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Abstract

Network analysis is becoming a fundamental tool in the study of systemic risk and financial contagion in

the banking sector. Still, the network structure must typically be estimated from noisy and aggregated

data, as micro data on the status quo banking network structure are often unavailable, or the true network

is unobservable. Graphical models can help researchers to infer network structures, but they are often

criticized for relying too heavily on unrealistic assumptions. They also tend to yield dense structures

that are difficult to interpret. Here, we propose the tlasso model for estimating sparse banking networks.

The tlasso captures the conditional dependence structure between banks through partial correlations,

and estimates sparse networks in which only the relevant links are identified. The model also accounts

for the non-Gaussianity of financial data and it is robust to outliers and model misspecification.

Our empirical analysis focuses on estimating the dependence structure of a sample of European banks

from credit default swap data. We observe that the presence of communities in the banking network plays

an important role in terms of systemic risk and contagion dynamics. We also introduce a decomposition

of strength centrality that allows us to better characterize the role of each bank in the network and to

identify the most relevant channels for the transmission of financial distress.
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1. Introduction

The recent financial crises have pointed out the need to capture the interconnectedness between

the banks in a system, in order to introduce risk-management tools capable to better control potential

spillover effects in case of distress of some institutions. The “too-big-to-fail” slogan that became popular

just after the 2008 financial crisis, was soon replaced by “too-interconnected-to-fail”. This new expression

acknowledges that systemic events can be triggered not only by the distress of large institutions, but

also by small entities that cover specific roles in the system, or that are in key positions within the

network. The relevance of interconnections is stressed also in the Basel Committee’s regulation for

assessing and identifying global systemically important banks (G-SIBs). This regulation requires that

global systemic importance should be measured in terms of the impact that a bank’s failure could have

on the global financial system and the economy, rather than the probability that such a failure occurs.

Hence, Basel introduced an indicator-based measurement approach that considers not only size but also

interconnectedness, complexity, substitutability and the level of cross-jurisdictional activities (FSB, 2013).

Applications of network theory and statistical tools that can capture the dependence structure within

an entire system have then flourished in finance and economics in the aftermath of the crisis, in conjunction

with the rapid development of network modelling in other fields, such as sociology and biology (e.g., Albert

& Barabási, 2002; Watts & Strogatz, 1998; Newman & Park, 2003). In a banking system, network nodes

are typically financial institutions, and edges capture the relationship among them. The goal of these

applications is to model the dynamics of financial co-movements and contagion, the potential impact

on the system, and ideally to set up improved risk management tools to avoid spillover effects (see e.g.,

Battiston et al., 2012; Paltalidis et al., 2015; Acemoglu et al., 2015; Cont & Minca, 2016).1

Still, much research on the estimation of the network structure of a banking system and comparison

across different modelling approaches is needed. The first contributions in the field have mostly focused

on interbank lending markets, where the network structure consists in the set of bilateral credit expo-

sures between banks (see for instance Mistrulli, 2011 and van Lelyveld & in ’t Veld, 2014). Most of the

initial work was set up by regulators for stress testing and to understand potential consequences of new

regulation. A main limitation is still that bilateral exposures are generally non-disclosed and unavailable

to researchers outside central banks. In absence of bilateral data, the network structure must be recon-

structed from partial data or one must rely on other sources, such as time series of equity prices or CDS

spreads.

There exists a strand of literature that reconstructs the bilateral interbank exposures using the total

1Other common applications of network theory in finance include the assessment of credit risk for SMEs including spatial

dependence (Fernandes & Artes, 2016) and the linkages between different markets, such as Bekiros et al. (2017) that analyses

the causal linkages between equity and commodity futures markets.
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exposures of each bank towards the entire banking system through statistical techniques such as maximum

entropy or minimum density algorithms (Elsinger et al., 2013; Anand et al., 2015). Nevertheless, such

approaches usually require strong assumptions on the behaviour of the banks in the interbank market

and they often fail to represent the true network structure (Mistrulli, 2011).

An alternative is instead to infer the network structure using tools that can capture co-movements

and dependence patterns between financial time series to establish the existence of links among banks.

An example is the estimation of credit risk networks from credit default swap (CDS) spreads or equity

price times series (e.g., Puliga et al., 2014; Anufriev & Panchenko, 2015; Billio et al., 2012). One major

advantage of these approaches is that they rely on public data and well known statistical modelling tech-

niques. We focus in particular on graphical models, that are probabilistic models, nowadays widely used

in machine learning (Murphy, 2012), in which the graph captures the conditional dependence structure

between the nodes. Gaussian graphical models are possibly the most widely known. By relying on the

assumption that nodes are random variables with a multivariate normal distribution, edges are estimated

as partial correlations in these models. Values of zero imply then independence between nodes, while

the conditional probability among nodes factorizes according to the partial correlation graph (Lauritzen,

1996). The advantage of using conditional dependence, compared to direct correlations, is that it allows

us to single out the direct co-movements between nodes, controlling for spurious connections due to com-

mon exposures. Our paper aims to fill some gaps in the literature by proposing a robust method, based

on graphical models and regularization techniques, for estimating only the relevant links in the network

from CDS spread time series data. The estimated network then provides information on the dependence

among banks and possible paths of shock propagation. We underline that we consider synchronous, and

not delayed co-movements of time series, and that we estimate sparse undirected networks. As a conse-

quence, we cannot interpret the edges as causal relationships, at least in a Granger (i.e. intertemporal)

sense. Other approaches, such as Granger causality networks (Billio et al., 2012), variance decomposi-

tion (Diebold & Yılmaz, 2014) and transfer entropy (Bekiros et al., 2017) would allow us to consider

intertemporal and directed relationships by modeling the data, either in a Vector AutoRegression (VAR)

framework or by using an informational theoretical approach. Still, we believe that given the aim of our

work, partial correlation networks deliver an appropriate estimate of the connectivity patterns among

banks since, assuming that the markets are sufficiently liquid and promptly reacting, the information

available to the market should be discounted by the prices fast enough to be reflected by synchronous

relationships.2 Although it is not always possible to match the co-movement networks to the actual

2Intertemporal causation may indeed indicate the presence of financial turmoil, as reported by Billio et al. (2012), that

show how Granger causality networks may allow to identify periods of market dislocation and distress, and Jenkins et al.

(2016) who report that during the financial crisis in 2008, the US CDS market was less efficient (in terms of semi-strong

market efficiency).
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network structure of the interbank market, some studies highlight their usefulness to capture salient as-

pects of the financial system, which allows regulators to design more effective policies and to set-up risk

monitoring and mitigating tools (Anufriev & Panchenko, 2015). Other studies found some interdepen-

dence between co-movement networks and interbank exposures networks. It is the case of Abbassi et al.

(2017), that highlight the capability of detecting similar patterns when comparing partial correlation

networks based on CDS data in the German banking system and the actual bilateral exposures provided

by the Deutsche Bundesbank credit register, suggesting that market based measures can serve well in the

absence of bilateral interbank market data.

One of the main drawbacks of Gaussian graphical models, besides the normality assumption, which

is hardly satisfied by financial times series, is the fact that the estimated graph is typically dense and

difficult to interpret. Regularization methods can then be exploited to detect sparse graph structures

for which not all the edges are active and only the relevant links are detected. The glasso model, one

of the best known approaches for matrix regularization in the statistical literature, induces sparsity in

the network structure by introducing a penalty proportional to the 1-norm of the precision matrix in the

estimation process (Friedman et al., 2008). While glasso has found a range of applications in biology

and other fields, its use within the financial literature is still limited (e.g., Goto & Xu, 2015; Anufriev &

Panchenko, 2015). This is possibly because the assumption of Gaussianity is often too restrictive when

dealing with financial times series.

Here, we introduce the tlasso, a model that allows to estimate the partial correlation matrix by

relying on the more realistic assumption of multivariate t-Student variables. This allows us to better

capture the leptokurtic behaviour of financial times series. The model is also more robust to model

misspecification and the presence of outliers compared to glasso, providing more stable and reliable

estimates of the sparse network structure. However, differently from the Gaussian setting, under the t-

Student distributional assumption the absence of an edges does not imply conditional independence, but

only conditional zero correlation. To the best of our knowledge, besides Torri et al. (2017) on portfolio

selection and optimization, tlasso has never been applied to the estimation of the networks of financial

institutions. After illustrating the robustness properties of tlasso compared to glasso in a simulation

study, we focus on estimating the network structure of a sample of large European banks, providing some

financial interpretation of the network in two ways. First, we analyse the structural properties of the

system using a relevant set of network measures. Second, we propose a decomposition of the strength

centrality measure to characterize more accurately the role of each bank in the network and to highlight

the most relevant channels for the transmission of financial distress. We thus introduce a tool that can

be used to evaluate the risk profile of each bank in the system.

Our empirical results suggest a highly connected network structure, characterized by geographical

communities and by the absence of a core-periphery structure. The analysis complements previous
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studies that focus on domestic banking systems (e.g., Anand et al., 2015; Mistrulli, 2011; van Lelyveld &

in ’t Veld, 2014), which are generally characterized by very sparse, strongly tiered network structures with

a small set of large banks that play the role of hubs. Other works conducted on samples of international

financial institutions, while relying on different modelling techniques, provide results that are in line with

ours, although they put less or no emphasis on the community structure. In particular, Craig & Sald́ıas

(2016) found that, considering a network derived from equity prices, the European banking system is

characterized by a high level of interconnectivity, high clustering coefficient, and high assortativity. Our

results are also in line with Aldasoro & Alves (2016), which studied the interbank network of large

European financial institutions, and found evidence of a high network density and a core composed by a

large number of banks.

The paper is organized as follows: Section 2 describes the tlasso model, after introducing the Gaussian

graphical model and glasso. Section 3 illustrates the properties of tlasso and compares it to glasso in

a simulation set-up. Section 4 reports the empirical results obtained by analysing a sample of large

European banks using CDS data. Estimation results are presented along with network properties, followed

by the proposal of the decomposition of strength centrality and a discussion of the financial and economic

implications of our analysis. Section 5 draws the main conclusions.

2. The tlasso model

2.1. Preliminaries

We briefly review partial correlation networks in the context of Gaussian graphical models and the

glasso model that, starting from a dense network, identifies a sparse partial correlation matrix under the

hypothesis of Gaussianity.

Let X = (X(1), . . . , X(m)) be a random vector with a multivariate Gaussian distribution Nm(µ,Σ),

where µ is the mean vector and Σ the covariance matrix. We can define an undirected graph G = (V, E),

where the nodes in V correspond to each element ofX, the edges E consist of the pairs of random variables

with non-zero partial correlations, E = {(i, j) ∈ V × V|ρij 6= 0}, and the edge weights correspond to

partial correlations ρij . The partial correlations are computed from the inverse of the covariance matrix

Ω := Σ−1 (i.e., the precision matrix) as follows:

ρij =
−ωij√
ωiiωjj

i, j = 1, . . . ,m,

where {ωij} is an element of the matrix Ω. The estimation of the graph structure corresponds to the

estimation of the precision matrix Ω. The partial correlation matrix P is:

P = I −D−
1
2

Ω ΩD
− 1

2

Ω , (1)

where D
− 1

2

Ω = diag( 1√
ωii

) and I is a conformable identity matrix. The representation of partial corre-

lations in the matrix form P is the weighted adjacency matrix of the graph, that is, the m ×m matrix
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in which the entries are the weights of the edges in the network. Notice that, following a common con-

vention, the diagonal elements of P are equal to zero. The reader is referred to Lauritzen (1996) for

Gaussian graphical models, while Anufriev & Panchenko (2015) provide a review of partial correlation

networks in the Gaussian framework.

Traditional estimation techniques for graphical models, such as maximum likelihood, typically return

dense adjacency matrices in which all the elements off the main diagonal are different from zero. It may

then be challenging to identify the relevant links among nodes. Moreover, the presence of collinearity

in the data would result in ill-conditioned estimates of the covariance matrices and, consequently, large

estimation error for the precision matrix (Torri et al., 2017).

The glasso model, introduced by Friedman et al. (2008), was proposed as a tool to solve this issue and

to obtain sparse estimates of the precision matrix Ω. Under the assumption of Gaussianity, the precision

matrix can be estimated by penalized quasi maximum likelihood, where the penalty is proportional to

the 1-norm of the precision matrix. Omitting constants and multiplicative factors, the estimates obtained

with glasso can be computed by solving the following optimization problem:

Ω̂glasso = arg max
Ω

(log|Ω| − tr(ΩΣS)− λ||Ω||1), (2)

where ΣS is the empirical sample covariance matrix, λ is the regularization parameter (the larger the

λ, the sparser the estimated model), | · | is the determinant of a matrix, tr(·) the trace and || · ||1 the

1-norm. The optimization problem can be solved efficiently using the algorithm proposed by Friedman

et al. (2008).

2.2. The tlasso Model

One of the main limitations of glasso is the Gaussianity assumption that, as widely discussed in

the literature, generally does not hold for financial time series, typically characterized by fat tails and

leptokurtic distributions (e.g., Cont, 2001). We then consider tlasso, a recently introduced model for the

inference of sparse partial correlation networks under the assumption that the data follow a multivariate

t-Student distribution (Finegold & Drton, 2011). Compared to glasso, the distributional assumptions

of tlasso are less restrictive for financial applications. Furthermore, the use of t-Student distributional

assumption as an alternative to Gaussianity is known to increase the robustness of the estimates in

presence of outliers in several applications, such as linear and nonlinear regression, robust estimation

of the mean and covariance matrix with missing data, unbalanced multivariate repeated-measures and

multivariate nonlinear regression Lange et al. (1989).

Let X = (X(1), . . . , X(m)) be an m-variate random vector with a multivariate t-Student distribution

tm(µ,Ψ−1, v), with v degrees of freedom, mean vector µ and dispersion matrix Ψ−1 (m × m positive
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semi-definite matrix3). The covariance and precision matrices are then Σ = v
v−2Ψ−1 and Ω = v−2

v Ψ,

respectively. Similarly to the Gaussian case, we can associate to the distribution a graph G = {V, E},

in which E = {(i, j) ∈ V × V|ρij 6= 0}, where {ρij} are the elements of the partial correlation matrix P

computed from the precision matrix Ω as in (1). The tlasso model allows us to estimate a sparse Ψ̂tlasso

and the corresponding partial correlation matrix P̂ that represents the network structure.

In particular, we consider a scale-mixture representation of the t-Student distribution. Let W ∼

Nm(0,Ψ−1) and τ ∼ Γ(v/2, v/2) be random variables distributed as a multivariate Gaussian and a

gamma distribution, respectively. Then:

X = µ+
W√
τ
∼ tm(µ,Ψ−1, v), (3)

where Ψ−1 is the dispersion matrix of the t-Student distribution, µ is a m×1 vector, and v is the number

of degrees of freedom in the multivariate t-Student distribution (Kotz & Nadarajah, 2004).4

In contrast to the Gaussian set-up, when using the t-Student distribution, or the class of elliptical

distributions in general, an absence of correlation does not necessarily correspond to conditional inde-

pendence (Baba et al., 2004). However, despite the lack of conditional independence for ωij = 0, it

can be proved that if two nodes j and k are separated by a set of nodes C in G, then X(j) and X(k)

are conditionally uncorrelated given X(C) (Finegold & Drton, 2011). It is then reasonable to substitute

the conditional independence with zero partial correlation or zero conditional correlation. In this case,

disconnected vertices in a graphical model can be considered orthogonal to each other after the effects

of other variables are removed. The absence of conditional correlation entails that a mean-square error

optimal prediction of variable X(j) can be based on the variables X(k), which correspond to neighbours

of the node j in the graph.

2.2.1. The Expectation-Maximization Algorithm

The tlasso model can be estimated using an Expectation-Maximization (EM) algorithm (Finegold

& Drton, 2011). The EM estimation procedure exploits the scale-mixture representation (3), and it is

computationally efficient since it is based on the glasso algorithm, which is iteratively applied at every

M-step of the algorithm.

The EM algorithm treats τ as a hidden variable in the E-step, exploiting the fact that the conditional

distribution of X given τ is Nm(0,Ψ−1/τ). Then, in the M-step the algorithm maximizes the penalized

log-likelihood of the latent Gaussian vector using the glasso procedure.

3We choose the uncommon parametrization based on the inverse of the diffusion matrix to highlight the relevance of Ψ

in the graphical model.
4Note that the scale-mixture representation clarifies how the use of t-Student distribution leads to more robust inference,

as extreme observations can arise from small values of τ .

7



Let X1, . . . ,Xn be an n-sample drawn from tm(µ,Ψ−1, v). The EM algorithm iterates the following

two steps:

• E-step

– Given:

E[τ |X = x] =
v +m

v + (δx(µ,Ψ))
, (4)

where δx(µ,Ψ) = (x − µ)TΨ(x − µ), from the current estimates µ̂(t) and Ψ̂
(t)

, we compute

τ̂ (t+1) for the (t+ 1)th iteration:

τ̂
(t+1)
i =

v +m

v + (δXi
(µ̂(t), Ψ̂

(t)
))

i = 1, . . . , n (5)

• M-step

– Compute the estimates at iteration t+ 1:

µ̂(t+1) =

∑n
i=1 τ̂

(t+1)
i Xi∑n

i=1 τ̂
(t+1)
i

, (6)

Ŝ
(t+1)

=
1

n

n∑
i=1

τ̂
(t+1)
i [Xi − µ̂(t+1)][Xi − µ̂(t+1)]′ (7)

– Then, the estimate Ψ̂
(t+1)

is computed by solving the following optimization problem:

Ψ̂
(t+1)

= arg max
Ψ

(
log|Ψ| − tr(ΨŜ

(t+1)
)− λ||Ψ||1

)
, (8)

which relates to (2) for glasso and can be solved using the algorithm from Friedman et al.

(2008).

The E and M steps are sequentially iterated until a convergence criterion is satisfied, that is, until the

maximum term in absolute value of the matrix difference between Ψ̂s in two consecutive iterations is

smaller than a given threshold. While convergence to a stationary point is guaranteed in the penalized

versions of EM (McLachlan & Krishnan, 2007), the algorithm is not guaranteed to find the global max-

imum since the penalized log-likelihood function to be maximized is not concave (Finegold & Drton,

2011).

2.3. The Regularization Parameter

The regularization parameter λ controls the intensity of the shrinkage towards zero of individual el-

ements of the precision matrix: the larger λ, the more sparse is the precision matrix estimate. Different

approaches, such as cross-validation and information criteria, can be used to select the optimal regular-

ization parameter λ (Finegold & Drton, 2011). We rely on the Bayesian Information Criterion (BIC) for
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the calibration of λ, as the literature highlights that it performs better than cross-validation (Foygel &

Drton, 2010).

For tlasso, we consider a grid of values of λs, that is λi ∈ C = [λmin, . . . , λmax] and estimate the tlasso

network for each λ value. Then, we choose the value of λ that solves the BIC optimization problem:

min
λ∈C

BIC = −2log(L̂λi) + k × log(n), (9)

where L̂λi
is the value of the likelihood function for the multivariate t-Student distribution with the

parameters computed using the corresponding λi parameter, k is the number of active edges in the

network, and n is the number of observations. The calibration procedure is analogous for glasso, with the

only difference being the use of the likelihood function for a multivariate Gaussian distribution instead of

a multivariate t-Student distribution. In preliminary analyses on simulated data, we also compared the

BIC with the Extended Bayesian Information Criterion (EBIC) and the Akaike Information Criterion

(AIC), finding that the BIC provides more accurate results than the others.

3. Simulation Analysis

As a first step, we test the tlasso on simulated data using several network configurations and distribu-

tions, and we compare its performances to the ones of the glasso. We consider 16 settings with different

combinations of network structures and underlying distributions of the data (see Section 3.1). For each

combination, we perform 30 Monte Carlo runs and estimate the networks using tlasso and glasso on a

grid of 30 different λ values ranging from λmin = 0.007 to λmax = 1. We set the number of degrees of

freedom to v = 3, the lowest possible value that yields a finite covariance matrix, to test for the influence

of fat tails. We also investigate how tlasso and glasso estimates are affected by the sample size, comparing

estimates obtained for n = 100, 200, 500 and 1000. Finally, we evaluate the performance of the BIC for

the optimal choice of the regularization parameter λ.

3.1. Simulation Set-up

In the simulation set-up, we consider four distributional assumptions and four network configurations,

chosen from commonly used benchmark cases and more complex structures that are typical of financial

networks. We then run the simulation analysis for the sixteen combinations of network structures and

distributions. We describe the structure of the network in terms of the precision matrix Ω, which makes

it possible to easily derive the partial correlation matrix P as in (1).

a. Chain graph: This simple graph structure can be represented by a matrix Ωa, where all the non-

diagonal entries are zero except the elements on the first sub- and super-diagonal. In particular, these

entries have been set equal to -0.3, while diagonal elements are set equal to 1.
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b. Sparse random graph: The matrix Ωb is defined as follows: first a value of -1 is assigned inde-

pendently with probability 0.05 to the elements in the lower diagonal, then the matrix is mirrored to

obtain a symmetric adjacency matrix. A value equal to the negative of the sum of the elements in the

respective columns minus one is assigned to the elements on the diagonal. This guarantees that the

matrix is positive definite.

c. Core-periphery matrix: The matrix Ωc is consistent with a core-periphery structure, that is, it

has a group of strongly interconnected nodes (the core) and a periphery connected to nodes within

the core, but not among nodes within the periphery. The core is composed of 10 elements and the

percentage of the active edges between the core and the periphery has been set to 30%.

d. Block diagonal matrix: The matrix Ωd is characterized by a strong block diagonal structure with

five distinct blocks. This structure is consistent with a network composed of five disconnected sub-

networks. In particular, the blocks are modelled independently and in each of them the time series

are generated as a linear combination of two independent factors plus some random noise.

Figure 1: Alternative network structures based on partial correlation matrices

chain (a)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

random (b)

0.0

0.1

0.2

0.3

0.4

0.5

core−periphery (c)

0.00

0.05

0.10

0.15

0.20

0.25

block diagonal (d)

0.00

0.05

0.10

0.15

0.20

0.25

The figure represents the color coded heatmaps of the adjacency matrices P corresponding to network structure (a - d). The

structures are in order: the chain graph (a), a random graph with high sparsity (b), a core-periphery graph (c) and a block diagonal

graph (d).

We assume the following four underlying distributions:

1. Multivariate Gaussian distribution: X ∼ Nm(0,Ω−1)

2. Multivariate t-Student distribution: X ∼ tm(0,
v − 2

v
Ω−1, v), with v = 3

3. Contaminated Gaussian distribution: Normal distribution with covariance matrix Ω−1 where

15% of the observations are outliers, drawn from independent normal distributions with larger

variances:

X ∼ Nm(0,Ω−1)× b+Nm(0, 2× diag(Ω−1))× (1− b),

with b ∼ Bernoulli(p), and p = 0.85.
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4. Empirical marginals from real CDS data and t-copula : Distribution characterized by a

multivariate t-copula and marginals estimated from real CDS data using a Gaussian kernel. The

data are described in Section 4 and refer to the period 01/01/2009 – 30/06/2016.

3.2. Performance Measures

We first evaluate the performances of tlasso and glasso estimators in terms of ROC (Receiver Oper-

ating Characteristics) curves, measuring their ability to identifying correctly the edges in the network.

A good estimator should have a high sensitivity (high ratio of true positives to all positives), while hav-

ing a high specificity (high ratio of true negatives to all negatives), that is, it should identify all the

active edges in the original network without introducing spurious ones. ROC curves are a powerful and

commonly used tool for the identification of these features. For binary classifiers, they consist in a plot

of the sensitivity rate over (1 - specificity) for different thresholds (see for instance Hanley & McNeil,

1982). We use them for the performance analysis of glasso and tlasso, comparing network estimates with

different levels of sparsity as determined for a grid of λ values. In order to provide better representation

of the dispersion of the data, instead of computing the average value over several runs and drawing an

interpolated ROC curve, we represent all the individual data points.

In addition to ROC curves, we evaluate the quality of the estimates of the partial correlation matrix

P using the Frobenius norm as distance measure between the optimal estimate of the adjacency matrix

P̂ and the known adjacency matrix P , as follows:

DF (P̂ ,P ) = ||P̂ − P ||F =

√
(tr((P̂ − P )(P̂ − P )′)), (10)

where P̂ is the estimate of the partial correlation matrix and P is the one used for the generation of the

data. In particular, we use the Frobenius norm to measure the accuracy of the estimation of the optimal

networks identified by BIC.

3.3. Simulation Results

Figure 2 displays the ROC curves for all the four combinations of network configurations (from a to

d) and distributions of the data (from 1 to 4), described in Section 3.1. Each data point refers to one

estimate of the network structure for a different value of λ. Red circles refer to tlasso networks, while

green crosses indicate glasso ones. The optimal networks identified by the BIC are highlighted with

darker colours. The more concentrated the data are in the upper left corner, the better the performance,

as measured by a high number number of true positives and a low number of false positives. We see that

the quality of the estimates varies drastically across different combinations of distributions and network

structures. Moving from top to bottom, we analyse the performance of glasso and tlasso on data with

different distributions. In the case of data with a Gaussian distribution (first row), the performances
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Figure 2: ROC curves for 16 simulation set-ups
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Shape: chain. Distr. = normal
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Shape: chain. Distr. = multivariate t

● tlasso
glasso

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − Specificity

S
en

si
tiv

ity

●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●●●●●● ●●●●●●●●●●

●

●

●

●

●

●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curves (combination: b2) 
Shape: random. Distr. = multivariate t

● tlasso
glasso

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − Specificity

S
en

si
tiv

ity

●
●●●●

●●●●●●●
●●

●●●●●●●●●
●●●

●

●

●

●

●
●●●●●●●●●●●●●

●●●
●●●●●

●
●●●●

●

●

●

●
●●●●●●●●●●●●●●●●

●●●●
●●

●●●●

●

●

●

●●●●●●●
●●●●●●●●

●●●●●●
●
●●●●●●

●

●

●
●●●●●●●●●●●●●

●●●●●
●●●●

●●
●

●

●

●

●

●
●●

●
●●●

●●●●●●●●●
●●●
●●●●●●●

●
●

●

●

●●●●●●●●●●
●●●●●●●●●

●●●●●
●●

●

●

●

●

●●●
●●

●●●●●●●●●●●●●●●
●●●●

●●●●
●

●

●●●●
●●●●●●●●●

●●●
●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●
●●●●●●

●●●●●
●●●●

●●
●

●

●●
●●●●●●●●●●●●●

●●●●●●●●●
●

●

●

●

●

●

●
●●●

●●●●●●●●●●●●●●
●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●
●●●●
●●●●●●

●

●

●
●

●
●●

●●●●●●●●●●●●●●
●●●●●●

●●
●

●

●

●

●

●●●●●●●●●●●●●●
●●●●●●

●●●
●

●●●
●

●

●

●●
●●●●●●●●

●●
●●

●●●●●
●●●●●●●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●●●●●
●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●
●

●●●●●●●●●●●
●●●●●●●●●●●●

●●●●
●

●

●

●
●●

●●●●●●●●●●●●●●●●
●●●●●

●●●

●

●

●

●●●
●●●●●●●●●●●●

●●●●●●●
●●●●

●

●

●

●

●●
●

●●●●●●●●●●●●●●●●
●●●

●●●●●

●

●

●

●●
●●●●●●●●●●●●●●●

●●●●●
●●●●

●

●

●

●

●●●●●●●●●●●●
●●●●●

●●●●●●●
●●●●

●

●

●●●●●●●●
●●●●●●●

●●●
●

●●●●●
●

●

●

●

●

●

●●
●●●●●●●

●●●●●●●●●●●●
●●●●●●

●

●

●

●●
●●●●●●●●●●●●●●●●●●●●

●●
●●

●

●

●

●

●●
●●●●●●●●●●●●●●●

●●●●●
●

●
●

●

●

●

●

●

●
●●●●●●●

●●●●●●●●●●●
●●●●●●●

●

●

●

●

●●●●●●●●●●●●●
●●●●

●●●
●●●●●●●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

● ●

●

●
●●
●

● ●●
●

●
●

●
●

●
●

●
●●

●

●

●

●
●●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curves (combination: c2) 
Shape: core−periphery. Distr. = multivariate t

● tlasso
glasso

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − Specificity

S
en

si
tiv

ity

●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●●●●●●●●●●●●●●●

●

●
●●

●

●
●

●

●

●

●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●
●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●
●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●

●
●
●

●

●

●

●

●●●●●●●●●
●●●●●●●●●●●●●●●

●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●
●
●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●
●●●

●

●

●

●

●

●

●

●●●●●●●

●●●
●

●●●●

●

●●

●

●●
●

●●

●

●

●

●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●
●●●

●
●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●
●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●

●

●●●●●●●●●●●●●●●
●●●●

●
●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●●

●

●
●●● ●

●

●
●●

●

●

●

●

●●

●

●

●
●

●

●
● ●●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curves (combination: d2) 
Shape: block diagonal. Distr. = multivariate t

● tlasso
glasso

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − Specificity

S
en

si
tiv

ity

●●●●●●●●●●●●●●●●●●●●●
●
●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●

●
●

●
●
●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●
●●●

●

●

●

●

●●

●
●

●●●●●●●●●●●●●●●●
●●●●

●
●

●
●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●
●●

●●●●●●●●●●●●●●●●●●●●●
●●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●
●

●
●●

●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●
●
●

●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●●

●●●●●●●●●●●●●●●●●●
●

●
●

●●

●

●

●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●

●●●●●●●●●●●●●●●●●●
●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●
●●●●●●

●

●
●

●

●

●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●
●●●●●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●
●●●●

●
●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●
●

●●

●
●

●

●

●

●

●

●
●●

●●●●●●●●●●●●●●●●●●●
●

●●

●
●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●
●●●●

●

●

●

●

●
●

●
●

●●●●●●●●●●●●●●●
●●●●

●
●

●

●

●

●

●

●●●●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●

●●●●●●●●●●●●●●●●●
●●●●

●

●

●

●

●

●

●
●●

●●●●●●●●●●●●●●●●●●●●
●

●

●●

●

●

●

●
●●

●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●
●●

●●●●●●●●●●●●●●●●●●●
●●●●

●

●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●●●●●●●●●●●●●●
●●●●●●

●

●

●

●

●

●

●
●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●
●
●● ●

●

●
●●

●
●●

●
●

●

●

●
●
●

●

●
●
●●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curves (combination: a3) 
Shape: chain. Distr. = contam. normal

● tlasso
glasso

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − Specificity

S
en

si
tiv

ity

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●●●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●●

●

●●●●

●

●

● ●

●

●●

●

●●● ●

●

●●

●

●

●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curves (combination: b3) 
Shape: random. Distr. = contam. normal

● tlasso
glasso

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − Specificity

S
en

si
tiv

ity

●●
●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●
●●●●●●

●●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●
●●●

●●●
●

●

●

●

●

●

●●●●
●●●●

●●●●●
●●●●●●●

●●●
●

●

●

●

●

●

●

●
●●

●●●●●●●●●●●
●●●●

●●●●●●●

●

●

●

●

●

●●●
●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●●●
●●●●●●●●●●●●●

●●●●●●●

●

●

●

●

●

●
●

●●●
●

●●●●●●●●●●●●●●●●●●●
●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●●●●●●●●●●●●●●●●●
●●●●

●
●

●

●

●

●

●

●

●

●●●●●●
●●●●●●●●●●●●●●●

●●●
●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●●●●●●
●●●●●

●●●●●
●●●●

●●●
●

●

●

●

●

●

●

●●
●●

●●
●

●●●●●●●●●
●
●●

●●●●●●

●

●

●

●

●

●●
●●●●●●●●●●●●

●●●●●●●●●●●

●

●

●

●

●

●●●●●●●
●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●
●●●●●●●●●

●●●●●●●

●
●

●

●

●

●

●

●●●●●●●●●●●●●●●●
●●●●

●●●
●

●

●

●

●

●

●

●
●●

●●
●●●●

●●●●●●●●●
●●●●●

●
●

●

●

●

●

●

●●●●
●●

●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●●●
●●●●●●●●●●●●●●●●●●

●●

●
●

●

●

●

●

●

●●
●●●●●●●●●●●●●●●

●●●●●
●

●

●

●

●

●

●
●

●
●●●●

●
●●●●●●●●●

●●●
●●●●●●●

●

●

●

●

●

●●●
●●

●●●●●●●●●●●
●●●

●●●●●●●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●
●

●

●

●
●●●
●

● ●

●

●●
●●

●
●

● ●

●

●
●

●

●

●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curves (combination: c3) 
Shape: core−periphery. Distr. = contam. normal

● tlasso
glasso

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − Specificity

S
en

si
tiv

ity

●●●●●●
●●

●●●●●●●●●●●●
●

●●

●
●

●

●

●

●

●

●●
●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●
●

●

●

●

●●●●●
●●●●●●●●●●●●

●
●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●●●●●●●●●●●●●
●●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●●●
●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●
●●●●●●●●●●●

●
●●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●●

●●●●●●●●
●●●●●●

●●●●●●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●●●●●
●●●

●●●●●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●
●●●●●●

●
●

●
●
●
●

●

●

●

●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●
●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●

●●
●●●●●●●●●●●●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●●●●●●
●●●

●●●●●●●
●●●

●
●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●●●●●●
●●●●●●

●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●
●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●
●●●●●●●●●●●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●●●●●●●
●●●●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●
●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●
●●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●●●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●
●●

●

●●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curves (combination: d3) 
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ROC curves for tlasso and glasso estimation with different network structures and underlying distributions, as defined in Section

3.1 (structures (a - d), from left to right; distributions (1 - 4), from top to bottom). Red circles refer to tlasso and green crosses

to glasso. Dark green circles and dark red crosses refer to the optimal estimates identified using the BIC for tlasso and glasso,

respectively.

of glasso and tlasso are similar, though the first model is correctly specified while the second is not.

When the distribution is not Gaussian (rows 2, 3 and 4), tlasso performs consistently better than glasso,
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Figure 3: ROC curves for different sample size
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ROC curves for tlasso and glasso estimation with block diagonal network structure (d) and multivariate t-Student distribution

with 3 degrees of freedom (2). Green points refers to glasso and red points to tlasso. Darker points are the optimal estimates

identified using the BIC. From left to right the four graphs display results for sample size equal to 100, 200, 500 and 1000.

especially in the case of the distribution characterized by the presence of outliers (row 3).

When studying the effect of the partial correlation structure (Figure 2 from left to right), we notice

that the topology of the network strongly affects the quality of the estimates provided by the tlasso and

glasso. We see that both models perform better in case of simple structures like the chain graph (a) or

a very sparse random graph (b). They have problems, however, in correctly identifying more complex

structures such as the core-periphery (c) or the block diagonal configurations (d).

The optimal networks identified by the BIC are highlighted with darker circles and crosses. We see

that, in the case of the tlasso, the BIC is highly effective for all the specifications considered, as it often

selects optimal λs corresponding to good estimates of the true network structure (high sensitivity and

specificity, lying in the upper-left corner of the graph). In the case of the glasso, the BIC works well

for the selection of the optimal parameter λ when the model is correctly specified (row 1), but performs

poorly when the distribution is not Gaussian or in presence of outliers (rows 2, 3 and 4).

Figure 3 illustrates as a robustness check how the quality of the estimates changes with the sample size

n = 100, 200, 500 and 1000. From all the combinations, we report only the case of a known block diagonal

network structure and multivariate t-Student distribution with 3 degrees of freedom (corresponding to

combination (d2) in Figure 2). Other pairs provide similar results, which are available upon request. As

expected, the larger the sample size n, the lower the estimation error, as indicated by the concentration

of the points in the upper left corner in Figure 3 for n = 1000. We see that tlasso consistently outper-

forms glasso, which fails to provide accurate estimates, even with large sample size, due to the model

misspecification and its lack of robustness.

Finally, Table 1 reports the average Frobenius distance of the optimal networks from the true networks

for tlasso (Panel a) and glasso (Panel b). The results confirm those of the ROC curve analysis and show

that tlasso outperforms glasso in most of the specifications, obtaining smaller distances. The difference
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between the models is particularly relevant for the distribution 3, which is characterized by outliers. The

only exceptions are the simulations with normally distributed data, where glasso and tlasso show similar

performance.

In summary, the simulation study shows that tlasso generally outperforms glasso, in particular under

non-normality, model misspecification, and in presence of outliers.

Table 1: Average Frobenius distance for tlasso

Network structure

Distribution Chain (a) Random (b) Block diag. (c) Core-periphery (d)

Panel a - tlasso

Multivariate normal (1) 1.22 1.05 1.11 0.71

(s.d.) (0.10) (0.12) (0.06) (0.04)

Multivariate t (2) 1.29 1.09 1.13 0.79

(s.d.) (0.22) (0.08) (0.06) (0.08)

Contam. normal (3) 1.51 1.32 1.16 0.87

(s.d.) (0.15) (0.12) (0.06) (0.06)

t-copula + emp. marg. (4) 1.24 1.11 1.17 0.76

(s.d.) (0.13) (0.11) (0.06) (0.05)

Panel b - glasso

Multivariate normal (1) 1.15 0.95 1.12 0.73

(s.d.) (0.11) (0.09) (0.05) (0.05)

Multivariate t (2) 1.88 1.67 1.91 1.72

(s.d.) (0.31) (0.28) (0.30) (0.40)

Contam. normal (3) 2.21 1.95 3.29 3.45

(s.d.) (0.09) (0.15) (0.35) (0.37)

t-copula + emp. marg. (4) 1.38 1.28 1.53 1.15

(s.d.) (0.10) (0.11) (0.11) (0.13)

Average Frobenius distance (and standard deviation in parenthesis) between optimal estimators P̂ and known network structure

P for tlasso (Panel a) and glasso (Panel b) for all network structures and distributions presented in Section 3.1. Optimal networks

are selected using BIC.

4. Empirical Analysis

Here, we present the application of the tlasso model to the problem of estimating the network struc-

ture of a sample of large European banks. Our goal is to infer the network structure from the partial
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correlations between CDS to capture dependence related to credit risk, and to describe the properties of

the system and its evolution over time. We further provide insights on the network estimates by the tlasso

when compared to those obtained using the glasso. Finally, we introduce a decomposition of strength

centrality that allows us to characterize accurately the role of each bank in the network and to highlight

the most relevant channels for the transmission of financial distress.

4.1. Banking Data

The dataset consists of 31 weekly time series of CDS spreads (5 years maturity, quoted in Euros) of

European banks from 12 countries. The data have been downloaded from Thomson Reuters Datastream

and span the time period from 01/01/2009 to 30/06/2016. 20 out of 31 banks belong to countries within

the Eurozone, while the other 11 are located in the United Kingdom, Sweden and Denmark. Our database

includes 85% of those banks with total assets over EUR 500 billion under the ECB’s supervision in 2016

and 47% of the banks involved in the European Banking Authority (EBA) stress-test exercise of 2016.

The complete list of the banks is reported in Appendix A. For the analysis, we consider the log-differences

of the CDS spreads.

The glasso and tlasso models assume that the data follow a multivariate Gaussian and t-Student distri-

bution, respectively. Due to complexity in testing the multivariate goodness of fit in high dimensionality

(see e.g., Justel et al., 1997; McAssey, 2013), we do not test directly for the multivariate distributional

assumption, but instead we focus on the marginal univariate and bivariate distributions.5 Results for

individual banks are reported in Appendix A. On average, the marginal distributions show low skewness

and high excess kurtosis. We test for two parametric distributions: the t-Student and the Gaussian,

fitting them using maximum likelihood. We then evaluate the goodness of fit using the Kolmogorov-

Smirnov test and the χ2 goodness of fit test, both at a significance level of α = 1%. According to the

Kolmogorov-Smirnov test, we do not reject the null hypothesis of a t-Student distribution for any of the

banks except for one (i.e., Bayerische Landesbank), while the assumption of Gaussianity is rejected for

8 of the 31 banks. The χ2 goodness of fit test rejects the null hypothesis of a t-Student and Gaussian

distribution for 4 and 18 banks, respectively. Concerning the fitting of t-Student marginal distributions,

the estimated numbers of degrees of freedom are low, ranging from 1.75 to 8.80 with mean value equal

to 5.37. The statistical tests thus provide evidence in favour of t-Student marginal distributions.

Concerning the dependence structure, we analyse 465 bivariate distributions for each pair of banks,

fitting different copula families and selecting the best-fitted copula model for each pair using the Bayesian

5Following Kotz & Nadarajah (2004), any partition of a random variable that follows a multivariate t-Student distribution

is also distributed as a t-Student. By testing the distribution of marginals we find a necessary, although not sufficient,

condition for the entire distribution to follow a t-Student distribution. Such property holds also for multivariate Gaussian

distributions as a special case.
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Information Criterion (BIC). The copulas we consider are Gaussian, t (with 3, 6 and 10 degrees of

freedom), Gumbel, and reverse Gumbel. This selection encompasses models with different levels of tail

dependence and allows us to model both symmetric and asymmetric relationships. Table 2 reports the

percentages of the bivariate distributions for which each copula is the best fit according to the BIC. The

vast majority of the tests provide evidence in favour of the t-copula. In fact, the t-copula with 6 degrees

of freedom turns out to be optimal for more than half of the pairs (54.4%), and t-copulas with 3, 6 or 10

degrees of freedom are optimal in 93.2% of the cases. The bivariate data therefore appear to display a

relatively high level of tail dependence.

Table 2: Bivariate copula fitting for pairs of banks.

Copula Percentage

t-copula (3 degrees of freedom) 10.8%

t-copula (6 degrees of freedom) 54.4%

t-copula (10 degrees of freedom) 28.0%

Gaussian copula 4.7%

Gumbel copula 1.9%

Reverse Gumbel copula 0.2%

Percentage out of the 465 bivariate relationships between each pair of banks’ CDS spreads, for which each copula is the best fit

according to BIC (01/01/2009 – 30/06/2016).

The results obtained for the marginal and bivariate distributions suggest the need to consider a

methodology that moves beyond the Gaussian distributional and dependence assumption. We therefore

expect the tlasso model to be a more appropriate tool than the glasso due to empirical properties of the

data and the tlasso’s robustness to outliers and model misspecification.

The analysis of the autocorrelograms of the log-differences of CDS spreads and their squared returns

(not reported for brevity) does not highlight relevant evidence of serial correlation and heteroskedasticity.

In the rest of the analysis we therefore consider the variables as independent and identically distributed

(i.i.d.). As a robustness check, in Appendix C we repeat the analysis on the residuals of an ARMA-

GARCH model using a static conditional correlation model (CCC-GARCH) and a dynamic conditional

correlation one (DCC-GARCH) (see Appendix C). The results obtained with these specifications are very

similar to the baseline scenario.

We finally study the model after controlling for conditioning variables, considering as factors a set of 11

European sovereign CDS spreads (i.e., Austria, Belgium, Denmark, France, Germany, Italy, Netherland,

Portugal, Spain, Sweden and United Kingdom), and re-estimating the model after controlling for their

effect. Also in this case, the results are consistent to ones obtained with raw data. The results are

reported in Appendix C.
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4.2. Stability and Robustness to Outliers

As illustrated in Section 3, tlasso outperforms glasso in the majority of the simulation set-ups we

consider. Here, we test the performance of glasso and tlasso on real data, using them to estimate the

sparse correlation network underlying the European banking system.

Since the true network structure is unknown, we cannot use the performance measures described in

Section 3 for the simulated data. Instead, we compare the glasso and tlasso focusing on the stability and

robustness to outliers. In particular, we consider the stability of the network estimates in a rolling window

analysis, computing measures of similarity between estimated networks on different time-windows. The

rationale behind this approach is that a robust method should return very similar network estimates on

largely overlapping time-windows and the presence of sudden changes in the network structure would

indicate that the model is not robust to outliers and prone to estimation errors.

We consider the period from 01/01/2008 to 30/06/2016, with rolling windows of 100 weekly obser-

vations for a total of 343 windows.6 In order to allow for a more meaningful comparison between time

periods, we do not calibrate the penalization parameters λ for tlasso and glasso in each window, but

instead we set the parameter in such a way that the average density of the network across the time

windows is equal for the two models. For the estimation of tlasso we set the degrees of freedom to 5,

close to the mean value of the marginal distributions of the data (see Appendix A).

We use the Frobenius norm of the difference between the two adjacency matrices, defined as in (10)

as an indicator for the distance between networks. Figure 4 represents graphically the distance between

each pair of rolling windows and table 3 reports the average distance computed on windows 5, 10 and 15

weeks apart.

The results show that the Frobenius distance between networks tends to increases with the distance

in time of the estimation windows, which is in line with our expectations. This can be seen in Figure

4, where the points close to the diagonal (which represent windows close to each other) have smaller

Frobenius distance. Similarly, we see in Table 3 that networks estimated on windows 15 weeks apart

from each other differ more than those estimated on windows 10 and 5 weeks apart. Comparing the

two models, we notice that, on average, the distance between networks estimated on different windows is

smaller for tlasso than for glasso, resulting in a more stable structure over time for tlasso. Interestingly,

the tlasso networks are not only more stable on average, but they are also characterized by a smoother

transition of the network over the rolling windows. This can be observed in Figure 4, where tlasso has

a less block-diagonal structure than glasso. Such result is confirmed in Table 3, where the value of the

standard deviation of the Frobenius distances for tlasso is much smaller than for glasso. The absence of

sudden changes suggests that tlasso is less affected by outliers and extreme events, which leads to more

6For the rolling analysis the sample is reduced to 29 banks, since CDS series for Intesa San Paolo and Unicredit are not

available for the entire period.
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reliable and stable estimates.

Table 3: Frobenius distance on rolling window networks

Frobenius distance

tlasso glasso

5 weeks 0.55 0.64

(0.06) (0.23)

10 weeks 0.78 0.91

(0.07) (0.26)

15 weeks 0.95 1.11

(0.09) (0.27)
Average Frobenius distance and standard deviation (in brakets) between networks computed on rolling windows respectively 5, 10

and 15 weeks apart.

Figure 4: Frobenius distance between networks on different time windows.

Frobenius distance between networks computed on different time windows. Lower distance denotes more similar networks. The

horizontal and vertical axes represent the last day in each time window.

4.3. Structural Analysis of the European Banking System Network

As a next step, we focus on the identification of the structural properties of the European bank-

ing system by computing relevant network indicators and monitoring their changes in two sub-periods:

during-crisis (01/01/2009 – 31/12/2012) and post-crisis (01/01/2013 – 30/06/2016). We focus on the

meso-scale properties of the network, such as the presence of a core-periphery or a community structure

(see Borgatti & Everett, 2000; Fortunato, 2010).

Most of the available literature analyse the banking systems in individual countries, for which the

bilateral exposures in the interbank markets are more easily available (e.g., Craig & Von Peter, 2014
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for Germany, van Lelyveld & in ’t Veld, 2014 for the Netherlands, and Mistrulli, 2011 for Italy). The

network structures in these studies are typically characterized by a high level of sparsity, a core-periphery

structure, a scale-free configuration (i.e., networks where degree and strength distributions are power-

law), the presence of hubs (i.e., nodes with a number of edges that greatly exceed the average) and

disassortative mixing patterns (i.e., highly connected banks tend to connect to peripheral ones). The

properties of international financial systems are less well-studied, and seem to be characterized by more

complex structures. Aldasoro & Alves (2016) analyse the interbank market bilateral exposures of 53

large European banks and identify a highly interconnected and layered structure with a core-periphery

configuration, characterized by a large core. Craig & Sald́ıas (2016) use equity data to analyse the global

banking system and find a complex hierarchical structure, with a relevant regional homophily, a rich-club

phenomenon (highly connected nodes tend to be mutually linked) and a core-periphery structure. Here,

we provide further evidence in estimating and interpreting dependence networks based on CDS data in

international banking systems.

We first look at the descriptive network statistics, reported in Table 4. We then compute a set

of indicators useful to describe the meso-scale properties of the network (see core-periphery structure,

presence of geographical communities and assortative mixing). A detailed description of the network

indicators is reported in Appendix B.

Table 4: Descriptive network statistics for CDS Networks

during-crisis post-crisis

Density 49.25% 52.26%

Average strength 0.95 0.91

Largest connected component 100% 100%

Positive edges % 87.77% 79.42%

Positive edges % (weighted) 96.59% 89.28%

Descriptive network indicators computed on tlasso networks for the during-crisis and the post-crisis periods. See Appendix B for

the definition of network indicators.

In Table 4 we notice that for both sub-periods the network is connected (it exists at least a path that

connect any two nodes in the network) and by similar values of density (49.25% and 52.26%), average

degree (14.77 and 15.68), and average strength (0.95% and 0.91%), suggesting a highly interconnected

structure. Edges with positive weights are the majority, especially in the during-crisis period and when

computed in weighted terms. Figure 5 reports the strength distribution for the sub-periods. Concern-

ing the during-crisis period (left plot), we notice that the support is narrower than in the post-crisis

period (right plot) and that the distribution is approximately symmetric, suggesting that the networks

do not have a scale-free structure and are not characterized by the presence of hubs. In the post-crisis

19



Figure 5: Strength distribution of the estimated networks
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Strength distribution in the during-crisis (left) and post-crisis (right) periods.

period, the strength distribution is negatively skewed, indicating the presence of some banks that are less

interconnected to the system compared to the during-crisis period.

Table 5: Network indicators for tlasso

during-crisis post-crisis

tlasso random network tlasso random network

Freeman Centralization 0.47** 0.66 0.52* 0.69

Coreness 0.11*** 0.34 0.15*** 0.31

Modularity (wrt country) 0.36*** -0.04 0.29*** -0.03

Clustering coefficient 2.70%** 2.12% 2.94%*** 2.39%

Assortativity (wrt eigen. centr.) 0.61*** 0.35 0.35 0.34

Assortativity (wrt str. centr.) -0.05 0.08 0.06 0.09

Assortativity (wrt betw. centr.) -0.05 -0.07 -0.08 -0.07

Assortativity (wrt Bonacich centr.) 0.03 0.08 0.11 0.08

Network indicators computed on tlasso networks for the during-crisis and the post-crisis periods. The Table also reports the

median value of the indicators computed on 1000 random rewirings of the networks. The stars denote the statistical significance

based on the empirical distribution of the indicators on the random networks (***, **, * denote p-value smaller than 1%, 5% and

10%, respectively).

Table 5 reports a set of network indicators chosen to highlight the meso-scale structural properties

of the networks, focusing in particular on the presence of core-periphery and community structure. As a

reference, Table 5 also shows the median value of the indicator for a random network and the statistical
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significance computed on the quantiles of the distribution of the indicators on a random network.7

The Freeman centralization provides information about the extent to which the network is centred

around its most central node. A high centralization is typically associated with a tiered structure or with

the presence of strong hubs. In the during-crisis period, this indicator is statistically significantly lower

than in the random networks in both sub-periods, suggesting the absence of a core-periphery structure.

This is confirmed by the low coreness,8 equal to 0.11 in the during-crisis period and to 0.15 in the

post-crisis period.

The following two indicators, modularity and the clustering coefficient, allow us to measure the ten-

dency of the networks to be organized in communities. In particular, the modularity computed on the

country partition describes the tendency of the networks to form communities aligned with national bor-

ders. The indicator has a high and statistically significant value, especially in the during-crisis periods,

where it takes a value of 0.36. The presence of communities is also suggested by the high value of the

clustering coefficient,9 that is typically associated to networks with communities (Fagiolo, 2007).

Finally, we compute the assortativity, an indicator that measures the tendency of nodes to connect to

similar ones. In particular, we consider the assortativity with respect to four different centrality measures

(eigenvector-, strength-, betweenness- and Bonacich power centrality) to check the tendency of nodes to be

linked to nodes with the same level of importance. Negative assortativity is typical of network with hubs,

and such systems are typically resilient to random failures, but fragile to specific attack to hubs Watts

& Strogatz (1998). Positive assortativity, instead, is typical of social networks. Overall, the network

does not present neither an assortative or disassortative behaviour. The only exception is the eigenvector

centrality in the during-crisis period, where the indicator is statistically significantly higher than in a

random network. The absence of disassortative mixing may seem in contrast with the literature, that

shows disassortativity in financial networks (see e.g., Mistrulli, 2011; Hurd, 2016). This may be explained

considering that we included in our analysis only the largest European banks, discarding the smallest, and

arguably less interconnected institutions. The result may also be related to the presence of a community

structure. In fact, Newman & Park (2003) shows that communities can generate a higher than expected

assortative mixing since nodes in larger and denser groups have a higher number of connections relative

7The random networks have been computed by a rewiring procedure that consists in randomly selecting two edges

(a,b) and (c,d) and substituting them with (a,d), (b,c). The rewiring procedure is repeated iteratively until the network is

completely randomized (see for instance Fortunato, 2010). This procedure allows us to destroy existing structural properties

while maintaining the degree of the nodes and other features such as the average strength. The significance level is obtained

from the quantiles of the empirical distribution of the indicators computed on 1000 randomly rewired networks.
8Coreness is an indicator that denotes the tendency of a network to have a strongly connected core and a sparsely

connected periphery (Borgatti & Everett, 2000).
9The clustering coefficient is an indicator that denotes the tendency of the network to “create triangles”, that is, when

a node a is connected to nodes b and c, there is a high chance that b and c are connected.
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to nodes than in smaller communities. This would lead to highly interconnected nodes being connected

to other highly connected nodes, increasing the assortativity.

Figure 6 shows a visual representation of the networks using a force layout color-coded by country.

The representation confirms the structural properties suggested by the indicators: the banking system

is characterized by a high interconnection and a relevant community structure aligned with national

division, especially in the during-crisis period.

The comparison with existing literature is complicated by the differences in methodology and sample

selection. As we mentioned before, the structure identified here differs significantly from that identified

in studies that focus on actual bilateral exposures in national banking systems. They describe much

sparser networks, scale-free distributions for the degree and strength, core-periphery configurations and

disassortative mixing (Mistrulli, 2011). Such divergence can be explained by the fact that in our analysis

we include only large banks that are part of the core of the network in each individual country. The

comparison with studies focused on international banking networks shows more consistent results. Al-

dasoro & Alves (2016), using the algorithm from Anand et al. (2015) on a dataset of bilateral exposure

between large European banks, find a large core composed by twenty to thirty banks, depending on the

type of interconnections considered and Craig & Von Peter (2014) underline the presence of a strongly

interconnected structure in Europe.

To our knowledge, our work is the first to put emphasis on the presence of geographical communities

in the European banking system. Aldasoro & Alves (2016) did not provide indicators to measure this

feature and Craig & Von Peter (2014) only describe qualitatively the presence of regional homophily

and the higher density of the network structure within countries. From an economic point of view, the

identification of national communities is consistent with the different national legal and economic systems,

and possibly related to the European sovereign debt crisis and CDS pricing.

It is well known in the complex network literature that, in general, structural and topological properties

influence the diffusion of processes on a network and strongly affect the vulnerability to failures and attacks

(Watts & Strogatz, 1998; Newman, 2002; Fortunato, 2010). Concerning banking systems, the structural

properties have clear implications in terms of diffusion of financial contagion and the assessment of the

network properties is useful for both financial institutions and policy makers. The literature agrees that

the presence of a highly interconnected structure in the interbank market increases the stability of the

system, but that in presence of liquidity shocks, it makes the system less stable, leading to a robust-

yet-fragile property. Moreover, the relationship between structural properties and stability is complex

and non linear (Hurd, 2016; Chinazzi & Fagiolo, 2015). Acemoglu et al. (2015), for instance, shows that

more densely connected financial networks enhance financial stability but, beyond a certain point, dense

interconnections lead to a less stable financial system. Hurd (2016) shows that the presence of assortative

mixing facilitates the diffusion of contagion in the system, and Hübsch & Walther (2017) show how the
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presence of inhomogeneities among banks can enhance contagion risk. The modelization of the diffusion

of financial contagion in networks partitioned in communities is still an open issue in the literature.

Applications in other fields show that the presence of communities influences the diffusion of processes

over a network (see Weng et al., 2013; Galstyan & Cohen, 2007). We thus expect that this feature may be

relevant also in financial applications. Finally, we underline that the presence of communities, similarly to

other structural network properties, may have an influence on the interpretation of centrality indicators

and raises new questions on how to measure the importance of a node in a system. In the next section,

we try to address these questions by introducing a decomposition of strength centrality.

Figure 6: tlasso networks - graphical representation
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Graphical representations of the tlasso networks using a force layout. For clarity, only the edges corresponding to a partial

correlation larger than 0.1 in absolute value are depicted.

4.4. Centrality Measures for Networks With Communities

In the previous section, we analysed the structural properties of the estimated networks of the Eu-

ropean banking system using the tlasso model. Here, we shift the focus to the analysis of individual

institutions, studying their interconnectedness and their systemic relevance. Following the definition re-

ported by Schwarcz (2008), systemic risk is closely related to the propagation and reverberation of risk

in a system, and in the literature it has been typically measured either by econometric indicators or
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by a network approach. Concerning the econometric approach, several studies developed indicators that

measure risk trasmission and spillover to the system and from the system, such as marginal expected short-

fall (Engle & Brownlees, 2010), expected capital shortfall (Acharya et al., 2012), CoVaR and ∆CoVaR

(Adrian & Brunnermeier, 2016). Concerning to network approaches, they typically aim at assessing the

relevance of an institution in a system using traditional centrality measures such as eigenvector-, strength-

and betweeness centrality (see for instance Alter et al., 2015), or by introducing specific measures such

as debtrank by Battiston et al. (2012).

A common feature of most of the measures in the literature, either econometric or network-based, is

that they summarize in a single measurement the relationship between a given institution and the system,

but often do not allow to characterize the relationship between an individual bank’s systemic risk and

the topological features of the entire network. We introduce a methodology that allows to take explicitly

into consideration the network topology, in particular the presence of geographical communities while

assessing the role of each individual institution. To clarify the concept, we can think of a network with

a geographical community structure. In such network, a bank may be characterized by high centrality

because it has strong international interconnections or because it is strongly connected to banks in the

same country. We can imagine that these two situations can be very different for regulators who want

to measure the systemic importance of a bank or understand the level of EU integration. Our proposed

method provides a flexible tool for dealing with this situation by introducing a decomposition of strength

centrality. This measure, when computed on partial correlation networks, has an interesting interpretation

in terms of shock diffusion, that we discuss below.

We first recall the interpretation of the partial correlation matrix in terms of hedge regressions, that

are a set of regressions in which each asset is regressed against all others (see Stevens, 1998). Assuming

that E[X] = 0 (where 0 is a conformable vector of zeros), the hedge regressions are expressed as:

X
(i)
t =

∑
j 6=i

β
(i)
j X

(i)
t + ε

(i)
t i = 1, . . . ,m, (11)

where X(i) is the ith asset, β
(i)
j the coefficient for the jth asset in the ith regression and ε(i) the residuals.

Or in matrix form

X = BX + ε, (12)

where B is a matrix with off-diagonal elements ij equal to β
(i)
j and diagonal elements equal to 0.

We can relate the elements ωij of Ω, the precision matrix of the data, to the βs as

ωij =


−
β

(i)
j

νi
if i 6= j

1

νi
if i = j

, (13)

where νi is the variance of ε(i). Using (12), (13), and (1), after some algebra we have

X = D
− 1

2

Ω PD
1
2

ΩX + ε. (14)
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In order to account for the different conditional variances in the X(i)s, we introduce the rescaled variable

x = D
1
2

ΩX, in such a way that the rescaled residuals e = D
1
2

Ωε have unit variance. By premultiplying

the terms in (14) by D
1
2

Ω we have

x = Px + e. (15)

The rescaling allows to remove the effects of variables endogenous to the network by expressing the extent

of the shock in terms of the conditional variances (see Anufriev & Panchenko, 2015).

Considering the regression interpretation presented here, we now use the network structure estimated

by tlasso to study the systemic risk and financial contagion. As we mentioned before, the setting described

so far does not allow to identify direct causation between variables, since it considers only synchronous co-

movements. Similarly to Anufriev & Panchenko (2015), we then consider an observational interpretation

of (15), where the residuals e can be seen as an exogenous shock, and the partial correlation network

edges as the channels of propagation: a shock e hitting a set of nodes will have an effect on the other

nodes in virtue of (15) and the effect on the direct neighbours of the hit nodes is computed as P e (first

round effect).

We can then compute the effect on the entire system in terms of a unitary shock hitting the ith node

in terms of first round effect as

cSi =
∑
i6=j

αjρij = α′P ei (16)

where ei is a unitary shock hitting node i and α is a vector denoting the weight of each node in the

system. Notice that in case of α = 1, where 1 is a conformable vector of ones, the quantity cSi consists in

the strength centrality of node i. For the symmetry of P , the network is not directed and the quantities

can also be interpreted as the effect of a unitary shock hitting all the nodes on the node i.

As (16) is an homogeneous functions of degree 1 with respect to α, we can then use the following

Euler decomposition:

cSi = α′P ei =

m∑
j=1

αj
∂α′P ei
∂αj

= α′∇(α′P ei), (17)

where ∇ denotes the gradient with respect to vector α. We emphasize that this framework accounts

only for the immediate transmission of shock. Once the shock is transmitted to the banks connected to

the first one, it could be propagated further, generating a cascade effect. We could account for these

propagation effects by considering different rounds of transmission of the shock, similarly to Anufriev

& Panchenko (2015) or Battiston et al. (2012). Here, we consider only the first round of contagion

transmission, and focus on the short term effects. We leave the modeling of successive steps for further

research, also considering that the structural properties of the network may change after a shock hits due
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to reactions of banks and interventions from banking authorities.10

These components can then be aggregated according to meaningful attributes of the data, in our case

the geographical location of the banks.

We apply the decomposition of strength centrality to the networks estimated using tlasso. In order

to make the results easier to read, and to allow for a better comparison between banks, we perform the

strength decomposition according to three broad geographical groups and not on individual countries.

The regions we consider are Southern European countries (i.e., Italy, Spain and Portugal), Central Euro-

pean countries (i.e., Germany, France, Austria, Belgium and Netherlands) and the countries outside the

Eurozone (i.e., United Kingdom, Sweden and Denmark).11

Table 6 shows the average decomposition of the strength in each geographical area. On average,

the largest part of the strength centrality of a bank can be attributed to connections with banks in the

same geographical region. This confirms the presence of a community structure aligned to geographical

divisions, especially in Southern Europe and for the group of countries outside the Eurozone, for which

the edges within the same group in the crisis-period account respectively for 69.19% and the 68.83% of

the total strength centrality. Instead, the banks in Central European countries seem to be characterized

on average by a slightly less regional interconnectedness, as for them edges directed to banks in the same

area account on average for 57.98% of the strength centrality. The result would be even more pronounced

if we exclude the French banks, that are tighly connected to each other. The decomposition yields similar

results for the two periods, denoting stability in the structure of European banking network. Still, in the

post-crisis period the banks show on average a higher international connectivity, quantified by a lower

share of strength centrality attributable to banks in the same geographical group, especially for the banks

outside the Eurozone.

Figure 7 provides the relative decomposition of strength centrality for individual banks (top panels),

the value of strength centality (middle panels) and eigenvector centrality (bottom panels). The decom-

position allows us to highlight the specific position of each bank in the system, and to describe more

accurately its properties. We see for instance that Italian and French banks are characterized by a lo-

calized interconnectivity, while German, Danish and Dutch banks have on average stronger connections

to banks in other geographical areas. The representation allows also to easily identify outliers and banks

with specific features, such as the Italian bank BNL, whose connections are mostly towards Central Euro-

pean banks. This is not surprising, as BNL is part of the French BNP Paribas group. The identification

10The effect of the shock after all the reverberations can be measured as the Bonacich power centrality (Anufriev &

Panchenko, 2015), and it can be decomposed as in (17). However, due to the reverberations, the shocks diffuse more

uniformly to the entire networks, making the decomposition less informative. The results are not reported for brevity, and

are available upon request.
11The decomposition of strength centrality for individual countries gives results consistent with those reported below.

They are available from the authors upon request.
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of the most internationalized banks can be used to detect potential bridges for the diffusion of contagion

between distant areas. Such banks may then be monitored more accurately by regulators. We also show

how the decomposition of the strength centrality can be used to highlight specificities of each node related

to the structural properties of the network. For instance, focusing on RBS (Royal Bank of Scotland),

we notice that in the during-crisis period, it is one of the institutes with the highest eigenvector cen-

trality, but its interconnectivity structure spans mostly a limited geographical area. According to the

estimated network structure, a potential shock hitting RBS would therefore spread initially to a localized

neighbourhood, while a shock on a bank with a wider interconnectivity structure may potentially affect

international institutions faster.

Table 6: Decomposition of strength centrality - average % of strength directed to each geographical area

During-crisis Post-crisis

Southern Central Outside Southern Central Outside

Southern 69.19 % 23.42 % 7.84 % 67.20 % 21.17 % 12.06 %

Central 21.05 % 57.98 % 21.82 % 20.19 % 56.52 % 27.85 %

Outside 7.60 % 22.21 % 68.83 % 10.85 % 23.44 % 60.75 %

Decomposition of strength centrality. The Table reports the average value of the strength directed to each geographical area.

Southern: Southern European countries (i.e., Italy, Spain and Portugal). Central: Central European countries (i.e., Germany,

France, Austria, Belgium and Netherlands). Outside: Countries outside the Eurozone (i.e., United Kingdom, Sweden and Denmark).

We point out that the interaction between the structural properties of the network and the local

centrality measures assumes a particular relevance for the development of macroprudential regulation and

supervision toolkits, that aim to protect the financial system as a whole, in contrast to microprudential

regulation, which focuses on the stability of individual institutions, as discussed by Freixas et al. (2015).

In this context, the strength centrality decomposition that we propose can be used to complement

other network based centrality measures in order to define a new multi-dimensional approach for the

identification of systemic relevance, in a spirit similar to the G-SIB framework, an indicator-based assess-

ment methodology introduced in November 2011 by the Financial Stability Board as a response to the

2008 global financial crisis (FSB, 2013).

The question whether a bank with more localized interconnections poses a smaller or greater threat to

the system in terms of contagion risk is still an open issue in the literature and should be further studied.

On the one hand, a localized system may slow down the diffusion of distress, allowing the contagion to

dissipate before it reaches all the nodes in the network. On the other hand, the concentration of distress

in a limited group of banks may reduce the system’s ability to dissipate shocks and may trigger feedback

effects that would amplify the initial shock. Still, the strength centrality decomposition that we propose

can provide a useful tool for the characterization of the contagion channels for each bank. The study of
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Figure 7: Decomposition of strength centrality and centrality measures.
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Geographical decomposition of strength centrality (upper panels) and value of strength centrality (middle panels) and eigenvector

centrality (lower panels). The three geographical areas (Southern Europe, Central Europe and outside Eurozone) are highlighted

with red vertical bands. Southern: Southern European countries (i.e., Italy, Spain and Portugal). Central: Central European

countries (i.e., Germany, France, Austria, Belgium and Netherlands). Outside: Countries outside the Eurozone (i.e., United

Kingdom, Sweden and Denmark).

contagion mechanisms in networks with geographical communities is high on our agenda.

5. Conclusion

In this work, we use partial correlation networks to estimate the structure of the European banking

system from CDS data, introducing the tlasso model in the financial network literature. Such model

estimates efficiently sparse partial correlation networks under the assumption of a multivariate t-Student

distribution, inducing sparsity by means of a 1-norm matrix penalization. We show by a simulation

28



analysis and on real CDS data that the tlasso is a suitable tool for the estimation of the European

banking system network, as it performs better than the alternative glasso model when the data are non

Gaussian and it is robust to model misspecification and to the presence of outliers.

We then study the topological properties of the financial networks estimated using tlasso, focusing on

the meso-scale properties. We find evidence of a highly interconnected network characterized by a relevant

community structure based on geographical divisions, especially during the crisis period. The network is

also characterized by the absence of a core-periphery structure and limited evidence of assortative mixing.

The results contribute to the growing literature that analyses the network topology of the European

banking systems and is consistent with previous works (Craig & Sald́ıas, 2016; Aldasoro & Alves, 2016).

Instead, as expected, there are relevant differences compared to studies that focus on national banking

systems, where banking networks are typically characterized by the presence of hubs and core-periphery

structures.

Finally, we propose a novel decomposition of the strength centrality measure, that can be used to

assess the contagion risk exposure of financial institutions and to account for the topological features of

the network. We use the decomposition to analyse the centrality of financial institutions in presence of

geographical communities, and we observe that banks from Southern Europe and from Outside the Euro-

zone on average have a more geographically localized interconnectivity structure, while Central European

banks have on average a more internationalized set of interconnections. The presence of geographical

communities emerges both during and after the crisis, and appears to be more prominent in the crisis

period.

Our study is, to our knowledge, one of the first to put such emphasis on the presence of a geographical

community structure, to quantify the geographical centrality of each bank in an international banking

system. Further research will focus on the analysis of the mechanisms of contagion diffusion in a network

with communities, and the implications in terms of macroprudential supervision policies.
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ié

té
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Appendix B. Network Analysis

The characteristics of a network can be summarized using a series of indicators. Such indicators are

typically categorized into local and global, where local indicators refer to characteristics of individual

nodes and global indicators refer to properties of the network as a whole.

In our analysis, we focus on undirected weighted networks (i.e., the edges identified by penalized

partial correlation networks do not have a direction but only a weight corresponding to the estimated

partial correlation). We are primarily interested in two features of the network: the centrality of the

nodes and the presence of structural properties such as core-periphery or community structure.

Appendix B.1. Centrality Measures and Freeman Centralization

Centrality measures are indicators used to quantify the importance of individual nodes in the net-

work. We present here four typical measures: strength centrality, eigenvector centrality, Bonacich power

centrality and betweenness centrality.

The strength centrality of node i is defined as:

cSi =

m∑
j=1

wij , (B.1)

where cSi is the strength centrality, or strength of node i, m is the total number of nodes and wij is the

weight of edge ij. This measure can be considered an extension of degree centrality to weighted networks

(Barrat et al., 2004).

The eigenvector centrality is a measure that assigns to each node a score based on the principle that

connections to important nodes contribute more to centrality than connections with less central nodes,

showing a recursive nature. Formally, the ith node’s centrality score is proportional to the sum of the

scores of all the nodes which are connected to it:

cEi =
1

δ

m∑
j=1

aijc
E
j , (B.2)

where cEj is the eigenvector centrality of node j, aij is the ijth element of the adjacency matrix A and δ

is a constant. Under suitable conditions, eigenvector centrality can be computed as the eigenvector corre-

sponding to the largest eigenvalue of the adjacency matrix A. Eigenvector centrality can be generalized

to weighted networks using the weighted adjacency matrix W instead of A.

Bonacich power centrality is another recursive centrality measure, defined as:

cBi =

m∑
j=1

(α+ βcBj )aij (B.3)

where cBi is the Bonacich power centrality of node i, α and β are two constants, and aij is ijth element

of the adjacency matrix A (Bonacich, 1987). Similarly to eigenvector centrality, a node’s centrality is

influenced by the neighbours’ centralities. For convenience, we consider the case in which α = β = 1.
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Finally, we consider betweenness centrality, that is based on the concept of the shortest path (i.e.,

the uninterrupted chain of edges that connects any two nodes with the minimum number of steps).

Betweenness centrality for each node is computed as the number of these shortest paths that pass through

it (Newman, 2010).

Appendix B.2. Freeman Centralization

Network centralities are local measures that apply to individual nodes. It is also possible to consider

global measures that characterize the centralization of the entire network computing the Freeman cen-

tralization measure as follows (Freeman, 1978):

C =

∑m
i=1 c∗ − ci

max
(∑m

i=1 c∗ − ci
) , (B.4)

where ci is a local centrality measure for the ith node, c∗ is the centrality corresponding to the most

central node in the network and max
∑m
i=1(c∗−ci) is a normalization factor computed on the network with

the highest centralization index for a given number of nodes.12 In other words, Freeman centralization

calculates the difference between the centrality of the most central node and all the others, Therefore, a

network with a high centralization has a node, or a group of nodes, that has a high centrality and a large

number peripheral nodes.

Appendix B.3. Modularity

Modularity is a measure that allows us to measure how well a certain partition describes the network.

A high level of modularity indicates that the number of edges connecting nodes in the same partition is

higher than expected. Given a partition G = {G1, . . . , Gp}, we can define modularity Q as follows:

Q =
1

2M

m∑
i=1

m∑
j=1

(
wij −

cSi c
S
j

2M

)
δ(gi, gj), (B.5)

where wij is an element of the weighted adjacency matrix, cSi is the strength of node i, M =
1

2

∑m
i=1

∑m
j=1 wij ,

gi is the group in the partition in which the element i belongs and δ(gi, gj) is 1 if gi = gj and 0 otherwise.

Modularity can be computed on any partition of the network. In this paper, we use the extention of

modularity suitable for signed networks proposed by Gómez et al. (2009).

Appendix B.4. Clustering Coefficient

The clustering coefficient measures the tendency of the network to create triangles. In a network with

communities it is likely that, for a given node, two of its neighbouring nodes are connected to each other,

12For several centrality measures the most centralized network is star-shaped, while for the eigenvector centrality it is a

disconnected network with a single edge connecting two nodes and a large number of disconnected nodes.
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“closing the triangle”.

We consider the clustering coefficient for weighted networks proposed by Fagiolo (2007), which is defined

as:

cwi =
(W [1/3])3

ii

ki(ki − 1)
, (B.6)

where ki is the degree of node i and W [1/3] = {w1/3
i,j }, that is, the matrix obtained by the weight matrix

W by taking the third root of each entry. The measure takes values in [0,1] and is equal to the non

weighted clustering coefficient, when the weights are either 0 or 1. The clustering coefficient cwi is a local

measure that applies to each individual node i. Still, it is possible to derive a global clustering measure

Cw computed as the average of cwi over all the nodes. Because the clustering coefficient is not defined

for negative weights, we set the weight for negative edges to zero.

Appendix B.5. Assortativity

An useful indicator to describe the structure of a network is assortativity, defined as the Pearson

correlation coefficient for a nodes’ characteristic computed over the edges of the network. This indicator

measures the extent to which nodes with similar properties are connected to each other and can be

computed for virtually any property assigned to the nodes, including categorical ones (Newman, 2010).

Typically it computed using the degree centralities of the nodes. In a weighted network, the expression

for assortativity with respect to a scalar characteristic is the following:

r =

∑m
k=1 wk(xk − µx)(yk − µy)√∑m

k=1 wk(xk − µx)2
∑
k wk(yk − µy)2

, (B.7)

where k is the index corresponding to each edge, wk is the weight of edge k, xk and yk are scalar

characteristics of the originating and destination nodes (in the paper we consider centrality measures)

and µx and µy are the respective average values weigthed by the edges’ weights. In other words, the

assortativity is the weighted correlation coefficient over the edges of each network and thus lies in the

range [-1,1] with r = 1 indicating perfect assortativity and r = −1 indicating perfect disassortativity.

Note that assortativity is not defined for negative weights, therefore in the computation of the indicator

we set the weight for negative edges to zero.

An assortative network can be consistent with a core-periphery structure, where we observe a core

of highly central nodes surrounded by a less dense periphery of nodes with lower centrality. Newman

& Park (2003) show that a high level of assortativity can be found also in network characterized by the

presence of communities, typically social networks.

Appendix C. Robustness Checks

Here, we report some robustness checks on the model by testing different specifications for the input

data. We control for two potential sources of misspecification in the model (ARMA-GARCH effects in
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the time series and exposures of the banks to common risk factors), and we investigate the estimated

network structure computed by considering only distressed market periods, which are characterized by

increasing CDS spreads. We report a set of network indicators computed on the estimated networks in

Table C.8. For brevity, we present only the data for the during-crisis period.

First, we control for the presence of serial correlation and heteroskedasticity. The tlasso model requires

the data to be approximately i.i.d., and the presence of serial correlation in CDS log-differences or in

their variance might be a problem for the estimation. We consider two different multivariate models:

first a Constant Conditional Correlation (CCC) GARCH(1,1) model (Bollerslev, 1990), and a Dynamic

Conditional Correlation (DCC) GARCH(1,1) (Engle, 2002). For both models, we estimate an ARMA(1,1)

process for the mean. Once the model is fitted, we estimate the tlasso model on the residuals, in a two-

step procedure similar to Anufriev & Panchenko (2015) and Billio et al. (2012). We report some of

the indicators of Section 4.3 computed on the residuals of the GARCH models in Table C.8 (columns

b,c). The results are rather similar to the ones computed directly on the log-differences of CDS spreads

(column a), consistently with the fact that volatility clustering and serial correlation in the data were not

particularly relevant.

As a second robustness check, we apply a factor model to the data to control for the exposure to

conditioning variables. The factors we consider are 5-year sovereign CDS spreads of the 11 European

countries to which the banks in our sample belong (i.e., Austria, Belgium, Denmark, France, Germany,

Italy, Netherland, Portugal, Spain, Sweden and United Kingdom). In order to avoid collinearity issues, we

perform a principal component analysis, retaining the first 8 orthogonal factors, which together explain

more than 80% of the variability in the dataset. From Table C.8, (column d), we see that the value of the

indicators is rather similar to those computed from original data. Notably, the modularity of the country

partition is still positive, indicating that the clustering of banks along national borders is present even

after controlling for the exposure to sovereign debt.

Finally, we test if the network structure is different in presence of market distress. We focus on the

periods characterized by upward movements of the CDS spreads, that is, increases in credit risk. We

use the following method to identify these periods of distress. We first construct an equally weighted

porfolio of bank CDS spreads and then select the points in time at which the log-returns of the porfolio

are positive, corresponding to an average increase of the CDS spreads. In this way, we obtain for the

during crisis period 102 observations, which we use to compute the sparse partial correlation network

with tlasso. Also in this case, the values of the network indicators presented in Table C.8 (column e) are

similar to those obtained for the original specification, indicating that the partial correlation networks are

stable also in periods of increasing spreads. This result is consistent with the fact that the distribution

of the CDS spreads log-difference is symmetric, as implied by the multivariate t-Student assumption and

suggested by the analysis of the data in Section 4.1.
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Table C.8: Robustness check - Network indicators

During-crisis period

Raw data

(a)

CCC-

GARCH

(b)

DCC-

GARCH

(c)

Country

factors (d)

Distressed

market (e)

Density 49.25% 47.53% 47.74% 44.95% 43.44%

Avg strength 0.95 0.95 0.95 0.93 0.96

Largest connected component 100% 100% 100% 100% 100%

Positive edges % 87.77% 90.95% 90.99% 90.43% 84.65

Positive edges % (weighted) 96.59% 97.43% 97.43% 97.63% 94.91

Freeman Centralization 0.47 0.43 0.43 0.48 0.47

Coreness 0.11 0.12 0.12 0.13 0.11

Modularity (wrt country) 0.36 0.34 0.34 0.36 0.37

Clustering coefficient 2.70% 2.54% 2.54% 2.60% 2.82%

Assortativity (wrt centrality) 0.61 0.59 0.59 0.66 0.43

Network indicators computed on tlasso networks in the during-crisis period (01/01/2009 – 31/12/2012) with alternative model

specifications. Raw data (a) refers to the network computed with the specifications presented in Section 4. CCC-GARCH (b) and

DCC-GARCH(c) refer to the network computed on the residuals of Constant and Dynamic Conditional correlation GARCH model

fitted on the log-differences of CDS spreads, respectively. Country factors (d) refers to the network computed on the residuals of

a factor regression where the factors are Sovereign European CDS spreads for 11 European countries. Distress market (e) refers

to the network computed in periods of increasing spreads.
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