quantity r0t is made available at the

supplier and the quantity rit is consumed at retailer i ∈ N . The initial inventory of

the supplier is known. Each retailer i has a maximum inventory level and an initial

inventory level. A unit inventory holding cost is defined for both the supplier and
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Figure 2.3: Inventory Routing Problem: an example.

the retailers. The customers to be visited in each period must be chosen, together

with the quantity to be delivered in each visit and routes must be created for each

period. The minimization of the inventory and routing costs is sought while avoiding

stock-out at the retailers. An example of the solution of an IRP is shown in Figure

2.3.

The first paper where the expression inventory routing problem was used is Bell

et al. (1983), where the authors discuss the integration of the inventory management

at retailer locations in the industrial gases supply chain. Whereas the study of the

PRPs was motivated by applications in waste collection, IRPs were motivated by

applications aimed at integrating inventory management in distribution problems.

Various reviews of the scientific contributions have been presented in recent

years. In Andersson et al. (2010) the industrial aspects of integrating inventory man-

agement and routing are analyzed. In Bertazzi and Speranza (2012) and Bertazzi and

Speranza (2013) tutorials on the IRPs are provided, with a classification of charac-

teristics that make the IRPs different from each other, starting from the case where

there is one retailer only. A survey of the contributions to the IRPs is given in Coelho
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et al. (2013), where problems are categorized with respect to their structural variants

and the availability of information on retailer demand.

We review here only the papers published after these surveys. In Archetti et al.

(2014a) a comparison of different formulations for the basic IRP with multiple vehi-

cles is presented. It is shown that a vehicle-indexed formulation appears to perform

better that more compact formulations. Exact approaches to the solution of the basic

IRP with multiple vehicles have been studied in Coelho and Laporte (2014a) and

Desaulniers et al. (2015). The former introduces new valid inequalities. The authors

also assess how input ordering affects solution of the model. The latter presents a

branch-and-price-and-cut algorithm to solve a newly devised formulation, providing

the optimal solution for additional 54 instances over the standard benchmark instance

set of 640 instances introduced in Archetti et al. (2007). An analysis of the benefits

of integrating inventory management and routing in the supply chain management

is provided in Archetti and Speranza (2016) by comparing the solution obtained by

considering inventory management and routing separately and by solving the basic

IRP.

Various new variants of the basic IRP have been recently introduced. The

IRP where lost sales are allowed for customers is defined in Park et al. (2016). A

genetic algorithm is proposed for the solution of the problem. In Niakan and Rahimi

(2015) a multi-objective IRP arising in the medicinal drug distribution to healthcare

facilities is presented. Together with inventory and routing costs and greenhouse

gases emissions, the objective function considers product shortage and expired drugs

minimization. A hybridized possibilistic method in synergy with an interactive fuzzy

approach is proposed for the solution of the problem. The pickup and delivery IRP is

considered in Iassinovskaia et al. (2017), discussing the IRP arising in supply chains

where reusable packets (Returnable Transport Items, RTI) are used. Products are
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delivered in RTIs and, simultaneously, empty RTIs are collected. The IRP with

perishable goods is considered in Coelho and Laporte (2014b) where the decisions of

when, how and how much to replenish customers with such goods is analyzed. A

single perishable product is considered in Azadeh et al. (2017) discussing the IRP

with transshipment. The authors propose a genetic algorithm for the problem where

the parameters of the algorithm are tuned using the Taguchi method.

The so called Flexible Periodic Vehicle Routing Problem (FPVRP) is presented

in Archetti et al. (2017). In this problem each customer has a total demand that

must be served within a planning horizon and a limit on the maximum quantity that

can be delivered at each visit is defined. No predefined schedules are given and the

quantity to be delivered is a decision variable. While the problem is called periodic

by the authors, it shares the basic features of an IRP.

The multi-product variant of the basic IRP has been studied in Cordeau et al.

(2015) where a tree-phases heuristic solution approach is presented based on the de-

composition of the decision process. In the first phase a Lagrangian based method

is used to plan customer replenishment. In the second phase the routing among cus-

tomers is obtained, allowing for split delivery. Finally, the solution is improved by

means of a feedback model. In the multi-product variant studied in Mjirda et al.

(2014) vehicles visit suppliers to collect products to be delivered to assembly plants.

Each supplier provides one product and can be visited multiple times during a period.

A two-phase variable neighborhood search is proposed. In the first phase an initial

solution is build by solving a CVRP for each period and in the second phase this

solution is iteratively improved minimizing both the routing and inventory costs. In

Shaabani and Kamalabadi (2016) a population-based simulated annealing heuristic

is proposed for the multi-product multi-retailer IRP of perishable goods and assess

its performances comparing the algorithm with a simulated annealing and with a ge-
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netic algorithm. A multi-product IRP is also considered in Laganà et al. (2015) in

the context of the supermarket distribution industry. Two mixed integer problem

formulations are presented and a decomposition approach is proposed.

The multi-depot IRP is studied in Bertazzi et al. (2017) in a city logistic envi-

ronment. A formulation for the problem is presented and a branch-and-cut algorithm

and a three-phases matheuristic is presented, comprised of a clustering, a routing con-

struction and an optimization phase. Benchmark instances for the multi-depot IRP

have been proposed in Noor and Shuib (2015) by applying clustering techniques to

single-depot IRP benchmark instances.

In the context of maritime inventory routing, Papageorgiou et al. (2014a) presents

an approximate dynamic programming approach for the deterministic maritime IRP

with a long planning horizon. Two decomposition algorithms for a single product

maritime IRP are presented in Papageorgiou et al. (2014b). The IRP of liquefied

natural gas is introduced in Andersson et al. (2016). The peculiarity of the problem

lies in the fact that a constant rate of the cargo evaporates in the tanks each day and

is used as fuel during transportation. The authors present a path flow formulation

that is solved with a decomposition algorithm.

The literature presented so far models the IRP as a problem on a planning hori-

zon of a finite set of periods. A different setting is studied in the literature considering

the periodic IRP (PIRP). In this problem a replenishment schedule must be identified

over a finite period with the additional constraint that the initial inventory levels

must be equal to those at the end of the planning horizon, allowing the schedule to

be repeated. A heuristic is proposed in Qin et al. (2014) for the problem where the

inventory and routing components are solved by means of a local search and a tabu

search, respectively, with the two components being iteratively executed. Liu et al.

(2016) introduces a hybrid heuristic consisting of an iteration of a particle swarm al-
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gorithm, a local search improving each particle found in the previous step and a large

neighborhood search to avoid being trapped in local optima solutions. The algorithm

is shown to outperform the one proposed in Qin et al. (2014) by more than 10%

on average over a set of 10 instances. Finally, the selective and periodic inventory

routing problem (SPIRP) is studied in Aksen et al. (2014), where an adaptive large

neighborhood search is proposed. Montagné et al. (2018) extends the work of Aksen

et al. (2014) for the real case of reusable waste oil collection in Canada, introducing

the use of a relaxation of the model and a constructive heuristic to solve instances

with up to 3000 customers in a 30-day time horizon.

As reported in Andersson et al. (2010), the other options considered in the

literature for the horizon over which the IRP is studied, are instant horizon, when

the planning horizon is so short that at most one visit per customer is needed, and

infinite horizon, when the decision focuses on the distribution strategies rather than

schedules. An instant planning horizon is considered in Li et al. (2014) studying the

IRP arising the petrochemical industry where specific constraints are in place, like

hours-of-service of the vehicles. A measure of workload balance is considered in the

objective function, namely the solution minimizing the maximum route travel time.

A single period horizon is considered in Juan et al. (2014), proposing a simheuristic,

a solution algorithm combining simulation and heuristics to solve, for the solution

of the IRP with stochastic demands and stock-out. An infinite planning horizon is

considered in Van Anholt et al. (2016) discussing the IRP with pickups and deliveries

arising in the contest of ATM replenishment in the Netherlands. The authors propose

to decompose the model into treatable subproblems that are then solved by a branch-

and-cut algorithm.

Variants of the problems considering stochastic information have also been stud-

ied recently. In Coelho et al. (2014) some heuristics are proposed for the dynamic
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stochastic IRP and it is shown how considering the stochastic information is beneficial

for the quality of the solution at the expenses of computational time. Other findings

of the paper include that a longer rolling horizon step does improve the solution and

that allowing for consistent solutions is more beneficial in a static setting rather than

in a dynamic one. The IRP with transportation procurement and stochastic demand

is studied in Bertazzi et al. (2015). The authors show the benefit of considering the

entire stochastic information instead of the average demand. A stochastic dynamic

programming formulation is proposed and a matheuristic is devised for the problem.

The IRP with stochastic stationary demand rates is proposed in Abdul Rahim et al.

(2014), where a Lagrangian relaxation approach is proposed to solve the problem.

Mes et al. (2014) describes the IRP arising in waste collection from sensor equipped

underground containers. The waste to be collected is assumed to be stochastic and

dynamically evolving. Collection costs are minimized together with a function of cus-

tomer satisfaction. Stochastic demand is also considered in Crama et al. (2018) when

studying the IRP with perishable products. Four solution methods are presented

and compared. Perishable products are also considered in the IRP variant studied in

Soysal et al. (2018) where collaboration is considered among multiple suppliers. The

benefits of collaboration are investigated while accounting for demand uncertainty.

Expected inventory costs, waste costs, fuel and driver costs are minimized. Within

the context of IRPs with stochastic information, literature on the IRP considering

multiple objectives has also been recently presented. In Nolz et al. (2014a), the au-

thors extend their previous work (see Nolz et al. (2014b)) on the stochastic IRP for

medical waste collection to consider a bi-objective IRP in the context of waste disposal.

In particular, together with the routing and inventory costs, the authors consider the

quality of service as part of the objective function. A multi-objective IRP is studied in

Rahimi et al. (2017) where, in addition to the inventory and routing costs, the authors

consider service level and the environmental footprint as part of the objective func-
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tion. In Yadollahi et al. (2017), a chance-constrained formulation is proposed for the

IRP with stochastic demand. A safety stock-based deterministic optimization model

is used to determine near-optimal solutions to the chance-constrained optimization

problem. Different safety stock models are investigated and insights on the setting of

the safety stock level are obtained.

2.4.3 Vehicle routing problems with release dates

The definition of the classical VRPs imply that the goods to be delivered to the cus-

tomers are ready for delivery at the depot at the beginning of the planning period.

This is, however, not the case in many practical applications. For example, in con-

solidation and distribution centers, goods to be distributed in the city center arrive

during the distribution period, while the delivery of other goods that have previously

arrived at the distribution center is taking place. In this case, one has to decide

whether it is better to deliver the goods to the customers or to wait for more goods to

reach the distribution center. Similar problems arise in the context of cross docking

and same day delivery problems. The former is a logistic solution aimed at reducing

the stocking costs by loading the parcel of inbound trucks directly on outbound vehi-

cles. In the latter, customers place orders dynamically during the same day the order

has to be fulfilled. Same day delivery problems are faced by many distributors with

online purchases. Distributors must quickly react to incoming orders to deliver goods

on time.

We propose the basic VRP with release dates (VRP-rd) as follows. Let G =

(V,A) be a directed graph. The set V is composed of the vertex 0, identifying the

depot, and the set N = {1, · · · , |N |}, representing the customers. The demand of

customer i is defined by a quantity qi ≥ 0 and a release date ri ≥ 0 is associated

with customer i. A set K = {1, . . . , |K|} of homogeneous vehicles with capacity Q
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Figure 2.4: Vehicle Routing Problem with release dates: an example.

is available to perform the distribution. Each arc of the graph is characterized by

a traveling time and a distance, which are assumed to be identical. The time and

distance from i to j is denoted as cij. Routes must be created and assigned to each

vehicle in such a way that the starting time of a vehicle cannot be lower than the

maximum release date of the customers assigned to it. The objective function is the

minimization of completion time.

An example of solution of a basic VRP-rd is provided in Figure 2.4 where ’r.d.’

means ’release date’. The first route can start when the last of the parcels to be

delivered in that route reaches the depot. As the vehicle is traveling when all the

parcels to be delivered in the second route have reached the depot, the second route

starts as the vehicle becomes available again, i.e., when it returns to the depot. Finally,

the vehicle waits for all the parcels to be delivered in the last route to reach the depot

and performs its final route.

The possibility that customers have a release date has only recently been in-

troduced in VRPs. To the best of our knowledge, the first paper to consider release

dates for parcel delivery is Cattaruzza et al. (2016a). Archetti et al. (2015a) investi-

gates the complexity of both the TSP and the uncapacitated VRP with release dates

and unlimited fleet in the case of completion time minimization and total distance

minimization with a deadline on special topologies, namely the line and the star. In
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Reyes et al. (2018) the study of the complexity of the problem is extended to consider

a service guarantee for the deliveries to the customers. In Archetti et al. (2018) the

authors provide a formulation for the TSP with release dates and completion time

minimization. Two variants of an iterated local search are presented for the problem

and compared. Cattaruzza et al. (2016a) introduces the multi-trip VRP with time

windows and release dates. A hybrid genetic algorithm is proposed for the solution of

the problem, making use of a route decomposition technique for chromosome decod-

ing and a local search to improve the solution. In Shelbourne et al. (2017) the VRP

with release and due dates is considered. A due date is the time by which the order

should be delivered to the customer, is also associated with each customer. A convex

combination of operational costs and customer service level is considered. The former

is expressed as the total traveled distance and the latter as the total weighted delivery

tardiness. The authors present a path relinking algorithm for the problem.

The literature discussed above studies the case in which known customers have

a deterministic release date. However, customer requests may arrive during the day,

with probabilistic information on potential requests. This is the case of the same

day delivery problem. Various papers investigate the routing problem arising in the

logistic of same day deliveries. In these problems the information on customers re-

quest is assumed to be stochastic either in time or both spatially and temporally.

Klapp et al. (2016) studies the dynamic dispatch waves problem (DDWP) of a single

vehicle on a line, where the distributor has to decide whether to dispatch a vehicle to

serve known customers or to wait for potential requests that may arrive later, with

the objective to minimize expected vehicle operating costs and penalties for unserved

requests. Klapp et al. (2018) the authors extend their previous work to a general

network. A deterministic model is used to find an optimal a priori solution to the

stochastic variant and two dynamic policies are developed. The trade-off between
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minimizing operational costs and maximizing the total order coverage is studied. In

Voccia et al. (2017) investigates the same day delivery (SDD) problem, where a fleet

of vehicles is used to serve requests characterized by time windows or a delivery dead-

line. Probabilistic information about the arrival rate of future requests at known

locations is available. The authors identify the circumstances that make waiting at

the depot beneficial to maximize the number of requests that are served on time.

Ulmer et al. (2016) considers the SDD problem in with vehicles are allowed to return

to the depot before having completed its distribution to load the parcels of new cus-

tomers. Unknown customers are characterized by a spatial and temporal probability

distribution. Ulmer et al. (2017) introduces the restaurant meal delivery problem of

picking up meals at a restaurant chosen by the customer and delivering the meal at

his location. The probability distributions on the time and location of meal requests

are known. Before the delivery, the selected vehicle has to pick up the meal at the

restaurant. The meal preparation time is random and therefore the vehicle could be

waiting at the restaurant to pick up the meal.

2.4.4 Multi-trip vehicle routing problems

The general assumption in the classical VRPs is that each vehicle only performs one

route. Consideration on the multiple use of a vehicle may be made ex post, once a

solution is obtained, with the underlying assumption that non overlapping routes can

be performed by the same vehicle. In the multi-trip VRPs (MTVRPs) each vehicle is

explicitly allowed to perform multiple trips during its service time.

The basic MTVRP, as defined in Cattaruzza et al. (2016b), is a CVRP in which

each vehicle performs a set of routes in such a way that the total demand of customers

served in each route does not exceed its capacity and that at the end of the last route

the vehicle returns to the depot before a given deadline. The total routing time is
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Figure 2.5: Multi-trip Vehicle Routing Problem: an example.

minimized. Formally, the problem is defined on a directed graphG = (V,A), where the

set V is composed of the vertex 0, representing the depot, and the set N of customers

is defined as N = {1, . . . , |N |}. The set of arcs is defined as A = {(i, j)|i, j ∈ V }

with the cost of traveling on the arc (i, j) ∈ A being denoted as tij. The set of

vehicles available for the distribution is denoted by K = {1, . . . , |K|}. The vehicles

are homogeneous and have a capacity Q. Each vehicle is available at time 0 and has

to complete all deliveries within time TH . The cost of traveling from i to j is denoted

by cij. Customer i demand is represented as qi, qi ≥ 0, i ∈ N . Routes must be created

and assigned to a vehicle such that the total routing time is minimized, subject to

the following constraints: each route starts and ends at the depot, each customer is

visited exactly once, the sum of the demands of the customers in each route does not

exceed the capacity of the vehicle, the sum of the duration of the routes assigned to

the same vehicle does not exceed TH .

An example solution of a MTVRP with one vehicle is presented in Figure 2.5.

At the beginning of the distribution the vehicle is fully loaded and departs for its first

route, serving three customers. Three are the steps in the vehicle load. After serving

the three customers, the vehicle returns empty to the depot. A second route serving

three customers is performed, with the vehicle leaving the depot fully loaded. The

final route serves only one customer with the vehicle loaded only to serve its demand.
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A recent review of the literature on the MTVRP is provided in Cattaruzza et al.

(2016b). The formulations introduced so far for the MTVRP are presented, together

with the instances created for the problem and the exact and heuristic algorithms

proposed. The same topics are discussed for the known variants of the problem.

Various contributions have been introduced after the survey from Cattaruzza

et al. (2016b). In François et al. (2016) a large neighborhood search is proposed

to solve a relaxed version of the problem where the deadline on the service time

of the vehicles is not considered as a constraint but overtime is penalized in the

objective function. In Liu et al. (2018) the multi-trip repairmen problem with time

windows is introduced. The problem arises from a real application of a repair company

facing the additional costs of the allowances that are paid to the repairmen when

stationed at customers locations. The trade-off of returning to the depot (increasing

the routing costs) and waiting at the customer location (increasing the allowance

costs) is investigated. A branch-and-price method is proposed for the problem. The

MTVRP with backhauls is introduced in Wassan et al. (2017) where trips must be

constructed on the condition that, in each route, backhaul customers, if any, must be

visited after all linehaul customers have been served. A formulation is presented for

the problem and a two level Variable Neighborhood Search heuristic is proposed. The

multi-trip pickup and delivery problem with time windows and synchronization (MT-

PDTWS) is introduced in Nguyen et al. (2017). A tabu search heuristic is devised for

the problem and its performance is assessed. In Tirkolaee et al. (2018) the multi-trip

capacitated arc routing problem arising in waste collection is studied where depots and

disposal facilities are in different locations. A formulation is devised for the problem

and an ant colony algorithm is proposed for the problem.

Stochastic information is considered in two papers. In Chu et al. (2017) the

MTVRP is studied where split-deliveries are allowed and soft time windows are con-



34 CHAPTER 2. VEHICLE ROUTING PROBLEMS OVER TIME: A SURVEY

sidered to achieve customer inventory replenishment. Stochastic travel times are as-

sumed. A two stage heuristic is proposed. In the first stage a solution for the problem

is built and in the second stage the solution is improved by balancing the load of

the vehicles to reduce delays and penalties and idling. In Tirkolaee et al. (2017) the

robust MTVRP of perishable products is introduced with customers demand uncer-

tainty and time windows and intermediate depots. A formulation is presented for the

problem and results assessing its robustness are illustrated.

2.5 Conclusions and future research directions

In this chapter a classification of vehicle routing problems based on the decisions that

have to be taken has been proposed. Then, the literature on vehicle routing problems

over time has been surveyed. In case of previous surveys, only the papers published

after the surveys have been discussed here. In this class of problems, in addition to the

classical decisions about the assignment of customers to vehicles and the sequencing

of customers in each route performed by vehicles, the decision about when a route

starts from the depot has to be taken. Besides the most studied problems in this class,

periodic routing problems and inventory routing problems, we survey the literature

on recently studied problems, namely vehicle routing problems with release dates, and

multi-trip vehicle routing problems.

The decision about when each route starts increases the computational complex-

ity of the problems, and implies the need of additional variables in the mathematical

programming models, with respect to the more classical problems, and specific so-

lution methods. At the same time, the vehicle routing problems over time model

more integrated problems whose solution allows savings with respect to sequential

approaches.



2.5. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 35

Future research directions include the study of the most appropriate formulations

and solution methods of already studied problems but also the study of deterministic

and stochastic variants. Dynamic vehicle routing problems over time would also de-

serve attention, especially considering the technological evolution towards the use of

digital devices that allow continuous generation and transmission of data.
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Chapter 3

An Iterated Local Search for the

Traveling Salesman Problem with

release dates

This chapter is based on the article:

C. Archetti, D. Feillet, A. Mor, and M.G. Speranza. An iterated local search for

the traveling salesman problem with release dates and completion time minimization.

Computers & Operations Research, 98:24-37, 2018.

The work there has been performed by the author in collaboration with Prof. Claudia

Archetti, Prof. Dominique Feillet, and Prof. M. Grazia Speranza.

3.1 Abstract

In the Traveling Salesman Problem (TSP) with release dates and completion time

minimization an uncapacitated vehicle delivers to customers goods which arrive at

37
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the depot over time. A customer cannot be served before the demanded goods arrive

at the depot. A release date is associated with each customer which represents the

time at which the goods requested by the customer arrive at the depot. The vehicle

may perform multiple routes, all starting and ending at the depot. The release dates

of the customers served in each route must be not larger than the time at which the

route starts. The objective of the problem is to minimize the total time needed to

serve all customers, given by the sum of the traveling time and the waiting time at

the depot. The waiting time is due to the fact that the vehicle has to wait at the

depot until the latest release date of the customers it is going to serve in the next

route. We introduce some properties, propose a mathematical programming formu-

lation and present a heuristic approach based on an iterated local search where the

perturbation is performed by means of a destroy-and-repair method. Two alternative

repair operators, one simple and fast and the other based on a mathematical pro-

gramming model, are proposed, which give rise to two variants of the heuristic. The

mathematical formulation is used to find the optimal solution on instances with up to

20 customers, built from benchmark instances for the classical TSP. Comparison with

optimal solutions shows that both algorithms provide high-quality solutions. Tests

are also made on larger instances to compare the performance of the two variants of

the heuristic.

3.2 Introduction

A common trait of the classical Vehicle Routing Problems (VRP) is the assumption

that the goods to be distributed are available at the depot when the distribution

starts. This implies that all vehicle routes may start immediately to distribute goods

to customers. However, there are different settings in which this assumption is not
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satisfied, i.e., goods are not all available at the depot when the distribution starts and

arrive at the depot over time. In this case, vehicles need to wait at the depot for the

goods to arrive before distributing them. One example is related to city logistics and

city distribution centers. Such an application has been studied in Cattaruzza et al.

(2016a) where the authors introduce the Multi-Trip Vehicle Routing Problem with

Time Windows and Release Dates (MTVRPTW-R) in which the goods that have to

be distributed arrive at the depot over time, i.e., they become available when the

distribution has already started. This poses the additional question of whether it is

better to wait for additional goods to arrive and have a better loaded vehicle, or to

start a route with the currently available goods. The arrival time at the depot of the

goods to be delivered to a customer is called its release date. Another example arises

in same day delivery problems related to e-commerce logistics. In this case, customer

orders arrive online when the distribution (of previously received orders) has already

started. Thus, the newly received orders have to be integrated in the distribution

plan by designing vehicle routes that perform multiple trips, i.e., vehicles return to

the depot multiple times in order to pickup the newly arrived orders that need to be

distributed.

The focus of this chapter is to study a routing problem arising in the applications

mentioned above. In particular, we consider the TSP with release date and comple-

tion time minimization (TSP-rd(time)), that is the problem where each customer is

associated with a release date and a single uncapacitated vehicle is allowed to perform

multiple trips during the time horizon (say, the day), one after the other. No restric-

tion is imposed on the maximum time taken by the vehicle to serve all customers and

the objective is to minimize the completion time of the service, that is the time at

which the vehicle is back to the depot and has served all customers. The completion

time is given by the sum of the traveling time and waiting time. We consider the
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static problem where all information about the customers and the associated release

dates are known in advance. As the TSP-rd(time) is relatively new in the literature,

we believe that a deeper understanding of the static and deterministic version of the

problem can be useful when solving the problem where release dates are characterized

by dynamicity and uncertainty.

The contributions of this chapter are summarized as follows. We first devise

some properties of the problem and describe an approximation algorithm derived from

Christofides approximation algorithm for the TSP. Then, we propose a mathematical

programming formulation and present a heuristic approach based on an iterated local

search where the perturbation is performed by means of a destroy-and-repair operator.

Two alternative repair operators are proposed, one simple and fast and the other

based on a mathematical programming model, which gives rise to two variants of the

proposed heuristic. Ad hoc neighborhoods for the local search are introduced which

are based on the characteristics of the problem. The mathematical programming

formulation is used to find the optimal solution on instances with up to 20 customers

built from benchmark instances for the classical TSP. On all but one instances the

heuristic with the simple repair operator finds the optimal solution.

The chapter is organized as follows. In Section 3.3 we review the literature

related to similar problems. In Section 4.3 the TSP-rd(time) is defined and the prop-

erties and the mathematical programming formulation are presented. The heuristic

is described in Section 3.5, whereas the computational experiments are presented in

Section 3.6. Finally, conclusions are drawn in Section 3.7.



3.3. LITERATURE REVIEW 41

3.3 Literature review

To the best of our knowledge, Cattaruzza et al. (2016a) is the first work where the

concept of release date is introduced in a routing setting. The problem studied is a

multi-vehicle routing problem with time windows. The authors propose a hybrid ge-

netic algorithm to solve the problem and test it on instances generated from Solomon’s

instances for the VRP with time windows (Solomon (1987)). The vehicle routing prob-

lem with release dates with a single uncapacitated vehicle is introduced in Archetti

et al. (2015a). The authors call this problem the Travelling Salesman Problem with

release dates (TSP-rd). Two variants of the TSP-rd are proposed: one takes into con-

sideration a deadline for completing the distribution and minimizes the total traveling

time, the other one has no deadline and seeks the minimization of the time needed

to complete the distribution. The former is referred to as TSP-rd(distance) and the

latter as TSP-rd(time). The complexity of the two variants is analyzed for special

topologies of the graph representing the distribution network, i.e., a line, modelling a

distribution along a road, and a star, modelling the situation where the depot is the

center of the distribution area. Further complexity analysis is carried out in Reyes

et al. (2018), where, in addition to a distribution deadline, a service guarantee is

considered, enforcing a maximum delay between the release date and the delivery

to the customer. Shelbourne et al. (2017) consider the VRP with release and due

dates, where the due date is the time by which the order should be delivered to the

customer. The authors minimize a convex combination of operational costs and cus-

tomer service level, measured by the total traveled distance and the total weighted

delivery tardiness and no waiting time is considered, contrary to what happens in the

TSP-rd(time). The authors present path relinking algorithm for the problem. The

algorithm relies, among other things, on a parameter penalizing the solution that are

infeasible with respect to the capacity constraint which makes it not suited for the
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TSP-rd(time), where such constraint is not considered.

As mentioned in Section 3.2, the vehicle routing problem with release dates finds

applications in the context of the same-day delivery service. Recent contributions that

study the same day delivery problem are Klapp et al. (2016), Klapp et al. (2018),

and Voccia et al. (2017). In Klapp et al. (2016) the authors study the dynamic

dispatch waves problem (DDWP) of a single vehicle on a line, where the problem

is to decide whether to dispatch a vehicle to serve known customers or to wait for

potential requests that may arrive later, with the objective to minimize expected

vehicle operating costs and penalties for unserved requests. The study is extended

to the case of a general network in Klapp et al. (2018). In Voccia et al. (2017) the

same day delivery problem is investigated. A fleet of vehicles is used to serve requests

characterized by time windows or a delivery deadline. Future requests are unknown

but probabilistic information is available. The authors identify the circumstances

that make waiting at the depot beneficial to maximize the number of requests that

are served on time.

Finally, a problem which is strictly related to the one analyzed in this chapter is

the Multi-Trip Vehicle Routing Problem (MTVRP), where each vehicle may perform

multiple trips and, thus, visit the depot multiple times. See Cattaruzza et al. (2016b)

for a recent survey. The need of visiting the depot multiple times may come from

the fact that routes need to have a short duration (see Azi et al. (2007) for potential

applications) or because of capacity constraints. The problem with a single vehicle

performing multiple routes within one workday is investigated in Azi et al. (2007),

where customer requests with time windows are considered. The authors propose an

exact algorithm for the problem. The work is extended in Azi et al. (2010) and in Azi

et al. (2014) to consider multiple vehicles. An exact algorithm is designed in Azi et al.

(2010) while an adaptive large neighborhood search is proposed in Azi et al. (2014).



3.4. THE TSP-RD(TIME) 43

In this chapter we focus on the TSP-rd(time) which is introduced in Archetti

et al. (2015a). We propose the first mathematical formulation and solution approach

for the problem. The TSP-rd(time) differs from the problem analyzed in Azi et al.

(2007) as it considers release dates and does not consider duration constraints and

time windows for the customers. It also differs from Klapp et al. (2016), Klapp et al.

(2018), and Voccia et al. (2017) where a dynamic problem is studied and decision

epochs are defined a priori, contrary to what happens in TSP-rd(time).

3.4 The Traveling Salesman Problem with release

dates and completion time minimization

The TSP-rd(time) is defined as follows. Let G = (V,A) be a complete graph. A

traveling time and a traveling distance are associated with each arc (i, j) ∈ A. These

two values are assumed identical and are denoted by tij. It is also assumed that the

triangle inequality is satisfied. The set of vertices V is composed by vertex 0, which

identifies the depot, and the set N of customers, with |N | = n. The release date for

customer i ∈ N is denoted by ri, ri ≥ 0. This means that the goods for customer

i can either arrive at time ri, then ri > 0, or be at the depot at the beginning of

the distribution, e.g., because they arrived overnight, then ri = 0. A single vehicle is

allowed to perform a sequence of trips. Capacity constraints are not considered. The

objective is to minimize the completion time, that is, the total traveling time plus

the waiting time at the depot, and serve all customers. The waiting time is due to

the fact that the vehicle has to wait at the depot until the latest release date of the

customers it is going to serve in the next route. Without loss of generality, we assume

that customers are ordered in non-decreasing order of their release dates, i.e., ri ≤ rj

for i < j, i, j = 1, . . . , n. Given a solution to the TSP-rd(time), we call route a trip
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starting and ending at the depot and not visiting the depot in between.

3.4.1 Properties

In this section some properties of the problem are presented which are used to enhance

the mathematical formulation (Properties 1 and 2), to define the structure of a solution

in the heuristic algorithm (Property 1) and to build an initial solution for the heuristic

algorithm (Property 3). Property 4 shows a link between the optimal solution of the

TSP-rd(time) and the optimal solution of the TSP. In addition, an approximation

algorithm is presented in Section 3.4.2.

We adopt the following notation. We let t(S) denote the completion time and

d(S) the traveled distance of solution S. S∗ denotes the optimal solution of the

TSP-rd(time) and dTSP the value of the optimal solution of the Traveling Salesman

Problem (TSP) defined on graph G with tij as the cost of traversing an arc.

The TSP-rd(time) is NP-hard as it has the TSP as special case when all release

dates are zero. Furthermore, the problem always admits feasible solutions. In par-

ticular, the solution that waits until time rn and executes an optimal TSP tour is

feasible and gives an upper bound rn + dTSP on the value of the solution.

Properties 1 and 2 give some simple characteristics satisfied by at least one

optimal solution. Property 3 presents a lower bound on the value t(S∗) of the optimal

solution. Property 4 shows that release dates may have a huge impact on the total

distance traveled.

Property 1. There exists an optimal solution with no waiting time after the departure

of the first route.

This property is derived from property 4.2 in Klapp et al. (2016) and thus we
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omit the proof.

Property 2. There exists an optimal solution with exactly one route starting not

earlier than time rn.

Proof: First, at least one route starts not earlier than rn in every solution because

customer n has to be served. Assume that several routes start not earlier than rn

in an optimal solution. Then, all the products are available when the first of these

routes starts. Thus, they can be replaced by a single route restricted to the set of

customers served in these routes without incrementing the traveling cost.

Properties 1 and 2 will be used to reinforce the formulation in Section 3.4.3 and

to define a solution in the heuristic algorithm.

Property 3. Inequality rn + dTSP ≤ 2× t(S∗) holds and the ratio is tight.

Proof: t(S∗) ≥ rn and t(S∗) ≥ dTSP , which proves the inequality. We now demon-

strate that the ratio of 2 is tight. Consider the example shown in Figure 3.1, where

n = 2.

0

1

2

t
ε

tr1 = 0
r2 = 2t

Figure 3.1: Property 3: an example.

On this example, rn = 2t and dTSP = 2t + ε. Solution S∗ is the solution

starting at time 0 with a route visiting customer 1 and continuing with a route visiting

customer 2. Its completion time is t(S∗) = 2t + 2ε. Setting ε to a small value, the

ratio rn+dTSP

t(S∗)
can be as close as we want to 2, thus showing that the ratio is tight for

n = 2. The example can be easily generalized to n customers. Set t1i = ti1 = t for
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i ∈ V \ {1}, tij = tji = ε for i, j ∈ V \ {1}, r1 = 0, ri = 2t for i ∈ V \ {1}. Again

rn = 2t and dTSP = 2t+(n−1)ε. Solution S∗ serves customer 1 in a first route and all

remaining customers in a second route: t(S∗) = 2t+ nε. When ε tends to 0, rn+dTSP

t(S∗)

tends to 2.

Property 3 provides a lower bound for the value t(S∗) but also a performance

guarantee for the initial solution of the proposed heuristic, introduced in Section 3.5.1.

Property 4. Inequality d(S∗) ≤ n× dTSP holds and the ratio is tight.

Proof: Solution S∗ has at most n routes and, because of the triangle inequality, the

distance traversed by any route is not larger than dTSP . Consequently, d(S∗) ≤

n× dTSP , which permits to conclude that the inequality holds. Let us now show that

the ratio is tight, by considering the example shown in Figure 3.2 where n = 2.

0

1

2

t

t
ε

r1 = 0, r2 = 2t

Figure 3.2: Property 4: an example.

On this example, dTSP = 2t+ ε. Solution S∗ is formed by a first route starting

at time 0 and visiting customer 1 and a second route starting at time 2t and visiting

customer 2, with value t(S∗) = 4t. The traveled distance in solution S∗ is d(S∗) = 4t.

Setting ε to a small value, the ratio d(S∗)
dTSP

can be as close as we want to 2, thus showing

that the ratio is tight for n = 2. The example can be easily generalized to n customers.

Set t0i = ti0 = t for i ∈ V \ {0}, tij = tji = ε for i, j ∈ V \ {0} and ri = 2(i− 1)t for

i ∈ V \ {0}. Now, dTSP = 2t + (n− 1)ε. Solution S∗ is given by n successive single-

customer routes starting at time 0, with completion time t(S∗) = 2nt and traveled

distance d(S∗) = 2nt. When ε tends to 0, d(S∗)
dTSP

tends to n.
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The proof of Property 4 is helpful in understanding the impact of the release

dates on the total traveled distance d(S∗). In fact, release dates may have a big impact

on the value of the optimal solution of the problem, as it is shown in the analysis of

the computational results (see Section 3.6.2).

3.4.2 Approximation algorithm

The following approximation algorithm for the TSP-rd(time) relies on the well-known

Christofides 3
2
-approximation algorithm for the TSP.

Algorithm 1 Approximation algorithm for TSP-rd(time)

1: Relax release dates and apply Christofides 3
2 -approximation algorithm

2: Start the TSP tour obtained at time rn

Theorem 3.4.1. Algorithm 1 has a performance guarantee of 2.5 for the TSP-

rd(time) and the ratio is tight. Its running time is O (n3).

Proof: t(S∗) ≥ rn and t(S∗) ≥ dTSP . Thus, rn + 3
2
dTSP ≤ 2.5t(S∗). Furthermore, we

know that the completion time of the solution given by Algorithm 1 is not larger than

rn + 3
2
dTSP , which proves the theorem. We now show that the ratio is tight. Consider

a graph with 2k + 2 vertices. The first 2k + 1 are arranged as shown in Figure 3.3,

with k vertices at the upper level and k + 1 vertices at the bottom level (where one

vertex, vertex 0, is the depot). The final vertex, vertex n, overlaid to vertex 0, i.e.,

t0n = tn0 = 0. The solid edges have distance one and the dashed ones have distance

1 + ε. Let the release dates be ri = 0, i = 1, . . . , 2k + 1 and rn = dTSP . In addition,

let there be an edge connecting vertex 0 and vertex k + 1 at cost k(1 + ε).

The optimal tour for the TSP on this graph is composed by the dashed edges

and the rightmost and leftmost solid edges. It has cost dTSP = (2k−1)(1+ε)+2. The
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0, n k + 1

Figure 3.3: Theorem 3.4.1: an example.

solution of the Christofides algorithm consists of the solid edges, i.e., the minimum

spanning tree of the graph, and the edge connecting vertices 0 and k + 1. It has cost

dCH = 3k + ε. The optimal solution of the TSP-rd(time) is composed of one route

starting at time 0 and serving all customers except customer n followed by a second

route serving customer n. This solution has t(S∗) = (2k− 1)(1 + ε) + 2. The solution

of Algorithm 1 has t(SAlg.1) = (2k− 1)(1 + ε) + 2 + 3k+ ε. Setting ε to a small value,

as k increases the ratio t(S∗)
t(SAlg.1)

≈ 5
2
. The running time of Algorithm 1 corresponds to

the one of Christofides algorithm which is O(n3).

3.4.3 Mathematical formulation

We propose a 3-index formulation for the TSP-rd(time), with flow variables indexed

by the route in which the edge is traversed. We thus introduce the set of routes

K = {1, . . . , |K|}, where |K| is an upper bound on the optimal number of routes. A

simple upper bound is n, but it leads to a weak formulation with a large number of

variables. In the following section, we present a way to determine a heuristic value

for |K|. Also, empty routes are allowed, meaning that there may be a subset of the

routes in K visiting the depot only. Thus, the number of routes effectively used to

serve customers is given by |K| minus the number of empty routes.

The formulation relies on the following decision variables:
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• xkij =

1 if route k ∈ K travels through edge (i, j) ∈ A,

0 otherwise,

• yki =

1 if route k ∈ K visits vertex i ∈ N ,

0 otherwise,

• τ kstart = the starting time of route k ∈ K,

• τ kend = the ending time of route k ∈ K.

In addition, flow variables ukij are added to enforce subtour elimination. Note that

xk00 = 1 means that the route k is an empty route as it visits no customers.

The resulting model is:

min τKend (3.1)

s.t.

∑
k∈K

yki = 1 i ∈ N, (3.2)∑
j∈V

xkij =
∑
j∈V

xkji = yki i ∈ V, k ∈ K, (3.3)∑
j∈V

ukji −
∑
j∈V

ukij = yki i ∈ N, k ∈ K, (3.4)

ukij ≤ (n− 1)xkij (i, j) ∈ A, k ∈ K, (3.5)

τ kend = τ kstart +
∑

(i,j)∈A

tijx
k
ij k ∈ K, (3.6)

τ kend ≤ τ k+1
start k ∈ K \ {|K|}, (3.7)

τ kstart ≥ riy
k
i k ∈ K, i ∈ N, (3.8)

τ kend = τ k+1
start k ∈ K \ {|K|}, (3.9)

τ kstart ≤ rn k ∈ K \ {|K|}, (3.10)
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xkij ≤ 1− xk00 (i, j) ∈ A, k ∈ K \ {|K|}, (3.11)

xk00 ≥ xk+1
00 k ∈ K \ {|K|}, (3.12)

xkij ∈ {0, 1} (i, j) ∈ A, k ∈ K, (3.13)

yki ∈ {0, 1} i ∈ V, k ∈ K, (3.14)

τ kstart, τ
k
end ≥ 0 k ∈ K, (3.15)

ukij ≥ 0 (i, j) ∈ A, k ∈ K. (3.16)

The objective function (3.1) minimizes the ending time of the last route. This is

equivalent to the minimization of the total completion time computed as the total

traveling time plus the waiting time at the depot. Constraints (4.2) ensure the visit

of all customers. Constraints (4.3)-(4.5) impose that each route is a circuit connected

to the depot. In particular, constraints (4.5) generate a flow that decreases while the

vehicle visits customers, which prevents subtours. This set of constraints has been first

proposed in Gavish and Graves (1978) and its performance has been assessed in Öncan

et al. (2009). Constraints (4.11)-(4.12) set the relationship between time variables

τ kstart and τ kend. Constraints (4.13) establish that a route cannot start before the last

release date of the customers served in it. Constraints (3.9) and (3.10) are added to

reinforce the formulation. Constraints (3.9) follow from Property 1. Constraints (3.10)

are deduced from Property 2. Constraints (4.6) and (4.7) are symmetry breaking

constraints. In particular, constraints (4.6) set xk00 = 1 if route k is empty, xk00 = 0

otherwise, and constraints (4.7) impose that all the empty routes, if any, must precede

all the non-empty routes, i.e., if route k is empty then all routes k′ must be empty,

with k′ = 1, . . . , k − 1.
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3.5 An iterated local search algorithm for the TSP-

rd(time)

In this section we describe the heuristic algorithm we devised for the solution of the

TSP-rd(time). It is an Iterated Local Search (ILS) algorithm which combines a local

search phase with a perturbation phase (see Lourenço et al. (2010) for a detailed

description of the ILS scheme). In particular, the perturbation phase is performed

through a destroy-and-repair procedure.

The general scheme of the approach is presented in Algorithm 2. The idea is

to build an initial solution through a construction phase and to iteratively find new

solutions through destroy-and-repair (DR) followed by local search (LS). DR takes as

input the current solution S as well as a parameter α which determines the size of

the perturbation. The solution S ′ found by DR is given as input to LS. Finally, Sbest

represents the best solution found by the algorithm.

Function UpdateBest(Sbest, S) updates the best solution found in case t(S) <

t(Sbest) while the other functions are described in Sections 3.5.1–3.5.3.

The ILS makes use of an estimation of the unknown cardinality of the set of

routes K. We call CK this value:

CK = 1 +

⌊
rn × (n− 1)∑
i∈N(t0i + ti0)

⌋
. (3.17)

The rationale behind this formula is that the number of routes is 1 when rn = 0

while the number of routes could be n when the maximal release date is equal to∑
i∈N(t0i+ ti0). Indeed, in the latter case, the optimal solution would have n routes if

the values of release dates are rj =
∑j

i=1(t0i + ti0). Note that CK is not a valid upper

bound on the number of routes, as shown by the following example. Let
∑

i∈N(t0i +

ti0) > rn × (n − 1), r1 = 0, t01 = t10 = 1, and r2 = 2; therefore ri ≥ 2 for i > 2.
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Algorithm 2 The ILS algorithm for the TSP-rd(time)

1: S ← InitialSolution

2: Sbest ← S

3: α← InitializeDRParameter

4: repeat

5: S′ ← DR(S, α)

6: if a solution is found then

7: S ← LS(S′)

8: Sbest ← UpdateBest(Sbest, S)

9: α← UpdateDRParameter(α, Sbest, S)

10: end if

11: until the ending conditions are satisfied

12: return Sbest

It follows that CK = 1 while the upper bound on the number of routes is at least 2.

Despite this and considering the heuristic nature of the algorithms, the CK value has

been kept instead of the upper bound equal to n mentioned in the previous section

which proved to be extremely weak.

A solution S is composed by a vector of CK routes. Because of Property 1, there

is no waiting time between populated routes and all empty routes occupy the first

positions of the vector, while populated routes are all at the end.

3.5.1 Initial solution

The initial solution is built by solving the TSP on the complete graph G with the

Lin-Kernighan (LK) heuristic, described in Lin and Kernighan (1973), in the imple-

mentation provided by Helsgaun (2000). The starting time of this single route is then

set to rn. This solution is feasible and has a completion time greater than or equal to
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rn + dTSP .

3.5.2 Destroy-and-repair

The Destroy-and-Repair (DR) procedure works as follows. Given a solution S and an

integer α, the DR first applies a destroy operator that removes a set Ñ of α customers

from S. A repair operator is used to reassign customers from Ñ to a route, either

empty or populated, in S. A final step optimizes each route in S.

The parameter α is initialized to a lower bound αmin and has upper bound equal

to αmax. The initial value of α is set to αmin and is updated after each successful

destroy-and-repair call. If an improving solution is found by the local search, the

value is reset to αmin, otherwise α is increased by one. If the new value exceeds the

upper bound αmax, then it is set to αmin. The updating of α is described in Algorithm

3.

Algorithm 3 UpdateDRParameter(α, Sbest, S)

1: if t(S) = t(Sbest) then

2: α = αmin

3: else

4: α = α+ 1

5: if α > αmax then

6: α = αmin

7: end if

8: end if

In order to choose the customers that are removed, we first rank all customers

on the basis of one of the following two criteria:

• the starting time saving obtained by removing a customer from the correspond-
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ing route, i.e., how much the starting time of the route decreases if the vertex

is removed from it;

• the classical detour saving, without taking into account changes in the starting

time of the route.

Each time the DR is called, one of these two criteria is chosen at random. Then,

α customers are removed as follows: customers are considered sequentially in the

order of the ranking and each customer is removed with a probability equal to 50%

until α customers are removed.

The assignment of the vertices from Ñ to the routes of S is accomplished by

a repair operator. Two different operators are used which give rise to two variants

of the heuristic: the first one is based on the mathematical formulation proposed in

Section 3.4.3, called MIP hereafter, while the second one is a random repair approach.

MIP repair

Given Ñ , a mixed integer linear program is obtained from MIP with the following

two changes. First, we force the clustering of customers as in S, except for the removed

customers. A cluster is given by the customers served in the same route. In order to

do that, the following constraints are added to MIP:

∑
i∈Nk\Ñ

yki = |Nk\Ñ |ykt k ∈ K, t ∈ Nk\Ñ , (3.18)

where Nk is the set of customers visited in route k in S. Constraints (3.18) guarantee

to preserve the clustering of customers of the current solution (except for the removed

customers) without fixing the index k of the routes. In this way we can anticipate or

postpone clusters with respect to S. Second, we relax the integrality condition on the

edge variables. We call this problem modified MIP.
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A maximum time limit is given to the solution of the modified MIP. Thus,

the MIP repair operator is successful if a feasible solution is found within the time

limit. The solution of the modified MIP provides a clustering for the customers. The

routes are computed by applying the LK heuristic on each cluster and a solution is

then obtained by computing the earliest possible starting time for each route and by

scheduling the routes in the increasing order of these values.

Random repair

This repair operator randomly assigns each vertex in Ñ to a cluster Nk, k ∈ K,

different from the cluster of the vertex in S. As in the MIP repair, a solution is then

built by applying the LK heuristic on each cluster, sorting the obtained routes by the

largest release date and computing the earliest possible starting time for each route.

The aim of the random repair operator is to quickly find a feasible solution. Note

that the solution found by the random repair operator is always feasible, contrary to

what may happen with the MIP repair where the modified MIP may run out of time

without finding any feasible solution.

We call MathTSPrd the algorithm originating from the scheme described in

Algorithm 2 when the MIP repair operator is used, HeuTSPrd the one where the

random repair operator is used.

3.5.3 Local Search

After each DR move or, in the case of the MIP repair, each time a feasible solution is

found, the Local Search (LS) is applied. The proposed LS is defined by seeking the

first improvement in a neighborhood of four possible moves:

• Vertex relocation: a vertex is removed from its current route and relocated in a

different route, either empty or populated. The new vertex position in the route
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is found through cheapest insertion.

• Depot insertion: a depot visit is added to a route, splitting it in two different

routes. This move is not applied in case the number of populated routes is equal

to CK .

• Depot shift : a visit to the depot between two routes is either moved forward

or backward in the solution. Let r and r′ be two consecutive routes and let us

consider the shift of the depot visit between r and r′. When the depot visit

is moved forward, the set of vertices visited at the beginning of r′ and before

the new position of the depot will be shifted to r. On the contrary, when the

depot visit is moved backward, the set of vertices visited at the end of r and

before the new position of the depot will be shifted to r′. Backward shifting

is evaluated up to the case where route r visits one customer only. Similarly,

forward shifting is evaluated up to the case where r′ visits one customer only.

• Depot removal : a depot visit between two routes is removed, thus merging the

two routes.

All moves are evaluated by the corresponding value of the objective function, i.e., the

ending time of the last route, therefore potentially accounting for savings in both the

travelled distance and the starting time of each route. A scheme of the LS is presented

in Algorithm 4:

Note that, while the vertex relocation move is quite standard in heuristics for

routing problems, moves involving the depot are instead specific for the TSP-rd(time)

as they have an impact on the starting time of each route.
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Algorithm 4 LS algorithm

1: repeat

2: Randomly sort all vertices (including the depot)

3: for i = 0 to n do

4: if the i-th vertex is the depot then

5: Evaluate the depot insertion, shift, and removal moves

6: else

7: Evaluate vertex relocation move

8: end if

9: if an improving move is found then

10: Apply the improving move

11: end if

12: end for

13: until no improving solution is found

14: Apply LK to each populated route

3.6 Computational experiments

In this section computational results are presented for instances derived from bench-

mark TSP instances. In Section 3.6.1 we describe how the instances have been gen-

erated while computational results are presented in Section 3.6.2.

3.6.1 Instances

The instances have been derived from Solomon instances (Solomon (1987)) and from

the “TSPLIB” library (Reinelt (1991)), and are characterized by three values:

• n: the cardinality of the vertex set (not including the depot);

• dTSP : the optimal TSP value on the resulting graph;

• β: the width of the interval in which release dates are defined.
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Solomon’s instances are composed by 6 sets of instances: C1, C2, R1, R2, RC1 and

RC2. All the instances in the same set have the same coordinates of the vertices

and differ in time windows only. As we do not consider time windows, we kept one

instance from each set. In addition, we discarded R2 and RC2 as they have the same

coordinates as R1 and RC1, respectively. The four remaining problem sets allow us to

assess the performance of the heuristic when vertices are spread according to different

schemes.

Given an instance I from Solomon (1987), the instance I n β for the TSP-

rd(time) is generated as follows:

• data from the Solomon’s instance are truncated after n+ 1 vertices;

• the first vertex of the instance is set to be the depot;

• let i be the index of the vertices in the instance (the depot receives index i = 0,

the first vertex index i = 1 and so on). Its release date is defined as ri =

bβ × dTSP × Y e, where Y ∼ U(0, 1), therefore assigning to each customer a

uniformly random integral release date in [0, β × dTSP ].

Instances have been generated with β ∈ {0.5, 1, . . . , 3} resulting in 24 instances

for each value of n.

From the TSPLIB we have chosen symmetric instances with less than 500 ver-

tices, explicit vertex coordinates, edge weights computed in the two dimensional Eu-

clidean space, and with no constraints on the TSP solution. The resulting selection

comprises a total of 42 instances, reported in Table 3.1 according to the instance size.

We also tested the ILS algorithm on asymmetric instances in order to check

whether the behavior of the two variants of the algorithm is affected by the asymmetry

of the distance matrix. The following five asymmetric instances have been chosen:
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ftv33, ft53, ftv70, kro124p, and rbg403.

50− 100

nodes

101− 150

nodes

151− 250

nodes

251− 500

nodes

eil51 eil101 pr152 gil262

berlin52 lin105 u159 pr264

st70 pr107 rat195 a280

eil76 pr124 d198 pr299

pr76 bier127 kroA200 lin318

rat99 ch130 kroB200 rd400

kroA100 pr136 ts225 fl417

kroB100 pr144 tsp225 pr439

kroC100 ch150 pr226 pcb442

kroD100 kroA150 d493

kroE100 kroB150

rd100

Table 3.1: The symmetric instances selected from the TSPLIB, by instance size.

As for Solomon instances, the first vertex is set for the depot. Then, the same

procedure is used to generate the release dates, with β ∈ {0.5, 1, . . . , 3}. Thus, we

obtain 252 symmetric and 30 asymmetric instances in total.

All the instances can be downloaded at http://or-brescia.unibs.it/instances.

http://or-brescia.unibs.it/instances
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3.6.2 Results

This section is organized as follows. In the first part we identify the largest instances

that can be solved to optimality. Secondly, we focus on the tuning of the parameters

of the MathTSPrd, investigating how the time limit allowed to solve each modified

MIP and the range of α affect the quality of the solution. Finally, the performance

of the ILS is analyzed: firstly on small instances, in comparison with the optimal

solution found by solving the formulation in Section 3.4.3 and secondly by comparing

the two variants of the ILS on larger instances, generated both from Solomon’s and

the TSPLIB instances.

Note that, throughout this section, the ending conditions for Algorithm 2 are the

maximum time allowed for each run and the maximum number of iterations without

improvement. Unless otherwise specified, the maximum time is set to ten minutes and

the maximum number of iterations is set to one thousand. For all the tested instances,

the time required to build the initial solution for the ILS is below one second. Thus,

it does not have an impact on the performance of the ILS.

The ILS was implemented in C++ and run using a 3.5 GHz Intel Xeon E5-1650v2

processor with 64 GB of RAM, using CPLEX 12.6 as MILP solver, when necessary.

Largest instances solved to optimality

To determine the largest instance size for which CPLEX finds an optimal solution

to formulation (3.1)-(4.10) within one hour, instances have been generated with

n ∈ {10, 15, 20, 25, 30} starting from Solomon instances. A total of 24 instances are

generated for each size, given by the combination between the values of β, and the 4

Solomon instances (C101, C201, R101, RC101). As Table 3.2 shows, the maximum

size for which the optimal solution is obtained within one hour is n = 20 customers.



3.6. COMPUTATIONAL EXPERIMENTS 61

For n = 25 only 13 instances out of 24 are solved to optimality. For n = 30 the

number of optimal solutions further decreases to 7.

n
# optimal

solutions

10 24

15 24

20 24

25 13

30 7

Table 3.2: Number of instances solved to optimality.

Tuning of the parameters

The parameters to be tuned in the MathTSPrd are the time limit for each MIP repair

and the range for the number α of customers to be removed by the DR. Note that

the parameter α has also an impact on the HeuTSPrd. Thus, it was fine tuned on

the MathTSPrd and the best value was kept for HeuTSPrd as well. The tuning has

been carried out on the instances derived from Solomon with n ∈ {20, 50, 100}.

The impact of changes in the time limit parameter for each MIP repair solution in

the MathTSPrd algorithm are reported in Table 3.3 for n = 20 instances, Table 3.4 for

n = 50 instances and Table 3.5 for n = 100 instances. The results have been obtained

with the bounds for α set to αmin = min{5, bn/10c} and αmax = max{min{10, n −

1}, bn/2c} and are reported for instances grouped by the value of β. The column “Avg.

% Best” reports the average percentage gap with respect to the best solution found for

each instance group. “Avg. # MILP” indicates the average number of modified MIPs

successfully solved, i.e., the average number of modified MIPs for which a feasible
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solution has been found within the time limit. The best results have been found for

the time limit equal to n/10 seconds when n = 20 and n = 50, corresponding to 2

and 5 seconds, respectively, and to n/5 = 20 seconds when n = 100. Note also that,

while on instances with n = 20 the difference in the performance of MathTSPrd for

different values of the MIP repair time limit is negligible, the value shows an increase

when n = 50 and becomes remarkable when n = 100. Thus, the main message we

may keep from these results is that the MIP repair needs more time to be effective on

large instances.

MILP: n/50 = 0.4s MILP: n/10 = 2s MILP: n/5 = 4s MILP: n/2 = 10s

β
Avg.

% Best

Avg.

# MILP

Avg.

% Best

Avg.

# MILP

Avg.

% Best

Avg.

# MILP

Avg.

% Best

Avg.

# MILP

0.5 0 1017.25 0 974 0 974.75 0 974.25

1 0 1053.00 0 560.00 0 517.25 0 505.75

1.5 0.10 927.75 0 378.25 0.10 275.50 0.10 228.50

2 0.09 879.75 0 322.25 0.18 215.75 0.18 148.75

2.5 0 843.00 0 295.50 0 193.25 0.04 124.00

3 0 796.25 0.03 285.75 0 178.00 0 111.25

Avg. 0.03 0.01 0.04 0.05

Table 3.3: Results on the n = 20 instances for different values of the MILP time limit.

We also investigated how the range of α, the number of vertices removed and

inserted by the DR, affects the performance of the MathTSPrd algorithm. The

value of αmin has been fixed to αmin = min{5, bn/10c} while αmax has been set to

αmax = max{min{10, n − 1}, bρc} and different values have been tested for ρ, i.e.,

ρ ∈ {n/2, n/4, n/8}. Table 3.6 presents the results for the n = 50 instances and Table

3.7 for the n = 100 instances. In both tables the MILP time limit chosen is the one
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MILP: n/50 = 1s MILP: n/10 = 5s MILP: n/5 = 10s MILP: n/2 = 25s

β
Avg.

% Best

Avg.

# MILP

Avg.

% Best

Avg.

# MILP

Avg.

% Best

Avg.

# MILP

Avg.

% Best

Avg.

# MILP

0.5 0.08 365.00 0.13 126.00 0.24 69.25 0.20 54.00

1 0.03 254.25 0.92 89.75 0.73 58.50 0.87 30.00

1.5 0.17 266.00 0.53 90.50 0.50 51.00 1.13 25.50

2 0.47 245.00 0.34 95.25 1.26 50.50 1.55 22.50

2.5 1.97 153.25 0.18 94.50 0.20 53.00 1.02 22.25

3 3.35 12.75 0.26 94.50 0.08 52.50 0.30 23.25

Avg. 1.01 0.39 0.50 0.85

Table 3.4: Results on the n = 50 instances for different values of the MILP time limit.

that has shown the best results in the previous experiments, i.e., 5 seconds and 20

seconds, respectively. The results show an improving trend as ρ decreases hence the

default value for the different runs reported hereafter has been fixed to ρ = n/8.

Comparison with optimal solutions

Tables 3.8, 3.9, and 3.10 report the results of the comparison between the ILS and the

optimal solution. In particular, we compare the optimal solution with the value of the

initial solution (computed as a TSP tour starting at the latest release date), the value

of the solution provided by the MathTSPrd and the value of the solution provided

by HeuTSPrd. The comparison is made on instances with up to 20 customers. The

column “% Exact” reports the percentage gap of the corresponding “Value” column

to the exact solution value. The time limit for the modified MIP in the MIP repair

operator is set to n/10 = 2 seconds. The tables shows that on these instances the
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MILP: n/50 = 2s MILP: n/10 = 10s MILP: n/5 = 20s MILP: n/2 = 50s

β
Avg.

% Best

Avg.

# MILP

Avg.

% Best

Avg.

# MILP

Avg.

% Best

Avg.

# MILP

Avg.

% Best

Avg.

# MILP

0.5 1.33 19.50 0.79 30.00 0.48 26.00 1.59 15.50

1 3.23 1.75 1.03 7.00 1.28 10.00 0.14 9.00

1.5 4.72 1.00 1.37 13.25 0.02 12.00 0.23 8.25

2 2.35 1.00 0.35 11.75 1.22 12.50 1.18 8.25

2.5 4.47 1.00 1.19 8.50 0 18.00 0.93 10.75

3 7.00 0.75 1.21 4.00 0 15.75 0.94 10.25

Avg. 3.85 0.99 0.50 0.84

Table 3.5: Results on the n = 100 instances for different values of the MILP time

limit.

two algorithms have a good performance with all the instances of size n = 10 solved

to optimality and with no percentage gap above 1% in the larger instances. The

HeuTSPrd shows a slight advantage, finding the optimal solution in all but one of

the 24 instances in both the instances of size n = 15 and n = 20. The MathTSPrd

finds the optimal solution in 22 instances of size n = 15 and in 22 instances of

size n = 20. Table 3.10 also reports the running time, in seconds, required to find

the incumbent solution by MathTSPrd and HeuTSPrd, respectively. The computing

time, in seconds, is reported in the “TI” column. It can be observed that, while

the MathTSPrd is shown to be the fastest on average, the HeuTSPrd has the least

maximum time.

By looking at the results presented in Tables 3.8-3.10, it is also interesting to note

the impact of release dates on the value of the optimal solution of the TSP-rd(time).
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ρ = n/2 ρ = n/4 ρ = n/8

β
Avg.

% Best

Avg.

# MILP

Avg.

% Best

Avg.

# MILP

Avg.

% Best

Avg.

# MILP

0.5 0 127.75 0 158.00 0.25 175.00

1 0.87 93.25 0.19 102.25 0.40 109.00

1.5 0.45 89.00 0.76 96.50 0.21 97.25

2 0.16 95.25 0.17 96.50 0.47 99.25

2.5 0.50 94.50 0.50 96.75 0.11 97.25

3 0.55 96.00 0.30 96.00 0.02 100.75

Avg. 0.42 0.32 0.25

Table 3.6: Results on the n = 50 instances for different values of ρ. MILP time limit

is set to 5 seconds for all runs.

To better highlight this impact, in Table 3.11 we report the average percentage in-

crease in the value of the optimal solution of the TSP-rd(time) for different values of

β with respect to the case with β = 0.5. Each cell reports the average increase over

the four instances with the value of β of the corresponding row and the value of n of

the corresponding column. We can notice that the more the release dates are spread

out, the more the value of the optimal solution increases with a maximum increase of

nearly 130% when β = 3. This is due to the fact that more routes are needed when

release dates are more dispersed. In addition, the increase in the objective function

seems to be not affected (or only slightly affected) by the size of the instance.
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ρ = n/2 ρ = n/4 ρ = n/8

β
Avg.

% Best

Avg.

# MILP

Avg.

% Best

Avg.

# MILP

Avg.

% Best

Avg.

# MILP

0.5 1.06 23.50 1.20 23.50 0.13 26.50

1 0 9.50 0 9.75 0 10.50

1.5 0 12.00 0 12.00 0 12.75

2 0 12.75 0 12.50 0 12.00

2.5 0 18.00 0.33 17.75 0 17.00

3 0.28 15.575 0.20 15.75 0.58 14.50

Avg. 0.22 0.29 0.12

Table 3.7: Results on the n = 100 instances for different values of ρ. MILP time limit

is set to 20 seconds for all runs.

Comparison of the two variants of the heuristic

A comparison of the two variants has also been carried out on larger instances. Tables

3.12 and 3.13 presents the results for the Solomon instances with n = 50 and n =

100, respectively. The column “TI” identifies the time in seconds after which the

incumbent solution has been found and the column “TI MathTSPrd” reports the time

at which HeuTSPrd has found the first solution at least as good as the one found by

MathTSPrd. In both the instances with n = 50 and n = 100 it can be observed

that the MathTSPrd is outperformed by the HeuTSPrd in all but one instance. In

the instances of size n = 50 the average percentage gap of the MathTSPrd from the

HeuTSPrd is 0.86%. The best solutions of the MathTSPrd are found in an average

time of 265 seconds, while the HeuTSPrd takes an average time of 43 seconds to find
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the first solution at least as good, if any. For the instances of size n = 100 the average

percentage gap of the MathTSPrd from the HeuTSPrd is 3.33%. The MathTSPrd

finds the best solution in an average time of 246 seconds, while the HeuTSPrd takes

an average time of 47 seconds to match the result of the MathTSPrd, when this is

achieved.

The number of routes of each solution is reported in the column “# Routes”. The

value appears to follow a positive trend with respect to the value of the paramenter

β. The trend is shared by both the solutions found by the MathTSPrd and the

HeuTSPrd version of the heuristic. This leads to the conclusion that the more the

release dates get spread out in time compared to the cost of visiting the vertices,

measured as the cost of the TSP solution on the instance, the more it is convenient

to visit customers as soon as they are available. To further confirm these results,

the two variants of the ILS have been compared with a “myopic” heuristic visiting

customers as they become available, on instances of n = 50 vertices. This heuristic

works as follows: every time the vehicle reaches the depot, it either departs to serve

the customers whose goods arrived while the vehicle was traveling or waits for the next

customer that can be served. The results show the benefit of the ILS compared to the

intuitive rule of serving customers as soon as they become available. The “myopic”

algorithm performs on average 16% worse than the best solution, with the worst case

taking 33.25% more time to complete the distribution than the solution found by the

HeuTSPrd version. The percentage gap from the best solution has a negative trend

with respect to the parameter β, confirming the conclusion drawn above.

An indicator of the operational implications of the solution is given in the column

“% Wait” where the percentage of time spent waiting at the depot over the total time

required to complete the distribution is reported. We observe that in most of the

tested instances the waiting time is less than 10% of the total service time and only
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one solution is found with more than 15% of waiting time for the instances with

size n = 50 and n = 100. The average percentage waiting time appears to decrease

as the instance size increases. In particular, focusing on the solution found by the

HeuTSPrd, the value goes from 6.51% to 4.29% when the instance size goes from

n = 50 to n = 100. We also observe that the average waiting time of the HeuTSPrd

is greater that the one of the MathTSPrd for both the instances of size n = 50

and n = 100, indicating that, on average, the best solution known for each instance

has a higher waiting time to total service time ratio. A further comparison with

the “myopic” heuristic can be carried out on instances with n = 50. The “myopic”

heuristic has a very little waiting time component but the solutions found with this

method are poor compared to those found by the HeuTSPrd, as discussed above. This

validates the conclusion that the choice of serving customers versus waiting for more

goods to arrive at the depot is non-trivial and deserves a thorough analysis.

The results obtained indicate that the time required by the operator based on the

MIP, the one adopted in the MathTSPrd, limits the number of iterations performed

in the given computational time to a value that is much lower than the number of

iterations performed when the random operator is adopted in the HeuTSPrd. This

implies that exploring a broader portion of the solution space is more effective than

spending more time to find better solutions to feed the LS.
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Optimal Initial solution MathTSPrd HeuTSPrd

β Instance Value Value % Exact Value % Exact Value % Exact

0.5 C101 79 79 0 79 0 79 0

C201 186 189 1.61 186 0 186 0

R101 217 244 12.44 217 0 217 0

RC101 195 195 0 195 0 195 0

1 C101 101 102 0.99 101 0 101 0

C201 221 245 10.86 221 0 221 0

R101 261 316 21.07 261 0 261 0

RC101 241 252 4.56 241 0 241 0

1.5 C101 113 125 10.62 113 0 113 0

C201 250 300 20.00 250 0 250 0

R101 323 388 20.12 323 0 323 0

RC101 289 309 6.82 289 0 289 0

2 C101 134 149 11.19 134 0 134 0

C201 297 356 19.87 297 0 297 0

R101 373 460 23.32 373 0 373 0

RC101 347 367 5.76 347 0 347 0

2.5 C101 157 172 9.55 157 0 157 0

C201 338 412 21.89 338 0 338 0

R101 432 532 23.15 432 0 432 0

RC101 395 424 7.34 395 0 395 0

3 C101 180 195 8.33 180 0 180 0

C201 386 467 20.89 386 0 386 0

R101 495 604 22.02 495 0 495 0

RC101 444 481 8.33 444 0 444 0

Avg. 12.12 0 0

Table 3.8: Comparison with optimal solutions for instances with n = 10.
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Optimal Initial solution MathTSPrd HeuTSPrd

β Instance Value Value % Exact Value % Exact Value % Exact

0.5 C101 145 145 0 145 0 145 0

C201 228 241 5.70 228 0 228 0

R101 288 327 13.54 288 0 288 0

RC101 220 220 0 220 0 220 0

1 C101 176 189 7.39 176 0 176 0

C201 271 314 15.39 271 0 271 0

R101 361 426 18.01 364 0.83 361 0

RC101 266 286 7.52 266 0 266 0

1.5 C101 217 7.37 9.23 217 0 217 0

C201 327 387 18.35 327 0 327 0

R101 427 524 22.72 427 0 427 0

RC101 330 353 6.97 330 0 330 0

2 C101 261 277 6.13 261 0 261 0

C201 375 460 22.67 375 0 375 0

R101 509 623 22.40 510 0.20 510 0.20

RC101 387 419 8.27 387 0 387 0

2.5 C101 304 321 5.59 304 0 304 0

C201 446 533 19.51 446 0 446 0

R101 572 722 26.22 572 0 572 0

RC101 439 485 10.48 439 0 439 0

3 C101 347 365 5.19 347 0 347 0

C201 517 605 17.02 517 0 517 0

R101 663 820 23.68 663 0 663 0

RC101 494 552 11.74 494 0 494 0

Avg. 12.60 0.04 0.01

Table 3.9: Comparison with optimal solutions for instances with n = 15.
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Optimal Initial solution MathTSPrd HeuTSPrd

β Instance Value TI Value % Exact Value % Exact TI Value % Exact TI

0.5 C101 177 0 177 0 177 0 0 177 0 0

C201 247 5 258 4.45 247 0 13 247 0 115

R101 326 3 376 15.34 326 0 7 326 0 118

RC101 305 3 313 2.62 305 0 1 305 0 129

1 C101 212 6 230 8.49 212 0 1 212 0 160

C201 285 11 336 17.89 285 0 1 285 0 153

R101 409 42 484 18.34 409 0 110 409 0 139

RC101 374 15 407 8.82 374 0 62 374 0 160

1.5 C101 260 39 284 9.23 260 0 2 260 0 172

C201 349 74 414 18.62 349 0 6 349 0 169

R101 475 129 596 25.47 479 0.84 536 475 0 216

RC101 422 25 502 18.96 422 0 12 422 0 177

2 C101 306 67 337 10.13 306 0 83 306 0 191

C201 402 180 492 22.39 402 0 9 402 0 174

R101 568 871 708 24.65 571 0.53 214 571 0.53 174

RC101 508 77 596 17.32 508 0 17 508 0 192

2.5 C101 356 271 391 9.83 356 0 21 356 0 201

C201 478 403 570 19.25 478 0 57 478 0 193

R101 648 333 820 26.54 648 0 141 648 0 180

RC101 586 97 690 17.75 586 0 46 586 0 199

3 C101 406 1426 444 9.36 406 0 5 406 0 199

C201 551 1801 648 17.60 551 0 5 551 0 195

R101 750 185 932 24.27 750 0 67 750 0 166

RC101 654 110 785 20.03 654 0 2 654 0 184

Avg. 257.21 15.31 0.06 59.08 0.02 164.83

Table 3.10: Comparison with optimal solutions for instances with n = 20.
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β n = 10 n = 15 n = 20

0.5 100.00 100.00 100.00

1 121.71 121.91 121.95

1.5 144.02 147.67 143.61

2 170.01 173.89 170.23

2.5 195.27 199.89 197.33

3 222.30 229.40 225.29

Table 3.11: Growth of the average optimal value with respect to the value of β.
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Given the better results of HeuTSPrd, we investigated the impact of the ending

conditions on its performance, by extending the time limit to two hours and removing

the limit on the number of iterations without improvement. The results of such runs

are plotted in Figure 3.4 for instances with β = 3. The x-axis reports the time in

seconds in logarithmic scale and the y-axis the percentage gap over the best solution

found after two hours. The figure shows that it is not beneficial to give a longer

maximum time limit to HeuTSPrd. In fact, in all instances the solution obtained

after 10 minutes is less that 2.5% worse than the one obtained in two hours and the

time required to improve the solution obtained after such time limit is often very large

(we recall that time is on a logarithmic scale).

1 10 100 1000 10000
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%
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es
t
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Figure 3.4: Plots of the percentage gap of the current best solution over the final

solution found in the two hours run of HeuTSPrd on the instances with n = 100 and

β = 3.

Further comparisons of the performance of the two variants have been carried

out on the instances originated from the TSPLIB. The selected subset of instances
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spans from a minimum size of 50 vertices (i.e. eil51) to a maximum of 492 vertices

(i.e. d493). In the MathTSPrd the time limit for the MILP is set to 20 second as

this is the best value for large instances and a shorter time provides almost the same

results on small instances, as shown in Section 3.6.2. Tables 3.14 and 3.15 report

the results of the two algorithms on 252 instances for the different values of β. The

column “HeuTSPrd Value” gives the value of the solution found by the HeuTSPrd

algorithm and the column “% MathTSPrd” the percentage gap of the value of the

solution found by the MathTSPrd over the corresponding value in the “HeuTSPrd

Value” column to the left. In this set of instances the MathTSPrd is systematically

outperformed by the HeuTSPrd. The average percentage gaps of the MathTSPrd

from the HeuTSPrd does not show a specific trend.
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To better highlight the comparison of the two variants of the ILS with respect to

the instance size, Table 3.16 summarizes the results obtained on symmetric instances

derived from TSPLIB, grouped by the following size ranges: 50 to 100, 101 to 150,

151 to 250 and 251 to 500 vertices. It can be observed that the average percentage

gap of MathTSPrd has a positive trend with respect to the instance size, while the

HeuTSPrd shows consistent results on the same metric, with a slight increase in the

251 − 500 instance group. For both algorithms, the spread with the initial solution

decreases as the size increases, from 14.26% in the 50 − 100 range to 4.06% in the

251 − 500 range for MathTSPrd and from 17.40% in the 50 − 100 range to 12.16%

in the 251− 500 for HeuTSPrd, indicating the increasing difficulty to find a solution

that improves the initial one.

Furthermore, a set of experiments on asymmetric instances has been carried out

to check whether the behavior of the two variants is affected by the asymmetry of the

distance matrix. From the results, reported in Table 3.17, we observe that while the

HeuTSPrd variant is able to greatly improve over the initial solution, the asymmetry

of the distance matrix considerably worsens the performance of the MathTSPrd. In

particular, in all but 4 instances, all having β = 0.5, the algorithm is not able to find

an improvement of the initial solution.

3.7 Conclusions

In this chapter the Traveling Salesman Problem (TSP) with release dates and comple-

tion time minimization, known as the TSP-rd(time) problem, is studied. The derived

properties contribute to a deeper understanding of a problem belonging to a relatively

unexplored class of routing problems. The mathematical formulation has allowed us

to solve to optimality instances with up to 20 customers and to assess the quality



80 CHAPTER 3. AN ILS FOR THE TSP WITH RELEASE DATES

of the two proposed variants of a heuristic based on an iterated local search, where

the perturbation is performed by means of a destroy-and-repair procedure. The two

variants differ in the repair operator, aimed at inserting customers in a partial solu-

tion. The variant named MathTSPrd uses a MILP model as repair operator while

the one named HeuTSPrd inserts customers at random. The computational results

show that the HeuTSPrd outperforms the MathTSPrd. Heuristics that make use of

MILP models, the often so called matheuristics, have been shown to be effective in

several cases when compared to other more traditional heuristics. However, in our

study, using MILP models as a repair operators in an iterative framework has not

turned out to be beneficial for the solution of the TSP-rd(time).

Several research directions remain open. An interesting direction is related to

designing new heuristics for the problem and investigating the situations where the

use of a MILP model is effective in a heuristic framework, and possibly identifying

characteristics of the problems or the matheuristic for which this happens. It would be

interesting also to study the extension of the TSP-rd(time) problem to the case where

a fleet of vehicles is available. Finally, it would be interesting to study stochastic

and dynamic versions of the problem, which are closer to the practical applications

described in the introduction.
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MathTSPrd HeuTSPrd

Size β
Avg %

of initial

Avg %

Best

Avg %

of initial

Avg %

Best

50− 100 0.5 9.69 1.41 11.23 0

1 13.62 4.03 18.20 0

1.5 16.32 2.77 19.54 0

2 15.87 3.02 19.36 0

2.5 15.37 2.85 18.61 0

3 14.69 2.42 17.44 0

14.26 2.75 17.40 0

101− 150 0.5 8.15 1.46 9.72 0

1 10.48 4.24 15.18 0

1.5 12.61 4.01 17.11 0

2 12.97 4.18 17.68 0

2.5 12.71 3.85 17.05 0

3 10.40 5.37 16.14 0

11.22 3.85 15.48 0

151− 250 0.5 5.45 2.63 8.19 0

1 8.46 2.85 11.56 0

1.5 9.78 3.92 14.11 0

2 9.93 3.96 14.29 0

2.5 9.76 4.23 14.42 0

3 9.60 3.89 13.87 0

8.83 3.58 12.74 0

250− 500 0.5 2.35 4.37 6.75 0

1 4.11 7.10 11.32 0

1.5 5.18 8.09 13.43 0

2 5.19 8.42 13.81 0

2.5 4.38 9.52 14.03 0

3 3.17 10.38 13.62 0

4.06 7.98 12.16 0

Table 3.16: Summary of results on the instances generated from TSPLIB.
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Initial solution MathTSPrd HeuTSPrd

β Instance Value % Best Value % Best Value % Best

0.5 ftv33 2424 31.38 1845 0 1854 0.49

ft53 14690 25.99 12677 8.72 11660 0

ftv70 4137 21.82 3842 13.13 3396 0

kro124 59583 17.00 53247 4.56 50925 0

rbg403 5606 14.99 5606 14.99 4875 0

1 ftv33 3037 36.49 3037 36.49 2225 0

ft53 17980 28.66 17980 28.66 13975 0

ftv70 5067 27.86 5067 27.86 3963 0

kro124 77033 22.34 77033 22.34 62964 0

rbg403 6837 22.55 6837 22.55 5579 0

1.5 ftv33 3650 42.58 3650 42.58 2560 0

ft53 21271 32.27 21271 32.27 16081 0

ftv70 5996 24.30 5996 24.30 4824 0

kro124 94484 27.54 94484 27.54 74083 0

rbg403 8067 29.80 8067 29.80 6215 0

2 ftv33 4262 37.75 4262 37.75 3094 0

ft53 24562 30.87 24562 30.87 18768 0

ftv70 6925 26.65 6925 26.65 5468 0

kro124 111934 25.90 111934 25.90 88904 0

rbg403 9298 24.35 9298 24.35 7477 0

2.5 ftv33 4875 35.12 4875 35.12 3608 0

ft53 27852 33.42 27852 33.42 20875 0

ftv70 7854 24.00 7854 24.00 6334 0

kro124 129385 26.90 129385 26.90 101961 0

rbg403 10528 22.09 10528 22.09 8623 0

3 ftv33 5488 34.41 5488 34.41 4083 0

ft53 31143 31.00 31143 31.00 23774 0

ftv70 8784 26.77 8784 26.77 6929 0

kro124 146835 24.85 146835 24.85 117612 0

rbg403 11759 20.14 11759 20.14 9788 0

Avg. 27.66 25.33 0.02

Table 3.17: Comparison MathTSPrd and HeuTSPrd on the asymmetric instances

derived from TSPLIB.



Chapter 4

Dynamic traveling salesman

problem with stochastic release

dates

This chapter is based on the homonymous article currently submitted for publica-

tion. The work therein has been performed by the author in collaboration with Prof.

Claudia Archetti, Prof. Dominique Feillet, and Prof. M. Grazia Speranza.

4.1 Abstract

The dynamic traveling salesman problem with stochastic release dates (DTSP-srd)

is the problem in which a distributor has to deliver parcels to its customers and

part of these parcels are delivered to its depot while the distribution is taking place.

The arrival time of a parcel to the depot is called its release date. In the DTSP-

srd, release dates are stochastic and dynamically updated as the distribution takes

83



84 CHAPTER 4. DYNAMIC TSP WITH STOCHASTIC RELEASE DATES

place. The objective of the problem is to minimize the total time needed to serve

all customers, given by the sum of the traveling time and the waiting time at the

depot. A reoptimization technique is proposed to tackle the dynamic aspect of the

problem. To define the reoptimization epochs, three policies are introduced, with

increasing reoptimization frequency. Two models are proposed for the problem to

be solved at each decision epoch. The first one is a stochastic model exploiting the

entire probabilistic information available for the release dates. The second one is a

deterministic model where a point estimation of the release dates is used. An instance

generation procedure is proposed to simulate the evolution of the information about

the release dates and computational tests are performed. The results show that a

more frequent reoptimization provides better results across all tested instances and

that the stochastic model performs better than the deterministic model. The main

drawback of the stochastic model lies in the computational time required to evaluate

any of the solution explored, which makes an iteration of the heuristic substantially

longer.

4.2 Introduction

In a last mile distribution system, the distributor is often called to face the uncertain-

ties of the delivery of goods to its depot. Information therefore plays a crucial role

in an efficient distribution planning. In this setting, we study the dynamic traveling

salesman problem with stochastic release dates (DTSP-srd) that is a problem in which

a distributor receives from its suppliers goods to be distributed to customers. The

goods to be delivered are available for the distribution only after they have arrived

to the depot of the distributor. The arrival time of a parcel to the depot is called

its release date. In the DTSP-srd, release dates are considered to be stochastic and
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dynamically updated as the distribution takes place. The DTSP-srd finds application

in many real world problems. The steadily growing interest for an environment-aware

supply chain and distribution organization has led to a significant research for an

eco-friendly delivery to city centers. In this context, the distribution is implemented

by means of distribution centers, where goods are unloaded from the trucks, consol-

idated, and delivered to the customers by means of hybrid or electric vehicles. The

distributor has to face the uncertainty of the arrival time of the trucks to plan for an

efficient distribution. The goal is to define an efficient distribution plan serving all

customers. The DTSP-srd also finds application in cross docking operations, where

the routing of outbound vehicles is planned according to the arrival time of inbound

vehicles.

While problems with release dates, defined as the earliest availabilities of jobs

for processing, have been widely studied in the context of machine sequencing (see

Pinedo (2016)), only in recent years the concept of release dates has been introduced

for vehicle routing problems. Cattaruzza et al. (2016a) introduces the multi-trip

vehicle routing problem with time windows and release dates (MTVRPTW-R) in

which all information is assumed to be static and deterministic. The authors propose

a genetic algorithm for the problem with an underlying giant tour decomposition

procedure. The complexity of the traveling salesman problem with release dates

(TSP-rd) is studied in Archetti et al. (2015a). The authors introduce two variants

of the problem, one considering a deadline for the completion of the distribution and

seeking the minimization of the total travel time, referred to as TSP-rd(distance), and

the other minimizing the total time required to complete the distribution, referred to

as TSP-rd(time). The complexity of the problem is studied on special topologies of

the graph. Reyes et al. (2018) extend this work to consider service guarantee, a fixed

maximum delay between the release date and the delivery time. The TSP-rd(time)
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is studied in Archetti et al. (2018) where a mathematical programming formulation

is described and an iterated local search is developed. Two versions of the heuristic

are tested on instances derived from TSP instances by Solomon (1987) and from the

TSPLIB (see Reinelt (1991)).

Stochasticity has been widely studied in the literature on distribution problems.

We refer to Gendreau et al. (2016) for a review of the recent advances and future

directions of the stochastic vehicle routing literature and to Ritzinger et al. (2016)

for a survey on the dynamic and stochastic vehicle routing problems. Despite this,

little work has been done in the past regarding the uncertainty in the release dates.

Uncertain arrival times are considered in Klapp et al. (2016), where the authors study

the dispatch wave problem. At any decision epoch (wave), requests are either known

or potential. The stochasticity of potential requests considers both the probability of

non-arrival and the probability of the arrival to a specific wave. The minimization of

the expected vehicle operating costs and the penalties for unserved requests is sought

on a special topology of the graph, i.e., the line. In Klapp et al. (2018) the authors

extend the work to a general network. A deterministic model is used to find an optimal

a priori solution to the stochastic variant and two dynamic policies are developed.

Finally, the trade-off between minimizing operational costs and maximizing the total

order coverage is studied.

In this chapter we introduce the DTSP-srd as a generalization of the TSP-

rd(time) where the information on the release dates is assumed to be stochastic and

dynamically updated as the distribution takes place. A reoptimization technique is

proposed to tackle the dynamic aspect of the problem and three dynamic policies with

increasing reoptimization frequency are introduced. Two models for the solution of

the problem at each decision epoch are discussed. The first one is a stochastic model

exploiting the entire probabilistic information available for the release dates. The
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second one is a deterministic model where a point estimation of the release dates is

used. Both models are solved with an iterated local search, adapted from the heuristic

presented for the TSP-rd(time) in Archetti et al. (2018). The two models are also

compared to a myopic policy serving customers as their parcel arrives to the depot,

without considering the information available about future release dates. An instance

generation procedure is proposed to simulate the evolution of the information about

the release dates and computational tests are performed. The results, obtained on

instances with 50 customers, show that a more frequent reoptimization provides better

results across all tested instances. The myopic policy is shown to perform more the

12% worse than the best solution found by the two models. The deterministic and

stochastic model have an average percentage gap from the best solution found across

the three dynamic policies of 2.92% and 1.16%, respectively. While the stochastic

model performs better, its main drawback lies in the computational time required

to evaluate any of the solution explored, which makes an iteration of the heuristic

substantially longer.

The chapter is organized as follows. In Section 4.3 the dynamic traveling sales-

man problem with stochastic release dates is defined. The solution approach to the

dynamic problem is described in Section 4.4. In Section 4.5 the stochastic and deter-

ministic optimization models are introduced, an illustrative example of the two models

is presented and the proposed heuristic algorithm is described. The instance genera-

tion procedure is described in Section 4.6. Computational experiments are reported

in Section 4.7. Finally, conclusions are drawn in Section 4.8.
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4.3 The dynamic traveling salesman problem with

stochastic release dates

The DTSP-srd is defined as follows. Let G = (V,A) be a complete graph. A traveling

time and a cost are associated with each arc (i, j) ∈ A. These two values are assumed

identical and denoted by dij. It is also assumed that the triangle inequality is satisfied.

The set of vertices V is composed by vertex 0, which identifies the depot, and the set

N of customers. Each customer is characterized by the arrival time of its parcel to

the depot. We call this value its release date. A single vehicle is allowed to perform a

sequence of tours to deliver the goods to the customers. Capacity constraints are not

considered. We call route a tour starting and ending at the depot and not visiting

the depot in between. We call K = {1, . . . , |K|} the set of routes. The objective is

to minimize the expected completion time to serve all customers, that is, the total

travel time plus the expected waiting time at the depot. The waiting time is due to

the fact that the vehicle has to wait at the depot until the latest release date of the

customers that it is going to serve in the next route. Time is assumed to be discrete,

i.e., t ∈ N. While this is a modeling simplification, a sufficiently fine granularity of

time should not hinder the quality of the conclusions. We assume that t = 0 is the

starting of the distribution plan.

As the name implies, the DTSP-srd is characterized by a dynamic and a stochas-

tic aspect. The dynamic aspect of the problem lies in the fact that the information

available for each release date evolves over time, as the parcels are delivered to the

depot and the distribution to the customers takes place. The stochasticity is found

in the fact that the release dates of the parcels that have not yet been delivered to

the depot are assumed to be stochastic. This represents the situation where the vehi-

cle carrying the parcel to the depot is still en route and might encounter unforeseen
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situations, such as lighter or heavier traffic than expected at the beginning of the

distribution.

At any time t, as the distribution is being carried out, some customers might

have already been served, meaning that their parcels have already been delivered to

the depot and loaded on the vehicle that has left from the depot. We call N served
t ⊆ N

the set of such customers. Note that N served
0 = ∅.

Unserved customers, i.e., customers in N \N served
t , are classified based on the in-

formation available for their release date. We call Nunserved
t the set of these customers.

If the parcel for customer has already been delivered to the depot, its release date is

past and certain and the customer can be served. We call Nknown
t ⊆ Nunserved

t the set

of these customers. If the parcel is still to be delivered to the depot, the release date

is future and stochastic. Two types of customers with stochastic release date are de-

fined, according to how such stochasticity is updated over time. The first type of these

customers are those for which the stochastic information about the release date is not

updated until the vehicle reaches the depot. This can be seen as the case of non-GPS-

equipped vehicles: as no new information is available about the state of the vehicle,

the information about the release date is not updated until the parcel is delivered to

the depot. We call N static
t ⊆ Nunserved

t the set of these customers. The second type of

customers are those whose information about the stochastic release date is refined over

time. This is the case of parcels delivered to the depot by means of GPS-equipped ve-

hicles, transmitting updated information as they travel. We call Ndynamic
t ⊆ Nunserved

t

this set of customers. Note that, at any time, {Nknown
t , N static

t , Ndynamic
t } is a partition

of Nunserved
t and {N served

t , Nunserved
t } is a partition of N .

The vehicles delivering the parcels to the depot are assumed to travel indepen-

dently from one another, i.e., the release dates are assumed to be independent.

The release date of customer i ∈ Nunserved
t at time t is denoted by r̃ti . Based on



90 CHAPTER 4. DYNAMIC TSP WITH STOCHASTIC RELEASE DATES

the type of customer, r̃ti is defined according to the following:

• if i ∈ Nknown
t , r̃ti is the known release date, r̃ti = ri, where ri is the observed

arrival time of the parcel for customer i, i.e. ri ≤ t. At time t = 0, the set

Nknown
t is composed by those customers whose parcel arrived before the starting

time of the distribution plan, e.g., overnight, and ri = 0;

• if i ∈ N static
t , r̃ti is a random variable describing the release date with the infor-

mation available at the beginning of the distribution, r̃ti = r̃0i , ∀t > 0, i.e., an

estimation of the release date is done at time t = 0 and never updated as no

newer information is available before the parcel reaches the depot;

• if i ∈ Ndynamic
t , r̃ti is a random variable describing the release date at time t. In

this case r̃ti is dynamically updated with the information available at time t.

The random variables are assumed to be discrete and bounded, with the lower and

upper bound of r̃ti denoted as lti and uti, respectively. As the random variable represents

a future release date, the lower bound is assumed to be greater than the time t, i.e,

lti ≥ t.

4.4 Solution approach to the dynamic problem

As the information on the release dates is dynamically updated, a reoptimization

technique is proposed for the problem. A policy is therefore required to identify

the reoptimization epochs. At each reoptimization epoch, a problem is solved with

updated information about the release dates for the customers in Nunserved
t . Three

different policies are proposed: the first and simplest one solves the problem at the

beginning of the distribution and each time the vehicle returns to the depot at the



4.4. SOLUTION APPROACH TO THE DYNAMIC PROBLEM 91

end of a route. This policy is identified as policy R. The second policy reoptimizes at

every return to the depot and every time the vehicle should depart from the depot, i.e.,

when the earliest time at which the next route can start is reached. If the first route

of the newly obtained solution can start, this route is implemented. Otherwise, the

process is repeated. This policy is identified as policy RD. The last policy reoptimizes

at every time the vehicle returns to the depot, every time the vehicle should depart

from the depot, and at intervals while the vehicle is waiting at the depot. During

waiting times, the next reoptimization epoch is defined as the middle point between

the current time and the expected starting time of the next route. If the interval

between the current time and the next starting time is less than a minimum time span

between reoptimization epochs, the next reoptimization is performed at the expected

starting time of the next route. This policy is identified as RDW policy. The flowchart

of the RDW policy is presented in Figure 4.1, where τnextstart is the actual starting time

of the next route, meaning the time at which all the parcels of the customers to be

served in the next route have been delivered at the depot and thus the vehicle can

start the route and serve the customers.

The highlighted box in Figure 4.1 involves the solution of the DTSP-srd with

the information available at time t, i.e., the set of customers in Nunserved
t and the

information on the corresponding release dates. When a route is performed, the

customers that have been served are removed from the set Nknown
t and added to the

set N served
t .

We devise two optimization models for the solution of the problem. The distri-

bution problem can be solved in a stochastic way, by handling the release dates as

random variables, or in a deterministic way, deriving a point estimation of the release

date from the random variable r̃ti of customers i ∈ N static
t ∪Ndynamic

t .
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t = 0

Any
unvisited
customer?

Optimization
model

is
t = τnextstart?

Execute
first route

Update t as
ending time of
executed route

Remove visited
customers

Solution value is t

Update t as next
decision epoch

yes

no

yes

no

Figure 4.1: The RDW policy.

4.5 Optimization models

In this section the two models proposed for the solution of the problem at each reop-

timization epoch are presented. The stochastic model is introduced in Section 4.5.1.

Then, in Section 4.5.2, the deterministic model is described. To illustrate the differ-

ences of the two models an example is presented in Section 4.5.3. Finally, the solution

method proposed for the two models is described in Section 4.5.4.
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4.5.1 Stochastic model

If the full stochastic information on the release dates is considered, the proposed

stochastic mixed-integer linear program for the problem at time t is defined as follows.

The formulation relies on the following decision variables: xkij are arc variables, with

xkij = 1 if route k traverses arc (i, j) and xkij = 0 otherwise, yki are route variables,

with yki = 1 if customer i is visited in route k and yki = 0 otherwise. Flow variables

ukij are added to enforce subtour elimination.

min
∑
k∈K

∑
(i,j)∈A

dijx
k
ij + E

[
Q(x, r̃t)

]
(4.1)

s.t. ∑
k∈K

yki = 1 i ∈ Nunserved
t , (4.2)∑

j∈V

xkij =
∑
j∈V

xkji = yki i ∈ Nunserved
t ∪ {0}, k ∈ K, (4.3)∑

j∈V

ukji −
∑
j∈V

ukij = yki i ∈ Nunserved
t , k ∈ K, (4.4)

ukij ≤ (n− 1)xkij (i, j) ∈ A, k ∈ K, (4.5)

xkij ≤ 1− xk00 (i, j) ∈ A, k ∈ K \ {|K|}, (4.6)

xk00 ≥ xk+1
00 k ∈ K \ {|K|}, (4.7)

xkij ∈ {0, 1} (i, j) ∈ A, k ∈ K, (4.8)

yki ∈ {0, 1} i ∈ Nunserved
t ∪ {0}, k ∈ K, (4.9)

ukij ≥ 0 (i, j) ∈ A, k ∈ K. (4.10)

The objective function (4.1) minimizes the total serving time as sum of the travel

times and the expected waiting times at the depot, where x = (xkij)(i,j)∈A,k∈K\{|K|} and

r̃t = (r̃ti)i∈Nunserved
t

is the random vector of the release dates. Constraints (4.2) ensure
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the visit of all customers. Constraints (4.3)-(4.5) impose that each route is a circuit

connected to the depot. In particular, constraints (4.5) generate a flow that decreases

while the vehicle visits customers, which prevents subtours. Constraints (4.6) and

(4.7) are symmetry breaking constraints. In particular, constraints (4.6) set xk00 = 1

if route k is empty, xk00 = 0 otherwise, and constraints (4.7) impose that all the empty

routes, if any, must precede all the non-empty routes, i.e., if route k is empty then all

routes k′ must be empty, with k′ = 1, . . . , k1.

Given a solution and a realization for the random vector r̃t, Q(x, r̃t) denotes the

waiting time at the depot. Waiting occurs if the starting time of a route is greater

than the ending time of the previous one, or, in the case of the first route, if it is not

starting at time t = 0. The ending time of a route is computed as its starting time

plus its travel time. The starting time of a route must be greater than or equal to the

release date of the customers in the route and the ending time of the previous route.

Let τ kstart and τ kend be the starting and ending time of route k ∈ K. Then:

τ kend = τ kstart +
∑

(i,j)∈A

dijx
k
ij k ∈ K, (4.11)

τ kend ≤ τ k+1
start k ∈ K \ {|K|}, (4.12)

τ kstart ≥ r̃tiy
k
i i ∈ N, k ∈ K. (4.13)

It follows that

E
[
Q(x, r̃t)

]
= E

 ∑
k∈K\{|K|}

(
τ k+1
start − τ kend

) . (4.14)

Therefore, the objective function (4.1) can also be computed as the expected ending

time of the last route:∑
k∈K

∑
(i,j)∈A

dijx
k
ij + E

[
Q(x, r̃t)

]
= E

[
τ
|K|
end

]
. (4.15)
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The model (4.1)-(4.10) is solved with the solution method presented in Section

4.5.4 where solutions are evaluated by the expected ending time of the last route.

In the remainder of this section the computation of this expected value is described.

Let S be a solution of (4.1)-(4.10), obtained at time t. The vehicle is assumed to be

located at the depot and S provides the delivery routes for customers in Nunserved
t .

The waiting time depends on the release dates r̃ti . In the remainder of this section, r̃ti

is assumed to be a random variable. Note that the known release date of customers in

Nknown
t can be seen as a random variable with bounds lti = uti = ri and P (r̃ti = ri) = 1.

In what follows the index t is removed to improve readability.

The expected completion time of delivery in S is computed as E
[
τ
|KS |
end ]

]
, where

KS = {1, . . . , |KS |} is the set of routes of S. From equations (4.11) and (4.12) it

follows that the starting time of a route can be computed as:

τ kstart = max

{
τ k−1end ,max

i∈Nk

{r̃i}
}
, k ∈ KS \ {1}, (4.16)

where Nk := {i ∈ Nunserved
t |yki = 1} is the set of customers served in route k.

The computation makes use of the cumulative distribution function of the maximum

of the release dates of the customers in route k, maxi∈Nk
{r̃i}, computed as:

P

(
max
i∈Nk

{r̃i} ≤ t′
)

=
∏
i∈Nk

P (r̃i ≤ t′) , k ∈ KS . (4.17)

Equations (4.16) and (4.17) allow us to define the cumulative distribution function of

τ kstart as:

P
(
τ kstart ≤ t′

)
=

P (maxi∈Nk
{r̃i} ≤ t′) for k = 1

P
(
τ k−1end ≤ t′

)
· P (maxi∈Nk

{r̃i} ≤ t′) for 2 ≤ k ≤ |KS |.
(4.18)
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The support of the random variable τ kstart is defined as follows. Let lkstart and ukstart be

the lower and upper bound of τ kstart, respectively. The two bounds are computed as:

lkstart =

maxi∈Nk
{li} for k = 1

max
{
lk−1end ,maxi∈Nk

{li}
}

for 2 ≤ k ≤ |KS |
(4.19)

ukstart =

maxi∈Nk
{ui} for k = 1

max
{
uk−1end ,maxi∈Nk

{ui}
}

for 2 ≤ k ≤ |KS |.
(4.20)

Because of equation (4.11), the bounds on τ kend are computed as lkend = lkstart +dk

and ukend = ukstart + dk, where dk is the traveling time of route k.

The expected value of solution S is therefore computed as:

E
[
τ
|KS |
end

]
=

u
|KS|
end∑

t=l
|KS|
end

t ·
[
P
(
τ
|KS |
end ≤ t

)
− P

(
τ
|KS |
end ≤ t− 1

)]
. (4.21)

where P
(
τ
|KS |
end ≤ t

)
follows from expressions (4.11) and (4.18). Thanks to (4.15)

this allows us to compute the objective function for any solution.

The complexity of computing the expected value of the objective function isO(|S
τ
|KS|
end

| · |N |),

where S
τ
|KS|
end

is the support of the random variable τ
|KS |
end . The term |S

τ
|KS|
end

| is due to

the fact that the computation of the expected value involves a sum over all the ele-

ments of the support, as described in expression (4.21). The term |N | is due to the

fact that the computation of the cdf of maxi∈Nk
{r̃i}, having cost O(|Nk|) as per ex-

pression (4.17), must be performed for all routes in K, as defined in expression (4.18),

and therefore
∑|K|

k=1O(|Nk|) = O(|N |).
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4.5.2 Deterministic model

The second of the two proposed models for the DTSP-srd makes use of a point es-

timation for the stochastic release dates. The information to be used in the model

is the observed release date of customers in Nknown
t , and the expected value of the

stochastic release dates for customers in i ∈ N static
t ∪ Ndynamic

t . The problem to be

solved at any time t when the vehicle is at the depot is a TSP-rd(time) as proposed

in Archetti et al. (2018).

4.5.3 Illustrative example

An example is now shown to illustrate the differences between the two models. As

the aim of the example is a comparison of the two models without taking into consid-

eration the effect of the different reoptimization policies and the effect of the dynamic

information on the solution, the release dates are considered as static and only the so-

lution obtained at time t = 0 is shown. Without affecting the validity of the example,

in what follows the assumption that t ∈ N is waived to allow for a leaner text. The

example can be made valid with t ∈ N by multiplying the arc costs and the values of

the support of the release dates by 1000.

Let there be two customers arranged as in Figure 4.2. The number close to each

arc is dij. The random variables describing the release dates of the two customers,

0

1 2

0.3 0.3

0.5

Figure 4.2: An example.

denoted as r̃1 and r̃2, are defined by the following probability density functions (pdf):
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• Customer 1:

fr̃1(t) =


0.5 if t = 1

0.5 if t = 2

0 otherwise.

• Customer 2:

fr̃2(t) =


0.5 if t = 1

0.5 if t = 2.1

0 otherwise.

Let us consider two solutions for the DTSP-srd problem. The first solution, S1,

consists of two routes, S1,1 and S1,2, visiting customer 1 and customer 2, respectively.

The traveling time of the routes is cS1,1 = cS1,2 = 0.6. The second solution, S2, consists

of a single route S2,1, visiting both customers 1 and 2, with travel time cS2,1 = 1.1.

The deterministic model evaluates the two solutions in the following way:

• solution S1 has an estimated value of 2.7, as route S1,1 has an estimated starting

time τ
S1,1
start = E[r̃1] = 1.5 and route S1,2 has an estimated starting time τ

S1,2
start =

max{τS1,1end ,E[r̃2]} = 2.1;

• solution S2 has an estimated value of 2.65 as route S2,1 has an estimated starting

time τ
S2,1
start = max{E[r̃1],E[r̃2]} = 1.55.

The stochastic model evaluates the two solutions in the following way:

• solution S1 is evaluated according to the procedure described in Section 4.5.1:

– the starting time of S1,1 is defined as τ
S1,1
start = r̃1, meaning that f

τ
S1,1
start

= fr̃1 ;

– because of equation (4.11), τ
S1,1
end is defined as τ

S1,1
end = τ

S1,1
start + cS1,1 . The pdf
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of τ
S1,1
end is defined as:

f
τ
S1,2
end

(t) =


0.5 if t = 1.6

0.5 if t = 2.6

0 otherwise;

– the starting time of the second route is defined as τ
S1,2
start = max{τS1,1end , r̃2}.

The cumulative distribution function is obtained as described in (4.18):

F
τ
S1,2
start

(t) = F
τ
S1,1
end

(t) · Fr2(t). The resulting pdf of τ
S1,2
start is the following:

f
τ
S1,2
start

(t) =



0.25 if t = 1.6

0.25 if t = 2.1

0.5 if t = 2.6

0 otherwise;

– combining equation (4.11) with the pdf of τ
S1,2
start allows us to compute the

expected ending time of S1,2 as E[τ
S1,2
end ] = 2.825;

• solution S2 has expected value 2.9. The random variable of the starting time

is defined as τ
S2,1
start = max{r̃1, r̃2} and therefore has l

τ
S2,1
start

= maxi∈{1,2}{lr̃i} = 1

and u
τ
S2,1
start

= maxi∈{1,2}{ur̃i} = 2.1. The pdf of τ
S1,2
start is:

f
τ
S1,2
start

(t) =



0.25 if t = 1

0.25 if t = 2

0.5 if t = 2.1

0 otherwise,

thus, E[τ
S2,1
start] = 1.8 and E[τ

S2,1
end ] = 2.9.

Table 4.1 reports the expected value of the two solutions according to the

stochastic and the deterministic models.
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Model S1 S2
Deterministic 2.7 2.65

Stochastic 2.825 2.9

Table 4.1: Expected values of the solutions.

This result shows how, in the presented example, the deterministic model chooses

the solution that waits for the two customers while the stochastic model chooses to

split the service of the two customers, anticipating the visit of customer 1. The two

solutions have been evaluated in the four scenarios, originating from the combination

of the realization of the random variables representing the release dates of the two

customers. The value of each solution in every scenario is reported in Table 4.2.

Scenario r̃2 = 1 r̃2 = 2.1

r̃1 = 1
S1 = 2.2

S2 = 2.1

S1 = 2.7

S2 = 3.2

r̃1 = 2
S1 = 3.2

S2 = 3.1

S1 = 3.2

S2 = 3.2

Table 4.2: Results in the four scenarios¡.

When looking at the best solution for each scenario, it can be observed that S1,

the solution chosen by the stochastic model, finds the best solution in 2 over the 4

scenarios and S2, the solution chosen by the deterministic model, is the best solution

in all but one scenarios. However, when evaluating the difference in terms of average

percentage gap from the best solution in each scenario, S1 has an average gap of 2%

while S2 has an average gap of 4.63%. This result is explained by the fact that, as

highlighted in Table 4.2, S2 is greatly penalized in the scenario in which customer 1
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is early and customer 2 is late.

4.5.4 A heuristic algorithm

The solution of the two models is obtained through a heuristic method derived from

the one presented in Archetti et al. (2018), which we briefly recall. The authors

present an iterated local search (ILS) that is composed by two phases: a perturbation,

consisting in a destroy-and-repair (DR) procedure, followed by a local search (LS).

The two phases are repeated iteratively as shown in Figure 4.3. The DR is carried

out by removing a number of customers from the solution and adding them back in a

randomly chosen route, different from the one they were originally included in. The LS

considers a set of four neighborhoods: the relocation of a customer to a different route,

the merging of two consecutive routes, the split of a route in two separate ones, and

the anticipation or postponement of a depot visit. The vertices are randomly sorted

and considered sequentially: if the vertex is not the depot the customer relocation

move is considered, otherwise the remaining three moves are evaluated. The first

improving move is implemented and the process is repeated until no improving move

is found. The ending conditions for the heuristic are the maximum time allowed

and the maximum number of iterations without improvement. Each LS iteration has

complexity O(|N |2), as the node insertion move is evaluated for all nodes in all the

possible positions within a solution.

The algorithm from Archetti et al. (2018) was shown to have good performance,

finding the optimal solution in all but one of the 24 instances tested with size |N | = 20,

the largest that could be solved to optimality within one hour with CPLEX. It has

been modified to reflect the dynamic setting. In particular, the local search algorithm

has been revised to become a best improvement local search where solutions will null

improvement over the current best solution are implemented with the condition that
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Initial solution

DR
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condition?

Final solution

yes

no

Figure 4.3: The heuristic scheme from Archetti et al. (2018).

the structure of the solution is improved. When the deterministic model is solved,

between two equivalent solutions, the one minimizing the sum over all routes of the

difference between the expected starting time and the maximum release date is chosen.

This criterion is expressed as
∑

k∈K
(
τ kstart −maxi∈Nk

{r̂ti}
)
. This allows us to select

the solution anticipating the visit to customers as much as possible. This property is

intuitively useful in a dynamic setting, where the information about arrivals in near

future is expected to be less uncertain than that of customers whose goods will arrive

further away in time. Given a solution and a move, the evaluation of the neighboring

solution of the deterministic model has complexity O(1). Each LS iteration for the

deterministic model has therefore complexity O(|N |2).

For the stochastic model, the solution is obtained by adopting the same heuris-

tic scheme presented for the deterministic model modified to consider the stochastic

component of the waiting times. In the local search, solutions are kept if they im-

prove the sum of the total travel time and expected waiting times, i.e., the expected

value of the solution, computed as described in Section 4.5.1. Similarly to the de-
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terministic case, solutions with null improvement are kept only if the structure of

the solution is improved. As the release dates are stochastic, this criterion is mea-

sured as the expected value of the sum, for all routes, of the difference between the

starting time and the maximum release date, which are both random variables, i.e.,

E
[∑

k∈K
(
τ kstart −maxi∈Nk

{r̃ti}
)]

=
∑

k∈K
(
E
[
τ kstart

]
− E [maxi∈Nk

{r̃ti}]
)
. The solu-

tion for which such value is minimum is kept.

As reported in Section 4.5.1, the evaluation of a solution of the stochastic model

has complexityO(|S
τ
|KS|
end

|·|N |). Each LS iteration has therefore complexityO(|S
τ
|KS|
end

|·

|N |3).

4.6 Instance generation

The following sections describe every step of the instance generation, firstly describing

the instances from which the DTSP-srd instances are derived, and secondly defining

how customers are partitioned and how the release dates of each customer are gen-

erated and updated over time. In a brief overview, the instance generation process

works as follows. The release dates of customers are generated by simulating the trav-

eling of the vehicles delivering the parcels to the depot. The dynamic release dates

are updated as the vehicles travel to the depot. When the vehicle reaches the depot

the release date becomes known.

4.6.1 Input instances

Instances have been generated starting from the instances for the TSP-rd(time) de-

scribed in Archetti et al. (2018), and in particular from the subset of instances derived

from Solomon (1987). Each instance is denoted as I β where I is the name of the
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instance from which the vertices coordinates are taken, i.e., C101, C201, R101, and

RC101, and β represents how spread out in time the release dates can be, compared

to the TSP travel time of the instance. Denoting dTSP the TSP travel time of the

instance, each release date is uniformly sampled in the interval [0, β × dTSP ]. We

denote r̄i the release date of customer i from the instance for the TSP-rd(time).

4.6.2 Initial customer partitioning

A time t = 0, each customer of the instance is assigned to the set Nknown
0 , N static

0 ,

or Ndynamic
0 according to the following rule. All customers for which r̄i = 0, meaning

all customers whose parcel is at the depot at time t = 0 in the input instance, are

included in the set Nknown
0 , hence Nknown

0 = {i ∈ N |r̄i = 0}. Customers in N \Nknown
0

are assigned to N static
0 or Ndynamic

0 according to a parameter δ ∈ [0, 1] indicating

the rate of customers with a dynamically updated release date, i.e., the customers

in set Ndynamic
0 over the total number of customers in N \ Nknown

0 . In particular,

δ
⌈
|N \Nknown

0 |
⌉

randomly chosen customers are assigned to set Ndynamic
0 and the

remaining customers are assigned to N static
0 , i.e., N static

0 = N \ (Nknown
0 ∪ Ndynamic

0 ).

The set of served customers is initialized as empty, i.e., N served
0 = ∅. The customers

partitioning procedure is described in Algorithm 5.

Algorithm 5 InitialCustomerPartitioning(I β, δ)

1: Nknown
0 = ∅, N static

0 = ∅, Ndynamic
0 = ∅, N served

0 = ∅

2: Nknown
0 = {i ∈ N |r̄i = 0}

3: while |Ndynamic
0 | < δ

⌈
|N \Nknown

0 |
⌉
do

4: Randomly select i ∈ N \ (Nknown
0 ∪Ndynamic

0 )

5: Ndynamic
0 = Ndynamic

0 ∪ {i}

6: end while

7: N static
0 = N \ (Nknown

0 ∪Ndynamic
0 )
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Instances with I ∈ {C101, C201, R101, RC101}, β ∈ {0.5, 1, 1.5}, and δ ∈

{0, 0.5, 1} have been tested.

4.6.3 Release dates generation

In this section we present the procedure to generate the random variables describing

the initial release dates for the customers in N static
t ∪Ndynamic

t , i.e., r̃0i . As defined in

Section 4.3, the release dates are assumed to be bounded and discrete. The discrete

and bounded distribution for each release date are generated as follows. A continuous

probability distribution is chosen for all the release dates of customers in N static
t ∪

Ndynamic
t . Then, for each customer, the parameters of the continuous probability

density function cfr̃0i are computed, the truncating points are defined, the pdf cf
′
r̃0i

of

the resulting truncated distribution is obtained, and the discrete pdf fr̃0i is derived.

Concerning the choice of the continuous probability distribution, various distri-

butions have been considered in the vehicle routing literature modelling stochasticity

in travel times, including uniform (see Malandraki and Daskin (1992)), Gaussian (see

Li et al. (2010)), log-normal (see Kaparias et al. (2008)), gamma (see Fan et al. (2005)

and Taş et al. (2013)) and shifted gamma (see Russell and Urban (2008)). The compu-

tational results reported in the following sections have been obtained using a Gaussian

distribution. Note, however, that the proposed models and the related solution meth-

ods are not distribution dependent. The parameters of the continuous Gaussian pdf

cfr̃0i are the expectation and the variance of the distribution, denoted as µr̃0i and σ2
r̃0i

,

respectively. The truncating points for the distribution are defined as follows. The

lower bound l0i is taken as the maximum between 0 and the floor rounding of the

1st percentile and the upper bound u0i as the ceil rounding of the 99th percentile of

N
(
µr̃0i , σ

2
r̃0i

)
.
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The truncated pdf is defined as

cf
′
r̃0i

(r) =


cfr̃0

i
(r)

cFr̃0
i
(u0i )−cFr̃0

i
(l0i )

l0i < r ≤ u0i

0 otherwise.

The discrete truncated distribution fr̃0i is computed as

fr̃0i (r) = P (r − 1 < r̃0i ≤ r) = cF
′
r̃0i

(r)− cF
′
r̃0i

(r − 1).

The parameters µr̃0i and σ2
r̃0i

of the Gaussian distribution of each release date are

obtained by simulating the arrival of the vehicles delivering the parcels to the depot.

Each vehicle is assumed to travel at a speed in the interval [10, 100]. The release dates

generation procedure is described in Algorithm 6. In line 2 the distance at time t = 0

of each vehicle is computed as di0 = v · r̄i where v is the central point of the speed

interval, i.e. v = 55. In line 3, the notation N ′(µ, σ, a, b) represents the truncated

normal distribution with expected value µ, standard deviation σ, lower bound a, and

upper bound b, while x ← N ′ indicates that x is a sample of distribution N ′. In

particular, v0i , the speed of each vehicle at time t = 0, is sampled from a Gaussian

distribution having expected value µ = v and standard deviation σ = 19.3465. This

value for σ is chosen to let the bounds for the speed, i.e., [10, 100], be the 1st and 99th

percentile of the non-truncated Gaussian distribution. In lines 4, 5, and 6 the initial

parameters µr̃0i and σ2
r̃0i

of the random variable describing the release date of each

customer are computed as the estimated time of arrival and the estimated traveling

time left, respectively. These values are computed according to the current distance

and speed of each vehicle and they are set to the same value.

In the case of customers in N static
t , the information is not updated for t > 0. For

these customers the actual release date ri is assumed to fall within the interval [l0i , u
0
i ].

The value is sampled from the random variable r̃0i , as shown at line 8 of Algorithm 6
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where ri ← r̃0i indicates that ri is sampled from r̃0i . Instead, for customers in D the

information on the release date is updated as described in Section 4.6.4.

Algorithm 6 ReleaseDateGeneration

1: for all i ∈ N static
t ∪Ndynamic

t do

2: di0 = v · r̄i

3: v0i ← N ′(55, 19.3465, 10, 100)

4: µr̃0i
=

d0i
v0i

5: σ2
r̃0i

=
d0i
v0i

6: l0i = max
{⌊

cF
−1
r̃0i

(0.01)
⌋
, 0
}

, u0i =
⌈
cF
−1
r̃0i

(0.99)
⌉

7: if i ∈ N static
t then

8: ri ← r̃0i

9: end if

10: end for

4.6.4 Release dates updating

At each time t > 0 the release date of each customer is updated as follows. The

information available for customers in N static
t is only updated if the parcel has arrived

to the depot, meaning that if t = ri, the value sampled in the generation phase, the

customer is removed from set N static
t and included in the set Nknown

t of customers that

can be served. For customers in Ndynamic
t , the release date is updated by simulating

the traveling of the vehicles delivering the parcels to the depot. The distance of each

vehicle is updated by decreasing its value by the amount travelled in the previous

time unit, i.e., dti = dt−1i − vt−1i . If the updated distance from the depot is null (or

negative) the vehicle has reached the depot and the customer is included in the set

Nknown
t with release date ri = t. Otherwise, the speed of the vehicle is updated and

the new parameters of the release date are computed. µr̃ti is computed as the expected
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arrival time of the parcel, i.e., t+
dit
vit

, and σ2
r̃ti

as the estimated residual traveling time,

i.e.,
dit
vit

. The lower bound lti is computed as the floor rounding of the 1st percentile and

the upper bound uti as the ceil rounding of the 99th percentile of N
(
µr̃ti , σ

2
r̃ti

)
. As the

lower bound of the release date cannot be past, the lower bound is computed as the

maximum between the rounding of the 1st percentile and t.

Algorithm 7 describes the updating procedure for the release dates.

Algorithm 7 ReleaseDateUpdate

1: for all i ∈ Nstatic
t ∪Ndynamic

t do

2: if i ∈ Nstatic
t then

3: if t > lti then

4: lti = t

5: end if

6: if t = ri then

7: Nstatic
t = Nstatic

t \ {i}, Nknown
t = Nknown

t ∪ {i}

8: end if

9: end if

10: if i ∈ Ndynamic
t then

11: dti = dt−1
i − vt−1

i

12: if dti ≤ 0 then

13: Ndynamic
t = Ndynamic

t \ {i}, Nknown
t = Nknown

t ∪ {i}

14: rti = t

15: else

16: UpdateSpeed(i)

17: µr̃ti
= t+

di
t

vi
t

18: σ2
r̃ti

=
di
t

vi
t

19: lti = max
{⌊

cF
−1
r̃ti

(0.01)
⌋
, t
}

, uti =
⌈
cF

−1
r̃ti

(0.99)
⌉

20: end if

21: end if

22: end for



4.6. INSTANCE GENERATION 109

The speed is updated as a truncated random walk process with Gaussian steps.

In particular, vti , the speed at time t, is computed as the sum of the speed at time

t − 1, vt−1i , and a stochastic component, εti, sampled from the Gaussian distribution

with µ = 0 and σ = 1. The truncation is achieved by checking if the bounds on

the speed, i.e., [10, 100], have been violated and by setting vti accordingly. The speed

updating procedure is described in Algorithm 8.

Algorithm 8 UpdateSpeed(i), with i ∈ Ndynamic
t

1: εti ← N(0, 1)

2: vti = vt−1i + εti

3: if vti < 10 then

4: vti = 10

5: end if

6: if vti > 100 then

7: vti = 100

8: end if

4.6.5 Parameters for the instance generation

As described in Sections 4.6.1-4.6.4, the instance generation procedure takes three

input: I, the instance name, β, the parameter describing how spread out in time the

release dates are compared to the TSP travel time of the instance, and δ, describing

the ratio of customers in Ndynamic
t with respect to those in N static

t ∪ Ndynamic
t , at the

beginning of the distribution. In this section the impact of the parameters β and δ

is analyzed, to allow for a better understanding of the role they play in the instance

generation process.

Figure 4.4 presents the effect of β on the distribution of the supports of the

release dates in time. The plots refer to three instances with value of β = 0.5, 1, 1.5,
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from top to bottom, and with δ = 0. The x-axis reports the time and the y-axis the

customers of the instance. The horizontal lines of each plot represent the support

of the distribution function of the release dates of customers. Each line corresponds

to one customer. Customers are sorted by increasing value of the expected release

date, from bottom to top. As β increases, the release dates are sampled in a broader

interval with respect to dTSP . This allows us to investigate both the cases in which

it is better to wait for more customers to serve in longer routes, i.e., when β is small,

and the one where it is more advantageous to serve customers as their parcel reaches

the depot, i.e., when β increases.

Figure 4.5 shows the evolution of the expected value and bounds of the release

dates when δ = 1. The figure reports the evolution of the release date of six customers,

sorted by the value of the initial expected release dates, allowing us to understand

the effect of describing the speed of the vehicles as a truncated random walk on the

evolution of the release dates in time. At the beginning of the distribution, the release

dates have a given variance, based on the distance from the depot. As time goes on,

the expected arrival time each vehicle might be advanced or delayed, based on various

conditions, e.g., traffic and deliveries to other distribution centers. As the vehicle

travels the potential causes of uncertainty decrease and the estimation of the arrival

time gets more precise, until the moment in which the vehicle reaches the depot.

4.7 Computational experiments

In this section we describe the computational experiments that have been carried out

to assess the performance of the two models and the three dynamic policies. The

aim is to understand whether, in the presented reoptimization and stochastic setting,

it is better to consider a point estimation or the entire stochastic information for
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Figure 4.4: The effect of different values of β on the release dates. β = 0.5, 1, 1.5 from

top to bottom.

the release dates and if increasing the number of reoptimization epochs improves the

quality of the solution.

In Section 4.7.1, preliminary experiments are preformed. Then, in Section 4.7.2,

the final results are presented.
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Figure 4.5: The evolution of the release dates when δ = 1.

4.7.1 Preliminary experiments

In this section preliminary experiments are reported to identify the time limit for

each reoptimization and investigate the relationship between the instance size and

the number of ILS iterations performed.

The time limit Tmax for each reoptimization, expressed in minutes, has been

obtained through a set of preliminary experiments. Tests have been carried out for

Tmax ∈ {1, 5, 10} on the instances with I = C101, β ∈ {0.5, 1, 1.5}, and δ = {0, 0.5, 1}.

It must be noted that, as the time required for each reoptimization is not taken into
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account when computing the value of the objective function, the implicit assumption

is that the considered time unit is larger than the value of Tmax. The maximum

number of iterations without improvement has been set to 100 · Tmax. The results

are reported in Table 4.3. Column “Avg” shows, for each tested value of Tmax, the

average performance gap of each model from the best solution found by that model

across all the tested values of Tmax. As the deterministic model has shown some

outlying results for the instance with β = 1.5 and δ = 0.5, the average percentage

gap excluding such instance, for both the deterministic and stochastic models, is

reported in the column “Avg∗”. This value shows an increase in the quality of the

solution found by the deterministic model as the time allowed for each reoptimization

increases, while the stochastic model shows no benefit when Tmax is increased from

5 to 10 minutes. The column “Max Sim. Time” shows the maximum time required

to run each simulation, i.e., all the reoptimizations required to solve an instance, for

each value of Tmax, across all model-policy combinations. The value Tmax = 5 has been

chosen as it allowed to run each simulation in under two hours without significantly

undermining the performance of the two models.

Deterministic Stochastic

Tmax

(minutes)
Avg Avg∗ Avg Avg∗

Max Sim. Time

(minutes)

1 1.63 1.35 1.37 1.37 21

5 1.43 1.27 0.66 0.61 102

10 1.68 1.21 0.66 0.62 201

Table 4.3: The results of the tests for each Tmax.
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The performance of the ILS depends on the number of iterations and therefore

on the time that each iteration requires. Table 4.4 reports for instance I = C101,

β = 1, δ = 0.5, the average number of iterations performed by each model by size

of the subgraph of customers in Nunserved
t , on the three policies. The “-” symbol

indicates that the model has not been solved for subgraphs of that size. It is shown

how the number of iterations required when solving the problem considering the full

probabilistic information for the release dates is substantially smaller than in the

deterministic case, especially in the early stages of the simulation, when the size of

the subgraph considered in the reoptimization is larger.

Number of iterations

Size Deterministic Stochastic

50-46 718 18

45-41 715 63

40-36 - 201

35-31 613 226

30-26 2248 500

25-21 1765 500

5-1 500 500

Table 4.4: Results on the average number of ILS iterations for each model in the

instance.

As the number of ILS performed within Tmax appears to be related to the size of

the instance to be solved, tests have been conducted to measure the time to perform

one ILS iteration for different instance sizes. The results are reported in Table 4.5 for

instance I = C101, β = 1, δ = 0.5. Column “tLS” reports the total time required
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for the LS, “nLS” the number of LS iterations performed and “t̄LS” the average time

required for one LS iteration. It is shown how the average time required to perform

a LS iteration for the deterministic model appears to be constant with respect to the

instance size while it increases when the stochastic model is solved. It must also be

noted that when the instance size is greater or equal to 70 nodes the cost of one LS

iteration for the stochastic model becomes greater than Tmax.

Deterministic Stochastic

Size tLS nLS t̄LS tLS nLS t̄LS

50 0.11 8 0.014 49.14 16 3.07

60 0.14 8 0.017 46.34 14 3.31

70 0.28 22 0.013 335.93 36 9.33

80 0.41 58 0.007 406.88 15 27.13

90 0.25 42 0.006 557.44 15 37.16

100 0.34 31 0.011 310.07 16 19.38

Table 4.5: Time in seconds to perform one ILS iteration.

4.7.2 Final results

Considering the results in Section 4.7.1, all computational results are performed on

instances with 50 customers. The six model-policy combinations have been compared

on the entire instance set described in Section 4.6. The results are shown by compar-

ing the performance of the two models (deterministic vs. stochastic) and the three

reoptimization policies (R, RD and RDW) and of the myopic policy. Then, an analysis

of the solutions is carried out. As the instance generation process is dependent on the

sampling of random variables, five different seeds are generated for each combination
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of I, β, and δ. The results in this section are computed as averages of these five

different scenarios.

Performance of models and policies

Table 4.6 shows the average of the percentage gap of each solution from the best solu-

tion found by all model-policy combinations. In the top left corner the performance of

the two models is shown with respect to the parameter δ. On average, the stochastic

model is shown to find better solutions across all values of δ. A higher rate of dynamic

customers appears to have a negative impact on the performance of the two models:

the percentage gap of the deterministic model shows a positive trend with respect to

δ, while the performance of the stochastic model worsens as δ goes from 0 to 0.5 and

shows only a slight reduction when δ is increased to 1. The bottom left corner reports

the performance of the models with different values of β. Again, the stochastic model

finds on average the best solution for all tested values. Interestingly, β = 1 appears to

be the value for which the stochastic model has the largest advantage over the deter-

ministic one. This could be explained by the fact that β = 1 is the case in which it is

harder to find the best trade-off between serving customers and waiting at the depot,

as no component of the objective function, i.e., the waiting time at the depot caused

by the release dates and the cost of traveling, outweighs the other. It appears that, by

exploiting the full probabilistic information, the stochastic model better copes with

the increased challenge.

The top central part of Table 4.6 allows us to analyze the different reoptimization

policies for different values of δ. It is shown that the quality of the solution improves

as the number of reoptimizations increases and the benefit increases for an increasing

value of δ. The bottom central part shows a comparison of the three policies for each

value of β. The RDW policy is again the one finding the best solution across each
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value of β. Furthermore, with the sole exception of the R policy, the case with β = 1

appears to be the most challenging one, reflecting the result found when comparing

the two models.

To show the benefits of the proposed reoptimization technique, the instances

have also been solved with a myopic policy. Such heuristic works as follows: every

time the vehicle is at the depot, it immediately starts a route to serve the customers in

Nknown
t . If Nknown

t = ∅, it waits for the first parcel arriving to the depot and leaves as

soon as it arrives. The results are reported in the rightmost column of Table 4.6. On

average, the solutions found by such heuristic are shown to be more than 12% worse

than the best solution found. The performance of the myopic policy improves as β

increases. This is explained by the fact that as β increases, it gets more beneficial to

serve customers in shorter routes, i.e., serving less customers per route with a higher

number of routes and reducing waiting times.

Avg.

Deterministic

Avg.

Stochastic

Avg.

R

Avg.

RD

Avg.

RDW

Avg.

Myopic

δ = 0 2.69 0.72 1.77 1.68 1.67 11.96

δ = 0.5 2.96 1.40 2.35 2.17 2.02 14.74

δ = 1 3.10 1.34 3.03 2.39 2.25 10.85

β = 0.5 1.91 1.28 1.67 1.61 1.51 24.22

β = 1 3.79 0.90 2.37 2.56 2.11 11.10

β = 1.5 3.05 1.29 2.40 2.09 2.02 2.23

Avg. 2.92 1.16 2.14 2.09 1.88 12.52

Table 4.6: Average percentage gap from the best solution.

More detailed results of the average percentage gap are reported for each model-

policy pair and for the myopic policy in Table 4.7. It is worth noting that, although
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the results of the myopic policy are on average worse than the ones found by the

reoptimization approach, the case when δ = 0 and β = 1.5 is best solved by serving

customers as soon as their parcel is delivered to the depot. This is due to the fact that

when release dates are sufficiently spread out in time to make serving each customer

individually become the optimal solution, the myopic policy finds the optimal solution.

Table 4.7 also highlights how, on average, the best results are found by the stochastic

model in combination with the RDW policy.

Deterministic Stochastic

δ β R RD RDW R RD RDW Myopic

0 0.5 0.61 0.41 0.46 0.76 0.82 0.73 25.19

1 4.79 4.55 4.24 0.48 0.22 0.46 10.69

1.5 2.92 3.07 3.19 1.05 1.05 0.92 0

Avg. 2.77 2.67 2.63 0.76 0.70 0.70 11.96

0.5 0.5 2.29 2.33 2.31 1.76 1.03 0.99 25.89

1 4.10 3.69 2.97 0.85 2.20 1.49 15.09

1.5 3.15 2.57 3.19 1.92 1.21 1.18 3.26

Avg. 3.18 2.87 2.82 1.51 1.48 1.22 14.74

1 0.5 2.47 3.44 2.85 2.11 1.61 1.71 21.58

1 3.12 3.57 3.06 0.86 1.12 0.42 7.53

1.5 3.71 2.71 2.94 1.65 1.94 0.68 3.43

Avg. 3.10 3.24 2.95 1.54 1.56 0.94 10.85

Avg. 3.02 2.93 2.80 1.27 1.24 0.95 12.52

Table 4.7: Detailed results for the average percentage gap from the best solution.
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Analysis of the solutions

To allow for a better comparison of the proposed models and to better understand

the differences in the solutions found by the different models and policies, Tables 4.8,

4.9, 4.10, 4.11, and 4.12 are presented, replicating the structure of Table 4.6. Table

4.8 reports the average total time required to run each simulation, Table 4.9 reports

the number of reoptimizations carried out, Table 4.10 reports the average number of

routes across all tested instances, Table 4.11 shows the average reoptimization time

per route, and Table 4.12 the average percentage of waiting time over the total cost

of the solution for each model and reoptimization policy and for all values of δ and β.

The results of the myopic policy are omitted when not relevant. More detailed results

are reported, for each of the metrics, in the Appendix (Section 4.9).

Table 4.8 reports the average total time required to run each simulation. No-

tably, when comparing the two models for different values of δ, it is shown that the

stochastic model consistently requires about 5 minutes more than the deterministic

one. When comparing the two models with respect to the parameter β, the time re-

quired on average for each simulation increases for both models. It is shown, however,

that the difference in the required time for the stochastic model to the deterministic

one decreases as β increases. The total time is larger when the reoptimization is car-

ried out more frequently. In particular, the RDW policy takes more than twice the

time required by the R policy.

Table 4.9 shows a comparison of the models and policies with respect to the

number of reoptimizations. The two models show a very similar number of reopti-

mizations across all values of δ and β. As expected, the number of reoptimizations

increases from the R policy to the RD and RDW policies. Such increase is shown to

be correlated with the parameter β. This is due to the fact that the more release dates

are spread out in time, the more it is beneficial to serve customers in a higher num-
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Avg.

Deterministic

Avg.

Stochastic

Avg.

R

Avg.

RD

Avg.

RDW

δ = 0 40.36 46.29 23.20 36.11 70.65

δ = 0.5 32.12 37.04 22.28 33.55 47.90

δ = 1 37.79 43.57 25.64 40.04 56.35

β = 0.5 16.62 26.39 14.21 21.39 28.92

β = 1 37.69 43.37 25.10 38.95 57.54

β = 1.5 55.96 57.13 31.81 49.36 88.45

Avg. 36.75 42.30 23.71 36.57 58.30

Table 4.8: Average time required for each simulation (in minutes).

ber of shorter routes. As the reoptimization epochs are dependent on the number of

routes and on the starting time of such routes, when β increases more reoptimizations

are performed.

Table 4.10 reports a comparison of the number of routes for each model and

policy. It is observed that, on average, the stochastic model finds solutions where the

distribution is completed with less routes than the ones found by the deterministic

model. This result holds across all values of δ. When the models are compared

with respect to the parameter β it only holds for β = 1.5. Table 4.10 confirms the

positive correlation between the parameter β and the average number of routes in

each solution. This result also validates the increasing competitiveness of the myopic

policy, highlighted in Table 4.6. While this result might seem contradictory with the

fact that the solutions found by the myopic policy have on average less routes than

the ones found with any of the proposed reoptimization policies, it must be noted that

the case in which the myopic policy performs better, i.e., β = 1.5, is also the case in

which the difference in the number of routes with any of the reoptimization policies
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Avg.

Deterministic

Avg.

Stochastic

Avg.

R

Avg.

RD

Avg.

RDW

δ = 0 10.71 10.63 5.98 9.12 16.90

δ = 0.5 9.07 9.11 5.89 8.79 12.58

δ = 1 10.41 10.69 6.66 10.10 14.88

β = 0.5 6.37 6.33 4.33 6.27 8.46

β = 1 10.49 10.78 6.61 10.12 15.18

β = 1.5 13.32 13.31 7.59 11.63 20.73

Avg. 10.06 10.14 6.18 9.34 14.79

Table 4.9: Average number of reoptimizations.

is minimum. Finally, the number of routes appears to be consistent across the three

different reoptimization policies.

Table 4.11 allows us to investigate the behavior of the ratio between the total

time required to run each simulation over the number of routes. This value can be

interpreted as the average time spent solving the model in order to obtain the next

route to be implemented. When comparing the two models, the stochastic one is

shown to require more time per route across all values of β and δ. Looking at the

results for different values of δ, the case of δ = 0 is the one requiring the longest

time both when considering the two models and when comparing the three policies.

Both the two models and the three policies show a positive trend with respect to the

parameter β.

Further analysis of the structure of the solutions found has been carried out

by comparing the percentage of time spent waiting at the depot over the total time

required for the distribution. The results are reported in Table 4.12. It can be
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Avg.

Deterministic

Avg.

Stochastic

Avg.

R

Avg.

RD

Avg.

RDW

Avg.

Myopic

δ = 0 6.11 5.79 5.98 5.86 6.01 5.25

δ = 0.5 6.13 5.93 5.92 5.96 6.21 4.97

δ = 1 7.08 6.33 6.66 6.60 6.85 5.38

β = 0.5 4.15 4.53 4.33 4.33 4.36 3.70

β = 1 6.58 6.67 6.61 6.58 6.69 5.08

β = 1.5 8.59 6.84 7.62 7.52 8.02 6.82

Avg. 6.44 6.01 6.19 6.14 6.36 5.20

Table 4.10: Average number of routes.

observed that the stochastic model has on average a higher rate of waiting time over

the deterministic model. This result confirms those found when looking at the number

of routes of the solutions: as the stochastic model tends to serve customers with less

routes compared to the deterministic model, more time is spent waiting at the depot

for the parcels of the customers. The results found for the myopic policy reflect

its strategy of serving customers as soon as possible: as this approach only waits

at the depot if there are no customers that can be served, the percentage waiting

time is shown to be lower compared to the solutions found when solving the models

considering the information available about future release dates.

4.8 Conclusions

In this chapter than dynamic traveling salesman with stochastic release dates (DTSP-

srd) is introduced. A solution approach is proposed based on a reoptimization tech-

nique. Three policies are introduced to define the reoptimization epochs, with in-
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Avg.

Deterministic

Avg.

Stochastic

Avg.

R

Avg.

RD

Avg.

RDW

δ = 0 6.28 7.90 3.75 6.00 11.51

δ = 0.5 5.12 6.28 3.61 5.63 7.87

δ = 1 5.19 6.82 3.71 6.00 8.31

β = 0.5 4.06 6.01 3.19 4.97 6.94

β = 1 5.75 6.58 3.74 5.94 8.81

β = 1.5 6.79 8.41 4.14 6.72 11.93

Avg. 5.53 7.00 3.69 5.88 9.23

Table 4.11: Average time (in minutes) over the number of routes.

creasing frequency of reoptimization, and two models are proposed for the solution of

the problem at each epoch. The first one considers a point estimation of the release

dates and the second one makes use of the entire probabilistic information available.

The models have been solved with an iterated local search heuristic. Extensive com-

putational tests have been carried out on a large instance set. The results show that a

more frequent reoptimization provides better results across all tested instances. Fur-

thermore, it has been observed that, on average, on instances with 50 customers,

better solutions are found when the problem is solved with the stochastic model. In

particular, the myopic policy is shown to perform more the 12% worse than the best

solution found by the two models. The deterministic and stochastic model have an

average percentage gap from the best solution found across the three dynamic poli-

cies of 2.92% and 1.16%, respectively. When considering this result together with

the number of iterations performed by the heuristic for each of the two models, the

deterministic model appears to be a good compromise, especially when the number

of customers increases.
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Avg.

Deterministic

Avg.

Stochastic

Avg.

R

Avg.

RD

Avg.

RDW

Avg.

Myopic

δ = 0 9.13 11.00 9.79 10.23 10.18 1.67

δ = 0.5 5.88 6.53 6.08 6.13 6.40 1.43

δ = 1 6.64 8.37 7.49 8.02 7.00 2.28

β = 0.5 2.81 2.13 2.32 2.51 2.57 0

β = 1 7.91 6.93 7.13 7.87 7.25 0.77

β = 1.5 10.93 16.85 13.91 14.00 13.76 4.60

Avg. 7.22 8.63 7.79 8.13 7.86 1.79

Table 4.12: Average percentage waiting time.

Several research directions remain open. As in the proposed approach no action

is considered when the vehicle is not at the depot, such option could be considered by

reoptimizing while the vehicle is at customers location and allowing for an anticipated

return to the depot, as a further effort towards a better distribution. Furthermore,

different probability distributions could be considered for the release dates and the case

where the distribution assumed is different from the actual distribution of the release

dates could be investigated. The DTSP-srd considers one uncapacitated vehicle to

perform the distribution. A natural extension of the problem would allow multiple

capacitated vehicles to be deployed.
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4.9 Appendix: Results

Deterministic Stochastic

δ β R RD RDW R RD RDW

0 0.5 9.82 14.71 22.42 17.24 24.35 33.24

1 21.97 32.30 63.16 28.78 42.96 67.37

1.5 35.02 51.35 112.46 26.35 51.02 125.27

0.5 0.5 8.82 16.23 21.91 19.18 25.98 33.82

1 21.28 34.11 43.10 25.09 36.28 52.98

1.5 34.40 46.13 63.07 24.91 42.57 72.54

1 0.5 11.53 19.05 25.06 18.65 28.03 37.05

1 27.84 42.91 52.53 25.63 45.12 66.11

1.5 38.99 54.12 68.08 31.22 51.00 89.29

Table 4.13: Detailed results for the total time required for each simulation (in min-

utes).

Deterministic Stochastic

δ β R RD RDW R RD RDW

0 0.5 2.41 3.62 5.62 3.99 5.80 8.32

1 3.27 5.10 9.77 4.10 6.00 9.61

1.5 4.33 6.87 15.00 4.44 8.59 19.61

0.5 0.5 2.27 4.19 5.19 4.06 5.70 7.79

1 3.53 5.70 6.98 3.90 5.86 8.11

1.5 4.18 5.60 7.92 3.90 6.44 9.92

1 0.5 2.65 4.34 6.04 3.90 5.98 8.06

1 3.76 5.94 7.26 3.94 6.90 10.02

1.5 4.05 5.90 6.57 4.04 6.81 11.18

Table 4.14: Detailed results for the total time over the number of routes (in minutes).
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Deterministic Stochastic

δ β R RD RDW R RD RDW

0 0.5 4.10 5.85 8.85 4.30 5.70 7.40

1 6.60 9.60 17.35 7.00 10.45 17.00

1.5 8.00 11.60 24.40 5.90 11.50 26.40

0.5 0.5 3.85 6.15 8.20 4.70 6.20 7.85

1 6.00 9.60 12.50 6.40 8.95 13.05

1.5 8.05 11.45 15.85 6.35 10.40 18.05

1 0.5 4.30 6.90 9.15 4.75 6.80 9.30

1 7.20 11.10 14.45 6.45 11.00 16.70

1.5 9.55 12.90 18.10 7.70 11.90 21.60

Table 4.15: Detailed results for number of reoptimizations.

Deterministic Stochastic

δ β R RD RDW R RD RDW

0 0.5 4.10 4.05 4.05 4.30 4.20 4.20

1 6.60 6.25 6.40 7.00 7.15 7.00

1.5 8.00 7.60 7.95 5.90 5.90 6.45

0.5 0.5 3.85 3.95 4.35 4.70 4.60 4.55

1 6.00 6.05 6.30 6.40 6.25 6.65

1.5 8.20 8.30 8.15 6.35 6.60 7.25

1 0.5 4.30 4.40 4.30 4.75 4.75 4.70

1 7.20 7.20 7.20 6.45 6.55 6.60

1.5 9.55 9.20 10.35 7.70 7.50 7.95

Table 4.16: Detailed results for the number of routes.
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Deterministic Stochastic

δ β R RD RDW R RD RDW Myopic

0 0.5 1.35 1.36 2.61 0.45 0.61 0.48 0.00

1 9.65 10.09 9.84 6.72 6.28 6.87 0.00

1.5 14.37 16.67 16.23 26.20 26.40 25.04 5.00

0.5 0.5 2.48 2.52 2.27 1.77 1.61 1.75 0.00

1 6.08 6.89 5.01 4.97 5.52 6.16 0.24

1.5 8.62 9.05 10.05 12.57 11.22 13.18 4.06

1 0.5 3.92 4.93 3.85 3.94 4.06 4.47 0.00

1 7.22 8.79 7.58 8.13 9.65 8.05 2.08

1.5 8.72 7.47 7.23 12.99 13.22 10.82 4.75

Table 4.17: Detailed results for the percentage waiting time.
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Chapter 5

Booking of loading/unloading areas

This chapter is based on the result of ongoing research project on the subject of

booking managements systems for loading and unloading areas. The work has been

performed by the author in collaboration with Prof. M. Grazia Speranza and Prof.

José M. Viegas.

5.1 Abstract

City distribution usually requires vehicles to temporarily stop at roadside to allow for

the driver to perform the last leg of the delivery by foot. The stops take place in des-

ignated areas, called loading/unloading (L/U) areas. In this chapter the introduction

of a booking system for the management of the L/U areas in a city center is studies as

a way to eliminate double parking. Two booking management system and the arising

routing problems are presented. The first booking management proposed in the one

where distributors book in sequence, accounting for the reservations that have already

been placed. The second considers a centralized system that collects all the required

129
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stops at L/U areas and finds a reservation for each distributor. The optimization

problems arising in each of the two approaches are presented. The solutions provided

by the two booking systems are discussed and compared with a representation of the

current use of the L/U areas, where the distributors do not consider the availability

of a parking spot and resort to double if none is available.

5.2 Introduction

The rapid increase of demand of goods and services in the city center and the com-

paratively static nature of the road infrastructure, among other aspects, make trans-

portation in the urban areas a very relevant topic. This increase in the demand in

urban areas is the result of various factors, such as the increase rate of people moving

to cities, with the rate of urbanized population expected to reach 80% worldwide by

2050 (see Bettencourt and West (2010)), social and economic growth. These phenom-

ena, together with technological advancement and the wide adoption of e-commerce,

have also caused the need of a fast and readily available distribution system. The

management of the road network is therefore assuming a more and more relevant role

in the quality of the distribution system of a urban area and in the quality of life of

its citizens. These and many other aspects of the challenges and opportunities of city

logistics are discussed in Savelsbergh and Van Woensel (2016).

In this context, we propose to consider the management of loading and un-

loading zones reserved by the municipality to commercial vehicles. City distribution

usually requires vehicles to temporarily stop at roadside to allow for the driver to

perform the last leg of the delivery by foot. The stops take place in designated areas,

called loading/unloading areas (henceforth shortened L/U areas), each with a specific

number of available parking spots. The high demand for L/U areas and the scarcity
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of space available in city centers makes the management of such areas a crucial factor

in the city distribution for all the stakeholders involved: the municipality wants to

reduce double parking and its effects on traffic, the distributors want to easily access

L/U areas to minimize the discomfort during the delivery, including fines for double

parking, and do not want the infrastructure to have a negative impact on the service

they provide. Such designated areas are identified by the municipality but typically

little to no management is performed after the locations have been established. In

some cases, areas are forced to be shared in time between the vehicles by imposing a

time limit on each stop (e.g. by means of a parking disc). Such limit is enforced by

the traffic police.

One of the ways to deal with double parking arising from L/U areas misuse would

be to regulate the use of these locations through a reservation system, controlled by

the municipality, with compulsory reservation made by the distributors. In particular,

distributors would have to specify the expected time of arrival and the duration of

the occupation. The booking would be made possible by a simple front-end interface,

e.g., a web interface. Several systems could be conceived to control the parking on

the L/U areas, such as GPS or RFID-based electronic toll collection systems with the

latter also being capable of directly imputing the (possible) price to be paid for the

stop.

The management of L/U areas requires the involvement of all the stakeholders

(customers, distributors, municipality, traffic police) and their acceptance that it is

in everybody interest for the system to perform well as it allows for less discomfort

both in terms of delivery delays and traffic flow. In the early stages of adoption the

traffic police would have to be on top of the new system, educating any distributors

that comes without reservation so that they go away, ask their office to make the

reservation for some time later (informing the customer once it is accepted) and then
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come back at the time when a delivery position is available. Meetings among all the

stakeholders could be scheduled to share some statistics of adoption of the system,

occupation of the delivery positions across the hours of the day and days of the week,

and check on the problems each category is having on the use of the system. This is

a system of devolved responsibility that only imposes a minimum of discipline in the

use of scarce resources, and generates the information necessary for a revision of the

number of places available and times of preferential use of those spaces for deliveries.

In this paper, different booking management systems for the L/U areas are proposed.

We study how the routing of each distributor would be affected if such system were

to be put in place, with respect to the current situation, where distributors resort to

double parking. The comparison is presented on instances derived from real data of

the city of Lisbon.

The remainder of this paper is organized as follows. In Section 5.3 a review of the

related literature on L/U areas, the issue of double parking and how this problem is

discussed in the field of optimization is presented. In Section 5.4 the routing problems

with loading and unloading areas is discussed. Two booking management systems are

introduced in Section 5.5. The first, where reservations for the L/U areas are placed

sequentially, is introduced in Section 5.6, while the second, where the reservations

are handled centrally by the municipality, is discussed in Section 5.7. Computational

results are presented in Section 5.8. Conclusions are drawn in Section 5.9.

5.3 Literature review

The impact of parking availability on commercial vehicle costs and operations is stud-

ied in Figliozzi and Tipagornwong (2017). Among other aspects, the authors investi-

gate how the insufficient availability of on-street parking and L/U areas during certain
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periods of the day in dense and congested urban areas, affects the behavior of the dis-

tributors. The authors present a modeling framework for parking availability that

combines queuing and logistical models and conclude that double parking is unlikely

to disappear from urban areas unless more dedicated L/U areas are made available at

peak times and that increasing parking fines and enforcement of the regulations can

discourage double parking but will not eradicate the problem for a sufficiently high

demand/supply ratio. This result is also confirmed by the fact that double parking

fines are being considered as part of the business costs by some large deliver compa-

nies, such as FedEx or UPS, and that therefore a more productive long-term policy

would be to require enough parking spaces for freight and service vehicles.

The shortage of available parking spots for commercial vehicles is caused not

only by an undersized infrastructure but frequently also by the misuse of the reserved

spots by private vehicles, as reported by Aiura and Taniguchi (2005) and Alho et al.

(2018). Aiura and Taniguchi (2005) studies the facility location problem of the plan-

ning of on-street L/U spaces by minimizing delay penalties, fixed costs, taking in

consideration the behavior of pickup-delivery vehicles as well as passengers cars. The

authors conclude that, together with infrastructural improvements, the management

of such infrastructure needs to be reviewed both at the planning and evaluation level.

Alho et al. (2018) proposes to study the reduction of the double parking of freight ve-

hicles by changing the spatial configuration and the non-freight vehicles parking rule

compliance level. The authors adopt a microsimulation approach with a dedicated

representation of double parking for freight vehicles. Among the findings of the paper,

the authors report the disproportionate effects of the externalities caused by double

parking, which can be the cause of delays ranging from 10% up to 63% and decrease

the average speed by 4% up to 17% on the network.

A parking choice modeling simulation is presented in Nourinejad et al. (2014)
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for the study of truck parking policies, such as time restrictions, pricing policies and

space management and enforcement. The simulation captures various dimensions of

the parking activity such as walking distance, congestion impact and parking search

times. Two scenarios based on the Toronto area are presented to validate the model.

Considering the management of L/U areas in a routing problem introduces as-

pects that are similar to those typical of scheduling problems. While integrating

routing and scheduling is not new in the literature, the scheduling aspect is often

focused on the resources on the distributor side, such as the scheduling of vehicles or

personnel, whereas we propose to consider the scheduling of L/U areas, which are in-

frastructural resources. The scheduling aspect of routing with L/U areas shares some

similarities with the parking allocation problem. Within this field the paper that most

closely describes the dynamics of the L/U areas presented in this paper is Roca-Riu

et al. (2015). The authors study a system in which carriers are required to park in

designated areas only and have to communicate to the municipality a time window

for the beginning and the duration of their operation in advance. The authors define

the Parking slot Assignment Problem (PAP) on one L/U area with a given capacity

as the problem of finding a feasible assignment of the requests to the parking spaces

of the area within the operation horizon, such that the time window for the beginning

of each request is satisfied and that the capacity of the area is not violated. Since a

feasible solution for the problem might not exist, the time window specified by each

carrier is assumed to be flexible, in the sense that the one they are assigned to might

not be the one they requested. It is also assumed that carriers will accept and respect

the assigned interval. The authors evaluate different measures to induce fairness in

the allocation of the resources and to penalize and measure the non-accomplishment

of the requests. It is worth noting that, with regard to the acceptance and respect

of the assigned interval, the study presented in this paper could yield to higher ac-
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ceptance rate of the interval assigned to each carrier, as the cost of routing is also

considered.

Roca-Riu et al. (2017) studies the dynamic allocation of driving lanes to L/U

operations to maximize delivery opportunities while reducing traffic disruption. A

simulation study is used to evaluate the model and estimate its benefits compared

to real situations where commercial vehicles resort to double parking. The authors

devise the conditions under which temporarily allocating shoulder lanes as L/U areas

reduces the vehicles delay compared to the case where commercial vehicles resort to

double parking.

The reservation of capacitated areas and its effects on the vehicle routing is a

new topic in the vehicle routing literature. To the best of our knowledge, no publica-

tion exists that addresses this problem. Few known variants of the Vehicle Routing

Problem (VRP), however, are related to its setting and, in particular, to the way

the proposed problem discusses interdependencies in the routing of the vehicles, con-

straints on the capacity of the visited locations, and routing in urban areas in general.

The first case is represented by variants such as the VRP with synchronization, in

which dependencies between vehicle visits are considered, such as the visit at the

same node of two vehicles happening simultaneously or in a before-after fashion. An

extensive survey on VRPs with synchronization is provided in Drexl (2012). We re-

fer, in particular, to the section considering resource synchronization, defined as the

case where different vehicles compete for a common scarce resource, and the litera-

ture cited therein. One work that stands out is Hempsch and Irnich (2008) where,

among other restrictions, the authors consider a limit in the number of docking sta-

tions at the depots. Considering the booking of parking spots could also be beneficial

to the routing of electric vehicles, as it allows for a reduction of the uncertainty in

the availability of a free spot at capacitated charging stations. Capacitated charging
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stations in a routing problem with electric vehicles are considered in Froger et al.

(2017). The authors study an electric VRP with non-linear charging function and

capacitated charging stations. Different formulations are presented and a two stage

solution method is proposed for the problem.

The VRP with L/U areas can be seen as part of a wider trend in the optimization

literature, and of routing problems in particular, aiming to improve the efficiency in

city logistics and reduce its effect on traffic, environment and the quality of life in

general. A survey on the routing problems in city logistics is provided in Cattaruzza

et al. (2017).

5.4 Routing with loading/unloading areas

Several optimization problems arise when dealing with the logistics of routing with

loading and unloading areas when different levels of integration of the decision process

between each distributor and the booking system administrator, e.g., the municipality,

are considered.

The first optimization problem considered in this paper is the one that more

closely resembles the current state of the management of L/U areas. Each vehicle has

to fulfill customer requests in a city center and to do so it must stop at a number

of L/U areas for the driver to perform the last leg of the distribution by walking to

the customers while the vehicle remains parked. Each distributor acts independently

and finds the best routing among the L/U areas required to perform its deliveries,

regardless of the occupancy level of the L/U area at the time the vehicle arrives. The

length of the stay at each L/U area is known and the routing problem to be solved

is a Traveling Salesman Problem (TSP) on the chosen L/U areas. The solution for

all the vehicles having to deliver in the city center can be seen as a representation
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of the current state of the distribution of the city center, where vehicles resort to

double parking when a fully occupied L/U area is found. We will refer to this as the

“Independent TSPs” solution.

Various optimization problems arise according to the different ways the munic-

ipality could deal with the management of the L/U areas to increase the efficiency

of the L/U areas usage. We propose to study the effects of a booking system that

could be introduced, where all vehicles having to deliver parcels to customers in the

city center can place reservations for the L/U areas. We discuss different optimiza-

tion problems arising based on how the booking system is managed. These booking

systems and the related problems are introduced in Section 5.5.

5.5 Booking of L/U areas

Distributors often face bottlenecks at L/U areas due to various factors, such as peaks

in the delivery requests either in time, in space, or both, e.g., all shops in the fashion

district requiring the clothes to be delivered in the morning, or systemic problems in

the allocation of L/U areas, e.g., scarcity or poor placement of the spots. Vehicles

response to the unavailability of L/U spots is often double parking. One way to deal

with this problem is the introduction of a booking system.

What would happen when such system is put in place is that the use of L/U

areas would shift from being similar to the one of a car park, with vehicle occupying

a spot as soon as it becomes available and double park or cruising for parking if all

the spots in the desired area are taken, to one where each distributor has to place a

reservation to the L/U areas booking system to access a spot. A reservation for an L/U

area would consist of the starting time and the length of the stop. Various strategies

could be devised for the booking system to handle the reservations and consequently
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different optimization problems would have to be solved. In this paper we investigate

two different systems. In the first one, reservations are placed by each distributor over

time, in sequence. Each time a distributor wants to place a reservation, it queries the

booking system which replies with the free time slots for each L/U area, meaning

the time intervals in which at least one parking spot of the L/U area is not booked.

The distributor can then place a reservation only if is compatible with the time slots

currently available in the requested areas. As the booking system is only in charge

of providing the current state of the booking of the area and checking if the new

reservation violates the capacity constraints of the areas, reservations can be placed

at any time and an immediate confirmation is given to the distributor.

The second strategy we propose is a centralized management of the bookings.

All the distributors that need to stop at an L/U area provide the booking system with

the required starting time and length of the stops. As the reservations provided by

the distributors do not consider the capacity constraints of the L/U areas (and in fact

might very well be the result of the Independent TSPs described in Section 5.4), no

confirmation can be given at the time the reservations are placed and the starting time

of the booking for each L/U area can be taken as preferred starting time, meaning that

the system is allowed to make changes to obtain a feasible solution. The reservations

are collected up to a deadline (e.g., a given hour of the previous day) after which

an optimization method is run to seek a feasible reservation for each distributor,

taking into account the routing cost between the areas the distributor has placed a

reservation for. As in this approach the booking system is also in charge of solving an

optimization problem, this approach would likely be implemented as a one-day-look-

ahead system, where distributors can place reservation requests up to a certain hour

of the day before the one the requests are for. The first booking system is described

in Section 5.6 and the second is described in Section 5.7.
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5.6 Sequential booking

In the case of sequential booking, distributors can place a reservation at any time,

with the constraint that the booking of an area cannot overlap with times in which

the area has already been fully booked. On the distributor side, this system works as

follows. When its set of deliveries to be performed is known, meaning the set of L/U

areas to be visited and the length of the stay in each selected area, the distributor

can obtain from the booking system the set of available time slots for the requested

L/U areas (e.g., by logging-in in the booking website). Once all these information are

known, a routing problem is solved, where each visit to an L/U area must happen

within one of the time windows in which the area has not been fully booked by

previous reservations, and whose span is enough to accommodate the length of the

stay required by the distributor. We call the problem faced by each distributor the

Traveling Salesman Problem with multiple Time Windows (TSPmTW). The formal

definition of the problem and the proposed formulation are presented in Section 5.6.1.

Once the distributor has planned its distribution it books the stops it needs. The

reservations happen in sequence, meaning that the reservation of the kth distributor

has to take into account all the reservations placed by the k−1 distributors that have

already booked.

A booking system based on the sequential solution of a TSPmTW by each

distributor has the benefit of being a relatively simple method to introduce booking

as a way to manage L/U areas and eliminate double parking. It would require little

effort from the distributors and therefore has a high chance of being well-received.

It also allows for real time checking of the availability of an L/U area time slot

and immediate confirmation of the booking. This approach has, however, various

downsides. Firstly, the booking of each area is the result of the convenience of the
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distributors, who reserve the areas with the unique objective of minimizing routing

costs, which could result in a fragmented and therefore inefficient use of the L/U

areas. Secondly, booking sequentially can be highly penalizing for the late booking

distributor to the point of encouraging the distributors to disregard booking times.

It is worth noting that, as the solution of each TSPmTW takes into account the

availability limitation caused by the reservations already placed by other distributors,

the solution obtained by solving a TSPmTW for each distributor is free of double

parking.

5.6.1 The Traveling Salesman Problem with multiple Time

Windows

The Traveling Salesman Problem with multiple Time Windows is defined as follows.

Let G = (V,A) be a directed graph, where the vertex 0 represents the depot and the

vertices U = {1, . . . , |U |} represent the L/U areas in which the vehicle has to stop.

The required length of the stop at area u is denoted as su > 0. Each area u ∈ U is

characterized by a set of time windows TWu in which it has not been fully booked by

previous reservations. Time windows in TWu are denoted as TWu,1, TWu,2, etc, with

the lower and upper bound of the hth time window of L/U area u denoted as TW a
u,h

and TW b
u,h, respectively, meaning that the area u is not fully booked from time TW a

u,h

to TW b
u,h, included. Time windows TWu,h ∈ TWu are such that the span is broad

enough to accommodate the length of the stop of the vehicle. We denote as Hu the

index set of TWu, i.e., Hu := {h ∈ N|TWu,h ∈ TWu}. The TSPmTW is the problem

of finding the shortest route starting and ending at the depot such that the vehicle

stops in one of the allowed time windows for each of the L/U areas.

For modeling purposes a sink depot is added as returning point of the route. We
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call this the return depot, denoted as |U |+1. Furthermore, we let the stop lengths be

defined for all i ∈ V ∪{|U |+ 1} with stop length at the depot set to zero, i.e., s0 = 0.

The formulation relies on the following variables:

• xij =

1 if the route travels through edge (i, j) ∈ A,

0 otherwise,

• Ti ≥ 0, the arrival time of the vehicle to vertex i,

• yu,h =

1 if the vehicle stops at area u in the time window TWu,h,

0 otherwise,

Time is assumed to be discrete, meaning that tij, si, Ti,∈ N, for all i, j ∈ V ∪

|U + 1|, and TW a
u,h, TW

b
u,h ∈ N, for all u ∈ U, h ∈ Hu. The resulting model is the

following:

minT|U |+1 (5.1)

s.t.

∑
u∈U

x0u = 1 (5.2)∑
u∈U

xu(|U |+1) = 1 (5.3)∑
i∈{0}∪U

xiu =
∑

i∈U∪{|U |+1}

xui = 1 u ∈ U, (5.4)

(Ti + tij + si − Tj) ≤M(1− xij) i ∈ {0} ∪ U, j ∈ U ∪ {|U |+ 1}, (5.5)

Tu ≥ TW a
u,myu,m u ∈ U,m ∈Mu, (5.6)

Tu + su ≤ TW b
u,m +M(1− yu,m) u ∈ U,m ∈Mu, (5.7)
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m∈Mu

yu,m = 1 u ∈ U, (5.8)

xij ∈ {0, 1} i ∈ {0} ∪ U, j ∈ U ∪ {|U |+ 1}, (5.9)

Ti ≥ 0 i ∈ {vk, vk + 1} ∪ U, (5.10)

yu,m ∈ {0, 1} u ∈ U,m ∈Mu. (5.11)

The objective function (5.1) minimizes the arrival time of the vehicle to the

return depot. Constraints (5.2) and (5.3) impose that the route starts at the depot

and ends at the return depot. Constraints (5.4) are flow conservation constraints.

Constraints (5.5) regulate the arrival time of the vehicle at each vertex. Constraints

(5.6) and (5.7) impose that the vehicle must arrive and depart within the chosen time

window for each L/U area and constraints (5.8) impose that only one time window

per L/U area is used. Constraints (5.9)-(5.11) are domain constraints.

5.7 Centralized booking

The L/U areas booking system could be built in such a way that the booking system

itself is in charge of finding a routing plan and a schedule for the stops of each

distributor. This would let the municipality the possibility to manage the L/U areas

and reservations and to find a solution that takes into account the stops required by

each distributor and creates less fragmented time slots for any last minute/same day

reservations, providing the distributors with a solution that does not penalize late

bookers and has a lower average additional routing cost over the TSP cost, compared

to the sequential booking. This approach, however, its downsides. As the system

would be in charge of finding a feasible reservation for all distributors minimizing

routing costs, the reservations would have to be placed in advance and the starting

time of the booking of each area would have to be considered as a preference rather
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than a requirement, to allow for the solution of potential conflicts. This makes it

impossible to give the distributor a confirmation of the reservation at the time it is

placed. While this might seem like a little price to pay to achieve the benefit of a

lower average routing cost, it is worth noting that, in practice, distribution of goods is

hardly limited to the aspects of routing in a city center and the booking of the stops

at L/U areas.

Solving this problem, however, has the great value of providing the solution a

booking system should aim for and will also be used as benchmark for the comparison

of the solution found with the sequential booking or other approaches for the booking

of L/U areas that could be devised.

Should a centralized system be implemented, the reservations, consisting of the

required length of the stay in a selected subset of the L/U areas, could be collected

up to a certain hour of the previous day, after which an optimization routine would

run to reduce (and potentially remove) any potential overbooking of the L/U areas.

Once the reservation deadline is passed, an optimization problem is solved to

find the best solution with no capacity violations. We call this problem the multi-

ple Traveling Salesman with node scheduling (mTSPns). The problem is formally

introduced in Section 5.7.1, where a formulation is also proposed.

5.7.1 The multiple Traveling Salesman Problem with node

scheduling

The mTSPns is defined as follows. Let G = (V,A) be a directed graph. The set

of vertices V is composed of the set U of L/U areas and the set of vertices {vk}k∈K
representing the depots of all vehicles. Let Uk ⊆ U be the set of L/U areas in which

vehicle k has to stop and sku be the length of the stop of the vehicle in the L/U area
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u, then Uk := {u ∈ U |sku > 0}, k ∈ K. Furthermore, let Qu be the capacity of L/U

area u, meaning the maximum number of vehicles that can be parked at the area

at the same time. The mTSPns is the problem of finding a route for each vehicle

starting and ending at its depot such that the total cost of the routes is minimum

while not violating the capacity of each L/U area. For modeling purposes a sink depot

is added to the graph for each vehicle. The return depot of vehicle k is denoted as

vk+1. Furthermore, we let the stop lengths of vehicle k be defined for all i ∈ {0}∪Uk
with stop length at the depot set to zero, i.e., sk0 = 0. The formulation relies on the

following variables:

• xkij =

1 if the route of vehicle k travels through edge (i, j) ∈ A,

0 otherwise,

• T ki ≥ 0, the arrival time of vehicle k at vertex i,

• atu,k =

1 if the vehicle k has already reached the area u at time t,

0 otherwise,

• btu,k =

1 if the vehicle k has already left area u at time t,

0 otherwise,

Time is assumed to be discrete, meaning that tij, s
k
u, T

k
u , t ∈ N, for all i, j ∈

V ∪{vk+1}k∈K , u ∈ U, k ∈ K. The proposed formulation for the mTSPns is provided

below.

min
∑
k∈K

T kvk+1 (5.12)
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s.t. ∑
j∈Uk∪{vk+1}

xkvkj = 1 k ∈ K, (5.13)

∑
j∈{vk}∪Uk

xkj(vk+1) = 1 k ∈ K, (5.14)

∑
j∈{vk}∪Uk

xkju =
∑

j∈Uk∪{vk+1}

xkuj = 1 u ∈ Uk, k ∈ K, (5.15)

(
T ki + tij + ski − T kj

)
≤M(1− xkij) i ∈ {vk} ∪ Uk, j ∈ Uk ∪ {vk + 1}, k ∈ K,(5.16)

T ku ≥ t+ 1−Matu,k u ∈ U, k ∈ K, t ∈ [0,M ], (5.17)

T ku ≤ t+M(1− atu,k) u ∈ U, k ∈ K, t ∈ [0,M ], (5.18)

T ku + sku ≥ t−Mbtu,k u ∈ U, k ∈ K, t ∈ [0,M ], (5.19)

T ku + sku ≤ t− 1 +M(1− btu,k) u ∈ U, k ∈ K, t ∈ [0,M ] (5.20)∑
k∈K

atu,k − btu,k ≤ Qu u ∈ U, t ∈ [0,M ], (5.21)

xkij ∈ {0, 1} i, j ∈ {vk, vk + 1} ∪ U, k ∈ K, (5.22)

T ki ≥ 0 i ∈ {vk, vk + 1} ∪ U, k ∈ K, (5.23)

atu,k ∈ {0, 1} u ∈ U, k ∈ K, t ∈ [0,M ] (5.24)

btu,k ∈ {0, 1} u ∈ U, k ∈ K, t ∈ [0,M ] (5.25)

The objective function (5.12) minimizes the route duration of the vehicles. Con-

straints (5.13) and (5.14) impose that each vehicle departs and returns to the depot

and constraints (5.15) enforce flow conservation. Constraints (5.16) regulate the ar-

rival time of each vehicle at the vertices it must visit. Constraints (5.17) and (5.19)

impose wtu,k = 1 if the vehicle k is at L/U area u at time t. The capacity of each L/U

area is imposed with constraints (5.21). Finally, (5.22)-(5.25) are domain constraints.

Since no upper bound is imposed on the working horizon in the areas, constraints

(5.19)-(5.21) exist for t ∈ [0,M ]. The value of the large constant M is a crucial factor

in the order of magnitude of the number of constraints in the formulation.



146 CHAPTER 5. BOOKING OF LOADING/UNLOADING AREAS

5.8 Computational experiments

In this section computational results are presented to compare the three proposed

approaches. Firstly, the instance generation process is presented, then the solution

method for each approach is discussed and, finally, results are presented.

5.8.1 Instance generation

The proposed solution methods have been tested on the layout of the Lisbon city

center, in particular, in the neighborhood called Baixa. As the exact borders of the

area are unclear we call Baixa the area delimited by Praa Dom Pedro IV and Praa

da Figueira to the north, Praa do Comrcio to the south, Rua da Madalena to the

east, Rua urea to the north-west and Praa do Municipio to the south-west (see Figure

5.1). In such neighborhood, 23 L/U areas have been placed over the years by the

municipality, with capacity spanning from a minimum of 1 to a maximum of 8 spots,

with an average of 3.26 spots per area. According to the 2010 census of commercial

activities, 584 activities are located in the Baixa. For reference, the average walking

distance from the closest L/U area is 39.45 seconds. Traveling by car between the

L/U areas in the Baixa requires between 1 and 5 minutes.

The data has been obtained through the open data websites of the city of Lisbon,

in particular, the data from the commercial census is available at http://dados.

cm-lisboa.pt/en/dataset/recenseamento-comercial-2010, and that of the L/U

areas location is available at http://dadosabertos.cm-lisboa.pt/dataset/emel.

The latter includes all on-street parking. L/U areas can be highlighted by selecting

only the records with attribute “Tipologia” equal to “Cargas e Descargas”.

http://dados.cm-lisboa.pt/en/dataset/recenseamento-comercial-2010
http://dados.cm-lisboa.pt/en/dataset/recenseamento-comercial-2010
http://dadosabertos.cm-lisboa.pt/dataset/emel
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Figure 5.1: The layout of the instances.

The instance generation process takes two kinds of inputs, the number of L/U

areas and the number of vehicles, and works as follows. As customers and L/U areas

are not placed uniformly in Baixa, different areas have different booking requests,

i.e., some areas are more requested than others. To create non-trivial instances that

would allow for an evaluation of the benefits and downsides of the three presented

approaches, this difference in the demand of the L/U areas is reproduced as follows.

Firstly, the customers in Baixa are matched to the closest L/U area by walking dis-

tance. The probability of a vehicle requesting a stop in an L/U area is then computed

as the ratio of the number of customers matched to that area over the total number

of customers, normalized so that the area with the lowest ratio has probability 0.50 of

being visited and the one with the highest ratio has probability 0.75 of being visited

by a vehicle. Once the L/U areas to be visited by each vehicle have been sampled,

the length of the stay for each vehicle in each L/U areas is sampled in the interval

[5, 10] minutes. As the routing from and to the depot does not involve any capacity

constraint on the time of the visit, we consider, without loss of generality, only the
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routing and parking time spent in the Baixa, meaning that the cost of the arcs leaving

the depot and returning to the depot is zero.

5.8.2 Solution method

The framework to solve the three approaches has been implemented in Java with

CPLEX 12.6 API and run using a machine with 3.5 GHz Intel Xeon E5-1650v2 pro-

cessor and 64 GB of RAM. The solution of each of the three approaches has been

carried out as follows.

Independent TSPs

The solution of each of the TSPs in the independent TSPs approach, reflect-

ing the current state of the distribution, has been obtained with the Lin-Kernighan

heuristic (see Lin and Kernighan (1973)), in the implementation provided by Helsgaun

(2000).

Sequential booking

The solution of the sequential booking approach is obtained by solving as many

TSPmTW as vehicles, in sequence. Before the solution of the TSPmTW of the kth

distributor, the time windows of each area are obtained by fetching the arrival and

departure times of all the k− 1 distributors that have booked a stop in that area and

computing the occupancy level of the area in time and the consequent time intervals

in which the area is not fully booked. An example of the occupancy level of an area

over time is shown in Figure 5.2. In the example, the area has a capacity of two

vehicles and three distributors have already placed a reservation. The arrival time of

a distributor is denoted as “A” and the departure as “D”. The time windows in which

the area can be visited are those in which it is not shown to be fully booked.
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Figure 5.2: The step function of the occupancy leval of a L/U area with the full

booking intervals highlighted.

The solution of each TSPmTW in the sequential booking approach has been

obtained by solving the formulation reported in Section 5.6.1 with CPLEX, with time

limit set to ten minutes.

Centralized booking

The solution of the centralized approach is obtained by solving a mTSPns. The

solution of the problem is obtained by solving the formulation presented in Section

5.7.1 with CPLEX, with the time limit set to one hour. In particular, because of the

high number of constraints required to enforce the capacity of each area at each time,

CPLEX is initially provided with the formulation with the exclusion of constraints

(5.17)-(5.21), which are added as lazy constraints every time a solution for the current

model is found. The separation of the violated constraints works similarly to the

computation of the time windows in the sequential approach. Specifically, once a

solution is obtained, the occupancy level over time of an L/U area is computed based

on the arrival and departure times of the solution found by CPLEX. An example

of the evolution of the occupancy level is shown in Figure 5.3, highlighting the time

interval in which the area is overbooked. For each L/U area, constraints (5.17)-(5.21)

are added for each time t in which the area is overbooked.
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Figure 5.3: The function of the occupancy level of a L/U area with the overbooked

interval highlighted.

5.8.3 Results

The computational experiments have been designed to assess the largest instances for

which CPLEX finds an optimal solution to the formulation proposed for the mTSPns

and to allow for a comparison of the three presented approaches.

To understand the maximum size of instances for which a mTSPns could be

solved within one hour, instances have been tested with increasing number of L/U

areas and number of distributors. The results are reported in Table 5.1 where “OPT”

means that the optimal solution was found, “FEAS” means that a solution was found

within the time limit but the optimality could not be proven, and “OOT” means

that the execution ran out of time without finding any feasible solution. The results

highlight how instances with |U | + |K| ≤ 8 can be solved to optimality within one

hour.

A comparison of the three approaches with respect to the routing costs of each

distributor is reported in Table 5.2 and shown in Figure 5.4 for the instance with

|K| = 6 and |U | = 2. The instance has been chosen as it is the one with the highest

distributors to areas ratio, meaning that it is the one in which the L/U areas are
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|U | = 2 |U | = 3 |U | = 4 |U | = 5 |U | = 6 |U | = 7 |U | = 8 |U | = 9 |U | = 10

|K| = 2 OPT OPT OPT OPT OPT OPT OPT FEAS OOT

|K| = 3 OPT OPT OPT OPT FEAS OOT OOT OOT OOT

|K| = 4 OPT OPT FEAS OOT OOT OOT OOT OOT OOT

|K| = 5 OPT OPT FEAS OOT OOT OOT OOT OOT OOT

|K| = 6 OPT FEAS OOT OOT OOT OOT OOT OOT OOT

|K| = 7 FEAS OOT OOT OOT OOT OOT OOT OOT OOT

|K| = 8 OOT OOT OOT OOT OOT OOT OOT OOT OOT

Table 5.1: The results of the solution of the mTSPns different size of the instance.

more scarce with respect to the demand. It must be reported that the first area has

capacity Q1 = 1 and the second area has capacity Q2 = 2. It is observed how, in

comparison with the centralized system, the sequential booking of the areas is shown

to provide a suboptimal solution, with an optimality gap of 15.84%. As expected,

as reservations are placed, the routing of the distributors is increasingly worse with

respect to the cost of the TSP, i.e., the solution they would have achieved disregarding

the capacity of the L/U areas. The worse performance is also confirmed by higher

standard deviation of the routing costs in the sequential approach compared to the

centralized approach.

5.9 Conclusions

The conclusions drawn from results highlighted in the computational result section

for the centralized approach are manifold.

To increase the size of the instances that could be solved to optimality, different

approaches could be devised to express the capacity constraints of the L/U areas.

For instance, each L/U area could be represented with as many dummy L/U areas
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IndepTSPs Sequential Centralized

k = 0 100 100 966.66

k = 1 100 100 133.33

k = 2 100 400 566.66

k = 3 100 766.66 100

k = 4 100 1033.33 1233.33

k = 5 100 1500 366.66

Avg. 100 650 561.11

S.Dev. 0 508.36 418.29

Table 5.2: A comparison of the routing costs for the instance with |U | = 2 and

|K| = 6.

Figure 5.4: A comparison of the routing costs for the instance with |U | = 2 and

|K| = 6.
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with capacity one as its capacity and scheduling constraints could be enforced on each

dummy L/U area. Other approaches could be considered drawing from the literature

on resource constrained scheduling problems or adapting to the problem of routing

with L/U areas the ones proposed in Froger et al. (2017) for the electric VRP with

capacitated charging stations. The problem could also benefit from a tailor-made

exact method.

The main problem that this paper aims to study, however, is not the one of

finding optimal solution to the routing with L/U areas, but the one of finding an

approach for the booking management system of L/U areas to solve the problem of

double parking of commercial vehicles in the road network of a city. With this aim,

providing the distributors with a good solution within a short time is a crucial factor in

the adoption rate of the booking system. Various strategies could be tested to improve

the results of the sequential approach to reduce the gap from the solution found in

the centralized approach, such as dynamic pricing to smooth peaks in demand and

time restricted access. The approach presented in the paper could also be used to

highlight whether the L/U areas infrastructure is over or undersized either spatially or

temporally and to assess whether the system could benefit from a dynamic allocation

of parking spots as L/U areas.

Finally, to better simulate the real world dynamics of the L/U areas usage and

obtain more realistic results, various factors could be incorporated in the instances.

The most prominent is perhaps to include daily trend in the cost of routing and in

the number of booking requests. The generation of such trends could benefit from the

use of data from connected devices.
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Chapter 6

Conclusions

This thesis can be seen as a contribution to the study of relevant routing issues in the

urban environment. The first part of the dissertation has been devoted to the study

of the logistics of distribution centers and, in particular, to studying the implication

of considering the arrival time of the parcels at the distribution centers, called their

release dates, when planning for the delivery routes. The routing problem with release

dates have been framed within the literature of routing problems by providing a

classification based on the decisions to be taken when planning for the distribution.

The class of routing problems in which timing decisions must be considered in addition

to the characteristics of the classic Vehicle Routing Problems has been presented

and the literature of the problems discussed within this class has been surveyed.

To assess the benefits of considering the release dates when planning the delivery

from the distribution center, the Traveling Salesman Problem with release dates has

been studied under different settings. Firstly, the release dates have been considered

as static and deterministic, to allow for a better understanding of the way release

dates shape distribution planning. To better represent the impact of the information

available in a real case scenario, the problem has then been studied in the setting

155
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where release dates are characterized by stochasticity and dynamically updated. This

reflects the uncertainty in the arrival time of the vehicles delivering to the distribution

center and their ability to provide updated information about the estimated time of

arrival.

The second part of the thesis focused on the delivery phase of the distribution

in urban areas. City distribution requires vehicles to temporarily stop at loading

and unloading areas to perform the last leg of the delivery by foot. If a spot is not

available, vehicles resort to double parking, which is a known cause of road congestion.

The introduction of a booking management system has been studied as a solution for

the problem. Two booking management systems have been discussed, and the arising

routing problem presented. The solutions provided by the two systems have been

compared with the current state of the distribution.

The urban environment and the needs and behavior of its population are con-

stantly changing. City logistics must quickly adapt to these changes. Within the field

of vehicle routing problems a considerable aid for a better decision-making can be

envisioned from two aspects: integration and information.

The benefit of integration of different aspects of freight transportation and city

logistics has already been proven in various aspects of routing. Prominent examples

are the integration of inventory and routing decisions studied in the Inventory Routing

Problem, discussed in Chapter 2, and the growing literature on rich vehicle routing,

considering the complex characteristics of real-life VRPs. Scientific and technological

advancements allow to tackle more and more complex problems, narrowing in this

way the gap between scientific literature and real life applications.

One of the most promising research subjects, not only in the fields of city logistics

and vehicle routing, arises from the wide adoption of connected devices, both personal

and vehicular, and the evolution of urban areas towards smart cities. The processing
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of the huge amount of data generated by such devices is one of the main challenges of

the present times and of the years to come. Considering this information will make

for a better decision-making at the operational, tactical and strategical level.
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for city logistics. EURO Journal on Transportation and Logistics, 6:51–79, 2017.

N. Christofides and J.E. Beasley. The period routing problem. Networks, 14:237–256,

1984.



BIBLIOGRAPHY 163

J.C. Chu, S. Yan, and H.-J. Huang. A multi-trip split-delivery vehicle routing prob-

lem with time windows for inventory replenishment under stochastic travel times.

Networks and Spatial Economics, 17:41–68, 2017.

L.C. Coelho and G. Laporte. Improved solutions for inventory-routing problems

through valid inequalities and input ordering. International Journal of Production

Economics, 155:391–397, 2014a.

L.C. Coelho and G. Laporte. Optimal joint replenishment, delivery and inventory

management policies for perishable products. Computers & Operations Research,

47:42–52, 2014b.

L.C. Coelho, J.-F. Cordeau, and G. Laporte. Thirty years of inventory routing. Trans-

portation Science, 48:1–19, 2013.

L.C. Coelho, J.-F. Cordeau, and G. Laporte. Heuristics for dynamic and stochastic

inventory-routing. Computers & Operations Research, 52:55–67, 2014.
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