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Abstract

We propose and validate a novel extension of Hybrid High-Order (HHO) methods to
meshes featuring curved elements. HHO methods are based on discrete unknowns that
are broken polynomials on the mesh and its skeleton. We propose here the use of phys-
ical frame polynomials over mesh elements and reference frame polynomials over mesh
faces. With this choice, the degree of face unknowns must be suitably selected in order to
recover on curved meshes the same convergence rates as on straight meshes. We provide
an estimate of the optimal face polynomial degree depending on the element polyno-
mial degree and on the so-called effective mapping order. The estimate is numerically
validated through specifically crafted numerical tests. All test cases are conducted con-
sidering two- and three-dimensional pure diffusion problems, and include comparisons
with discontinuous Galerkin discretizations. The extension to agglomerated meshes with
curved boundaries is also considered.
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1. Introduction

The continuous growth of high-performance computational resources and the increas-
ing predictive capabilities of numerical models has significantly widened the range of
real-life, multi-physics configurations that can be simulated. The trend is towards in-
creasingly complex systems of partial differential equations (PDEs) in complex domains,
possibly focusing on a multiscale spatial and temporal behaviour. Also the amount of
physical data (permeability, mechanical properties, etc.) to be incorporated into large-
scale models in order to replicate the complexity encountered in the real-world is rapidly
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increasing. In this context, the geometrical flexibility of numerical methods is a crucial
aspect that can greatly reduce the effort required to obtain an accurate representation
of both the computational domain and the problem data. We develop and numerically
investigate here a specific instance of discretization methods for PDEs that support
high-order approximation on curved (high-order) meshes. Curved meshes are commonly
employed to provide a satisfactory representation of the domain boundary with only
a moderate number of mesh elements, so that the polynomial degree can be increased
while keeping the global number of degrees of freedom (DOFs) under control. The role
that curved meshes play in obtaining accurate solutions when combined with high-order
discretization methods has been demostrated, e.g., in [1, 2, 3].

In recent years, discretization methods supporting arbitrary approximation orders on
general meshes have received an increasing amount of attention. We cite here, among
others, Discontinuous Galerkin (DG) and Hybridizable Discontinuous Galerkin (HDG)
methods, see e.g. [4, 5, 6, 7], Hybrid High-Order (HHO) methods [8, 9], and Virtual
Element Methods (VEM) [10]. The implementation of efficient DG and HDG methods
on curved meshes is an open field of research. On the one hand, both Bassi et al.
[5] and Warburton [11] proposed the use of polynomial spaces defined in the physical
frame. In the former reference, orthonormal bases are obtained by means of a modified
Gram–Schmidt procedure to ensure numerical-stability at high-polynomial degrees, while
in the latter the same goal is attained by incorporating the spatial variation of the
element Jacobian into the physical basis functions. On the other hand, recent works
by Chan et al. [12, 13] rely on reference frame polynomial spaces introducing weight-
adjusted L2-inner products in order to recover high-order accuracy. HDG has been
employed on meshes with curved boundaries, mainly in the context of compressible flow
problems [14, 15]; eXtended HDG with level-set description of interfaces has been recently
investigated by Gurkan et al. [16]. Fidkowski [17] compared DG and HDG methods
for unsteady simulations of convection-dominated flows on mapped deforming domains.
Blended isogeometric DG methods formulated on elements that exactly preserve the
CAD geometry have also been recently proposed in [18]. Finally, we cite here the very
recent work [19] of Beirão da Veiga et al. on two-dimensional Virtual Element methods
supporting meshes with curved edges.

To this day, HHO methods have been essentially confined to meshes with straight
edges in two space dimensions and planar faces in three space dimensions. In this work,
we devise a novel extension of HHO methods to meshes featuring curved elements, assess
its performance, and compare it with DG methods. HHO methods are based on dis-
crete unknowns that are broken polynomials on elements and faces, and rely on two key
ingredients: (i) local reconstructions obtained by solving small, embarassingly parallel
problems inside each element and (ii) high-order stabilization terms penalizing face resid-
uals. These ingredients are combined to formulate local contributions, which are then
assembled as in standard finite elements. The construction is devised so that only face
unknowns are globally coupled (element unknowns can be locally eliminated by static
condensation), leading to global problems of relatively small size and compact stencil
that can be solved efficiently, both sequentially and in parallel.

The crucial issue to extend HHO methods to curved meshes lies in the definition
of face unknowns, for which we propose the use of reference frame polynomials. With
this choice, the degree of face unknowns must be suitably selected in order to recover on
curved meshes the same convergence rates as on straight meshes. We provide an estimate
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of the optimal face polynomial degree depending on the element polynomial degree and
on the so-called effective mapping order; see (23) below. The performance of the resulting
method applied to a pure diffusion problem is thoroughly assessed through a compre-
hensive set of tests. Specifically, the numerical results presented in Section 5 compare
h- and p-convergence rates of HHO and DG methods over two- and three-dimensional
curved meshes. We consider both randomly and regularly distorted mesh sequences,
which do not tend to affine meshes upon refinement, as well element subdivision mesh
sequences, where mesh elements have faces that are less and less curved (asymptotically
affine elements). In Section 6, we also consider p-convergence on curved computational
domains discretized by means of agglomerated meshes in the spirit of [5].

The material is organized as follows. In Section 2 we introduce the discrete setting
(mesh, mapping functions, and numerical integration). In Section 3 we discuss local
polynomial spaces over elements and faces and projections thereon. The HHO and DG
discretizations of the Poisson problem used for the numerical study are formulated in
Section 4. The numerical results on standard curved and aggomerated meshes are col-
lected in Sections 5 and 6, respectively. Finally, some conclusions are drawn in Section
7.

2. Discrete setting

In this section we discuss the main assumptions on the mesh and provide details on
the functions that realize the mapping from reference geometries to physical elements,
as well as on the numerical computation of integrals over elements and faces.

2.1. Mesh

Let Ω Ă Rd, d P t2, 3u, be a bounded connected open domain with Lipschitz boundary.
For any n P t1, . . . , du, let Kn be a fixed set of reference geometries defined in the
Cartesian frame ξ “ tξiu1ďiďn. The set of reference geometries contains, e.g., triangular
and quadrilateral reference elements for n “ 2, tetrahedral, hexahedral, pyramidal and
prismatic reference elements for n “ 3.

We consider a possibly curved mesh Th of Ω in the usual finite element sense, i.e., Th
is a set of disjoint open elements T P Th with non-empty interior that satisfy

Ω “
ÿ

TPTh

T , (1)

and it holds that h “ maxTPTh
hT with hT denoting the diameter of T . Notice that (1)

entails a simplification: more generally, Ω is only approached as the meshsize h tends
to 0, as is the case for the numerical tests of Section 6. Mesh faces are collected in the
set Fh, partitioned as Fh “ F i

h YFb
h , where F i

h collects internal faces and Fb
h boundary

faces. For any mesh element T P Th, the set FT – tF P Fh : F Ă BT u collects the mesh
faces composing the boundary of T .

We make the following assumptions:

(i) For each T P Th, there exists a reference element κ P Kd and a polynomial mapping
ΨT such that T is the image of κ through the mapping, i.e. T “ ΨT pκq.
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(ii) For every F P Fh, there exist a reference face σ P Kd´1 and a polynomial mapping
ΨF such that F “ ΨF pσq.

(iii) Quadrature rules of arbitrary order are available on every reference element κ P Kn
and every reference face σ P Kd´1.

2.2. Reference-to-physical-frame mapping functions

For each physical element T P Th, the reference element κ P Kd is such that it has
the same number of faces and nodes as T . The polynomial space Mm

d pκq, m ě 1, for
each component of the mapping ΨT P rMm

d pκqs
d is such that its dimension matches the

number of nodes of κ, and is chosen in the set tPmd ,Qmd ,Smd u, where

(i) Pmd pκq is spanned by the restriction to κ of the polynomial functions of d variables

and total degree ď m, so that dimpPmd q “
pm`dq!
m!d! ;

(ii) Qmd pκq is spanned by the restriction to κ of polynomial functions of d variables and
degree ď m in each variable, so that dimpQmd q “ pm` 1qd;

(iii) Smd pκq is the restriction to κ of a serendipity space of polynomials of d variables,
i.e., any set containing all the polynomials of total degree ď m in each variable that
can be determined uniquely by the edge and face nodes, see e.g. Brenner and Scott
[20, § 4.6].

We remark that Lagrange polynomials over the set of nodes can be obtained solving
linear systems involving the generalized Vandermonde matrix associated to Mm

d pκq, see
e.g. Karniadakis and Sherwin [21, Section 3.3.2].

Similarly, for each physical face F P Fh, the polynomial space Mm
d´1pσq for each com-

ponent of the mapping ΨF P rMm
d´1pσqs

d is such that its dimension matches the number of
nodes of F . In the case of mesh faces, Mm

d´1pσq is chosen in the set tPmd´1pσq,Qmd´1pσq,Smd´1pσqu.
Throughout the rest of the paper, both the element polynomial mappings tΨT : T P

Thu and the face polynomial mappings tΨF : F P Fhu are assumed to be invertible.

2.3. Numerical integration

Since Gaussian quadrature rules of arbitrary order are available on reference geome-
tries, the use of reference-to-physical frame mappings is a consolidated strategy for the
numerical integration of both polynomial and non-polynomial functions over mesh ele-
ments and faces.

Let T P Th be such that T “ ΨT pκq for some κ P Kd. The integral over T of a
function v can be computed as follows:

ż

T

vpxq dx “

ż

κ

pv ˝ΨT qpξq|JΨT
pξq| dξ, (2)

where x and ξ denote, respectively, the physical and reference space coordinates, and JΨT

is the Jacobian of the mapping function ΨT . If v is a polynomial function, the polynomial
degree q of the integrand in the right-hand side of (2) depends on the polynomial degrees
of v, ΨE and |JΨT

|, say k and m and j, respectively. Since, in particular, q “ km ` j,
the degree of exactness of the quadrature rule required to compute the integral exactly
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rapidly increases when considering high polynomial orders k on curved meshes (for which
m ą 1).

A similar strategy can be employed to compute the integral of a function v on a face
F P Fh such that F “ ΨF pσq for some σ P Kd´1:

ż

F

vpxq dx “

ż

σ

pv ˝ΨF qpξq|JΨF
pξq| dξ.

To alleviate the notation, from this point on both the integration variable and the
measure are omitted from integrals.

3. Local polynomial spaces and projections

We discuss in this section key ingredients of both HHO and DG methods: local
polynomial spaces on elements and faces and projectors thereon.

3.1. Polynomial spaces on elements

Physical frame polynomial spaces have been considered by several authors, e.g. Gassner
et al. [4], Bassi et al. [22], and proposed as a key instrument to build DG approximations
with optimal approximation properties on general polyhedral meshes, see Di Pietro and
Ern [23, Chapter 1].

Let a mesh element T P Th and a non-negative integer k be fixed. We consider the
space PkdpT q spanned by the restriction to T of d-variate polynomials of total degree ď k.
Physical frame basis functions are defined so as to inherently span the space PkdpT q even
in case of arbitrarily shaped elements with possibly curved faces. From a practical point
of view, in order to find a numerically satisfactory physical frame basis, we rely on the
procedure described in Bassi et al. [5]: starting from a monomial basis for PkdpT q defined
in a local reference frame aligned with the principal axes of inertia of T , an orthonormal
basis is obtained by means of a modified Gram–Schmidt orthogonalization procedure.

Consider now a smooth enough real-valued function v. The L2-orthogonal projection
πkT v P PkdpT q of v is such that

ż

T

`

v ´ πkT v
˘

w “ 0 for all w P PkdpT q. (3)

This relation defines uniquely the polynomial πkT v as the best approximation of v in
PkdpT q in the L2-norm sense.

Of course, one may choose to minimize the projection error in a different norm. A
relevant choice in the present context corresponds to the elliptic projection $k

T v P PkdpT q
of v that satisfies

ż

T

∇
`

v ´$k
T v

˘

¨∇w “ 0 for all w P PkdpT q and

ż

T

`

v ´$k
T v

˘

“ 0. (4)

These relations define a unique polynomial $k
T v which is the best approximation of v in

PkdpT q in the sense of the L2-norm of the gradient, and has the same mean value as v
over T .
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It has been recently proved by Di Pietro and Droniou [24, 25] that both the L2-
orthogonal and the elliptic projections approximate the function v optimally inside T
provided that T is star-shaped with respect to every point of a ball of radius comparable
to hT . This result classically extends to the case when T is the finite union of star-
shaped subsets; see [26]. The approximation of the traces of v over the faces of T , on the
other hand, can be proved using similar arguments as in the cited references provided
a standard local trace inequality is available. In what follows, we tacitly assume that
the mesh sequences that we consider satisfy the requirements for both πkT v and $k

T v to
optimally approximate both v and its trace.

3.2. Polynomial spaces on faces

While the collection of polynomial spaces tPkdpT q : T P Thu defined above is sufficient
to formulate DG methods, HHO methods also require polynomial spaces over mesh faces.
Interestingly, while the faces F P Fh are possibly d-dimensional entities when they belong
to a curved element, the reference faces σ P Kd´1 are by definition pd ´ 1q-dimensional
entities. Accordingly, the physical frame polynomial spaces Pkd´1pF q can be suitably
employed only if F P Fh is a straight line segment when d “ 2 or a subset of a plane
when d “ 3 (since, in these cases, the space spanned by the restrictions to F of the
functions in PkdpT q is Pkd´1pF q). Polynomial spaces defined over the reference geometries
appear, on the other hand, to be a natural choice for curved faces, as discussed in what
follows.

For each F P Fh such that F “ ΨF pσq for some σ P Kd´1 and any non-negative
integer l, we consider the space Pld´1pσq spanned by the restriction to σ of pd´1q-variate
polynomials. Numerically satisfactory bases for these spaces can be obtained, e.g., using
Jacobi polynomials over σ. Notice that, for d “ 3, one could also consider the richer
spaces Qld´1pσq (tensor product polynomials over σ) or Sld´1pσq (serendipity polynomials

over σ). However, we focus here on Pld´1pσq since the numerical results of [27] showed
that these spaces did not improve the accuracy per DOF.

A well-known phenomenon when working with reference frame polynomial spaces
is that a degradation of the approximation properties with respect to physical frame
polynomial spaces may be observed; see Botti [27] and the precursor work of Arnold et
al. [28]. Let F P Fh denote a face such that F “ ΨF pσq for some reference face σ P Kd´1

with mapping ΨF P rMm
d´1pσqs

d. The degradation of the approximation properties can
be evaluated based on the so called effective mapping order m, defined as the minimum
positive integer such that

ΨF P rPm
d´1pσqs

d. (5)

Remark 1 (Effective mapping order). The distinction between the polynomial degree m
of the mapping and the effective mapping order m reflects the (usual) implementation
choice of defining the mapping space according to the number of nodes of the element;
see Section 2.2. The effective mapping order corresponds the minimum degree m that
would be required to map the reference face σ on the physical face F regarding each
component of the mapping ΨF as an element of the polynomial space Pm

d´1pσq.
The effective mapping order depends on both the face shape and the choice of the

polynomial space. Let us consider a few examples. Let d “ 3 and consider a six-node
triangular face such that m “ 2 and M2

d´1pσq “ P2
d´1pσq (see Section 2.2 for further

details). For a physical face where at least one edge is curved, the effective mapping order
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is m “ 2. However, if all the edges are straight, meaning that second-order mid-edge
nodes coincide with the middle point of the segments connecting vertex nodes, we have
m “ 1 since the second-order terms in ΨF vanish. Similarly, for a nine-node quadrangular
face, corresponding to m “ 2 and M2

d´1pσq “ Q2
d´1pσq, the effective mapping order

can range from m “ 4 for a genuinely quadratic face to m “ 1 for a rectangular face
(since three nodes are sufficient to define both triangular and rectangular elements). In
conclusion, we have that

$

’

&

’

%

m “ 1 ô ΨF is an affine mapping,

m ą 1 ô ΨF is a nonlinear mapping,

m ą mñ ΨF is a nonlinear mapping and dim pMm
d´1q ą dim pPmd´1q.

It is a simple matter to check that the following polynomial space inclusion holds true
for any non-negative integer k:

PkdpF q ˝ΨF Ď Pkmd´1pσq, (6)

where PkdpF q is spanned by the restriction to F of d-variate polynomials.
For a smooth enough real-valued function v on F and any integer l ě 0, we define

the Jacobian-weighted reference frame projection πlσv P Pld´1pσq such that
ż

σ

`

v ˝ΨF ´ π
l
σv

˘

w |JΨF
| “ 0 for all w P Pld´1pσq. (7)

This relation defines πlσv as the best approximation of pv˝ΨF q in Pld´1pσq in the |JΨF
|
1
2 -

weighted L2-norm over σ. The approximation properties of this projection are determined
by the largest integer k such that Pk

dpF q ˝ΨF Ď Pld´1pσq. Clearly, recalling (6), we have
that

k “

Z

l

m

^

. (8)

Throughout the rest of this work, we assume that the following optimal trace approxi-
mation properties hold: For any v P Hk`1pT q,

}πlσv|F ˝Ψ´1
F ´ v}L2pF q ď Ch

k` 1
2

F }v}Hk`1pT q, (9)

where C ą 0 is a real number independent of h and of F , but possibly depending on the
mesh regularity, on l, and on m.

4. Two nonconforming methods for the Poisson problem

We formulate in this section HHO and DG discretizations of the model problem: Find
u : Ω Ñ R such that

´4u “ f in Ω,

u “ 0 on BΩ,
(10)

where f : Ω Ñ R denotes a given forcing term. This problem models diffusion phenomena
where the diffusive flux is proportional to the opposite of the gradient of the scalar
potential u. Assuming f P L2pΩq, a standard weak formulation of problem (10) reads:
Find u P H1

0 pΩq such that
ż

Ω

∇u ¨∇v “
ż

Ω

f v for all v P H1
0 pΩq.
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4.1. BR2 discontinuous Galerkin method

We consider here the method of Bassi et al. [29], usually referred to as “Bassi and
Rebay 2” (BR2). Let a polynomial degree k ě 1 be fixed, and set

Ukh – PkdpThq, (11)

where PkdpThq –
 

v P L2pΩq : v|T P PkdpT q for all T P Th
(

denotes the space of broken
polynomials of total degree ď k on the mesh Th. For all F P F i

h such that F “ BT1XBT2

(the ordering of T1, T2 is arbitrary but fixed once and for all) and all vh P Ukh, we
introduce the jump and average operators defined as follows:

JvhK – vh|T1
´ vh|T2

, tvhu –
1

2
pvh|T1

` vh|T2
q.

On boundary faces, we conventionally set JvhK “ tvhu – vh. When applied to vector-
valued functions, the jump and average operators act componentwise.

For all F P Fh, we define the local lifting operator rkF : L2pF q Ñ rPkdpThqsd, such that,
for all v P L2pF q,

ż

Ω

rkF pvq ¨ τh “

ż

F

v tτhu¨nF for all τh P rPkdpThqsd, (12)

where nF points out of T1 if F P F i
h is such that F “ BT1 X BT2 (the ordering of the

elements is coherent with the definition of the jump), while it points out of Ω if F P Fb
h .

We also introduce the global lifting operator Rk
h : Ukh Ñ rPkdpThqsd such that, for all

vh P U
k
h,

Rk
hpvhq –

ÿ

FPFh

rkF pJvhKq.

The BR2 bilinear form on Ukh ˆ Ukh, is given by

aBR2
h puh, vhq –

ż

Ω

`

∇huh ´Rk
hpuhq

˘

¨
`

∇hvh ´Rk
hpvhq

˘

´

ż

Ω

Rk
hpuhq ¨R

k
hpvhq `

ÿ

FPFh

ż

Ω

ηF rkF pJuhKq ¨ r
k
F pJvhKq,

where ∇h denotes the broken gradient on Th and, to ensure coercivity, we take (see, e.g.,
[23, Lemma 5.19])

ηF “ 1` max
TPTF

cardpFT q,

where TF collects the (one or two) elements that share F . The BR2 DG method for
problem (10) reads: Find uh P U

k
h such that

aBR2
h puh, vhq “

ż

Ω

f vh for all vh P U
k
h. (13)

It was proved by Brezzi et al. [30] on standard, straight meshes that, assuming sufficient
regularity, the L2-errors on the solution and on its gradient converge as hk`1 and hk,
respectively; see also [23] for polyhedral meshes. A similar behaviour can be expected
on the curved meshes considered here.
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4.2. HHO method

Let two non-negative integers k and l ě k be given. The integer k is fixed while, as it
will be clear in what follows, l will have to depend on both k and the effective mapping
order m (see (5)) in order to obtain optimal convergence properties. The global space of
discrete unknowns for the HHO method is

Uk,lh –

˜

ą

TPTh

PkdpT q

¸

ˆ

˜

ą

ΨF pσqPFh

Pld´1pσq

¸

. (14)

For a generic element of Uk,lh , we use the classical HHO underlined notation

vh “
`

pvT qTPTh
, pvσqΨF pσqPFh

˘

.

Given a smooth enough scalar-valued function v on Ω, the interpolation operator Ik,lh
returns the vector of scalar unknowns defined as follows:

Ik,lh v –
`

pπkT vqTPTh
, pπlσvqΨF pσqPFh

˘

, (15)

where πkT and πlσ are defined by (3) and (7), respectively. The restrictions of Uk,lh ,

vh P Uk,lh , and Ik,lh to a mesh element T P Th are respectively denoted by Uk,lT , vT , and

Ik,lT .
Following Di Pietro et al. [9], for all T P Th we define the local potential reconstruction

operator pk`1
T : Uk,lT Ñ Pk`1

d pT q such that, for all vT –
`

vT , pvσqΨF pσqPFT

˘

P Uk,lT ,

ż

T

∇pk`1
T vT ¨∇w “ ´

ż

T

vT 4w `
ÿ

F“ΨF pσqPFT

ż

F

pvσ ˝Ψ´1
F qp∇w ¨ nTF q @w P Pk`1

d pT q,

(16a)
ż

T

`

pk`1
T vT ´ vT

˘

“ 0, (16b)

where nTF is the unit normal to F pointing out of T . A global potential reconstruction
operator pk`1

h : Uk,lh Ñ Pk`1
d pThq is obtained patching the elementary contributions:

`

pk`1
h vh

˘

|T
– pk`1

T vT for all T P Th. (17)

Remark 2 (Approximation properties of the potential reconstruction and polynomial
degree on faces). The convergence rate of the HHO method is intimately linked to the
approximation properties of the potential reconstruction (see, e.g., [9, Theorem 8]), which
are briefly discussed hereafter.

We start by estimating the difference between the potential reconstruction operator
applied to the interpolate of a smooth function and its elliptic projection. Denote by v a
scalar-valued function on T whose regularity will be detailed in what follows. Recalling
the definitions (15) of the interpolator, (16) of the potential reconstruction, and (4) of
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the elliptic projector $k`1
T we have, for all w P Pk`1

d pT q,
ż

T

∇ppk`1
T Ik,lT v ´$k`1

T vq ¨∇w

“ ´

ż

T

πkT v 4w `
ÿ

F“ΨF pσqPFT

ż

F

pπlσv ˝Ψ´1
F q p∇w ¨ nTF q ´

ż

T

∇v ¨∇w

“
��������
ż

T

pv ´ πkT vq 4w `
ÿ

F“ΨF pσqPFT

ż

F

pπlσv ˝Ψ´1
F ´ vq p∇w ¨ nTF q,

(18)

where we have performed an integration by parts on the third term in the right-hand
side to pass to the third line and we have used the definition (3) of πkT together with the
fact that 4w P Pk´1

d pT q Ă PkdpT q to cancel the first term in the right-hand side. Using
the definition of the L2-norm followed by (18), we get

}∇ppk`1
T Ik,lT v ´$k`1

T vq}L2pT qd

“ sup
wPPk`1

d pT q, }∇w}
L2pT qd

“1

ˆ
ż

T

∇ppk`1
T Ik,lT v ´$k`1

T vq ¨∇w
˙

“ sup
wPPk`1

d pT q, }∇w}
L2pT qd

“1

¨

˝

ÿ

F“ΨF pσqPFT

ż

F

pπlσv ˝Ψ´1
F ´ vq p∇w ¨ nTF q

˛

‚.

(19)

Let us estimate the argument of the supremum.

(i) The case m “ 1. In this case, the argument of the supremum is zero for any
l ě k. To prove it, perform a change of variables to express the integral inside the
summation as an integral over the reference face σ P Kd´1 such that F “ ΨF pσq,
notice that p∇w ¨nTF q|F ˝ΨF P Pkd´1pσq (see (6)), and use the definition (7) of πkσ.
As a consequence, we have that

pk`1
T Ik,lT “ $k`1

T ,

in accordance with [9, Eq. (17)]; see also [31] (and, in particular, Section 3.1 therein)
for a pedagogical introduction.

(ii) The case m ą 1. For all F P FT such that F “ ΨF pσq for some σ P Kd´1, abridging
into a À b the inequality a ď Cb with constant C independent of h, and letting k
be given by (8), we have
ˇ

ˇ

ˇ

ˇ

ż

F

pπlσv ˝Ψ´1
F ´ vq p∇w ¨ nTF q

ˇ

ˇ

ˇ

ˇ

ď }pπlσv ˝Ψ´1
F ´ vq}L2pF q}∇w}L2pF qd}nTF }L8pF qd

À h
k` 1

2

T |v|Hk`1pT qh
´ 1

2

T }∇w}L2pT qd ,

where we have used the approximation properties (9) of πlσ to bound the first factor
under the assumption that v P Hk`1pT q, a trace inequality for polynomials to bound
the second, and the fact that the normal vector has unit Euclidian norm at every
x P F to estimate the third. Plugging this bound into (19), we infer that

}∇ppk`1
T Ik,lT v ´$k`1

T vq}L2pT qd À hkT |v|Hk`1pT q.
10



In conclusion, with a À b having the same meaning as above, we have that

}∇ppk`1
T Ik,lT v ´$k`1

T vq}L2pT qd À

#

0 if m “ 1,

hkT |v|Hk`1pT q if m ą 1.
(20)

Let us now estimate the difference between v and pk`1
T Ik,lT v. Inserting ˘∇$k`1

T v into
the norm, and using the triangle inequality, we have that

}∇pv ´ pk`1
T Ik,lT vq}L2pT qd ď }∇pv ´$k`1

T vq}L2pT qd
looooooooooooomooooooooooooon

ε1

`}∇p$k`1
T v ´ pk`1

T Ik,lT vq}L2pT qd
looooooooooooooooooomooooooooooooooooooon

ε2

.

(21)
Assuming v P Hmaxpk`1,kq`1pT q, and using the optimal approximation properties of the
elliptic projector together with (20), we infer the existence of two positive real numbers
C1 and C2 independent of h and of T (but possibly depending on the mesh regularity,
on k, m, and on l) such that

ε1 ď C1h
k`1
T |v|Hk`2pT q and ε2 ď

#

0 if m “ 1,

C2h
k
T |v|Hk`1pT q if m ą 1.

. (22)

When m ą 1, for l such that k “ k ` 1 the two error components are equilibrated and
both converge as hk`1

T . For m ą 1 and l such that k ă k ` 1, on the other hand, the
error component ε2 dominates. Clearly, from a computational point of view, we are
interested in the smallest value of l that ensures convergence in hk`1

T , which corresponds
to assuming that

l “

#

k if m “ 1,

mpk ` 1q if m ą 1.
(23)

The HHO bilinear form on Uk,lh ˆ Uk,lh is defined as follows:

aHHO
h puh, vhq –

ż

Ω

∇hpk`1
h uh¨∇hpk`1

h vh`
ÿ

TPTh

ÿ

FPFT

1

hF

ż

F

`

δlTF ´ δ
k
T

˘

uT
`

δlTF ´ δ
k
T

˘

vT ,

(24)
where, following [31], for all T P Th the difference operators δkT and δlTF , F P FT , are

such that, for all vT P U
k,l
T ,

δkT vT – πkT p
k`1
T vT ´ vT and δlTF vT –

`

πlσp
k`1
T vT ´ vσ

˘

˝Ψ´1
F for all F “ ΨF pσq P FT .

(25)
The first term in the right-hand side of (24) is the standard Galerkin contribution re-
sponsible for consistency, whereas the second is a stabilization that ensures coercivity
with respect to a suitable H1

0 -like discrete norm. In view of (20), it can be easily checked
that the difference operators defined by (25) vanish for l as in (23) when their argument

is of the form Ik,lT w with w P Pk`1
d pT q. This is a crucial point to fully exploit the optimal

approximation properties of the potential reconstruction in the error estimates.
The HHO method for problem (10) reads: Find uh P U

k,l
h such that

aHHO
h puh, vhq “

ÿ

TPTh

ż

T

f vT for all vh P U
k,l
h . (26)

11



It was proved in [32] on straight polygonal and polyhedral meshes that the error between
pk`1
h uh and the exact solution of problem (10) in the L2- and H1

0 -norms converge as hk`2

and hk`1, respectively; see also [31, Theorem 1]. In view of (22), a similar behaviour can
be expected here for l as in (23).

5. Numerical results

In this section we numerically assess and compare the h- and p-convergence rates of
the HHO and DG discretizations of problem (10) formulated in the previous section. All
the convergence plots included in this section display discretization errors on the y axis
versus the number of DOFs on the x axis. For this reason, the axis labels are omitted.
For the sake of simplicity, the convergence plots are labelled as follows:

• HHO mesh family and error type, PkPl : indicates the error for the HHO dis-
cretization based on the space Uk,lh (cf. (11)) over the specified mesh sequence;

• DG mesh family and error type, Pk : indicates the error for the DG discretization
based on the space Ukh (cf. (14)) over the specified mesh sequence.

The total number of DOFs is computed as follows:

DG DOFs – cardpThq ˆ dimpPkdq “ dimpUkhq, HHO DOFs – cardpFhq ˆ dimpPld´1q.

For the HHO discretization, the number of DOFs differs from the dimension of the space
Uk,lh because the element-based DOFs can be eliminated in a preliminary step by means
of static condensation. This efficient implementation strategy exploits the fact that, by
construction, only face-based DOFs are globally coupled. Element-based DOFs can then
be recovered from face-based DOFs in a post-processing step. A discussion on static
condensation for HHO methods can be found, e.g., in [31, Section 3.2.4]; see also [33,
Section 2.2.4], where more general implementation aspects are also discussed. The errors
for the HHO discretization are always computed with respect to the global potential
reconstruction pk`1

h uh obtained from the discrete solution; see (17).
The global (sparse) linear systems are solved by means of iterative solvers employing

right-preconditioners and imposing tight tolerances (machine precision) on the conver-
gence of the relative residual. The local linear problems involved in the computation of
the local lifting operators (12) for the DG method, as well as in the computation of the
potential reconstruction (16) and in the static condensation for the HHO method, are
exactly solved exactly by means of Cholesky factorizations.

5.1. Mesh sequences

In two space dimensions, we consider the following uniformly refined mesh sequences
of the unit square Ω “ p0, 1q2 (see Figure 1): (i) randomly distorted six-node triangular
and eight-node quadrilateral mesh families, see Figures 1a and 1b, respectively; (ii) a
uniformly refined regularly distorted eight-node quadrilateral mesh family, see Figure 1c;
(iii) a uniformly refined element subdivision eight-node quadrilateral mesh family, see
Figure 1d. Uniformly refined triangular and quadrangular mesh families with straight
edges are also considered for the sake of comparison.

12



(a) Randomly distorted six-node triangular mesh sequence.

(b) Randomly distorted eight-node quadrilateral mesh sequence.

(c) Regularly distorted eight-node quadrilateral mesh sequence.

(d) Element subdivision eight-node quadrilateral mesh sequence.

Figure 1: Two-dimensional mesh sequences of Ω “ p0, 1q2.
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(a) Randomly distorted ten-node tetrahedral mesh sequence.

(b) Randomly distorted eight-node hexahedral mesh sequence.

(c) Randomly distorted twenty-node hexahedral mesh sequence.

Figure 2: Three-dimensional mesh sequences of Ω “ p0, 1q3 (mesh clips showing internal faces).
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Mesh sequence Numer of nodes Mm
d pκq Mm

d´1pσq m limhÑ0 m Figure

regular tri3 3 P1
2pκq P1

1pσq 1 1 —
randomDist tri6 6 P2

2pκq P2
1pσq 2 2 1a

cartesian quad4 4 Q1
2pκq P1

1pσq 1 1 —
randomDist quad8 8 S2

2pκq P2
1pσq 2 2 1b

regularDist quad8 8 S2
2pκq P2

1pσq 2 2 1c
elemSubdiv quad8 8 S2

2pκq P2
1pσq 2 1 1d

regular tet4 6 P1
3pκq P1

2pσq 1 1 —
randomDist tet10 10 P2

3pκq P2
2pσq 2 2 2a

randomDist hex8 8 Q1
3pκq Q1

2pσq 2 2 2b
randomDist hex20 20 S2

3pκq S2
2pσq 3 3 2c

Table 1: Properties of the reference-to-physical frame mappings ΨT P rMm
d pκqs

d and ΨF P rMm
d´1pσqs

d

for each mesh sequence. m and limhÑ0 m denote, respectively, the effective mapping order (see (5)) and
the asymptotic effective mapping order.

In three space dimensions, we consider uniformly refined randomly distorted ten-
node tetrahedral, eight-node, and twenty-node hexahedral mesh families of the unit cube
Ω “ p0, 1q3 (see Figure 2). Uniformly refined tetrahedral mesh families with planar faces
are also considered for the sake of comparison.

All the meshes considered here were checked to ensure positivity of the reference-
to-physical frame mapping Jacobian in each mesh element. This guarantees that the
quadrilaterals do not degenerate into triangular elements and that the edges do not
intersect. The properties of the polynomial mappings for each mesh sequence are reported
in Table 1. It is interesting to remark that h-refinement on the element-subdivision
mesh family leads to quadrilaterals with edges that are less and less curved, which we
formally indicate writing limhÑ0 m “ 1 (limhÑ0 m should be interpreted here as an
“asymptotic” effective mapping order). Notice that we do not attempt to provide a
precise mathematical definition of this notion, as it seems to require some techicalities
which we do not deem adequate to the present (application-oriented) paper. This topic
will be further investigated in a future, theoretically-oriented work.

5.2. HHO h-convergence rates on polynomial solutions

In order to numerically confirm the scaling for ε2 in (22), we consider in this section
manufactured polynomial solutions for which the error component ε1 vanishes (since
polynomials of total degree ď pk`1q are invariant by $k`1

T -projection), and the approx-

imation properties of pk`1
T Ik,lT are entirely dictated by ε2. More precisely, we define the

following second and third degree polynomial solutions of the Poisson problem:

upxq “
d
ÿ

i“1

xai , a “ 2, 3. (27)

The boundary conditions and forcing term are inferred from u. In Figures 3-4-5 and
Tables 2-3-4, we compare the results obtained on the regular (straight edge-face) and

15



Table 2: Convergence rates of HHO discretizations on randomly distorted six-node triangular elements
grids, see also Figure 3. Forcing term and boundary conditions imposed according to the polynomial
solution (27) with a “ 2.

Number of elements (32) 128 512 2048 8192 32768

L2 projection : }u´ πk
hu}L2pΩq 2.00 2.00 2.00 2.00 2.00

HHO P1
pT q ´ P1

pσq: }u´ pk`1
h uh}L2pΩq 1.34 0.91 0.98 0.96 0.82

HHO P1
pT q ´ P1

pσq: }∇hpu´ p
k`1
h Ik,lh uq}L2pΩqd 0.23 -0.11 -0.03 0.02 -0.03

HHO P1
pT q ´ P1

pσq: }∇hpu´ p
k`1
h uhq}L2pΩqd 0.31 0.05 -0.01 0.02 -0.03

HHO P1
pT q ´ P2

pσq: }u´ pk`1
h uh}L2pΩq 1.88 1.82 1.87 2.00 1.98

HHO P1
pT q ´ P2

pσq: }∇hpu´ p
k`1
h Ik,lh uq}L2pΩqd 0.83 0.83 0.90 0.99 0.98

HHO P1
pT q ´ P2

pσq: }∇hpu´ p
k`1
h uhq}L2pΩqd 0.87 0.99 0.87 0.99 0.98

HHO P1
pT q ´ P3

pσq: }u´ pk`1
h uh}L2pΩq 1.41 1.85 1.91 1.98 1.98

HHO P1
pT q ´ P3

pσq: }∇hpu´ p
k`1
h Ik,lh uq}L2pΩqd 0.33 0.90 0.90 0.97 0.98

HHO P1
pT q ´ P3

pσq: }∇hpu´ p
k`1
h uhq}L2pΩqd 0.39 0.92 0.91 0.95 0.99
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Figure 3: Error versus number of DOFs for HHO discretizations of the Poisson equation on regular three-
node and randomly distorted six-node triangular elements grids. Forcing term and boundary conditions
imposed according to the polynomial solution (27) with a “ 2.
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Table 3: Convergence rates of HHO discretizations on randomly distorted six-node triangular elements
grids, see also Figure 4. Forcing term and boundary conditions imposed according to the polynomial
solution (27) with a “ 3. ˚ indicates that the convergence rate is influenced by machine precision.

Number of elements (32) 128 512 2048 8192 32768

L2 projection: }u´ πk
hu}L2pΩq 2.97 3.00 3.00 3.00 3.00

HHO P2
pT q ´ P2

pσq: }u´ pk`1
h uh}L2pΩq 1.38 1.97 1.96 1.91 1.99

HHO P2
pT q ´ P2

pσq: }∇hpu´ p
k`1
h Ik,lh uq}L2pΩqd 0.49 0.86 1.01 0.91 1.00

HHO P2
pT q ´ P2

pσq: }∇hpu´ p
k`1
h uhq}L2pΩqd 0.42 0.95 0.96 0.90 0.99

HHO P2
pT q ´ P3

pσq: }u´ pk`1
h uh}L2pΩq 1.91 1.90 1.86 1.96 1.96

HHO P2
pT q ´ P3

pσq: }∇hpu´ p
k`1
h Ik,lh uq}L2pΩqd 0.93 0.90 0.85 0.96 0.96

HHO P2
pT q ´ P3

pσq: }∇hpu´ p
k`1
h uhq}L2pΩqd 0.94 0.88 0.88 0.95 0.96

HHO P2
pT q ´ P4

pσq: }u´ pk`1
h uh}L2pΩq 2.36 2.85 2.85 2.96* 1.66*

HHO P2
pT q ´ P4

pσq: }∇hpu´ p
k`1
h Ik,lh uq}L2pΩqd 1.32 1.79 1.82 1.97 2.00

HHO P2
pT q ´ P4

pσq: }∇hpu´ p
k`1
h uhq}L2pΩqd 1.42 1.86 1.81 1.96 1.98

HHO P2
pT q ´ P5

pσq: }u´ pk`1
h uh}L2pΩq 1.86 2.75 2.91 -0.58* -0.73*

HHO P2
pT q ´ P5

pσq: }∇hpu´ p
k`1
h Ik,lh uq}L2pΩqd 0.87 1.63 1.96 1.94 1.99*

HHO P2
pT q ´ P5

pσq: }∇hpu´ p
k`1
h uhq}L2pΩqd 0.98 1.63 2.00 1.90 1.19*
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Figure 4: Error versus number of DOFs for HHO discretizations of the Poisson equation on regular three-
node and randomly distorted six-node triangular elements grids. Forcing term and boundary conditions
imposed according to the polynomial solution (27) with a “ 3.
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Table 4: Convergence rates of HHO discretizations on randomly distorted twenty-node hexahedral ele-
ments grids, see also Figure 5. Forcing term and boundary conditions imposed according to the polyno-
mial solution (27) with a “ 2.

Number of elements (64) 512 4096 32768

L2 projection: }u´ πk
hu}L2pΩq 1.99 1.99 1.99

HHO P1
pT q ´ P1

pσq: }u´ pk`1
h uh}L2pΩq 0.67 0.89 0.92

HHO P1
pT q ´ P1

pσq: }∇hpu´ p
k`1
h Ik,lh uq}L2pΩqd -0.32 -0.11 -0.09

HHO P1
pT q ´ P1

pσq: }∇hpu´ p
k`1
h uhq}L2pΩqd -0.14 -0.07 -0.09

HHO P1
pT q ´ P2

pσq: }u´ pk`1
h uh}L2pΩq 0.92 0.88 0.91

HHO P1
pT q ´ P2

pσq: }∇hpu´ p
k`1
h Ik,lh uq}L2pΩqd -0.11 -0.11 -0.11

HHO P1
pT q ´ P2

pσq: }∇hpu´ p
k`1
h uhq}L2pΩqd -0.06 -0.12 -0.08

HHO P1
pT q ´ P3

pσq: }u´ pk`1
h uh}L2pΩq 1.64 1.89 1.88

HHO P1
pT q ´ P3

pσq: }∇hpu´ p
k`1
h Ik,lh uq}L2pΩqd 0.58 0.85 0.89

HHO P1
pT q ´ P3

pσq: }∇hpu´ p
k`1
h uhq}L2pΩqd 0.71 0.90 0.90

HHO P1
pT q ´ P4

pσq: }u´ pk`1
h uh}L2pΩq 1.95 1.89 1.92

HHO P1
pT q ´ P4

pσq: }∇hpu´ p
k`1
h Ik,lh uq}L2pΩqd 0.95 0.82 0.92

HHO P1
pT q ´ P4

pσq: }∇hpu´ p
k`1
h uhq}L2pΩqd 1.08 0.89 0.93

HHO P1
pT q ´ P5

pσq: }u´ pk`1
h uh}L2pΩq 2.14 1.78 1.87

HHO P1
pT q ´ P5

pσq: }∇hpu´ p
k`1
h Ik,lh uq}L2pΩqd 1.20 0.78 0.86

HHO P1
pT q ´ P5

pσq: }∇hpu´ p
k`1
h uhq}L2pΩqd 1.23 0.78 0.90
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Figure 5: Error versus number of DOFs for HHO discretizations of the Poisson equation on regular
eight-node and randomly distorted twenty-node hexahedral elements grids. Forcing term and boundary
conditions imposed according to the polynomial solution (27) with a “ 2.

18



on the randomly distorted triangular and hexahedral mesh sequences of Figures 1a-
2c. Following Remark 2, the HHO method (26) should reproduce to machine precision
accuracy the polynomial solutions (27) setting k “ a´ 1 and l as in (23). The numerical
results confirm this point. More precisely:

• Regular (straight edge) triangular mesh sequence (m “ 1): The discrete solutions
obtained using the HHO spaces U1,1

h and U2,2
h are exact up to machine precision for

a “ 2 and a “ 3, respectively;

• Randomly distorted triangular mesh sequence (m “ 2): The discrete solutions
obtained using the HHO spaces U1,4

h and U2,6
h are exact up to machine precision for

a “ 2 and a “ 3, respectively.

• Regular (straight face) hexahedral mesh sequence (m “ 1): The discrete solutions
obtained using the HHO spaces U1,1

h are exact up to machine precision for a “ 2;

• Randomly distorted hexahedral mesh sequence (m “ 3): The discrete solutions
obtained using the HHO spaces U1,6

h are exact up to machine precision for a “ 2.

Moreover, if l is such that k ă k ` 1, we observe the expected rates of hk`1 for the L2-
error on the solution and hk for the L2-error on the gradient; see Tables 2-4. Note that,
since m “ 2 for the randomly distorted triangular mesh sequence, the choices l “ 2, 3
and l “ 4, 5 yield the same convergence rates. Similarly, since m “ 3 for the randomly
distorted hexahedral mesh sequence, the choices l “ 1, 2 and l “ 3, 4, 5 yield the same
convergence rates.

We can also remark from Tables 2–4 (where πkh denotes the global L2-orthogonal
projector on Ukh) that the reconstruction of the interpolated exact solution behaves as
the reconstruction of the discrete solution in terms of gradient errors: compare, e.g.,
}∇hpu´ pk`1

h Ik,lh uq}L2pΩqd with }∇hpu´ pk`1
h uhq}L2pΩqd . In other words, the discretiza-

tion error for the HHO discretization scales optimally with respect to the approximation
properties of pk`1

h Ik,lh .

5.3. h-convergence rates on trigonometric solutions

In order to investigate and compare the h-convergence rates of HHO and DG meth-
ods, we focus on a trigonometric solution of the Poisson equation. This choice is more
representative of the performance of the methods in real-life computations. In particu-
lar, unlike the previous section, both error components in the right-hand side of (21) are
non-zero, so that the relative magnitude of the constants C1 and C2 in (22) determines
the observed convergence rate for HHO discretizations before the asymptotic regime is
reached. We compute the forcing term and boundary conditions of the Poisson problem
according to the following analytical solution:

upxq “
d
ź

i“1

sinpπxiq. (28)

We first point out that DG discretizations based on the space Ukh provide convergence
rates of hk`1 for the L2-error on the solution and hk for the L2-error on its gradient, both
on regular and distorted curved mesh sequences. Therefore, in all the plots hereafter,
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Figure 6: Error versus number of DOFs for HHO and DG discretizations of the Poisson equation over
uniformly refined triangular mesh sequences. Forcing term and boundary conditions imposed according
to the trigonometric solution (28).
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the convergence rates of DG solutions are considered as a reference. HHO discretizations
on triangular mesh families perform significantly better in terms of h-convergence rates
when approximating a trigonometric potential instead of a polynomial one, see Figure
6 and compare with the results of Section 5.2. In particular, HHO formulations based
on the space Uk,k`1

h yield optimal convergence rates on the randomly distorted mesh
family in all the cases but k “ 2, where l “ k ` 2 is required. This behavior suggests
that C1 " C2 in (22) and, accordingly, the error component ε1 in (21) dominates during
the early stages of the convergence history, while ε2 shows up at latter stages due to its
weaker rate of convergence; see (22).

Similarly, the HHO spaces Uk,k`1
h yield optimal convergence rates on randomly dis-

torted quadrilateral mesh families, see Figures 7-8 and 9-10. Note that the randomly
distorted mesh sequence is associated with an earlier and more pronounced convergence
degradation with respect to the regularly distorted mesh family, even if the asymptotic
convergence rate is the same. Interestingly, no convergence degradation is observed for
equal-order HHO spaces Uk,kh on the element subdivision mesh family. This behaviour
has been documented by Botti [27] and Bassi et al. [34] in the context of reference frame
DG discretizations, and can be explained taking into account the asymptotic effective
mapping order. Indeed, whenever mesh refinement drives towards mesh elements with
edges that are less and less curved (i.e., when limhÑ0 m “ 1), optimal convergence rates

can be expected for the equal-order spaces Uk,kh ; see [27, Remark 1] on this subject.
Convergence degradation is also observed in three space dimensions when considering

the equal-order HHO spaces Uk,kh over the randomly distorted ten-node tetrahedral mesh
family and the randomly distorted twenty-node hexahedral mesh sequence. Once again,
increasing the polynomial degree by one over mesh faces (i.e., taking l “ k`1) is usually
sufficient to recover optimal h-convergence rates, see Figures 11-12 and Figures 13-14.
Note that one could have expected a more significant degradation of the convergence
properties than observed on the distorted twenty-node hexahedral elements (for which
we have m “ 3).

The numerical results presented in this section demonstrate that DG discretizations
based on the space Uk`1

h and HHO discretization based on the space Uk,kh provide similar
convergence rates on good mesh sequence with asymptotic effective mapping order equal
to 1. This is crucial considering that good mesh generators should drive towards affine
polynomial mappings upon mesh refinement, even in case of complex domain boundaries.
In this context, the possibility to consider k “ 0 in HHO formulations on arbitrarily
shaped mesh families can be considered a significant advantage with respect to DG
discretizations whenever low-order methods are mandatory to keep the computational
cost low. We notice, in passing, that the HHO formulation with k “ 0 enters the Hybrid-
Mixed-Mimetic framework of [35]; [9, Section 2.5] for further details. In the context of
Mimetic Finite Differences, a treatment of curved faces has been proposed in [36], where
similar results are found for mesh faces that become less and less curved. As opposite, in
the presence of randomly distorted mesh elements (that might arise, e.g., in Lagrangian
and ALE computations), DG seems to be a safer choice.

5.4. p-convergence on trigonometric solutions

When sufficient regularity of the exact solution can be expected, the possibility to
improve the solution accuracy by increasing the polynomial degree (p-refinement) is a
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Figure 7: Error versus number of DOFs for HHO and DG discretizations of the Poisson equation over
uniformly refined quadrilateral meshes. Forcing term and boundary conditions imposed according to the
trigonometric solution (28).
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Figure 8: Error versus number of DOFs for HHO and DG discretizations of the Poisson equation over
uniformly refined quadrilateral meshes. Forcing term and boundary conditions imposed according to the
trigonometric solution (28).
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Figure 9: Error versus number of DOFs for HHO and DG discretizations of the Poisson equation
over uniformly refined quadrilateral mesh sequences. Forcing term and boundary conditions imposed
according to the trigonometric solution (28).
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Figure 10: Error versus number of DOFs for HHO and DG discretizations of the Poisson equation
over uniformly refined quadrilateral mesh sequences. Forcing term and boundary conditions imposed
according to the trigonometric solution (28).
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Figure 11: Error versus number of DOFs for HHO and DG discretizations of the Poisson equation over
uniformly refined tetrahedral mesh sequences. Forcing term and boundary conditions imposed according
to the trigonometric solution (28).
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Figure 12: Error versus number of DOFs for HHO and DG discretizations of the Poisson equation over
uniformly refined tetrahedral mesh sequences. Forcing term and boundary conditions imposed according
to the trigonometric solution (28).
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Figure 13: Error versus number of DOFs for HHO and DG discretizations of the Poisson equation over
uniformly refined hexahedral mesh sequences. Forcing term and boundary conditions imposed according
to the trigonometric solution (28).
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Figure 14: Error versus number of DOFs for HHO and DG discretizations of the Poisson equation over
uniformly refined hexahedral mesh sequences. Forcing term and boundary conditions imposed according
to the trigonometric solution (28).
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Figure 15: Error versus number of DOFs. p-refined HHO and DG discretizations of the Poisson equation
over the six-node distorted triangular meshes of Figure 1a (first row) and the eight-node distorted

quadrilateral meshes of Figure 1b (second row). HHO DOFs space is Uk,k
h (k “ 0, 1, ...), DG DOFs space

is Uk
h (k “ 1, 2, ...).
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Figure 16: Error versus number of DOFs. p-refined HHO and DG discretizations of the Poisson equation
over the ten-node distorted tetrahedral meshes of Figure 2a (first column), the twenty-node distorted
hexahedral meshes of Figure 2c (second column) and and the eight-node distorted hexahedral meshes of

Figure 2b (third column). HHO DOFs space is Uk,k
h (k “ 0, 1, ...), DG DOFs space is Uk

h (k “ 1, 2, ...).
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major advantage of high-order discretizations. In this section we consider the same
trigonometric solution (28) as in the previous section, but we focus on p-convergence
instead of h-convergence. In this context, HHO discretizations can be expected to provide
significant gains with respect to (modal) DG discretizations, since the corresponding
number of DOFs grows significantly slower than for DG methods when increasing the
polynomial degree.

The numerical results reported in Figures 15 and 16 for two-dimensional randomly
distorted triangular and quadrilateral meshes, and three-dimensional randomly distorted
hexahedral and tetrahedral meshes, respectively, confirm this trend in all but the hex-
ahedral meshes. In particular, the randomly distorted twenty-node hexahedral meshes
seem more favorable to p-refined DG discretizations rather than HHO discretizations.
This behaviour can be explained taking into account the following aspects:

• For the DG discretizations, we have chosen the smallest possible polynomial space
PkdpT q over each T P Th, irrespectively of the element shape.

• For HHO discretizations, the global number of DOFs is proportional to the number
of faces, and hexahedral elements have an unfavourable number of faces per element
compared to tetrahedra.

• The effective mapping order m is higher for eight-node quadrilateral faces (m “ 3),
as compared to six-node triangular mesh faces and four-node quadrilateral mesh
faces (m “ 2). Accordingly, the convergence degradation of reference frame poly-
nomial spaces Pld´1pσq is the most severe of the lot, and requires higher polynomial
degrees on faces to compensate.

We also notice that we have placed ourselves in the worst-case scenario, where all the
faces are curved. If curved faces only occur on the boundary of the domain, a significant
reduction in the number of DOFs can be obtained for HHO using equal element and face
polynomial orders for the internal faces.

6. Agglomeration coarsening

Besides the advantage in terms of accuracy per DOF, one of the major benefits of
p-convergence with respect to h-convergence is the fact that the former is a single grid
strategy, while the latter requires to generate a h-refined mesh sequence. Clearly, in
order to keep the global number of DOFs under control and fruitfully exploit high poly-
nomial degrees, a grid conceived for p-refinement must be coarse enough. On the other
hand, when considering a complex domain Ω, the mesh must also meet the conflicting
requirement of providing a satisfactory approximation Ωh of the domain: a rough approx-
imation can be highly detrimental in terms of accuracy. In particular, the enforcement
of boundary conditions on BΩh might lead to large consistency errors that are not settled
increasing the polynomial degree k.

Unfortunately, generating a coarse high-order grid Th that provides a satisfactory
representation of the domain boundary BΩ is often a non-trivial task. In practice, building
a h-refined mesh sequence might be both less expensive and time consuming. Moreover,
h-refined mesh sequences can be constructed in such a way that Ωh is a better and better
approximation of Ω as h decreases.
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In this context, the support of arbitrarily shaped elements in HHO and DG dis-
cretizations comes into play, providing an unprecedented flexibility by means of agglom-
eration coarsening. Starting from a fine first- or second-order grid Th, an agglomerated
grid TH can be generated on the fly by clustering together the cells of the fine grid,
as detailed in Section 6.1 below. The grid TH can be made arbitrarily coarse, so that
cardpTHq ! cardpThq, while keeping the approximation of the computational domain
unchanged, i.e., ΩH “ Ωh.

6.1. Agglomerated mesh

Starting from a mesh Th, we can define a coarsened mesh TH “ tTu by agglomeration.
More precisely, we suppose that (i) TH partitions Ωh –

Ť

TPTh
T zBΩ in the sense that

Ť

TPTH
T “ Ωh; (ii) every agglomerated element T P TH is an open bounded connected

subset of Ω and there exists a set of sub-elements TT Ă Th such that

T “
ď

TPTT

T .

We define a facet F of T P TH as a portion of its boundary BT such that F P Fh.
Facets are collected in the set FHh Ă Fh. By definition, for every facet there exists a
reference face σ P Kd´1 and a polynomial mapping ΨF such that F “ ΨF pσq. We define
an agglomerated face F of T P TH as a portion of BT such that either F “ BT X BΩ or
there exists T1 P TH , T1 ‰ T, such that F “ BTX BT1. Agglomerated faces are collected
in the set FH . For every agglomerated face F P FH we introduce the set FF Ă FHh
collecting the facets partitioning F, i.e., such that F “

Ť

FPFF
F .

Both HHO and DG discretizations can be extended to support agglomerated meshes
pending the following changes:

• For both HHO and DG discretizations: Th is replaced by TH and, correspondingly,
T P Th is replaced by T P TH .

• For DG discretizations only: Fh is replaced by FH and, correspondingly, F P Fh
is replaced by F P FH .

• For HHO discretizations only: Fh is replaced by FHh .

6.2. Numerical results

In what follows, we use agglomeration coarsening to demonstrate that p-convergence
can be fruitfully exploited to reduce the error with respect to exact solution up to a
tight tolerance. Most importantly, this can be achieved starting from a single standard
fixed fine mesh Th of a curved computational domain. To assess the p-convergence rates
of the DG and HHO methods we consider the test case of Gobbert and Yang [37]: the
computational domain is is unit annulus Ω “ t0.5 ă x2 ` y2 ă 1.5u and we consider the
following exact solution of the Poisson equation:

upxq “ cospπ
a

x2 ` y2q, (29)
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with suitable forcing term f . The solution (29) vanishes on the exact boundary BΩ. We
consider second-order six-node triangular mesh sequences and the following discretiza-
tions of the homogeneous boundary condition:

Choice 1: upxq|BΩh
“ cospπ

a

x2 ` y2q, (30a)

Choice 2: upxq|BΩh
“ 0. (30b)

The choice (30a) neglects any influence of the domain discretization as we are using the
exact solution on BΩh; instead, the choice (30b) introduces a consistency error since, in
our case, BΩh ‰ BΩ.

The agglomerated and regular h-coarsened mesh sequences are built as follows:

• Agglomerated mesh sequence (Figure 17a): we agglomerate on top of a fine 40k
six-node triangular elements grid Th. Starting from a 4k agglomerated elements
grid TH1 (obtained by agglomerating ten fine grid elements on average), for i P

t2, . . . , 8u, we construct agglomerated meshes such that cardpTHiq “ cardpTHi´1q

´

dimpPi´1
d q

dimpPi
dq

¯

.

• Regular mesh sequence (Figure 17b): we mimick the mesh cardinality of the ag-
glomerated mesh sequence, that is cardpThiq « cardpTHiq, such that hi « Hi.

Note that the discrete computational domain ΩHi
“ Ωh is fixed when we consider the

agglomerated mesh sequence, depending solely on the underlying grid Th. As opposite,
coarser regular meshes provide a rougher approximation of the domain boundaries BΩhi

when compared to finer regular meshes.
Non-conforming HHO and DG discretizations are considered over agglomerated and

regular mesh sequences using both boundary condition choices in (30).

• DG: we consider the spaces UiHi
and Uihi

, the resulting DG discretizations have
approximatively 12k DOFs.

• HHO: we consider equal-order HHO discretizations based of the spaces Ui´1,i´1
Hi

and

Ui´1,i´1
hi

. Note that degree k DG and degree k´1 HHO discretizations provide the
same h-convergence rates.

The convergence results shown in Table 5 and Figure 18 demonstrate the ability of
approaching (up to 10´9) the exponential convergence results obtained enforcing the
exact boundary condition (30a) using agglomerated mesh sequences together with the
boundary condition (30b). Instead, the lack of consistency for the regular mesh sequence
is clearly appreciable as the discretization is unable to provide an error in the L2-norm
lower that 10´5 using the boundary condition in (30b).

It is interesting to remark that DG solutions based on the boundary condition in
(30a) provide comparable results over the agglomerated and regular mesh sequence since
the number of DOFs is proportional to the number of mesh elements. As opposite,
HHO discretizations based on the boundary condition in (30a) perform better on the
agglomerated grid but also require a significantly higher number of DOFs, see Table
5. This is due to the fact that agglomerated elements have a significantly higher num-
ber of facets as compared to triangular elements, hence cardpFHh q " cardpFhq even if
cardpTHq u cardpThq.
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Table 5 also reports the number of ILU preconditioned Conjugate Gradient iterations
required to reduce the relative residual norm of the global equation system by fourteen
orders of magnitude. For both the HHO and dG methods, the performance of the iterative
solver is not affected by the use of agglomerated meshes. This behaviour is expected for
dG methods, where the number of mesh faces on agglomerated meshes is comparable
to standard meshes (since faces are defined as intersections of two elements or of one
element with the domain boundary, see [23, Definition 1.16]). Interestingly, a similar
behaviour is observed also for HHO methods, where the faces of the agglomerated mesh
coincide with facets; see [31] for further details on the notion of mesh faces for HHO.
Furthermore, increasing the polynomial degree on coarser agglomerated meshes is highly
beneficial from both the accuracy and the easiness of solution viewpoints.

We conclude this section by observing that the main issue of mesh agglomeration is
related to numerical integration. As a matter of fact, if quadrature is performed on the
subelements, as we actually do, the cost of numerical integration can become significant.

7. Conclusion

We assessed the convergence rates of a new adaptation of the HHO method to curved
meshes based on physical frame polynomial spaces over mesh elements and reference
frame polynomial spaces over mesh faces. We verified, by means of carefully crafted nu-
merical test cases, that optimal approximation properties of the potential reconstruction
operator can be recovered by increasing the degree of face polynomial spaces by a suitable
amount with respect to element polynomial spaces. This amount can be theoretically es-
timated according to the face shape and the mapping properties so as to counterbalance
the convergence degradation affecting reference frame polynomials in case of non-linear
mappings.

We demonstrated (and motivated by analyzing the error of the reconstructed poten-
tial with respect to the exact solution) that optimal convergence rates can be expected
on non-pathological mesh sequences for standard HHO approximations using the same
polynomial degree on both elements and faces. By non-pathological we mean here that
they tend towards an affine mesh when the meshsize is reduced. On the other hand, when
dealing with pathological mesh sequences (which do not tend to affine meshes upon re-
finement), the numerical evidence shows that most of the time sufficient accuracy can be
obtained by increasing the face polynomial degree by 1. Clearly, non-pathological mesh
sequences are representative of most practical applications thanks to the availability of
good mesh generators, see e.g. [38]. As opposite, handling pathological mesh sequences
may be relevant in the context of moving and deformable mesh methods. We remark
that, both in pathological and non-pathological mesh sequences, we considered the worst
possible configuration where all the elements are curved, not only the elements that are
adjacent to domain boundaries.

The comparison of HHO and DG methods with the same convergence rates in h
shows that the errors in both the L2- and H1-norms are comparable, with a small but
perceptible advantage of DG in terms of accuracy per DOF for polynomial degrees greater
than one. This behavior is documented comparing (i) HHO discretization based on the

equal-order space Uk,kh HHO with DG discretization based on the space Uk`1
h over non-

pathological mesh sequences and (ii) HHO discretizations based on the enriched space

Uk,k`1
h with DG based on the space Uk`1

h over pathological mesh sequences.
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Table 5: p-convergence of HHO and DG discretizations on h-coarsened agglomerated and regular mesh
sequence of Figures 17a-17b. L2 and H1 measure the error in L2pΩhq norm with respect to the exact
solution and the exact solution gradient, respectively, using the boundary condition in (30a) and (30b)
(exBC and hoBC, respectively).. The last column shows the number of iterations of the linear solver
(ILU preconditioned Conjugate Gradient).

k cardpThq cardpFhq DOFs L2 exBC L2 hoBC H1 exBC H1 hoBC LS its

DG discretizations on agglomerated meshes (Th “ TH , Fh “ FH)

1 4080 11683 12240 3.04e-03 3.04e-03 2.32e-01 2.32e-01 169
2 1978 5804 11868 9.07e-05 9.07e-05 1.232-02 1.23e-02 125
3 1190 3549 11900 5.13e-06 5.13e-06 6.32e-04 6.32e-04 100
4 804 2399 12060 2.32e-07 2.32e-07 3.03e-05 3.03e-05 89
5 572 1709 12012 1.94e-08 1.90e-08 2.09e-06 2.09e-06 77
6 426 1278 11928 4.24e-09 8.20e-10 9.77e-08 9.73e-08 66
7 330 989 11880 4.16e-09 7.79e-11 1.32e-08 8.31e-09 59
8 274 820 12330 4.16e-09 3.33e-12 1.05e-08 3.69e-10 54

DG discretizations on standard meshes

1 4082 6222 12246 3.44e-03 3.44e-03 2.49e-01 2.49e-01 176
2 2060 3160 12360 1.08e-04 1.08e-04 1.34e-02 1.34e-02 143
3 1156 1786 11560 9.24e-06 7.31e-06 7.49e-04 7.49e-04 125
4 816 1268 12240 1.11e-05 3.58e-07 1.05e-04 3.97e-05 114
5 596 932 12516 1.61e-05 2.22e-08 1.50e-04 2.29e-06 104
6 412 648 11536 3.92e-05 1.83e-09 3.36e-04 1.76e-07 90
7 318 504 11448 6.72e-05 1.33e-10 5.48e-04 1.28e-08 87
8 280 446 12600 6.67e-05 5.25e-12 5.58e-04 5.32e-10 87

HHO discretizations on agglomerated grids (Th “ TH , Fh “ FH
h )

0 4080 19160 19160 1.83e-03 1.83e-03 2.31e-01 2.31e-01 175
1 1978 13636 27270 4.29e-04 4.29e-04 1.48e-02 1.48e-02 129
2 1190 10673 32019 7.09e-06 7.09e-06 9.14e-04 9.14e-04 100
3 804 8846 35384 7.71e-07 7.69e-07 5.06e-05 5.06e-05 84
4 572 7575 37875 2.44e-08 2.33e-08 3.63e-06 3.63e-06 71
5 426 6596 39576 3.37e-09 2.02e-09 1.89e-07 1.89e-07 63
6 330 5915 41405 4.14e-09 9.36e-11 1.91e-08 1.62e-08 57
7 274 5412 43296 4.16e-09 5.34e-12 1.03e-08 7.86e-10 52

HHO discretizations on standard grids

0 4082 6222 6222 1.01e-02 1.01e-02 2.91e-01 2.91e-01 145
1 2060 3160 6320 1.53e-03 1.53e-03 3.92e-02 3.92e-02 127
2 1156 1786 5358 6.23e-05 6.28e-05 4.71e-03 4.71e-03 98
3 816 1268 5072 1.66e-05 7.25e-06 3.87e-04 3.82e-04 84
4 596 932 4660 1.62e-05 3.83e-07 9.92e-05 3.18e-05 85
5 412 648 3888 3.91e-05 3.61e-08 2.66e-04 3.35e-06 90
6 318 504 3528 6.70e-05 2.98e-09 4.58e-04 2.88e-07 70
7 280 446 3568 6.67e-05 1.81e-10 5.38e-04 1.62e-08 66
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(a) Agglomerated mesh sequence built on top of a 40k six-node triangular mesh.

(b) Six-node triangular mesh sequence.

Figure 17: Sequences of meshes of the unit annulus.
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Figure 18: Error versus polynomial degree. p-convergence of HHO and DG discretizations on h-coarsened
agglomerated and regular mesh sequence of Figures 17a-17b. L2 and H1 measure the error in L2pΩhq

norm with respect to the exact solution and the exact solution gradient, respectively, using the boundary
condition in (30a) and (30b) (exBC and hoBC, respectively).

The comparison of p-refined HHO and DG discretizations based on the sequences
of spaces tUk,kh ukě0 and tUkhukě1, respectively, shows that HHO methods have a clear
advantage in terms of accuracy per DOF in two space dimensions, both on triangular and
quadrilateral pathological mesh sequences. In three space dimensions, this advantage
is maintained on tetrahedral mesh sequences, while the performance of the two non-
conforming methods is comparable on hexahedral mesh sequences. It is interesting to
remark that, among standard three dimensional elements shapes (also including e.g.
prismatic and pyramidal elements), tetrahedral and hexehedral meshes have the highest
and the lowest mesh elements to mesh faces cardinality ratio, respectively. Since the
DOF count is face-based for HHO methods and element-based for DG methods, it is no
surprise that HHO shines on tetrahedral meshes.

To conclude, asymptotically small discretization errors have been achieved employing
high-order HHO and DG discretizations over a unit annulus computational domain with
curved boundaries. Remarkably, error reduction is pursued considering high-polynomial
degrees over meshes obtained by agglomeration coarsening of a second-order six-node
triangular grid obtained with standard mesh generators. Agglomeration-coarsening has
been designed to provide a uniform number of DOFs while increasing the polynomial
degree in case of dG discretizations. In view of the discussion in the previous paragraph,
DG seems the choice of preference in this context, since on agglomerated mesh sequences
the average number of faces per mesh element is typically much larger than on standard
grids. Variations of the HHO method that improve its behaviour on agglomerated meshes
are currently under study, and will make the object of a future work.
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