
Software Stability in the Robotics domain:  

issues and challenges 
 

Davide Brugali Monica Reggiani 

Dipartimento di Ingegneria Gestionale e dell’Informazione Dipartimento di Ingegneria dell’Informazione 

Università di Bergamo Università di Parma 

24044 Dalmine, Italy 43100 Parma, Italy 

brugali@unibg.it reggiani@ce.unipr.it 

 
 Abstract - A robot is a physical device that interacts with the 

external world through sensors and actuators, and carries out 

tasks autonomously in unstructured, dynamic, partially 

observable, and uncertain environments.  Software applications 

are the medium to embody intelligence in the robot.  Today, most 

of the research and development of software for robotic systems is 

based on proprietary design architectures invented from scratch 

each time. As robots have started to become commodities, a more 

stability-oriented software development approach is needed. This 

paper formulates the problem of developing stable software 

systems in the robotics domain, analyses issues that make the 

problem hard, and identifies challenges the robotics community 

has to face in order to build stable software systems. 

 
 Index Terms – Robotics, software stability, domain analysis 

 

I.  INTRODUCTION 

 The development of robotic systems has always been a 

severe challenge due to the heterogeneous technological issues 

involved. The process of bringing intelligence to a robot 

requires strongly tighten capabilities of sensing, processing, 

and acting. In this scenario, software plays a key role as it is 

the medium to embody intelligence in the machine. 

 One of the key attributes of a mature engineering 

discipline is the routine use of existing solutions in the 

development of new systems. As robotics systems are 

becoming more and more complex, distributed, and integrated, 

there is the need to promote the construction of new systems as 

composition of reusable building blocks. System modularity 

and interoperability are key factors that enable the 

development of reusable software. If a system is modular, its 

functionality can be customized by replacing individual 

components. When two or more systems are interoperable, 

they can be (re)used as components of more complex systems. 

 Today, most of the research and development of software 

for robotic systems is based on proprietary design architectures 

invented from scratch each time. Many valuable robotic 

applications are monolithic systems that have been developed 

to solve a specific class of problems.  

 Usually, reuse is considered only at the implementation 

stage. This practice limits reuse to fine-grain modules at best 

and fails to allow for broader utilization of assets at a 

subsystem or higher level since planning at earlier stages of 

development is neglected. 

 This scenario is mainly ascribed to cultural factors. 

Traditionally Robotics has been the realm of experts in 

mechanics (robot structures), electronics (sensors, and 

actuators), automatic control (real-time control), and artificial 

intelligence (world modelling and task planning). For many 

years software development has been considered only a sort of 

side-effect of robotic system construction. The research has 

always been focused more on inventing new algorithms (e.g. 

for sensor fusion, motion planning, deliberative control) than 

on structuring robotic software in such a way to simplify reuse 

of those algorithms on different robotic platform and in similar 

applications. 

 Only during the last few years, the robotic community has 

started paying attention to advanced software development 

techniques and methodologies as witnessed for example in 

[10]. The reason is that robots have now started to become 

commodities. Intelligent robots help human beings in everyday 

life [16]; “Web Robotics” is a new fascinating frontier for 

research and entertainment [9].  

 Most of these new trends have been made possible by the 

evolution of the personal computer (PC) (in terms of cost, 

power, and robustness) and the Internet (in terms of security, 

speed, and reliability). The Internet is becoming pervasive in 

those sectors that were out of scope until a few years ago: real-

time control [8], telemanipulation and vehicle teleoperation 

[9], sensor measurement collection and integration for mobile 

robots and manipulators [42].  

 In this context, the synergy between Robotics and 

Software Engineering is strategic. Their mutual benefit is not 

merely to develop bigger, faster, cheaper software systems, but 

rather to make it possible to build and evolve new software 

systems. The aim of this paper is threefold: 

1) To formulate the problem of developing stable 

software systems in the robotics domain. 

2) To analyse the issues that make the problem hard 

3) To identify the challenges that the robotics 

community has to face in order to build stable 

software systems. 

 

 The paper is organized as follows. Section I.A identify 

specific characteristics of robotic software systems and 

formulates the problem of developing robot software 

applications. Section I.B reports on related works. Section II 

analyses the issues and Section III identifies the challenges of 

building stable software in Robotics. Finally, Section IV draws 

the relevant conclusions. 

 



A. Problem Formulation 

 Simply stated, a robot (e.g. an industrial manipulator arm 

or the mobile robot Spirit landed on Mars, or even a humanoid 

that plays soccer) is a complex hardware-software system 

made up of sensors (vision system, sonar, laser, etc.), actuators 

(wheeled platform, grasping tools, etc.), and computational, 

control, and communication units. It is able to plan and carry 

out tasks autonomously (e.g. car painting, rock sampling, 

playing game).  

 During the execution of its tasks, the robot interacts with 

the environment (e.g., it grasps an object), with other robots 

(e.g., it is part of a team that carries a heavy load), and with the 

human operator (e.g., the plant supervisor).  

 The physical interaction with the surrounding world 

occurs through sensors and actuators that are inherently 

affected by errors, uncertainty, and noise. Robots must deal 

with unexpected conditions, exhibiting high responsiveness to 

changes in the real world, i.e. they must react to external 

stimuli in real-time (e.g. chase the ball in a soccer field). 

 The collaboration with other robots requires the ability to 

exchange data (e.g. sensory information acquired from 

different viewpoints), to coordinate task execution (e.g. 

assigning roles to robot team-mates), and to synchronize 

activities (e.g. two robots assembling a work piece). 

 The collaboration with the human operator is often 

desirable for complex robotics tasks, such as navigation and 

manipulation of objects in hazardous environments. Effective 

Human-Robot interaction [33] requires the exploitation of 

advanced technologies, such as appropriate graphical user 

interfaces, speech and gesture recognition tools, and haptic 

mechanical interfaces  

 Robot applications are made up of software components 

(e.g. the motion planner or the map builder) that communicate 

through a variety of media, such as shared memory (e.g. in the 

case of  on a single robot), wireless LAN or radio links (e.g. in 

the case of a team of cooperating robots) or even the Internet 

(e.g. for distributed human-robot interaction). 

 Common software design problems that every robot 

system developer has to solve are: 

- how to encapsulate common functionality (e.g. an image 

processing algorithm) in reusable components while 

preserving real-time performance; 

- how to deal with communication, concurrency, and 

synchronization among heterogeneous subsystems 

(motion control, sensory data acquisition and elaboration, 

etc.) usually developed by different project teams or team 

members;  

- how to guarantee graceful degradation of robot 

functionality in case of software, hardware error or 

external abnormal condition. 

- how to ensure a seamless evolution from the simulation to 

the final implementation in order to limit the changes to 

the non-simulated components and therefore to trust the 

results obtained by the simulation [27]. 

 

 

B. Related works 

 Recently, several initiatives have taken place that aim at 

defining standards, reference architectures, and middleware for 

the development of reusable robotic systems: 

- The Robotics Engineering Task Force [28] is a coalition 

of industry, academic and government participants. The 

primary goal of the RETF is to specify reusable, 

interoperable software technology for mobile robots. The 

project activity has produced a couple of preliminary 

documents on APIs and protocols. 

- The emerging Robotics Special Interest Group [29], 

supported by the Japan Robot Association, aims at 

defining a robotics domain architecture, mainly based on 

OMG's standards. (A few events have been set up which 

are largely focused on review of state of the art, industry 

trends, and viewpoints on standardization) 

- A few standards have been defined within the military 

domain. An example is JAUS  [30], an upper level design 

for the interfaces of Unmanned Ground Vehicles.  

A number of open-source frameworks are now available. They 

are the result of research projects aiming to support the 

development of robot systems through the composition of 

software modules. The following list report a few examples. 

- The Player/Stage framework [23] provides the user with 

Player, a device server that allows the control of a wide 

variety of robotic sensors and actuators, and Stage, a 

multiple robot simulator. The robot programmer writes 

client applications that interact with the Player Server in 

order to control real or simulated robots.  

- The Open Robot Control Software (OROCOS) project 

[18] is currently developing a CORBA-based component 

library offering generic functionality for robotics 

application, such as real-time motion control of robot 

manipulators and intelligent sensor processing. 

- The SmartSoft project [20] sees communications 

primitives as the core of its robotics component model. 

The assumption is that reducing the possible component 

communications to a limited number of patterns can 

simplify the definition of component interfaces. 

- The ORCA project [19] has defined a component model 

and repository for the domain of mobile robotics. The 

component model defines specific communication 

mechanisms and policies among robot components. 

- The MARIE project [25] has developed a programming 

environment that supports the integration of 

heterogeneous robot control components through the use 

of application-to-application communication adapters.  

- The CARMEN project [24] has designed an open source 

set of navigation primitives for mobile robot control. 

Several other research projects have developed customizable 

applications used to control a variety of robotic systems. 

- The LAAS architecture [22] provides complete support 

for planning and execution functionality in mobile robots. 

- The CLARAty system [21] has been developed at NASA 

JPL. It consists of a collection of reusable components for 

planning and scheduling of robot activities. 



II.  ISSUES IN BUILDING STABLE SOFTWARE IN ROBOTICS 

 Several techniques have been proposed by the software 

engineering community to achieve the goal of maximizing the 

reuse of basic software artifacts, of architectural designs and 

even of the software designers experience in solving problems 

in specific contexts, namely Design Patterns, Application 

Frameworks, and Component Development. Design Patterns 

are an attempt to overcome the limitation of the pure code 

reuse of the class library approach by emphasizing the 

importance of design reuse. Application Frameworks combine 

code reuse (class library) with design reuse (Design Patterns). 

A component is a black box building block with a well defined 

interface and an internal complexity that can range from a 

simple class to a complete framework. 

 All of these techniques offer partial (sometimes 

overlapping) views and solutions to the problem of developing 

reusable software: individually, they support only one or some 

parts and phases of the software life cycle. 

 While a universal reuse solution remains elusive, great 

improvements can be made by focusing on well-defined areas 

of knowledge or activity (domains). The term domain is used 

to denote or group a set of systems (e.g. mobile robots, 

humanoid robots) or functional areas (motion planning, 

deliberative control), within systems, that exhibit similar 

functionality. Domain Engineering is a set of activities aiming 

at developing reusable artefacts within a domain.  

 The fundamental tenet of Domain Engineering is that 

substantial reuse of knowledge, experience, and software 

artefacts can be achieved by performing some sort of 

commonality/variability analysis to identify those aspects that 

are common to all applications within the domain, and those 

aspects that distinguish one application from another [7]. 

 Recently, the focus of domain engineering has moved 

from the commonality/variability analysis toward the new 

concept of stability/changeability analysis. Software stability 

can be defined as a software system's resilience to changes in 

the original requirements specification. In [6] the author argues 

that commonalities analysis identifies domain models and 

assets which are not necessarily stable. In order to enhance  

reuse, the software development process should focus on those 

aspects of the domain that will remain stable over time. Such 

an approach ensures a stable core design and, thus, stable 

software artefacts [3].  

 In order to support stability analysis, the concept of 

Enduring Business Theme (EBT) has been first introduced in 

[1] and further investigated in [2, 7, 8] to name a few. An EBT 

is an aspect of a business domain that is unlikely to change 

since it is part of the essence of the business. After the 

appropriate enduring themes of the business are understood 

and catalogued, a software framework can be constructed that 

enables the development of business objects (BO) which offer 

application-specific functionality and support the 

corresponding EBT [1]. BO have stable interfaces and 

relationships among each others but are internally 

implemented on top of more transient components called 

Industrial Objects (IO) [2]. 

 The identification of EBTs, BOs, and IOs requires a deep 

knowledge and understanding of the domain. In [5] the author 

sketches some heuristics for guiding their identification. 

 The rest of this section analyses three issues in building 

stable software in Robotics with the goal of supporting the 

identification of EBTs, BOs, and IOs.  

 These issues emerge when trying to answer the following 

questions: 

- Which requirements of a robotic system are more likely to 

remain stable over time? 

- Which standards are enforced within the robotic domain? 

- What kind of evolution does a robotic system undergo? 

 

 The first issue in building stable software in robotics is 

that robot systems are highly change-centric systems. 

Robotics is an experimental science that can be analysed from 

a double perspective.  

 From one side, it is a discipline that grounds its roots into 

mechanics, electronics, computer science and cognitive 

sciences. In their regards, Robotics plays the role of integrator 

of the most advanced results in order to build complex 

systems. This means that the stability of robotic artefacts is 

highly dependant on the evolution of the underlying 

technologies. 

 From the other side, Robotics is a research field which 

pursues ambitious goals, such as the study of intelligent 

behaviour in artificial systems. Most of its achievements have 

found applications in industrial settings and everyday life. 

 Thus, the stable “Robotics business” can be captured by 

EBTs which express the essence of the artificial systems that 

Robotics, as engineering discipline, builds for solving concrete 

problems and which captures the long-term goals that Robotics 

pursues while developing the robots of the future.  

 A milestone paper of Rodney Brooks [13] identifies three 

enduring themes of every robotic system: situatedness, 

embodiment, and intelligence.  

 Robot situatedness refers to existing in a complex, 

dynamic, and unstructured environment that strongly affects 

the robot behavior. For example, the environment is a museum 

full of people [17] where a mobile robot guides tourists and 

illustrates masterworks, or a game field where two robot teams 

play soccer [31], or a manufacturing workcell where an 

industrial manipulator localizes, and handles work pieces [32].  

 Robot embodiment refers to the consciousness of having a 

body (a mechanical structure with sensors and actuators) that 

allows the robot to experience the world directly. The robot 

receives stimuli from the external world and executes actions 

that cause changes in the world state. 

 Robot intelligence refers to the ability to express adequate 

and useful behaviors while interacting with the dynamic 

environment. For example, the ability of two collaborating 

robots to transport a load to a target position without colliding 

with the obstacles might be thought as intelligent behavior. 

 Clearly these EBTs are expressed at a high level of 

abstraction and they can be translated into an innumerable 

variety of concrete robotic systems. 



 The second issue in building stable software in robotics is 

that robot hardware components are highly standardized. 

 Robots substantially differ from one other in their 

mechanical structure. Broadly speaking they can be grouped as 

follows: 

- Industrial robots are manipulator arms that can carry 

heavy loads (up to 500 Kg), execute highly precise 

operations (up to 1/10 mm), and perform intensively 

repetitive tasks (thousands of pick-and-place per hour). 

- Mobile robots are autonomous vehicles that can be 

employed for highly heterogeneous tasks, such as 

exploring an unknown environment (e.g. the Mars 

surface), surveying a building, transporting work pieces 

in an industrial plant. Typical mobility configurations use 

wheels, tracks, or legs. 

- Humanoid robots replicate the structure of human body 

and are conceived for operating in environments 

cohabited by people. 

- Flying robots, underwater robots, reconfigurable robots 

and many other variants of the concept of robot are 

mostly research prototypes. 

One of the criteria to recognize EBTs, BOs, and IOs defined in 

[4] is their tangibility. “If an object in a model represents a 

concrete entity, then it is most likely an Industrial Object” [4]. 

Tangibility is considered one of the driving factor of instability 

of IOs. The reason is that physical entities, such as a piece of 

machinery, are highly sensitive to technological evolutions. 

Consequently, the software that controls and exposes the 

hardware should not be at the core of a software system. 

 According to the tangibility criterion, a robot should be 

classified as Industrial Object. Let’s consider the software 

system that controls a manufacturing workcell for work piece 

drilling. The drilling operation requires the piece to be 

positioned in a specific place but it does not matter whether it 

is handled by a robotic arm or by a humanoid robot. The 

workcell controller needs to know only when a given piece is 

ready to be manufactured and that the drilling operation can 

start. The workcell controller is not affected by the substitution 

of the robot as far as the software object that interfaces it is 

insulated from the rest of the system. 

 Let us now consider the software system that internally 

controls the robot. Clearly, robot control applications strongly 

depend on the type of robot used to carry on a task, i.e. the 

robot mechanical structure determines the requirements of the 

software applications that controls it. Despite the large 

variety of robot structures, both commercial and research 

robots are made up of a limited number of common building 

blocks. Sensors, motors and actuators, control and processing 

units, and communication interfaces are quite standardized 

devices. Factory automation communication protocols have 

been defined that specify the control interface and the data 

interchange format of most of these devices (e.g. optical 

encoders, ultrasonic range sensors, stepping motors, PLC, etc.) 

in the form of device profiles [37]. Similarly, an intense 

discussion occurs on open mailing lists [40] in order to gather 

consensus about the definition of primitive data structures for 

physical quantities (motion, force, etc.) used in robotics. 

 Thus, it seems reasonable to argue that the software 

components wrapping these robotic devices should be quite 

stable Industrial Objects. 

 

 The third issue in building stable software in robotics is 

that robot applications build on highly heterogeneous 

technologies. 

 Robotics is perhaps the most inter-disciplinary of 

engineering endeavours. Building a new robot requires 

competencies in a variety of disciplines: mechanical 

engineering (robot structure), electrical engineering (control 

electronics), electro-mechanical engineering (sensors and 

actuators), computer engineering (computing hardware), 

applied mathematics (robot kinematics), statistics (robot and 

environment models), artificial intelligence (robot skills), 

software engineering (embedding intelligence into hardware).  

 From the hardware point of view, Robotics is a quite 

mature discipline. A limited number of multinational 

companies build all the manipulator robots employed in the 

manufacturing industry. Several companies exist that build 

mobile robots or humanoid robots for research, entertainment, 

education, and every-day life service [16].  

 But when it comes to developing the software applications 

that exploit the robot to carry on useful tasks, only few 

robotics research groups have the resources and competencies 

to design and implement, from scratch, the control 

architectures that embed all the robot functionalities 

expressing its intelligence. 

 As stated in Section I.A, the problem is that a robot 

control application has to satisfy a considerable number of 

functional and non-functional requirements even for 

implementing basic robot skills. For example, the ability of 

navigating in an indoor environment autonomously requires 

the mobile robot to express several basic behaviors, such as 

obstacle avoidance, self-localization, path planning, place 

recognition. The robot has to execute most of these behaviors 

simultaneously, thus the control application must enforce non-

functional requirements such as real-time performance, fault 

tolerance, concurrence, and distribution. 

 All of these functionality and requirements are stable 

aspects of every robotic system (at least for mobile robots) that 

could be captured by specific Business Objects. 

 The development of software frameworks based on well 

designed Business Objects for the robotic domain would be 

extremely beneficial to the research community since every 

research group, even the smallest, would have the possibility 

to concentrate its efforts on a small piece of the robotics 

puzzle [14]. For example, experts in automated planning could 

experiment new path planning algorithms for a mobile robot 

relying on the obstacle avoidance and self localization 

functionalities encapsulated in off-the-shelf Business Object. 

 Reuse of consolidated and shared Business Objects allows 

different teams to test their algorithms on common benchmarks 

in order to assess performance. 



III.  CHALLENGES IN BUILDING STABLE SOFTWARE IN ROBOTICS 

 Robots are ubiquitous [26]. The number of industrial 

robots is about one million worldwide; 100,000 new robots 

were installed in 2004. Service robots, carrying out tasks such 

as milking cows, underwater exploration, and medical 

assistance, have already reached 21,000 units and the number 

is set to reach a total of 75,000 by 2007. Expansion of 

domestic and entertainment market will be even larger, 

prospecting 6.6 million units sold in the period 2004-2007. 

 The need of stable software that can be reused with little 

effort is urgent. Nevertheless, research groups keep solving 

most of the common design problems from scratch each time a 

new robotic application is conceived. 

 The reason can be found in the peculiarity of the robotic 

domain as emphasized in the previously identified issues: a 

robot is a multi-purpose (what it is for), multi-form (how it is 

structured), and multi-function (what it is able to do) machine. 

Thus, the goal of defining a one-fit-all architecture or 

framework for every robotic application is elusive. 

 While in some application domains, such as 

telecommunications [36], factory automation [34], enterprise 

information systems [35], large companies or international 

committees have defined “de iure” standards for reference 

architectures and frameworks, we argue that this is not a viable 

approach for solving the problem of developing reusable and 

interoperable robotic system.  

 In contrast, we believe that, if the robotics community 

shares the same vision of stability-oriented software 

development, stable software solutions can naturally emerge 

from the profitable exchange of knowledge and experience 

among experts in the robotics domains and from common 

practice. In order to pursue this result we have identified at 

least three challenges that can be faced by the robotics 

community as a whole with profitable contributions coming 

from even smallest  research group.  

 

 The first challenge in building stable software in robotics 

is the assessment of a domain model in terms of Enduring 

Business Themes. 

 Simply stated, the business of robotics research consists in 

“designing algorithms that allow robots to function 

autonomously in unstructured, dynamic, partially observable, 

and uncertain environments” [38]. This is a quite ambitious 

goal that describes the “user requirements” of every robotic 

system. These requirements are commonly expressed in fuzzy 

and ambiguous terms that make it hard to understand what the 

functionality needs to be in the robotic system being built. 

 A big challenge for the robotic community is the 

definition of a common language as a collection of EBTs, to 

express robotic requirements and functionality in order to 

build comparable and reusable robotic systems. In section II, 

we have identified three robotic enduring themes: situatedness, 

embodiment, and intelligence. More specific EBTs can be 

derived by breaking off these highly abstract concepts 

following a top-down identification strategy. 

 For example, situatedness (property of being immersed 

within the real world) can be specialized in robot localization 

(where am I?) and object recognition (what is this?). Robots, 

indeed, show the stable properties of knowing where they are 

and recognizing objects and places already visited.  

 Similarly, embodiment (consciousness of having a body) 

can be detailed in proprioception, i.e. the ability to perceive its 

own state in terms of relative position, orientation, and 

movement of the robot’s body and its parts, and actuation, i.e. 

the ability of changing its internal state and the interaction with 

the external world. 

 More elusive is the concept of intelligence (the ability of 

expressing useful behavior). It can be better described in terms 

of more specific EBTs, such as deliberativeness, i.e. the ability 

of planning and revising future actions in order to achieve a 

given goal while taking into account the mutable conditions of 

the external environment, and adaptability, i.e. the ability of 

changing its behaviour in response to external stimuli 

according to past interactions with the real world. 

 

 The second challenge in building stable software in 

robotics is the identification of middleware functionalities to 

interconnect robotic Industrial Objects. 

 In Section II we have pointed out that, from a mechanical 

point of view, robotic systems are heterogeneous compositions 

of quite standard devices and that application requirements 

strongly depend on the robot’s structure. For example, a video 

camera mounted on a mobile robot can be used for site 

surveillance, while the same video camera mounted on a room 

ceiling can help the robot to self-localize. 

 Easy peripheral integration, universal access to shared 

data and resources, and inexpensive reconfiguration of control 

applications are key factors that enable software stability in the 

robotics domain. There are standardized computer buses, such 

as ISA Plug and Play and PCI, standardized I/O ports such as 

RS-232 and Ethernet, and standardized software operating 

systems such as Windows, Linux, and VxWorks. There is the 

need to leverage plug-and-play integration to the Industrial 

Object level. This goal has been achieved in the factory 

automation domain by big companies and international 

consortia. For example, OPC [34] provides interoperability 

between field devices, control systems, and enterprise-wide 

business applications. Similarly, Industrial IT [41] defines the 

concept of Aspect Object to represent, manipulate, integrate, 

and access in real-time information and data of plant devices. 

 Several robotics projects, such as those documented in 

[19, 20, 25], aim at creating integrated software environments 

for the development of reusable objects which are 

interoperable across robotic platform and control applications. 

What is still missing to achieve stability of middleware service 

for the robotics domain (those that sit between physical 

devices and control applications to enable interoperation) is a 

clear understanding of the functional and communication 

requirements of robotic Industrial Objects. The challenge is to 

let emerge this knowledge form common practice. 



 The third challenge in building stable software in robotics 

is the documentation of architectural solutions to recurrent 

design problems emerging from the robotic domain which can 

be captured by reusable Business Objects. 

 

 In Section I.B we have reported on a number of initiatives 

aiming at developing reusable software frameworks 

encompassing reference architectures, code libraries and 

middleware infrastructures. Most of these development 

efforts have produced software assets that often solve similar 

problems (e.g. abstracting robot devices) but with emphasis on 

different aspects (e.g. simulation of physical devices or 

interoperability among heterogeneous components). 

 Using a framework raises some interesting questions.  

When is it more convenient to adopt an existing framework or 

build everything from scratch? Which are the criteria to select 

the right framework? What is the process to transform a 

framework into a concrete application?  

 Answering these questions requires the application 

developer to compare the specifications of existing 

frameworks against the requirements of the new application. 

 The key to enable the entire reusability of a framework is 

its documentation: it must be clear what the framework offers, 

which design problems it solves, and to what extent it is 

customizable. In a pioneering paper [12] Johnson argues that 

design patterns document frameworks and help to ensure the 

correct use of framework functionality. Patterns are a design 

documentation technique, which communicates the reason of a 

design decision, not only the result. However, individual 

patterns may be considered just recipes of a cookbook, while 

the overall design of a framework is better documented by a 

corresponding pattern language [15]. 

 In order to make the large software corpus available today 

within the Robotics community reusable, there is the need to 

make the domain knowledge and design experience behind it 

transparent to the developers of new robotic systems. 

 We argue that this can be achieved if the robotics 

community pursues three main objectives: 

- to identify recurrent problems in the current practice of 

software development in robotics; 

- to formulate these problems in a common language that 

can allow the understanding of the proposed solutions and 

make them reusable for the resolution of new problems;  

- to share recurrent problems and reusable solution within 

the robotics community. 

 

IV.  CONCLUSIONS 

 This paper has analyzed principles and practice of software 

development in Robotics. It has pointed out the difficulties and 

the opportunities to let a stability-oriented approach emerge 

from the current practice. Three strategic challenges for the 

robotics community have been identified:  

- share a common language to express application 

requirements in the form of EBTs; 

- identify common requirements for IOs interconnection; 

- document design solutions that can be captured by BOs. 

REFERENCES 

[1] Cline, M., Mike G., Howard Y. “Enduring business themes”, sidebar in 

Building Application Frameworks: Object-Oriented Foundations of 

Framework Design, M. Fayad et al. Eds, John Wiley and Sons, 1999. 

[2] Clien M., Girou M., “Enduring Business Themes”. CACM, Vol 43(5), 

May 2000 pp. 101-106 

[3] Fayad M.E., Altman A., “An Introduction to Software Stability”, CACM 

Vol. 44(9), September 2001 

[4] Fayad M.E., “Accomplishing Software Stability”, CACM 45(1),2002 

[5] Fayad M.E., “How to Deal with Software Stability”, CACM 45(4), 2002 

[6] Haitham S. Hamza, “SODA: A Stability-Oriented Domain Analysis 

Method”, OOPSLA’04, Oct. 24–28, 2004, Vancouver, Canada. 

[7] Coplien J., Hoffman D., Weiss D., “Commonality and Variability in 

Software Engineering”, IEEE Software, Vol. 15(6), 1998 

[8] I. Elhajj, N. Xi, and Y.-H. Liu, “Real-time control of internet based 

teleoperation with force reflection,” in Proc. 2000 IEEE Int. Conf. 

Robotic and Automation, ICRA, 2000, pp. 3284–3289. 

[9] Siegwart R., Goldberg K., (Eds.), “Beyond webcams,  An Introduction to 

Online Robots", MIT Press, Cambridge, MA, 2002. 

[10] Brugali D., Fayad M.E., Menga G., Volz R. (Eds.) Special Issue on 

“Object-Oriented Methods for Distributed Control Architectures”, IEEE 

Transactions on Robotics and Automation, VOL. 18(4), August 2002 

[11] Hattig M., Horswill I., Butler J., “Roadmap for Mobile Robot 

Specifications”, Proceedings of the 2003 IEEE/RSJ Intl. Conference on 

Intelligent Robots and Systems Las Vegas, Nevada · October 2003 

[12] Johnson, R. 1992. Documenting frameworks using patterns. In 

Proceedings of OOPSLA'92 (October 1992). 

[13] Brooks R.A., Intelligence Without Reason, Proceedings of the 12th Int. 

Joint Conference on Artificial Intelligence, Sidney 1991 

[14] Kortenkamp D., Schultz A.C., „Integrating Robotics Research”, 

Autonomous Robots 6, 243–245, 1999 Kluwer Academic Publishers. 

[15] Brugali D., Menga G. “Frameworks and Pattern Languages: an 

Intriguing Relationship”, ACM Computing Surveys, 2000 

[16] IEEE RAS TC on Service Robotics. http://www.service-robots.org 

[17] Burgard W, Cremers A, Fox D et al., “Experiences with an interactive 

museum tourguide robot”. Artificial Intelligence 114: 32-149, 2000 

[18] OROCOS http://www.orocos.org 

[19] ORCA http://orca-robotics.sourceforge.net/index.html 

[20] SmartSoft http://www.rz.fh-ulm.de/~cschlege/orocos/index.html 

[21] CLARAty http://claraty.jpl.nasa.gov/ 

[22] Open Software for Autonomous Systems http://softs.laas.fr/openrobots/ 

[23] Player/Stage http://playerstage.sourceforge.net 

[24] CARMEN http://www-2.cs.cmu.edu/~carmen/ 

[25] MARIE http://marie.sourceforge.net/ 

[26] UNECE, http://www.unece.org/press/pr2004/04robots_index.htm 

[27] Aarsten A., Brugali B. and Menga G. “Designing Concurrent and 

Distributed Cotnrol Systems“, CACM Vol. 39 N. 10, October 1996 

[28] Robotics Engineering Task Force http://www.robo-etf.org 

[29] Robotics Domain Special Interest Group, 

http://www.omg.org/news/releases/pr2005/02-17-05.htm 

[30] JAUS  http://www.jauswg.org 

[31] Kim, J.-H., Kim, D.-H., Kim, Y.-J., Seow, K.-T., “Soccer Robotics” 

Springer Tracts in Advanced Robotics, Vol. 11 2004 

[32] Bettini A. et al., Vision-Assisted Control for Manipulation Using Virtual 

Fixtures, IEEE Trans. on Robotics and Automation, VOL. 20(6), 2004 

[33] Prassler, E. et al. (Eds.) “Advances in Human-Robot Interaction” 

Springer Tracts in Advanced Robotics, Vol.  14, 2005 

[34] OPC Foundation, www.opcfoundation.org 

[35] Johnson V., “The San Francisco project: business process components 

and infrastructure”, ACM Computing Surveys, Vol 32(1es), 2000 

[36] TINA Consortium, http://www.tinac.com/ 

[37] PROFIBUS standard EN 50170, http://www.profibus.com/ 

[38] Gaurav S. Sukhatme, Maja J. Mataric, “Robots: intelligence, versatility, 

adaptivity” Communications of the ACM , Vol 45(3), 2002, pp. 30 - 32   

[39] Pfeifer R., Scheier C., Understanding Intelligence. 1999 MIT Press 

[40] BROS-I http://sourceforge.net/mailarchive/forum.php 

[41] ABB Industrial IT http://www.abb.com 

[42] Makarenko A. et al., "A Decentralized Architecture for Active Sensor 

Networks". ICRA2004, April 26 - May 1, New Orleans, LA, USA 


