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Abstract

Asset allocation theory and practice has been applied to many problems of institu-

tional investors. In this dissertation, we consider the following two problems:

i) Optimal portfolio and spending rules for endowment funds.

ii) Capital adequacy management for banks in the Lévy market.

Part I: We investigate the role of di�erent spending rules in a dynamic asset allo-

cation model for an endowment fund. In particular, we derive the optimal portfolios

under the consumption-wealth ratio rule (CW strategy) and the hybrid rule (hy-

brid strategy) and compare them with a theoretically optimal (Merton's) strategy

for both spending and portfolio allocation. Furthermore, we show that the optimal

portfolio is less risky with habit as compared with the optimal portfolio without

habit. Similarly, the optimal portfolio under hybrid strategy is less risky than both

CW and Merton's strategy for given set of constant parameters. Thus, endowments

following hybrid spending rule use asset allocation to protect spending. Our cal-

ibrated numerical analysis on US data shows that the consumption under hybrid

strategy is less volatile as compared to other strategies. However, hybrid strategy

comparatively outperforms the conventional Merton's strategy and CW strategy

when the market is highly volatile but under-performs them when there is a low

volatility. Overall, the hybrid strategy is e�ective in terms of stability of spending

and intergenerational equity because, even if it allows �uctuation in spending in the

short run, it guarantees the convergence of spending towards its long term mean.

Part II: We investigate the capital adequacy management and asset allocation

problems for a bank whose risk process follows a jump-di�usion process. Capital

adequacy management problem is based on regulations in Basel III Capital Accord

such as the capital adequacy ratio (CAR) which is calculated by the dividing the

bank capital by total risk-weighted assets (TRWAs). Capital adequacy management

requires a bank to reserve a certain amount for liquidity. We derive the optimal
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investment portfolio for a bank with constant absolute risk aversion (CARA) prefer-

ences and then the capital adequacy ratio process of the bank is derived, conditional

on the optimal policy chosen.

Keywords: Endowment funds, spending rules, habit formation, martingale ap-

proach, capital adequacy management, HJB equation, dynamic programming, asset

allocation.



Chapter 1

Introduction

Mathematical models in �nance constitute deep and tremendous applications of

di�erential equations and probability theory. Stochastic processes were introduced

in �nance in 1900 by Louis Bachelier in his PhD thesis �Théorie de la Spécula-

tion� (Theory of Speculation), where he studied option pricing in a continuous time

stochastic framework (Brownian motion). Bachelier's contribution remained un-

noticed by prominent academics and the industry at that time. In 1905, Albert

Einstein discovered the same equations in his mathematical theory of Brownian mo-

tion when he proposed a model of the motion of small particles suspended in a liquid.

The theory of Brownian motion was further developed by some of the most eminent

physicists and mathematicians of the Twentieth century in a series of papers. 1960's

is considered as the beginning of modern mathematical �nance when Paul Samuel-

son, in his two papers, explained the random �uctuation of stock prices and showed

that an appropriate model for stock prices is geometric Brownian motion (GBM)

which ensures that stock prices are always positive (Jarrow and Protter, 2004).

Di�erential equations and Brownian motion are crucial components on which

historical developments in �nance were established. The most signi�cant contribu-

tion in mathematical �nance is by Fischer Black, Myron Scholes, and Robert Merton

who independently worked on the model of option pricing. For their outstanding

work on the development of new method to determine the value of derivatives, the

Royal Swedish Academy of Sciences announced the Nobel Prize in Economics in

1997. Black and Scholes [1973] derived the �rst quantitative model for the valuation

1



1.1 Objectives of the thesis 2

of stock options by using the capital asset pricing model, satisfying a partial di�er-

ential equation and they solved it using a combination of earlier pricing formulas and

economic intuition. Merton [1973] extended the Black-Scholes theory by deducing a

set of restriction and assumptions for option pricing formulas. Harrison and Kreps

[1979] and Harrison and Pliska [1981] presented the solution in more abstract form

as a mathematical model called martingale which provides more generality.

In modern �nance, consumption and investment problems in continuous time

for an investor to meet long-term �nancial goals and targets is viewed as a funda-

mental problem. Markowitz [1952] solved the problem of optimal investment in a

static setting where a portfolio, consisting of riskless and risky assets, is selected

with an objective to minimize variance of the portfolio. Markowitz identi�ed that

diversi�cation of the portfolio is bene�cial, as it reduces the risk by minimizing

the variance of the portfolio for the same level of return. Merton [1969] and Mer-

ton [1971] studied the problem of a representative agent who aims at maximizing

power utility function of both terminal wealth and intertemporal consumption in

continuous time with risky assets following GBM. Since then, various investment

problems of institutional and individual investors including banks, annuitants, pen-

sion funds, endowment funds, insurers, and insurance holders have been the subject

of substantial research.

1.1 Objectives of the thesis

During recent years, there has been a growing interest among mathematicians and

�nancial practitioners, in the institutional investment problems. The problem of

maximizing the expected utility of wealth is the primary goal of an institutional

investor. To achieve this goal, the investors are inclined to place their surplus funds

in risky assets as they have a higher expected return. Nevertheless, if the investments

are selected on the basis of returns only, then the risky investments may result into

heavy losses. Therefore, investors have to strike a balance between the investments

in risky and riskless assets. In this thesis, we consider the investment and risk

management problem of endowment funds and banks. The problem of endowment
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funds is to allocate optimal amount for intertemporal spending and investment in

risky assets whereas the problem of banks is to allocate their resources for investment

in the �nancial market and loans, while maintaining regulatory requirements.

The study in this thesis is motivated by the subprime mortgage crisis 2007-09

which stemmed from expansion of mortgage credit. The crisis induced the most

severe recession over the past decade and had a wide-ranging global e�ects on the

�nancial institutions which resulted in the bankruptcy of many major �nancial �rms

including banks and insurance companies. It begun with the collapse of banks, then

spread to the insurance companies and other institutional investors. In 2007 �ve

major investment banks, Bear Stearns, Lehman Brothers, Goldman Sachs, Morgan

Stanley and Merrill Lynch were operating with thin capital-leverage ratio. One

of the largest and most successful insurance companies in the world at that time,

American International Group (AIG), was on the brink of a collapse. These or-

ganizations failed to regulate their risks and were unable to take into account the

consequences of derivatives trading on their capital structure. Furthermore, as the

whole structure of many �nancial derivatives was based on the payments made by

the debtors, when debtors started defaulting, these companies lost their worth. The

crisis caused the major review of investment strategies applied by institutional in-

vestors and standards imposed by �nancial regulators. Regulators responded to the

�nancial crisis by tightening existing capital ratios, introducing new capital ratios,

and imposing global liquidity standards.

The main objective of the thesis is to study investment strategies applied by

institutional investors subject to some rules or �nancial regulations. For this pur-

pose, �rstly, we study the optimal investment problem for endowment funds, under

various spending rules, with an objective to achieve intergenerational equity, i.e. a

reasonably smooth earnings and consequent smooth stream of spending for the cur-

rent and future bene�ciaries. Secondly, we study the problem of optimal investment

for banks in risky assets while considering the regulatory requirements under Basel

accord. In particular, we study the behavior of capital adequacy ratio conditional

on the optimal portfolio chosen.

This research is based on stochastic optimal control, applied to measure and
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manage optimal investments. In this chapter, we introduce the problems and an

outline of the thesis is provided at the end of the chapter.

1.2 Literature review

The fundamental problem of an institutional investor is to allocate assets to max-

imize its utility of the terminal wealth. The �rst major breakthrough was made

in portfolio selection under uncertainty when Markowitz [1952] introduced modern

portfolio theory, which proposes that the choice of a portfolio should be based on

applicable future predictions established on mean-variance framework. This frame-

work has variance as a measure of risk and expected return of the portfolio as a

selection criterion. The most distinct and signi�cant contribution of the framework

was to identify that a security's contribution to the variance of the entire portfolio

is more crucial than the risk of the security itself. Markowitz treated the problem of

portfolio selection and risk management as a mathematical optimization problem.

This approach is now prevalent for performance measurement and portfolio selec-

tion among institutional portfolio managers (Rubinstein [2002]). However, there

are some limitations of mean-variance framework when it is applied in the dynamic

settings as it is constructed under static settings, due to the fact that in the real

world, the investors seldom make asset allocations based on single-period perspec-

tive and additionally the portfolios selected by this technique may not be diversi�ed

enough, as optimal asset allocations are highly sensitive to parameters especially

the expected returns.

Another pioneering development was the introduction of optimal investment and

consumption problem by Merton [1969] and Merton [1971], when the problem was

solved in the continuous time using dynamic programming. The dynamic program-

ming approach transforms Markovian stochastic optimal control problem into the

problem of solving Hamilton-Jacobi-Bellman equation (HJB) which is a non-linear

deterministic partial di�erential equation. For a discrete time framework, a similar

study had been conducted before by Samuelson [1969]. The earlier paper by Mer-

ton examined the individual investor's continuous time consumption problem using
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stochastic optimal control where income is generated by capital gains on the invest-

ments in assets. An explicit solution for optimal consumption and investment was

derived under the assumption that the asset prices were assumed to satisfy GBM

and constant relative or constant absolute risk-aversion utility function. Merton

[1971] extended the previous work to more general utility functions and included

the income generated by non-capital gains sources and constructed a control by

solving a non-linear partial di�erential equation. These notable works have been

generalized and re�ned in many di�erent ways by innumerable subsequent papers.

The main alternative method proposed for solving optimal investment problem is

the martingale approach, a more direct and probabilistic method than dynamic pro-

gramming and it does not need Markovian structure. Martingale approach for the

complete market was implemented by Karatzas et al. [1987] to obtain the optimal

consumption and wealth process explicitly. In their study, the problem is separated

into the problems of maximizing utility of consumption only and maximizing utility

of terminal wealth only and then these problems are properly compiled. The paper

generalized the problem by allowing general utility function in �nite-time horizon

and arbitrary stock price �uctuations. Cox and Huang [1989] focused on explicit

construction of optimal controls using a martingale technique and taken into ac-

count the non-negativity constraints on consumption and �nal wealth. The main

advantage of this approach is that only a linear partial di�erential equation is re-

quired to be solved instead of nonlinear partial di�erential equation as in the case

of dynamic programming. In dynamic programming, to establish the existence of

a solution to the investment/consumption problems, two methods can be used: (i)

applying the existence theorem from the stochastic control theory involving admis-

sible controls (taking its values in a compact set), or (ii) constructing control by

solving a nonlinear partial di�erential equation and verifying the solution by using

veri�cation theorem. The relatively more complicated case of incomplete market

was explored by Karatzas et al. [1991], who determined the conditions required for

the existence of optimal portfolio following non-Markov model and represented this

optimal portfolio in terms of the solution to a dual optimization problem. Kramkov

and Schachermayer [1999] uses the key idea of solving dual variational problem and
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then by convex duality �nds the solution of original problem.

Optimal control theory was originally developed by engineers to study the prop-

erties of di�erential equations, since then it has been applied to many problems in

�nance. With the advancement in computer science and computational techniques,

macroeconomic models based on optimal control are being developed to provide

policy analysis and economic forecasts. In addition, innovation and evolution of im-

portant theoretical tools, such as stochastic dynamic programming, state feedback

controllers, linear quadratic programming etc., has made the application of optimal

control theory in the economic systems much more attractive. The references given

above have been modi�ed in many ways, the relevant literature about the main

areas of application of optimal control in �nance include investment optimization

problems, pension funds, investment funds and insurance. We will brie�y discuss

below some of the aforementioned areas.

Firstly, we will review the literature of some notable modi�cations of Merton

[1969, 1971]. Lehoczky et al. [1983] considered the investment consumption prob-

lem with various bankruptcy models and consumption constraint from below. Their

work was later generalized by Karatzas et al. [1986] which also allowed general util-

ity functions and general rates of return. In addition, the paper explicitly exhibits

the value function and uses it to provide the conditions for the existence of optimal

consumption/investment policies and �nally the analysis were extended to consider

more general risky investments. Sethi and Taksar [1992] extended the study further

by modeling recovery from bankruptcy and showing one-to-one correspondence be-

tween the model with recovery and the model with terminal bankruptcy in Karatzas

et al. [1986]. Cadenillas and Sethi [1997] further extended Karatzas et al. [1987] by

considering the problem in a �nancial market with random coe�cients and per-

mitting general continuously di�erentiable concave utility functions. Karoui et al.

[2005] looked into utility maximization of portfolio strategies of a fund manager

with constraint applied on the terminal date (European guarantee) or on an every

intermediary date (American guarantee). The investor chooses a tactical allocation

using traded assets and then insures it by using a dynamic strategy called therein

as strategic allocation and obtained the optimal strategic allocation satisfying the
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guarantee. Choulli et al. [2003] studied model of corporation facing constant liabil-

ity with the objective to choose business policy and dividend distribution plan in

order to maximize the expected present value of future dividends up to the time of

bankruptcy. Zariphopoulou [1994] studied a problem akin to the previous one but

without bankruptcy, to determine the value functions for examining their smooth-

ness and characterization of the optimal policies. The primary tools used was theory

of viscosity solutions for second-order partial di�erential equations and elliptic reg-

ularity from the theory of partial di�erential equations. Firstly, the value functions

are shown to be unique constrained viscosity solutions of the associated HJB equa-

tions and then their viscosity solutions are proved to be smooth. Finally, explicit

feedback form for the optimal policies is obtained.

There are several other studies on individual investment and consumption and

macroeconomic problems. Yao and Zhang [2005] examined the optimal dynamic

consumption, housing, and portfolio choices for an investor who acquires housing

service from either renting or owning a house. Stein [2010] showed the e�ectiveness

of application of stochastic optimal control (SOC)/dynamic risk management to

determine the optimal degree of leverage, the optimum and excessive risk and the

probability of a debt crisis. Stein [2011] used stochastic optimal control analysis

to derive an optimal debt ratio and de�ned the di�erence between the actual and

optimal debt ratio of household as an excess debt, as an indicator of Early Warning

Signal (EWS) of debt crisis. Stein [2005] used stochastic optimal control to model

optimum foreign debt and presented how vulnerable economies are by measuring

the divergences of actual debt from an optimal one.

One of the interesting applications of stochastic optimal control for institutional

investor is with the inclusion of risk control processes. For instance, Browne [1995]

considered a �rm with a uncontrollable stochastic cash �ow or random risk process

and modeled the risk by a continuous di�usion process. He focused on the criteria of

minimizing the probability of ruin and maximizing the expected exponential utility

of terminal wealth. Recently, insurance companies are �nding it essential to apply

control theory, previously it had been exclusive only to the other areas of �nance.

Typically, the objective of an insurance company is to maximize (or minimize) the
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objective function, where the insurance companies can invest in the stock market

with the control variable of new investment, premium levels, reinsurance policy and

dividend policy with a risk control process to model the insurance claims. Classical

references in this area include, Buhlmann [1970], Dayananda [1970] and Martin-Lüf

[1973]. The compound Poisson process is the most useful and popular process to

describe the claims process since the classical Cramer-Lundberg model, introduced

by Lundberg in 1903 and then republished by Cramer in 1930. This model can also

be included in bank's asset allocation and capital adequacy management problem to

model loan losses. The limiting of compound Poisson process is a di�usion process

(see Taksar [2000]), hence, the subsequent research by Wang et al. [2007], Yang and

Zhang [2005] and Zou and Cadenillas [2014] modeled the risk process as a jump

di�usion process, providing a much better description of claims. Yang and Zhang

[2005] studied optimal investment policies for an insurer with jump-di�usion risk

process and obtained a closed form solution of optimal policy of exponential utility

function under the assumptions that the risk process follows a compound Poisson

process. They also studied general utility function and proved the veri�cation theo-

rem using martingale optimality principle. Wang et al. [2007] applied the martingale

approach for optimal investment problem under utility maximization criterion and

used jump di�usion model for the risk process. Sheng et al. [2014] investigated

the optimal control strategy of excess-of-loss reinsurance (reinsurance in which re-

insurer compensates the ceding company for losses that exceed a pre-speci�ed limit)

and investment problem for an insurer with compound Poisson jump di�usion risk

process and analyzed the model with risky asset being priced by constant elasticity

of variance (CEV) model. Moreover, they obtained a closed-form solution for HJB

equation satisfying the veri�cation theorem. Schmidli [2001] considered the insurer

objective to minimize the probability of ruin and obtained optimal proportional

reinsurance strategies in a classical risk model. Liu et al. [2013] also considered

maximizing the expected exponential utility function for insurer with value-at-risk

constraint on the portfolio and simpli�ed the problem by using a decomposition

approach both in complete and incomplete market. Zhu et al. [2015] analyzed the

optimal proportional reinsurance and investment problem for default able market by
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decomposing the problem into the problems of a pre-default case and post-default

case. The study extends the insurer's problem of optimal investment and reinsur-

ance by considering a corporate bond and explicitly deriving optimal reinsurance

and investment strategy that maximize the expected CARA utility of the terminal

wealth.

Stochastic optimal control framework has also been applied to bank's optimal

investment problems. Mukuddem-Petersen and Petersen [2006] considered the min-

imization of bank's market and capital adequacy risks and derived optimal portfolio

and rate of bank's capital in�ow. Pantelous [2008] examined the discrete stochastic

framework for managing lending rate policy through a suitable investment strat-

egy for loan portfolios and proposed the optimization model for banks described in

a quadratic functional with control variables, stochastic inputs and a smoothness

criterion. Mulaudzi et al. [2008] applied the stochastic optimization theory to gen-

erate optimal asset allocation between loans and treasury bills. They used a utility

function with regret attribute alongside a risk component. Petersen et al. [2012]

studied stochastic optimal problem of credit default insurance for subprime resi-

dential mortgage-backed securities and solved the credit default insurance problem

with the cash out�ow rate satisfying depositor obligations. Mukuddem-Petersen

et al. [2010] studied an optimal securitization problem for banks that use the cash

out�ow rate for �nancing a portfolio of mortgage-backed securities where bank's

investment is the control variable.

1.3 The research problems and organization of the

thesis

In this thesis, we focus on the application of stochastic optimal control framework to

solve optimal investment and consumption problems of institutional investors. We

consider two main problems:

(i) We study the optimal asset allocation problem for endowment funds under

various spending rules. We consider the spending rules practically applied by the

endowments. In particular, the consumption-wealth ratio method, and the weighted
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average or hybrid method, which is very popular among the large endowment funds,

like Yale and Stanford. We compare the optimal solutions under each rule with the

classical Merton's optimal investment and consumption.

(ii) We take into account the asset allocation and capital adequacy management

problem of banks with risk process and risky asset following jump-di�usion processes.

We �nd optimal investment strategy to maximize the expected exponential utility of

the bank's wealth for a �nite time horizon. The stochastic optimal control problem

is solved by using martingale approach.

The remainder of this thesis is organized in following way. Chapter 2 is devoted

to the introduction of stochastic optimal control framework, portfolio management

problems of institutional investor in the existing literature and some preliminaries.

Chapter 3 is about optimal investment for endowment funds under various spending

rules. Chapter 4 covers the capital adequacy management and optimal investment

problem for banks.



Chapter 2

Stochastic optimal control and asset

allocation problems

2.1 Introduction

Stochastic optimal control with investor preferences and assumptions on asset re-

turns was introduced in �nance by Merton in his pioneering work, since then it

has become the natural formulation for asset allocation problems of institutional

investor (such as, mutual funds, commercial banks, pension funds, insurance com-

panies and manufacturing companies) and individual investors (such as households).

From mathematical perspective, stochastic optimal control is suitable for optimal

allocation problem with the control variables and constraints on the state variables.

There are two main approaches to solve stochastic optimal control problems, a clas-

sical approach referred as dynamic programming approach and a modern approach

called as martingale or duality approach. Dynamic programming was developed by

R. Bellman in 1950's, based on the concept to embed the problem in a family of prob-

lems indexed by starting point in space and time and a relationships is established

among these problems through Hamilton-Jacobi-Bellman equation (HJB), a second

order partial di�erential equation. Through veri�cation technique, we can obtain

an optimal feedback control to minimize or maximize the Hamiltonian involved in

the HJB equation. In this approach, the main mathematical di�culties are to show

the equivalence of the optimal control problem and existence and uniqueness of the

11
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solution. The martingale method is a more direct approach, based on the mar-

tingale representation of wealth. The approach preserves the probabilistic nature

of the problem. However, it is only feasible in complete market settings whereas

the dynamic programming approach is also applicable in incomplete market but it

requires Markovian structure. We brie�y introduce the components of stochastic

optimal control and general framework of asset allocation problems.

2.1.1 The components of optimal control

We consider the probability space (Ω,F ,P) with an associated �ltration F ={Ft}t∈[t,T ].

In general terms, a stochastic optimal control problem is formulated with the fol-

lowing components:

• State variables: The state variables provide the minimum information re-

quired to describe the problem. State variables follow a Markovian structure

and can only be a�ected by the control variables. Typically in �nance, the

state process represents the wealth R(t) by a stochastic di�erential equation.

However, there can be more than one state processes, the other common state

processes include interest rate, in�ation etc.

• Control processes: The set of controls π(t) are chosen by the optimizer to

solve the optimization problem. The control variables must takes some values

at each time instant t. The control variables which satisfy the constraints

placed on them are called an admissible control. The set of all the feasible

controls satisfying the requirements is represented by Π and it may depend on

initial value of the state variables.

• The objective function: The objective is to either maximizes or minimizes

the utility over all admissible controls.

2.1.2 General asset allocation problem

Asset allocation is the problem dealt by the investors who desire to allocate funds

in an optimal manner across di�erent assets or asset classes and current consump-



2.1 Introduction 13

tion. For our general settings, we de�ne the investment/consumption problem. We

consider the economic environment described by s state variables, whose values z(t)

solve the matrix stochastic di�erential equation

dz(t)
s×1

= µz(t, z)
s×1

dt+ Ω(t, z)
′

s×n
dW (t)
n×1

, (2.1)

where the prime denotes transposition and dW (t) is the vector of n independent

Brownian motions (normally distributed with zero mean and variance dt). We con-

sider the following assets in the complete, arbitrage free and continuously open

market:

• a riskless asset G(t) which evolves according to

dG(t)

G(t)
= r(t)dt, (2.2)

where G(t0) = 1, and which is the numéraire and r(t) is the instantaneous

nominal interest rate;

• n risky assets whose prices in vector S(t) solve the matrix di�erential equation

I−1
S
n×n

dS(t)
n×1

= µ(t, z)
n×1

dt+ Σ (t, z)
′

n×n
dW (t)
n×1

, (2.3)

where IS is a diagonal matrix containing the prices of the n assets, here we

assume that ∃Σ (t, z)−1 so that there exists only one vector of market prices of risk

ξ (t, z) which solves

Σ
′
(t, z) ξ (t, z) = µ (t, z)− r (t, z)1,

where 1 is a vector of 1's. The uniqueness of ξ (t, z) means that Σ (t, z) is invert-able.

If θS is the vector containing the number of risky assets held in the portfolio.

θG(t) contains the units of risk-less asset G(t), then at any instant of time t the

agents wealth R(t) is given by

R(t) = θG(t)G(t) + θS(t)
′

1×n
S(t)
n×1

.



2.1 Introduction 14

The di�erential of wealth can be written as

dR(t) =
(
R(t)r(t, z) + θS(t)

′
IS(µ(t, z)− r(t, z)1)− c(t)

)
dt+ θS(t)

′
ISΣ(t, z)

′
dW (t).

(2.4)

We can also write the above equation in terms of amount of wealth invested in

risky assets as follows

dR(t) =
(
R(t)r(t, z) +πS(t)(µ(t, z)− r(t, z)1)− c(t)

)
dt+πS(t)Σ(t, z)

′
dW (t), (2.5)

where πS(t) is the vector of amounts invested in the risky assets.

If we consider an agent who wants to maximize his expected utility of intertempo-

ral consumption c (t) and terminal wealth R (T ) under subjective discount rate ρ for

the time period [t0, T ], and if the control variable is de�ned as π(t) :=
{
c (t) , θS (t)

′
}
,

then it is reasonable to assume the following objective function

max
π(t)t∈[t0,T ]

Et0
[∫ T

t0

Uc (c (t)) e
−
∫ t
t0
ρ(s)ds

dt+ UR (R (T )) e
−
∫ T
t0
ρ(s)ds

]
,

where U is Von Neumann-Morgenstern, twice di�erentiable, increasing and concave

utility function. The objective is to �nd an optimal strategy π(t)∗ which provides

expected utility as high as any other feasible strategy but may not be unique. The

control variables can also be expressed in the form of the proportions of wealth by

π̃(t) := {c̃ (t) , π̃S (t)}, these variables may take any values in R. The control variables

must be Ft-measurable, i.e., they can depend on the information available at time

t. Some technical requirements include the consumption process c(t) must be an

L1-process, i.e.
∫ T
t
‖c(s)‖ ds <∞ with probability one. The portfolio strategy θS(t)

is a progressively measurable process and satis�es πS(t)
′
µ (t, z) is an L1-process and

πS(t)
′
Σ (t, z) is L2-process, i.e.

∫ T
t

∥∥π(s)
′
Σ (t, z)

∥∥2
ds <∞.
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2.2 Dynamic programming approach

Dynamic programming requires the admissible strategies take values in the compact

set and there must exist an optimal investment strategy. In this approach, we must

apply veri�cation theorem to verify that the optimal value function is optimal. The

solution to the HJB equation, under some technical conditions give us the both

the indirect utility function and the optimal control. The indirect utility function

J = J(t, R (t) , z (t)) at time t is

J(t, R (t) , z (t)) ≡ max
π(s)s∈[t,T ]

Et
[∫ T

t

Uc(c (s))e−
∫ s
t ρududs+ UR(R (T ))e−

∫ T
t ρsds

]
.

(2.6)

Now, we can split the problem into two sub-problems for two sub-problems [t, t+

dt] and [t+ dt, T ]:

J(t, R (t) , z (t)) = max
π(s)s∈[t,T ]

Et
[ ∫ t+dt

t

Uc(c (s))e−
∫ s
t ρududs

+

∫ T

t+dt

Uc(c (s))e−
∫ t+dt
t ρudue−

∫ s
t+dt ρududs

+ UR(R (T ))e−
∫ t+dt
t ρsdse−

∫ T
t+dt ρsds

]
.

According to the Bellmans' principle, we assume that for the second period

[t+dt, T ], the problem is already optimized, therefore we can write the optimization

problem for the �rst sub-period plus the optimized value function for the second

period.

J(t, R (t) , z (t)) = max
π(s)s∈[t,t+dt]

Et
[∫ t+dt

t

Uc(c (s))e−
∫ s
t ρududs

+ e−
∫ t+dt
t ρuduJ(t+ dt, R (t+ dt) , z (t+ dt))

]
.

If we subtract J(t, R (t) , z (t)) from both sides and divide by dt, and take the

limit dt→ 0, we get
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0 = max
π(t)

[
Uc(c (t))− ρtJ(t, R (t)) +



dt
Et[dJ(t, R (t) , z (t))]

]
.

In order to simplify the notation we use J = J(t, R (t) , z (t)), we compute

dJ(t, R (t) , z (t)) by using Ito's lemma and after taking the expected value the above

equation becomes

0 = max
π(t)


Uc(c (t))− ρtJ + ∂J

∂t
+ ∂J

∂R(t)

(
R(t)r(t, z) + πS (t) (µ(t, z)− r(t, z)1)− c(t)

)
+µ

′
z
∂J
∂z(t)

+ 1
2
∂2J
∂R(t)

πS (t)2 Σ
′
Σ + 1

2
tr
(

Ω
′
Ω ∂2J

∂z(t)
′
∂z(t)

)
+πS (t) Σ

′
Ω ∂2J
∂z(t)∂R(t)


(2.7)

The above equation is called Hamilton Jacobi-Bellman equation (HJB). As we

can see, it is a highly non-linear second order partial di�erential equation.

2.3 Optimal investment with habit formation

We take the dynamic asset allocation problem for an investor with habit formation

in the preferences and time-varying investment opportunities in a complete �nancial

market. The investor is allowed to invest in n risky assets and a risk less asset as

given in the Sub-Section 2.1.2, thus the wealth process of the investor is given by

dR(t) =
(
R(t)r(t, z) + θS(t)

′
IS(µ(t, z)− r(t, z)1)− c(t)

)
dt+ θS(t)

′
ISΣ(t, z)

′
dW (t).

We consider a price-taking investor with the �xed time horizon [t0, T ]. The

optimization problem can be written as

max
π(t)

Et0
[∫ T

t0

e−ρ(s−t0)Uc (c (t) , h (t)) ds+ UR (R (T )) e−ρ(T−t0)

]
,

where ρ ≥ 0 is a subjective rate of time preference, and h (t) is the habit level de�ned

by
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h (t) = h0e
−
∫ t
0 β(u)du +

∫ t

0

α(s)c (s) e−
∫ t
s β(u)duds,

where h0 is the initial minimum amount of out�ow, α(t) is the weighting function

providing the relative importance to the past out�ow in computing the threshold

h(t), while β(t) is a discount rate. h (t) can be written as

dh (t) = (α (t) c (t)− β (t)h (t)) dt.

We assume that the utility functions belong to Hyperbolic Absolute Risk Aver-

sion (HARA) family and can be written as

Uc (c (t) , h (t)) =
(c (t)− h (t))1−δ

1− δ
, UR (R (T )) =

(R (T )−Rm)1−δ

1− δ
, (2.8)

where c (t) is the instantaneous out�ow or spending from the fund, the constant Rm

can be interpreted as the minimum subsistence level of wealth. Thus the investor

problem can be written as

max
c(t),θS(t)

Et0
[∫ T

t0

φC
(c(s)− h(s))1−δ

1− δ
e−ρ(s−t0)ds+ φR

(R(T )−Rm)1−δ

1− δ
e−ρ(T−t0)

]
.

(2.9)

Proposition 1. Given the state variables wealth R(t) and z(t) described in (2.4)

and (2.1) respectively, the optimal out�ow and portfolio solving problem (2.9) are

c∗(t) = h(t) + φ
1
δ
c

(R(t)− h(t)B(t))(1 +B(t)α(t))−
1
δ

A(t, z(t))
, (2.10)

ISθS(t)∗ =
R(t)− h(t)B(t, z(t))

δ
Σ(t, z)−1ξ + h(t)Σ(t, z)−1Ω

∂B(t, z(t))

∂z

+
R(t)− h(t)B(t, z(t))

A(t, z(t))
Σ(t, z)−1Ω(t, z)

∂A(t, z(t))

∂z
, (2.11)

where
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A(t, z(t)) = EQδ
t

[∫ T

t

φ
1
δ
c (1 +B(s, z(s))α(s))1− 1

δ e
− δ−1

δ

∫ s
t

(
r(t,z)+ ρ

δ−1
+ 1

2δ
ξ
′
ξ
)
du
ds

+φ
1
δ
Re
− δ−1

δ

∫ s
t

(
r(t,z)+ ρ

δ−1
+ 1

2δ
ξ
′
ξ
)
du

]
, (2.12)

B(t, z(t)) = EQ
t

[
Rme

−
∫ T
t (−α(u)+β(u)+r(u,z))du +

∫ T

t

e−
∫ s
t (−α(u)+β(u)+r(u,z))duds

]
,

(2.13)

with z solving

dz(t) =
(
µz(t, z)−

δ − 1

δ
Ω(t, z)

′
ξ
)
dt+ Ω(t, z)

′
dW (t)Qδ ,

and

dW (t)Qδ =
δ − 1

δ
ξdt+ dW (t). (2.14)

The Wiener process under Qδ can be represented as a weighted mean of the

Wiener processes under the risk neutral and the historical probabilities (the weight

is given by the inverse of δ):

dWQδ(t) =

(
1− 1

δ

)
dWQ(t) +

1

δ
dW (t).

Proof. See Appendix 2.A.1

The optimal portfolio (2.11) is a combination of three components:

• standard mean-variance portfolio, where the disposable wealth is invested in

the risky assets proportionally to the risk aversion index δ and to the ratio

between the di�usion matrix and market price of risk (Σ(t, z)−1ξ).

• a hedge portfolio which insures against the changes in the investment oppor-

tunities and the future cost of the consumption at the habit level,

• a component which ensures that an agent can consume minimum at the habit

level.
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2.3.1 Special cases

In this section, we present some of the special cases of habit formation considered

in the literature.

2.3.1.1 Subsistence consumption

The main reference for this problem is Bajeux-Besnainou and Ogunc [2006]. Con-

sider the problem of endowment funds with a self �nancing strategy, that can invest

in the standard Black and Scholes market i.e. with two assets: a riskless assets G(t)

and a risky asset S(t), then the wealth of the fund can be written as

dR(t)

R(t)
=
(
r + π̃S(t)(µ− r)− c(t)

)
dt+ π̃S (t)σdW (t), (2.15)

where π̃S (t) is the proportion of wealth allocated for stock index and r is the constant

risk less interest rate.

From Harrison and Kreps [1979] and Harrison and Pliska [1981], under the com-

plete market the existence and uniqueness of a risk-neutral probability Q is charac-

terized by Radon-Nikodym derivative, Z(t) = dQ
dP satisfying:

dZ (t)

Z (t)
= −ξdW (t) ,

where ξ is the instantaneous price of risk: ξ = µ−r
σ

and where Z (t0) = 1 for

normalization.

The problem is to maximize the intertemporal utility of consumption/spending

where the minimum amount for consumption needs to be made at every time pe-

riod, called as minimum subsistence level consumption. The subsistence level is the

minimum spending level given by:

c(t) = αR(0)eλt,

where the constant in�ation rate λ is always less than the risk-free rate r(t). 0 <

α < 1 represents the spending rate based on in�ation-adjusted initial endowment's

wealth R(t0).
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The endowment fund preferences are represented by Hyperbolic Absolute Risk

Aversion (HARA) utility function with a minimum subsistence level that increases

with in�ation rate. Similar to the habit formation structure, the utility function

with subsistence level c (t) which is a deterministic function of time is given by

Uc (c (t)) =
1

1− γ
(c (t)− c (t))1−γ ,

where γ > 0 indicates the decreasing absolute risk aversion.

The self �nancing constraint 2.15 can be re-written under the assumption of

complete markets. (see Cox and Huang [1989] and Karatzas et al. [1987] for details).

The optimization problem can be written as

max
c(t)

Et0
[∫ +∞

t0

e−ρtUc (c (t)) dt

]
,

under the constraint

R (t0) = Et0
[∫ +∞

t0

e−ρtUc (c (t)) dt

]
,

where R (t0) is the initial endowment wealth, ρ > 0 is a constant subjective discount

rate and the spending stream c (t) is the control variable.

2.3.1.2 Real subsistence consumption

Consider the problem of dynamic asset allocation with minimum subsistence level

consumption in the presence of in�ation-protected securities. These securities are

used as a hedging tool against the in�ation risk. It is an extension of minimum

subsistence level consumption case considered above. In addition to the Standard

Black and Scholes model, the nominal bond is added in the portfolio. The rate of

in�ation is stochastic. The price level P (t) satis�es

dP (t)

P (t)
= λdt+ σλdW (t) ,

where W (t) is a two-dimensional Brownian motion. λ is the locally expected in-

�ation rate in the economy and σλ is the instantaneous in�ation volatility vector.
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There are two markets for trading bonds, one for nominal bonds GN (t) and other

is for real bonds G (t), which satisfy

dGN (t)P (t)

GN (t)P (t)
= rNdt ,

dG (t)

G (t)
= rdt,

The objective of the agent is to maximize the utility of consumption for in�nite

time horizon. The value function for the problem can be written as

J (t, R(t)) ≡ max
c(t),πS(t),πN (t)

E
[∫ +∞

t0

e−ρtUc (c (t)) dt

]
,

subject to the wealth constraint

dR (t) = (πS (t) (µ− r) + πN (t) (rN − λ− r) + rR (t)− c(t)) dt

+ (πS (t)σ − πN (t)σλ) dW (t),

and

c (t) ≥ c (t) , R (t0) = R0,

where πS (t) is the wealth invested in the stock, c (t) is the lower bound imposed on

consumption and πN (t) is the wealth invested in the nominal bonds.

Since there is a lower bound imposed on consumption there exist a lower bound

on wealthR (t) such that the agent's optimization is feasible and J (t, R(t)) = Uc(c(t))
ρ

.

The lower bound on wealth is given by

R (t) =
c (t)

r
.

The study shows that there exists an optimal consumption plan and trading

strategy which converges to the optimal policy for the �benchmark� (Merton's stan-

dard problem). The main reference for this extension is Gong and Li [2006].
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2.4 Optimal investment with jump-di�usion risk pro-

cess

Consider the wealth of an investor can be invested in a security market described

by the standard Black�Scholes model. i.e. with two assets: a riskless assets G(t)

and a risky asset S(t) given by:

dG(t)

G(t)
= r(t)dt,

and

dS(t)

S(t)
= µdt+ σdW1(t).

The risk of institutional investor is captured by using Cramer-Lundberg model,

a classical model used in the insurance industry to model claims. The risk process

of an investor is modeled by a jump-di�usion process

dR (t) = adt+ bdW̄ (t) + γdN(t), (2.16)

where a, b are positive constants and W̄ (t) is a one-dimensional standard Brownian

motion.

The cumulative amount of losses is given by
∑N(t)

i=1 li, where {li} is a series

of independent and identically distributed (i.i.d) random variables and N (t) is a

homogeneous Poisson process with intensity λ and independent of li. If the mean

of li and intensity of N (t) are �nite, then this compound Poisson process is a Lévy

process with �nite Lévy measure.

As the capital gains in the �nancial market are negatively correlated with the

liabilities, we denote ρ as the correlation coe�cient between W1(t) and W̄ (t), which

implies

W̄ (t) = ρW1(t) +
√

1− ρ2W2(t), (2.17)

where W2(t) is another standard Brownian motion independent of W1(t). There are
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three special cases for (4.6): (i) if W̄ (t) is not correlated with W1(t) that is, ρ = 0

then W̄ (t) is equal to W2(t), (ii) if ρ2 = 1, then W̄ (t) equals W1(t). In this case,

the risky assets and the liabilities are driven by the same source of randomness, and

(iii) if ρ2≤ 1 it means that the risk from liabilities cannot be eliminated by trading

the �nancial assets. After substituting (4.6) into (4.5) we can write

dR (t) = adt+ bρdW1(t) + b
√

1− ρ2dW2(t) + γdN(t), (2.18)

In addition,W1(t),W2(t), and N(t) are mutually independent and are all de�ned

on (Ω,F ,Ft,P) where Ft is the usual augmentation of natural �ltration with F =

FT . If we set πG ≡ θG(t)G(t), πS ≡ θS(t)S(t), and de�ne the investor's strategy

by π(t) := πS(t), a Ft − predictable process, which represents the dollar amounts

invested in stock index fund πS(t), then we can write the investor's assets portfolio

X(t) as a controlled stochastic process depending on a strategy π (t) as

dXπ(t) = (Xπ(t)r(t) + πS(t) (µS − r(t))− a) dt+ (πS(t)σ1 − bρ) dW1(t)

− b
√

1− ρ2dW2(t)− γdN(t).

Suppose that the investor's has a utility function U(X(T )) of the terminal wealth

X (T ), then the aim of the investor is to

max
π(t)

E [U (X (T ))] ,

where E is the conditional expectation under probability measure P and the utility

function U is assumed to be strictly increasing and concave with respect to the

wealth. Π denotes the set of all admissible controls with initial asset portfolio

X(0) = x0.

The main reference for this problem is Wang et al. [2007].
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2.4.1 Bank management problem

The assets that a bank can invest in consist of a bond, stock index and loans. On

the �nancial market two assets are listed:

• a riskless asset G(t) which evolves according to

dG(t)

G(t)
= r(t)dt, (2.19)

where r (t)is the short rate process which evolves according to the following

stochastic di�erential equation:

dr (t) = (a− br (t)) dt− σr
√
r (t)dWr (t) ,

where the coe�cients a,b, r (0) and σr are strictly positive constants and 2a ≥

σ2
r , so that P {r (t) > 0∀t ∈ [0, T ]} = 1.

• a security whose value is denoted by S (t) , t ≥ 0. The dynamics of S (t)is

given by

dS (t)

S (t)
= r (t) dt+ σS (ξS + dW (t)) dt+ σr

√
r (t)

(
ξr
√
r (t)dt+ dWr (t)

)
,

where S (t0) = 1 and ξS, ξr, σS and σr are positive constants.

• a loan L (t) amortized over a period [0, T ], whose dynamic are

dL (t)

L (t)
= r (t) dt+ σL

(
ξr
√
r (t)dt+ dWr (t)

)
,

The optimization problem can be written as

max
π(t)

E [U (R (t))] ,

Subject to bank's asset portfolio
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dR (t)

R (t)
= r(t)dt+ πS (t)σS (ξS + dW (t)) dt+ πS (t)σr

√
r (t)

(
ξr
√
r (t)dt+ dWr (t)

)
+ πL (t)σL

(
ξr
√
r (t)dt+ dWr (t)

)
,

with strictly positive initial asset portfolio value R (t0). The main reference for

this problem is Witbooi et al. [2011].

2.5 Some preliminaries

2.5.1 Jump di�usion theorems

Theorem 1. (Ito-Lévy Decomposition [JS]). Let ηt be a Lévy process. Then ηt has

the decomposition

ηt = αt+ σW (t) +

∫
|z|<R

zÑ(t, dz) +

∫
|z|≥R

zN(t, dz), (2.20)

for some constants α ∈ R, σ ∈ R, R ∈ [0,∞]. Here

Ñ(dt, dz) = N(dt, dz)− ν(dz)dt,

is the compensated Poisson random measure of η(.), andW (t) is a Brownian motion

independent of Ñ(dt, dz). For each A ∈ B0 the process

Mt := Ñ(t, A),

is a martingale. If α = 0 and R = ∞, we call ηt a Levy martingale Øksendal and

Sulem [2005]. (Theorem 1.7).

Theorem 2. Existence and Uniqueness of solutions of Lévy SDE's). Consider the

following Lévy SDE in Rn : X(0) = x0 ∈ Rn and,
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dX(t) = α(t,X(t))dt+ σ(t,X(t))dW (t) +

∫
Rn
γ(t,X(t−), z)Ñ(dt, dz),

where α : [0, T ]×Rn → Rn, σ : [0, T ]×Rn → Rn×m and γ : [0, T ]×Rn×Rn → Rn×l

satisfy the following conditions

(At most linear growth) There exists a constant C1 <∞ such that

‖σ(t, x)‖2 + |α(t, x)|2 +

∫
R

l∑
k=1

|γk(t, x, z)|2 νk(dzk) ≤ C1

(
1 + |x|2

)
,

for all x, y ∈ Rn.

(Lipschitz continuity) There exists a constant C2 <∞ such that

‖σ(t, x)− σ(t, y)‖2 + |α(t, x)− α(t, y)|2

+
l∑

k=1

∫
R

∣∣γ(k)(t, x, zk)− γ(k)(t, y, zk)
∣∣2 νk(dzk) ≤ C2 |x− y|2 ,

for all x, y ∈ Rn.

Then there exists a unique cadlag adapted solution X(t) such that

E
[
|X(t)|2

]
<∞for all t.

Solutions of Lévy SDE's in the time homogeneous case, i.e. when α(t, x) = α(x),

σ(t, x) = σ(x), and γ(t, x, z) = γ(x, z) are called jump di�usion (or Lévy di�usion).

Øksendal and Sulem [2005] (Theorem 1.19).

2.5.2 Burkholder-Davis-Gundy inequalities

If M is a continuous local martingale, we write M (t)∗ = sups≤t |Ms| .

Theorem 3. For every p ∈]0,∞[, there exist two constants cp and Cp such that, for

all continuous local martingales M vanishing at zero,
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cpE
[
〈M,M〉p/2∞

]
≤ E [(M∗

∞)p] ≤ CpE
[
〈M,M〉p/2∞

]
.

For proof, see Revuz and Yor [1991].

2.5.3 Doléans-Dade exponential

De�nition 1. For any Wiener process W (t) and any kernel process ϕ, the Doléans

exponential process ε is de�ned by

ε (ϕ ?W ) (t) = exp

{∫ t

0

ϕ? (s) dW (s)− 1

2

∫ t

0

‖ϕ‖2 (s) ds

}
,

Source: Bjork [2009].

2.A Appendix A

2.A.1 Proof of proposition 1

The value function is given by

J(t, R(t), z(t)) ≡ max
c(t),θS(t)

Et
[∫ T

t

φc
(c(s)− h(s))1−δ

1− δ
e−ρ(s−t)ds+ φR

(R(T )−Rm)1−δ

1− δ
e−ρ(T−t)

]
.

For this objective function, we can write the following HJB equation

0 = max
c(t),θS(t)



φc
(c(s)−h(s))1−δ

1−δ − ρJ + ∂J
∂t

+ ∂J
∂h

(α(t)c(t)− β(t)h(t))

+ ∂J
∂R

(
R(t)r(t, z) + θS(t)

′
IS(µ(t, z)− r(t, z)1)− c(t)

)
+
(
∂J
∂z

)′
µz(t, z)

+1
2
∂2J
∂R2 θS(t)

′
ISΣ(t, z)

′
Σ(t, z)ISθS(t)

+1
2
tr
(

Ω(t, z)
′
Ω(t, z) ∂2J

∂z′∂z

)
+ θS(t)

′
ISΣ(t, z)

′
Ω(t, z) ∂2J

∂z∂R


,

(2.21)

and the �rst order conditions (FOCs) of (2.21) w.r.t. θS(t) and c(t) are

φc(c(s)− h(s))−δ =
∂J

∂R
− ∂J

∂h
α(t), (2.22)
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ISθS(t)∗ = −
(

Σ(t, z)
′
Σ(t, z)

)−1 ∂J
∂R
∂2J
∂R2

(µ(t, z)− r(t, z)1)

−
(

Σ(t, z)
′
Σ(t, z)

)−1 ∂2J
∂z∂R
∂2J
∂R2

Σ(t, z)
′
Ω(t, z). (2.23)

We assume the following guess function

J(t, R(t), z(t)) = A(t, z(t))δ
(R(t)− h(t)B(t, z(t)))1−δ

1− δ
, (2.24)

with the boundary conditions

A(T, z(T )) = φ
1
δ
R,

B(T, z(T )) = Rm.

If we substitute the partial derivatives into both the optimal consumption (2.22)

and the optimal portfolio (2.23), we obtain

c∗(t) = h(t) + φ
1
δ
c

(R(t)− h(t)B(t, z(t)))(1 +B(t, z(t))α(t))−
1
δ

A(t, z(t))
, (2.25)

ISθS(t)∗ =
R(t)− h(t)B(t, z(t))

δ
Σ(t, z)−1ξ +

R(t)− h(t)B(t, z(t))

A(t, z(t))
Σ(t, z)−1Ω(t, z)Az

+ h(t)Σ(t, z)−1ΩBz. (2.26)

Substituting the partial derivatives of the guess function and the optimal port-

folios (2.25) and consumption (2.26) into the HJB equation (2.21), we have
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0 =
δ

1− δ
φ

1
δ
c (1 +B(t, z(t))α(t))1− 1

δ − A(t, z(t))
ρ

1− δ
+

δ

1− δ
At

− A(t, z(t))
h(t)Bt

R(t)− h(t)B(t, z(t))
− A(t, z(t))

B(t, z(t))α(t)h(t)

R(t)− h(t)B(t, z(t))

+
A(t, z(t))

R(t)− h(t)B(t, z(t))
B(t, z(t))β(t)h(t) +

δ

1− δ
µz(t, z)

′
Az

+ A(t, z(t))r(t, z) +
A(t, z(t))h(t)B(t, z(t))

R(t)− h(t)B(t, z(t))
r(t, z)− A(t, z(t))

R(t)− h(t)B(t, z(t))
h(t)

+
1

2

δ

1− δ
tr
(

Ω(t, z)
′
Ω(t, z)Azz

)
+
A(t, z(t))ξ

′
ξ

2δ
+ ξ

′
Ω(t, z)Az

− A(t, z(t))h(t)

R(t)− h(t)B(t, z(t))
Bz

(
µz(t, z)

′ − ξ′Ω(t, z)
)

− 1

2

A(t, z(t))h(t)

R(t)− h(t)B(t, z(t))
tr
(

Ω(t, z)
′
Ω(t, z)Bzz

)
,

which can be separated into two di�erential equations, one that contains (R(t)− h(t)B(t, z(t)))−1

and one without it and after few simpli�cations, we have



0 = At − δ−1
δ
A(t, z(t))ϕ(t, z) + 1

2
tr
(
Ω(t, z)

′
Ω(t, z)Azz

)
+ ψ(t, z)Az

+φ
1
δ
c (1 +B(t, z(t))α(t))1− 1

δ ,

0 = Bt +B(t, z(t)) (α(t)− β(t)− r(t, z)) +Bz

(
µz(t, z)

′ − ξ′Ω(t, z)
)

+1
2
tr
(
Ω(t, z)

′
Ω(t, z)Bzz

)
+ 1,

(2.27)

where

ϕ(t, z) ≡ r(t, z) +
ρ

δ − 1
+

1

2δ
ξ
′
ξ,

ψ(t, z) ≡ µz(t, z)
′ − δ − 1

δ
ξ
′
Ω(t, z).

We can represent the solution of A(t, z(t)) through the Feynman-Ka£ formula

which is based on a modi�ed SDE for the state variable z(t),
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dz(t) =
(
µz(t, z)−

δ − 1

δ
Ω(t, z)

′
ξ
)
dt+ Ω(t, z)

′
dW (t)Qδ ,

dz(t) = µz(t, z)dt+ Ω(t, z)
′
(
dW (t)Qδ − δ − 1

δ
ξdt
)
,

where, by using the following version of Girsanov's theorem, we de�ne a new prob-

ability measure

dW (t)Qδ =
δ − 1

δ
ξdt+ dW (t). (2.28)

The di�erential equations (2.27) together with their corresponding boundary

conditions, have the following solutions

A(t, z(t)) = EQδ
t

[∫ T

t

φ
1
δ
c (1 +B(s, z(s))α(s))1− 1

δ e
− δ−1

δ

∫ s
t

(
r(t,z)+ ρ

δ−1
+ 1

2δ
ξ
′
ξ
)
du
ds

+φ
1
δ
Re
− δ−1

δ

∫ s
t

(
r(t,z)+ ρ

δ−1
+ 1

2δ
ξ
′
ξ
)
du

]
,

B(t, z(t)) = EQ
t

[
Rme

−
∫ T
t (−α(u)+β(u)+r(u,z))du +

∫ T

t

e−
∫ s
t (−α(u)+β(u)+r(u,z))duds

]
,

where Qδ is a new probability de�ned in (2.28).



Chapter 3

Optimal portfolio and spending rules

for endowment funds

3.1 Introduction

University endowments rank among the largest institutional investors. According to

the 2016 estimates of the National Association of College and University Business

O�cers (NACUBO), its member organizations held $515 billion in endowment as-

sets. Usually, these institutions setup an endowment fund to achieve their objective

of a reasonably smooth earnings and consequent smooth stream of spending for the

current and future bene�ciaries (also called intergenerational equity), as they have

to manage funds for a very long (possibly in�nite) time horizon. These institutions

may also have income other than the endowment fund, so therefore the principal

goal of an endowment manager is to stabilize earnings rather than growing its value.

Due to this reason, usually, endowment funds tend to follow a sub-optimal invest-

ment strategy and invest more in less risky assets which generally have lower returns

and consequently, they have lower funds for spending. Common objective of endow-

ment funds is to maximize the utility of both intertemporal spending and terminal

wealth. To achieve this objective, many endowment funds have pre-de�ned spending

rules. This chapter analyses the e�ect of di�erent spending rules on the portfolio

choices. Speci�cally, we determine the optimal investment policies under di�erent

spending rules and compare them with the classical Merton's optimal investment

31
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and consumption. Thus, essentially in our framework, the consumption (spending)

is not optimally chosen, but it is instead treated like a state variable.

The existing literature about endowment fund can be classi�ed into four main

areas: (i) the organization and governance of endowment funds, (ii) the asset allo-

cation, (iii) the university endowment performance, and (iv) the spending policies.

Our research is related to the areas of asset allocation and spending policies.

The seminal work on asset allocation in continuous time for an investor dates

back to Samuelson [1969] and Merton [1969], who presented an optimal strategy

for a market with constant investment opportunities with additive time-separable

utility function. This preliminary work was later extended by Merton [1971], to a

more general utility function which included the income generated by non-capital

gains sources. Merton [1993], applied continuous time framework to the endowment

fund's problem and derived optimal expenditures and asset allocation that included

non-endowed funds as a part of the total university's wealth. He concluded that

endowment fund prefers a safer portfolio in the presence of non-�nancial income

risk.

Spending rules are important feature of a university endowment funds. Hans-

mann [1990] addresses the reason why endowments need some mechanism for spend-

ing rather than spending all the gifts at once and concluded that endowments has

several purposes: (i) ensure the support of the parent institution in its ongoing

mission, (ii) protect its reputation and intellectual freedom, and (iii) hedge against

�nancial shocks. Litvack et al. [1974] analyzes the de�nition of endowment income

and points out that the main objective of the endowment funds is to provide a rea-

sonably stable income over time, so that the fund can �nance a sustainable spending

stream and hence concludes that the endowment fund should maximize the total rate

of return of its investments while preserving the corpus of the fund. Tobin [1974]

recognizes that endowment trustees may want to stabilize overall university income,

as a stable income entails both a sustainable consumption and intergenerational

equity. Ennis and Williamson [1976] present di�erent spending rules adopted by

the endowment funds along with their historical spending patterns. Kaufman and

Woglom [2005] analyze the spending rules based on the in�ation method, banded



3.1 Introduction 33

in�ation, and hybrid method, using Monte Carlo simulations in scenario of volatile

and uncertain asset returns. Sedlacek and Jarvis [2010] also present an analysis of

current practices and spending policies at endowments and their relative merit and

demerits. Cejnek et al. [2014], using some of the above mentioned references, give

a complete account of the research on endowment funds including various spending

rule applied in practice.

Many studies are focused on the comparison of di�erent spending policies and

investment strategies, which may provide a perpetual level of expected real income

without impairing the real value of an endowment.

Using the continuous time framework, Dybvig [1999] propose that spending by

endowment fund can be sustainable, if risky investments are used in combination

with TIPS (Treasury In�ation Protection Securities). Based on the historical data

of spending, this strategy calls for lower spending rates than commonly applied to

obtain a non-decreasing future spending rates.

Bajeux-Besnainou and Ogunc [2006] address the asset allocation problem of en-

dowment fund by including minimum spending amount up-rated with in�ation in

the objective function and derive an explicit formula for optimal spending and port-

folio allocation rules in the minimum subsistence level framework. Gong and Li

[2006] consider the general optimal investment/consumption problem for an agent,

where the consumption, due to habit formation or pre-commitment, must not go

below a certain level called the subsistence level and it rises above that level only

when the wealth exceeds a certain threshold. Such a framework is also applicable to

endowment fund problem and other portfolios where a withdrawal pre-commitment

exists.

Institutional preferences may exhibit intertemporal complementarity where past

spending habits generate a desire to maintain the same level. Such a behavior can be

explained by the habit formation or habit persistence, which is a more general case of

the subsistence level consumption proposed in Bajeux-Besnainou and Ogunc [2006].

Constantinides [1990] apply the habit formation to the equity puzzle problem and

show that the high equity premium with low risk aversion can be explained by the

presence of habit formation. Ingersoll [1992] examines continuous time consumption
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in non-time additive utility framework and characterizes the optimal consumption

in the deterministic investment opportunities under a general framework. Following

a lucid discussion on optimal investment and consumption with habit formation,

Munk [2008] studies the optimal strategies with general asset price dynamics under

two special cases of time varying investment opportunities: stochastic interest rate,

and mean-reverting stock returns. He shows that, in order to �nance the habit,

investing in bonds and cash is more e�ective than investing in stocks.

In this chapter, we examine investment strategies under two spending rules in

particular: (i) the consumption-wealth ratio rule, a simpli�ed form of moving average

method, and (ii) the weighted average or hybrid rule which is more commonly used

by large endowment funds like Yale and Stanford (as stated in Cejnek et al. [2014]).

Under consumption-wealth ratio (CW) rule, the spending is a percentage of the

market value of the fund while hybrid rule calculates the spending as a weighted

average of the in�ation method and the moving average method. To analyze the

e�ect of the spending rules on risk taking, we derive the optimal portfolio under the

above mentioned spending rules for hyperbolic absolute risk aversion utility function

and compare them with the classical Merton's optimal investment and consumption.

In Merton's case, we consider a general form of utility function including both

the cases of habit formation and subsistence level. Under the spending rules mech-

anism, endowments following hybrid spending rule protect spending by investing in

a less risky portfolio than Merton's. Similarly, investment in the risky asset with

habit is less than the investment without habit. Thus, their strategy is similar to

proportional portfolio insurance where the fund invests in safe assets to maintain the

value needed for having smooth payouts over time. We calibrate parameters over

three di�erent time horizons to investigate the e�ectiveness of the spending rules.

The hybrid strategy comparatively outperforms the conventional Merton's and CW

strategies when the market is highly volatile but under-performs it when there is a

low volatility.

The rest of the chapter is structured in the following way. Section 3.2 describes

the various spending strategies commonly applied by the endowment funds, while

Section 3.3 sets up the general framework for market dynamics and preferences of
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endowment fund and speci�es the three di�erent strategies. Section 3.4 focuses on

the results of optimal investment and spending under di�erent strategies. Section

3.5 presents a numerical application of di�erent results obtained in the preceding sec-

tions, and, �nally, Section 3.6 concludes the chapter and some technical derivations

are left to the appendices.

3.2 Spending rules

In practice, there are various spending policies actually followed by endowment

funds. According to survey data Cejnek et al. [2014] based on the original work by

Sedlacek and Jarvis [2010], the spending rules are divided into four categories: (i)

simple rules, (ii) in�ation-based rules, (iii) smoothing rules, and (iv) hybrid rules.

These rules are summarized in Table 3.1.

We consider the following three rules for our optimal investment and spending

strategies:

• In�ation rule;

• Moving average method;

• Weighted average or hybrid method.

Although, all the spending rules are designed to accomplish the goal of avoiding

volatility in income, however some rules are better than others.

The three above mentioned rules are presented in details in the following sub-

sections.

3.2.1 In�ation rule

The rules is devised to acknowledge the corrosive e�ects of in�ation. The objective

of endowment fund is not the mere preservation of the fund but to strive for a

value addition. It can be achieved as long as the overall return from the portfolio

exceeds the rate of in�ation. In�ation rule increases the previous period's spending

at the predetermined in�ation rate. The spending rule based on in�ation protects
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Table 3.1: Endowments spending rules. Source: Sedlacek and Jarvis [2010]

Categories Method Description

1. Simple Rules

Income-based Spend the whole current income.

Consumption-
wealth
ratio

Spend either the pre-de�ned percentage
of the market value of the fund or decide

the percentage every year.

2.
In�ation-Based
Rules

In�ation-
protected

Spending grows at the rate of in�ation.

Banded-
In�ation

Same as in�ation-protected but with the
upper and lower bands.

3. Smoothing
Rules

Moving
Average

Pre-de�ned percentage of moving average
of market values, generally based on
three-years starting market values.

Spending
Reserve

5-10 percent of the market value is held in
the reserve account and then invested in
90-day Treasury bills. The amount is
withdrawn only when the fund's
performance is below target.

Stabilization
Fund

The excess endowment returns are used
to make a fund which is then used to

control the long term growth of the total
endowment.

4. Hybrid Rules Weighted
Average or
Hybrid

(Yale/Stanford)
Method

Spending is calculated as the weighted
average of spending adjusted for in�ation

and the policy spending rate.
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the purchasing power of endowment fund. Spending in a year equals the spending

in the previous year, increased at the in�ation rate λ:

c(t) = c0e
λt,

where the initial value of consumption is a �xed ratio of wealth, i.e. c0 = yR0. The

di�erential of c (t) is

dc(t) = λc(t)dt. (3.1)

The in�ation method is static and trivial, so we will not consider it here sepa-

rately, however it is included in hybrid method along with moving average methods.

3.2.2 Moving average method

The most popular and commonly used spending rule is the moving average. As in

Dimmock [2012], it is typically based on pre-speci�ed percentage of moving average

of 3-years quarterly market value. The main feature of this rule is that it saves

some income and reinvests it. This method does smooth the volatility in spending.

However, the method is �awed because it uses the market value of the endowment.

Therefore, when the endowment value is rising, the institution may spend more

than it is prudent and when endowment values are falling sharply, the formula will

suggest a budget cut that may curtail the institution's mission.

In discrete-time, this spending rule can be algebraically written as follows

c (t) =
y

q
(R (t) + ...+R (t− (q − 1))) .

In continuous-time, instead, we can write

c (t) =
y

q

∫ t

t−q
R (τ) dτ.

Here, for the sake of simplicity, we take the limit of the previous rule for q which
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tends towards zero:1

c (t) = lim
q→0

y

q

∫ t

t−q
R (τ) dτ = lim

q→0
yR (t− q) = yR (t) . (3.2)

The goal of moving average rule is to dampen the volatility of spending. There-

fore, during the period of boom, this process results in an accelerating curve of

upward spending and it causes a false sense of security of sustainable spending.

The smoothing e�ect of this rule is limited and it may give a misplaced belief that

the higher spending levels are sustainable. Furthermore, the resulting shrinkage in

endowment values due to market decline results into the deep cuts in spending.

3.2.3 Weighted average or hybrid method

The weighted average method is generally followed by the large endowment funds

and it is also known as the Yale/Stanford rule. It is a weighted average of the

in�ation method and the moving average method.

In discrete-time it is given by

c (t+ 1) = ωc (t) eλ + (1− ω)
y

q
(R (t+ 1) + ..........+R (t+ 1− (q − 1))) , (3.3)

where ω is the weight. We can simplify it by considering q = 1 to get

c (t+ 1) = ωc (t) eλ + (1− ω) yR (t+ 1) . (3.4)

If we ignore in�ation, i.e. λ = 0, we obtain

c (t+ 1) = ωc (t) + (1− ω) yR (t+ 1) . (3.5)

We make the above process stationary by assuming |(1− ω) y| < 1.

Remark 1. If we take the limit t+ 1→ t, we get the same consumption-wealth ratio

as in (3.2)

1De l'Hôpital theorem is used, by recalling that ∂
∂q

∫ t
t−q R (τ) dτ = R (t− q).
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c(t) = yR(t).

Under the hybrid rule, during the boom, the spending will not increase as fast

as compared with the moving average rule. Conversely, this rule will not call for

spending cuts as deep as the moving average method. Evidence suggests that more

and more institutions are changing their spending rules to in�ation-based and hybrid

method from moving average method Sedlacek and Jarvis [2010].

This section has provided an overview of the main spending rules applied by the

endowments and now we will only consider two spending rules, the moving average

method simpli�ed as consumption-wealth ratio rule and hybrid spending rule given

by (3.2) and (3.5) respectively.

3.3 General framework

Endowment funds usually invest in a variety of assets, however for the purpose of

tractability we examine the aforementioned spending rules in the simplest frame-

work. We consider two types of assets, a riskless asset and a risky asset in a complete

and arbitrage free, continuously open �nancial market. On the �nancial market two

assets are listed:

• a riskless asset G(t) which evolves according to

dG(t)

G(t)
= r(t)dt, (3.6)

where G(t0) = 1, and which is the numéraire and r(t) is the instantaneous

nominal interest rate;

• a risky asset S(t) having the price dynamics given by

dS(t)

S(t)
= µdt+ σdW (t). (3.7)
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The endowment fund holds θS(t) units of the risky asset S(t), and θG(t) units

of risk-less assets G(t). Thus, at any instant in time t, the investor's wealth R(t) is

given by

R(t) = θG(t)G(t) + θS(t)S(t).

The di�erential of wealth can be written as

dR(t) =
(
R(t)r(t) + θS(t)S(t)(µ− r(t))− c(t)

)
dt+ θS(t)S(t)σdW (t), (3.8)

where c (t) is the consumption, following one of the above mentioned rules except

when it is also a decision variable.

3.3.1 Endowment fund investment strategies

We consider the following three strategies for our analysis:

• Merton's strategy: Both investment and spending are decision variables.

• Consumption-wealth ratio (CW) strategy: Investment is the only de-

cision variable and spending is given by the �xed consumption-wealth ratio

rule.

• Hybrid strategy: Investment is the only decision variable and spending is

given by weighted average spending rule.

3.3.2 General settings

According to Fraser and Jennings [2010], an endowment fund must de�ne its in-

vestment policy statement identifying the investment beliefs, speci�c investment

objectives, re-balancing policy and performance benchmark which are evaluated pe-

riodically. Since an endowment fund must report its performance for each accounting

period, it is reasonable to consider the optimization problem for a �nite time horizon

[t, T ]. If we assume the objective of an endowment fund is to maximize the sum of
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expected utility of spending c(t) and the expected utility of the �nal wealth R (T )

then it can be stated as

max
π(t)

Et
[∫ T

t

Uc (c (t)) e−ρ(s−t)ds+ UR (R (T )) e−ρ(T−t)
]
, (3.9)

where endowment fund chooses the decision variables π(t), which may include con-

sumption and investment depending on the strategy considered and ρ is a constant

subjective discount rate2. We assume the fund's preferences are de�ned by the

following utility function

U (x (t)) =
(x (t)− αX)1−δ

1− δ
, (3.10)

where δ > 1. The Arrow-Pratt Absolute Risk Aversion (ARA) index is

−
∂2U(x(t))

∂x(t)2

∂U(x(t))
∂x(t)

=
δ

x (t)− αX
.

If αX is a positive constant, then this form of the utility function belongs to

Hyperbolic Absolute Risk Aversion (HARA). If αX = 0, ARA index is given by

−
∂2U(x(t))

∂x(t)2

∂U(x(t))
∂x(t)

=
δ

x (t)
,

which belongs to Constant Relative Risk Aversion (CRRA).

If αX 6= 0, the utility functions belong to HARA and can be written as

Uc (c (t) , h (t)) =
(c (t)− h (t))1−δ

1− δ
, UR (R (T )) =

(R (T )−Rm)1−δ

1− δ
, (3.11)

where c (t) is the instantaneous out�ow or spending from the fund, the constant Rm

can be interpreted as the minimum subsistence level of wealth, whereas h(t) depends

on the context, it is either a function representing the habit formation or a constant

representing the subsistence level. Given the utility function (3.11), it is always

2While Tobin [1974] suggests that endowment trustees have a zero subjective discount factor,
we consider the general case of positive ρ.
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optimal to have out�ows higher than the threshold h(t), in fact when c(t) = h(t), the

marginal utility of the out�ow tends towards in�nity and, accordingly, it is su�cient

to increase it by an in�nitesimal amount in order to have an in�nite increase in the

utility level.

The corresponding ARA indices of (3.11) are given by

−
∂2Uc(c(t),h(t))

∂c(t)2

∂Uc(c(t),h(t))
∂c(t)

=
δ

c (t)− h (t)
, −

∂2UR(R(T ))

∂R(t)2

∂UR(R(T ))
∂R(t)

=
δ

R (T )−Rm

,

respectively, which implies that the higher δ the higher the risk aversion. Moreover,

the higher h (t) the higher is the risk aversion. This result shows that having a higher

level of minimum out�ows means that it is necessary to invest bigger amounts of

wealth in the riskless asset in order to guarantee the out�ows, which implies a higher

risk aversion.

3.4 The optimal solutions

3.4.1 Merton's strategy

Investment and spending are both decision variables, i.e. π(t) ≡ {c(t), θS(t)}. We

can de�ne the value function using (3.9) as

J(t, R(t)) ≡ max
c(t),θS(t)

Et
[∫ T

t

φc
(c(s)− h(s))1−δ

1− δ
e−ρ(s−t)ds+ φR

(R(T )−Rm)1−δ

1− δ
e−ρ(T−t)

]
,

(3.12)

where φc and φR are constants and h(t) is given by

h (t) =


h0e
−
∫ t
0 β(u)du +

∫ t
0
α(s)cse

−
∫ t
s β(u)duds, habit formation,

h, subsistence level,

0, classical problem,

(3.13)
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where h0 is the initial minimum amount of out�ow, α(t) is the weighting function

providing the relative importance to the past out�ow in computing the threshold

h(t), while β(t) is a discount rate. In habit formation case, h(t) can be rewritten in

continuous time as

dh (t) = (α (t) c (t)− β (t)h (t)) dt, (3.14)

Proposition 2. Given the state variable wealth R(t) described in (3.8), the optimal

consumption and portfolio solving problem (3.12) are

• in the case with habit formation:

c(t)∗ = h(t) + φ
1
δ
c

(R (t)− h (t)B (t)) (1 +B (t)α (t))−
1
δ

A (t)
, (3.15)

θS(t)∗ =
µ− r(t)
S (t)σ2

R (t)− h (t)B (t)

δ
, (3.16)

where

A(t) = φ
1
δ
Re
−
∫ T
t

(
δ−1
δ
r(u)+ ρ

δ
+

(δ−1)(µ−r(u))2

2δ2σ2

)
du

+

∫ T

t

φ
1
δ
c (1 +B(s)α(s))

δ−1
δ e

−
∫ s
t

(
δ−1
δ
r(u)+ ρ

δ
+

(δ−1)(µ−r(u))2

2δ2σ2

)
du
ds,

B(t) = Rme
−
∫ T
t (−α(u)+β(u)+r(u))du +

∫ T

t

e−
∫ s
t (−α(u)+β(u)+r(u))duds,

• in the case of a subsistence level:

c(t)∗ = h+ φ
1
δ
c
R(t)− hB(t)

A(t)
, (3.17)

θS(t)∗ =
µ− r(t)
S(t)σ2

R(t)− hB(t)

δ
. (3.18)

• in the classical case:

c(t)∗ = φ
1
δ
c
R(t)

A(t)
and θS(t)∗ =

µ− r(t)
S(t)σ2

R(t)

δ
, (3.19)
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where for both the subsistence level case and the classical case we have

A(t) = φ
1
δ
Re
−
∫ T
t

(
δ−1
δ
r(u)+ ρ

δ
+

(δ−1)(µ−r(u))2

2δ2σ2

)
du

+ φ
1
δ
c

∫ T

t

e
−
∫ s
t

(
δ−1
δ
r(u)+ ρ

δ
+

(δ−1)(µ−r(u))2

2δ2σ2

)
du
ds,

B(t) = Rme
−
∫ T
t r(u)du +

∫ T

t

e−
∫ s
t r(u)duds.

Proof. See Appendix 3.A.1.

The function A(t) in the optimal solutions is the weighted sum of two discount

factors: (i) the discount factor for the �nal date T multiplied by φ
1
δ
R, and (ii) a

kind of intertemporal discount factor for the intertemporal utility, multiplied by φ
1
δ
c .

The function B(t) in the optimal solutions, is the sum of two terms, the subsistence

wealth Rm appropriately discounted from time T and a sum of discount factors. We

can see that habit formation has an e�ect on the optimal portfolio of the risky asset,

as it changes the allocation due to the reason that the riskless asset (treasury) is

comparatively a better investment than the risky asset (stock) to ensure that the

future consumption will not decline below the habit level.

We consider the optimal investment and consumption in the habit formation

case de�ned in (3.16) and (3.15), respectively, in detail below:

Assumption 1. We assume that all the parameters α, β, µ, σ, and r are constant

over time and additionally r − α + β > 0.

Corollary 1. Under Assumption 1, (i) The wealth process is itself a Markov process

and the functions A(t) and B(t) can be written as

A(t) = φ
1
δ
Re
−
(
δ−1
δ
r+ ρ

δ
+

(δ−1)(µ−r)2

2δ2σ2

)
(T−t)

+

∫ T

t

φ
1
δ
c (1 +B(s)α)

δ−1
δ e
−
(
δ−1
δ
r+ ρ

δ
+

(δ−1)(µ−r)2

2δ2σ2

)
(s−t)

ds,

B(t) = Rme
−(r−α+β)(T−t) +

∫ T

t

e−(r−α+β)(s−t)ds

= Rme
−(r−α+β)(T−t) +

1− e−(r−α+β)(T−t)

r − α + β
, (3.20)

and �nally, if we substitute the value of B(t) into A(t), we get
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A(t) = φ
1
δ
Re
−
(
δ−1
δ
r+ ρ

δ
+

(δ−1)(µ−r)2

2δ2σ2

)
(T−t)

+

∫ T

t

φ
1
δ
c (1 +Rme

−(r−α+β)(T−s) +
1− e−(r−α+β)(T−s)

r − α + β
α)

δ−1
δ e
−
(
δ−1
δ
r+ ρ

δ
+

(δ−1)(µ−r)2

2δ2σ2

)
(s−t)

ds.

(3.21)

(ii) The optimal consumption and portfolio are

c(t)∗ = h(t) + φ
1
δ
c

(R (t)− h (t)B (t)) (1 +B (t)α)−
1
δ

A (t)
, (3.22)

θS(t)∗ =
µ− r
S (t)σ2

R (t)− h (t)B (t)

δ
, (3.23)

where A(t) and B(t) are given by (3.20) and (3.21).

The term

1− e−(r−α+β)(T−s)

r − α + β

is positive and decreasing over time as r − α + β > 0.

(iii) The optimal portfolio is less risky with habit as compared with the optimal

portfolio without habit:

S(t)θS(t)∗ < S(t)θS(t)∗|h(t)=0 .

Proof. The optimal portfolio S(t)θS(t)∗ is given by

µ− r
S (t)σ2

R (t)− h (t)B (t)

δ
,

Since by construction h(t) ≥ 0 and B(t) ≥ 0, thus

µ− r
S (t)σ2

R (t)− h (t)B (t)

δ
<

µ− r
S (t)σ2

R (t)

δ
.

Assumption 2. We assume T →∞.
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Corollary 2. Under Assumptions 1 and 2, the optimal consumption and portfolio

are

c(t)∗ = h(t) + φ
1
δ
c

(R(t)− h(t) 1
r−α+β

)(1 + α
r−α+β

)−
1
δ

A(t)
,

θS(t)∗ =

(
R(t)− h(t)

r − α + β

)
µ− r
S(t)σ2δ

.

In this case the dynamics of optimal wealth and habit are

dR(t) =

(
R(t)r +

(
R(t)− h(t)

r − α + β

)
(µ− r)2

σ2δ
− h(t)

+ φ
1
δ
c

(
R(t)− h(t) 1

r−α+β

)(
1 + α

r−α+β

)− 1
δ

A(t)

 dt

+

(
R(t)− h(t)

r − α + β

)
µ− r
σδ

dW (t),

dh(t) = (β − α)

 α

β − α
φ

1
δ
c

(
R(t)− h(t) 1

r−α+β

)(
1 + α

r−α+β

)− 1
δ

A(t)
− h (t)

 dt,

where we can see that h(t) is a mean reverting process if β − α > 0 and is instead

exploding if β − α < 0.

3.4.2 CW strategy

In this case, the investment θS(t) is the only decision variable and the spending c(t)

is given by

c(t) = yR(t), (3.24)

therefore we can put φc = 0 and φR = 1 in (3.12), then the value function can be

de�ned as
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J(t, R(t)) ≡ max
θS(t)

Et
[

(R(T )−Rm)1−δ

1− δ
e−ρ(T−t)

]
. (3.25)

Proposition 3. Given the state variable R(t) and c(t) described in (3.8) and (3.24)

respectively, the optimal portfolio solving problem (3.25) is

θS(t)∗ =
µ− r(t)
S(t)σ2

R(t)−B(t)

δ
, (3.26)

where

B(t) = Rme
−
∫ T
t (r(s)−y)ds,

and y is the constant de�ned in (3.24).

Proof. See Appendix 3.A.2.

The function B(t) in the optimal solution, is the subsistence wealth Rm appro-

priately discounted by a discount factor.

Corollary 3. Under Assumptions 1,2 and r > y, the optimal portfolio (3.26) be-

comes

θS(t)∗ =
µ− r
S(t)σ2

R(t)

δ
.

In this case the dynamics of optimal wealth is

dR(t)

R(t)
=

(
r +

1

δ

(µ− r)2

σ2
− y

)
dt+

1

δ

µ− r
σ

dW (t).

3.4.3 Hybrid strategy

In this strategy, investment is the only decision variable π ≡ θS(t), while spending

evolves according to the weighted average spending rule (3.5). We can write the

wealth dynamics (3.8) in a discrete time as

R(t+ 1) = R(t)(1 + r(t)) + θS(t)S(t)(µ− r(t))− c(t) + θS(t)S(t)σZ(t), (3.27)
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and the consumption in a discrete time is given by

c(t+ 1) = ωc(t) + (1− ω) yR(t+ 1). (3.28)

We substitute (3.27) into (3.28), and we get

c(t+1) = ωc(t)+(1− ω) y (R(t)(1 + r(t)) + θS(t)S(t)(µ− r(t))− c(t) + θS(t)S(t)σZ(t)) ,

which can be rewritten in continuous time as

dc(t) = (1− ω) (1 + y)

(
yR(t)(1 + r(t)) + yθS(t)S(t)(µ− r(t))

1 + y
− c(t)

)
dt

+ (1− ω) yθS(t)S(t)σdW (t). (3.29)

We set a ≡ (1− ω)y, and we can write

dc(t) = (1− ω) (1 + y)

(
yR(t)(1 + r(t)) + yθS(t)S(t)(µ− r(t))

1 + y
− c(t)

)
dt

+ aθS(t)S(t)σdW (t),

where we see that the consumption is a mean reverting process, whose strength of

mean reversion is (1 − ω)(1 + y). The consumption reverts towards its long term

mean:

yR(t)(1 + r(t)) + yθS(t)S(t)(µ− r(t))
1 + y

,

which depends on the portfolio choice. The higher the value of ω, the more slowly

c(t) converges towards its long term mean and vice versa.

As the consumption is given by (3.29), we include it as an additional state

variable and put φc = 0 and φR = 1 in (3.12), hence the value function can be

de�ned as
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J (t, R (t) , c (t)) ≡ max
θS(t)

Et

[
(R (T )−Rm)1−δ

1− δ
e−ρ(T−t)

]
. (3.30)

Proposition 4. Given the state variables R(t) and c(t) as in (3.8) and (3.29) and

under the assumption that interest rate r is constant the optimal portfolio solving

problem (3.30) is

θS (t)∗ =
µ− r
S (t)σ2

R (t)−B (t, c (t))

δ (1− η∗a)
, (3.31)

where

B (t, c (t)) = η∗c(t) +Rme
−(r−η∗a(1+r))(T−t),

and η takes one of the following values

η∗ =
(1 + r + a− ω)±

√
(1 + r + a− ω)2 − 4a (1 + r)

2a (1 + r)
,

such that −∞ < η∗ < 1
a
and a = y (1− ω) < 1.

Proof. See Appendix 3.A.3.

Corollary 4. Under Assumptions 1,2 and if r > η∗a (1 + r), the optimal portfolio

(3.31) becomes

θS(t)∗ =
µ− r
S(t)σ2

R(t)− η∗c(t)
δ (1− η∗a)

.

In this case the dynamics of optimal wealth and optimal consumption are

dR(t) =

(
R(t)r +

(
(µ− r)2

σ2

R(t)− η∗c(t)
δ (1− η∗a)

)
− c(t)

)
dt+

(
µ− r
σ

R(t)− η∗c(t)
δ (1− η∗a)

)
dW (t),

dc(t) =

(
aR(t)(1 + r) + a

(
(µ− r)2

σ2

R(t)−B(t, c(t))

δ (1− η∗a)

)
− (1− ω) (1 + y)c(t)

)
dt

+ a

(
µ− r
σ

R(t)−B(t, c(t))

δ (1− η∗a)

)
dW (t).
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Corollary 5. Under Assumption 1, (i) the optimal portfolio is less risky for the

Merton's strategy as compared with the optimal portfolio for CW strategy if α−β > y

and r > y.3

θS,M(t)∗ < θS,C(t)∗,

(ii) Under an additional assumption η = 0, we can write

θS,H(t)∗ < θS,M(t)∗ < θS,C(t)∗.

Proof. We suppose the negation of the given statement is true

θS,M(t)∗ ≥ θS,C(t)∗.

As it is reasonable to assume µ− r > 0, which implies µ−r
S(t)σ2δ

>0. Therefore

R (t)− h (t)B (t) ≥ R(t)−B(t).

We substitute the values of the unknown functions to obtain

R (t)− h (t)

(
Rme

−(r−α+β)(T−t) +
1− e−(r−α+β)(T−t)

r − α + β

)
≥ R(t)−Rme

−(r−y)(T−t),

since h(t) > 0 and 1−e−(r−α+β)(T−t)

r−α+β
is also positive and decreasing over time as we

have r − α + β > 0 under Assumption 1. Therefore, the above statement can only

be correct only if

e−(r−α+β)(T−t) < e−(r−y)(T−t),

as r − α + β > 0, r > y and α − β > y. Therefore, we conclude that the following

statement is true

θS,M(t)∗ < θS,C(t)∗.

3In what follows we use subscripts M,C and H with θS(t) or c(t) to indicate optimal portfolio
or consumption under Merton's, CW and hybrid strategies, respectively.
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For part (ii), we suppose

θS,H(t)∗ ≥ θS,M(t)∗.

We substitute the values of the unknown functions to obtain

R(t)−Rme
−r(T−t) ≥ R (t)− h (t)Rme

−(r−α+β)(T−t) − h (t)
1− e−(r−α+β)(T−t)

r − α + β
.

We can clearly see that the left-hand side is smaller than the right-hand side,

therefore we conclude that the statement to be proved is true.

Corollary 6. Under Assumption 1, the optimal consumption under Merton's strat-

egy as described in (3.15) can be equivalent to the consumption under CW strategy

as described in (3.2) depending on the chosen values of constant y.

Proof. As the optimal consumption for Merton's strategy is

cM (t)∗ = h(t) + φ
1
δ
c

(R(t)− h(t)B(t))(1 +B(t)α(t))−
1
δ

A(t)
,

where

B(t) = Rme
−
∫ T
t (−α(u)+β(u)+r(u))du +

∫ T

t

e−
∫ s
t (−α(u)+β(u)+r(u))duds,

and

A(t) = φ
1
δ
Re
−
∫ T
t

(
δ−1
δ
r(u)+ ρ

δ
+

(δ−1)(µ−r(u))2

2δ2σ2

)
du

+

∫ T

t

φ
1
δ
c (1 +B(s)α(s))

δ−1
δ e
−
∫ s
t

(
δ−1
δ
r(u)+ ρ

δ
+

(δ−1)(µ−r(u))2

2δ2σ2

)
du
ds.

The consumption for CW strategy is given by

cC(t)∗ = yR(t).

Consumption under Merton's strategy and CW strategy can be equivalent if y
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is chosen such that

y =
h(t)

R(t)
+ φ

1
δ
c

(1 +B(t)α(t))−
1
δ

A(t)
− φ

1
δ
c
h(t)B(t)(1 +B(t)α(t))−

1
δ

R(t)A(t)
.

if h = 0, then

y =
φ

1
δ
c

A(t)
,

where φ
1
δ
c can be suitably chosen to match y.

3.5 A numerical application

To illustrate the results of the preceding section, a simpli�ed market structure is

taken into account under Assumption 1 and condition that h(t) = 0. We have

estimated the parameters related to the �nancial market and interest rate over three

di�erent time horizons: (i) January 2nd, 1997 and December 29th, 2006 (1997-2006),

(ii) January 3rd, 2007 and December 30th, 2011 (2007-2011), and (iii) January 3rd,

2012 and December 30th, 2016 (2012-2016). The parameters of the risky asset

S (t) are obtained from the S&P 500 and the value of constant interest rate r is

estimated as the average return of US 3-Month Treasury Bill (on secondary market

� daily data). We assume the risk aversion parameter δ is equal to 2 similar to

the most common choices of risk aversion parameter in the habit formation and

life cycle literature (Munk [2008]; Gong and Li [2006] and Horne� et al. [2015];

Gourinchas and Parker [2002]). We set the subjective discount factor ρ equal to

the riskless interest rate r. The estimated parameters along with some assumptions

about wealth and preferences are gathered in Tab. 3.2.

All the graphs in this section show the mean of 1000 simulations. We recall the

general objective function under the assumption h(t) = 0:

J(t, R(t)) ≡ max
π(t)

Et
[∫ T

t

φc
(c(s))1−δ

1− δ
e−ρ(s−t)ds+ φR

(R(T )−Rm)1−δ

1− δ
e−ρ(T−t)

]
,
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Table 3.2: Parameters calibrated on the S&P 500 and US 3-Month Treasury Bill
time series between (i) January 2nd, 1997 and December 29th, 2006 (1997-2006),
(ii) January 3rd, 2007 and December 30th, 2011 (2007-2011), and (iii) January 3rd,
2012 and December 30th, 2016 (2012-2016). Other assumptions include R0 = 100,
T = 10, Rm = 0 or 90 when (Rm → R0) and δ = 2.

Parameters 1997-2006 2007-2011 2012-2016
µ 0.0816 0.0117 0.1198
σ 0.1816 0.2659 0.1279
r, ρ 0.0356 0.0122 0.0011

The results derived in the preceding section are summarized in Table 3.3.

3.5.1 Wealth and consumption

The weights assigned to the terminal wealth and intertemporal consumption in the

objective function do a�ect the optimal portfolio and consumption. Figure 3.1 shows

how the variation in weights results in a changes in the wealth and consumption. The

graphs illustrates that comparatively higher weight must be given to φR as compared

with φC to maintain wealth above zero in the long run. The consumption-wealth

ratio for this case in shown in Figure 3.2.

Figure 3.3 presents the impact of the variation of consumption-wealth ratio on

the paths of wealth and consumption for CW strategy, we assume that subsistence

wealth Rm = 0. As y increases the level of consumption rises but the terminal

wealth declines.

When the subsistence wealth Rm approaches the initial wealth R0, the mean of

the wealth and consumption becomes less volatile for all the values of y, as shown in

the Figure 3.4. We can also see that the rise or decline in the wealth and consumption

in the long run depends on the value of y.

For hybrid strategy, we assume that Rm = 0, Figure 3.5 shows the wealth and

consumption for di�erent weights ω. We can see from the graph that the weight

ω for the in�ation method must be chosen prudently, the higher the value of ω,

the more slowly c(t) converges towards its long term mean and vice versa. Similar

to CW strategy, if Rm approaches the initial wealth R0, the paths of wealth and
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Table 3.3: Optimal solutions for di�erent strategies.

Strategies
(Decision
variables)

Optimal
or de�ned consumption rule

Optimal portfolio

Merton's
strategy

(c(t), θS(t))

c(t)∗ = φ
1
δ
c
R(t)
A(t)

,

where A(t) =

φ
1
δ
Re
−
(
δ−1
δ
r+ ρ

δ
+

(δ−1)(µ−r)2

2δ2σ2

)
(T−t)

+φ
1
δ
c

1−e
−
(
δ−1
δ
r+

ρ
δ
+

(δ−1)(µ−r)2

2δ2σ2

)
(T−t)(

δ−1
δ
r+ ρ

δ
+

(δ−1)(µ−r)2
2δ2σ2

)
 .

θS(t)∗ = µ−r
S(t)σ2

R(t)
δ
.

CW
strategy(θS(t))

c (t) = yR(t). θS(t)∗ = µ−r
S(t)σ2

R(t)−B(t)
δ

,

where B(t) = Rme
(y−r)(T−t).

Hybrid
strategy(θS(t))

c (t+ 1) =
ωc (t) + (1− ω) yR (t+ 1) .

θS(t)∗ = µ−r
S(t)σ2

R(t)−B(t,c(t))
δ(1−η∗a)

, where

B(t, c(t)) = η∗c(t)
+Rme

−(r−η∗a(1+r))(T−t), where

η =
(1+r+a−ω)±

√
(1+r+a−ω)2−4a(1+r)

2a(1+r)
.
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Figure 3.1: Wealth and consumption under Merton's strategy with di�erent values
of the weights (φc and φR) in the objective function (3.12) and the dashed lines show
the con�dence interval (i.e. mean plus and minus two standard deviations). The
values of all parameters are estimated for the period 1997-2006 as stated in Tab.
3.2.
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Figure 3.2: Consumption-wealth ratio for Merton's strategy with di�erent values of
the weights (φc and φR) in the objective function (3.12). The values of all parameters
are estimated for the period 1997-2006 as stated in Tab. 3.2.
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Figure 3.3: Wealth and consumption under CW strategy with di�erent values of the
consumption-wealth ratio y and the dashed lines show the con�dence interval. The
values of all parameters are estimated for the period 1997-2006 as stated in Tab.
3.2.
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Figure 3.4: Wealth and consumption under CW strategy with di�erent values of
the consumption-wealth ratio y when Rm → R0 and the dashed lines show the
con�dence interval. The values of all parameters are estimated for the period 1997-
2006 as stated in Tab. 3.2.
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consumption becomes less volatile. For this strategy, the initial consumption must

not be higher than a certain threshold, otherwise the wealth will decline to zero.

Endowment fund managers face a dilemma. In fact, the board may want to have a

spending above a certain level, but in order to achieve the long term objectives of

the fund, the fund must have a lower spending than the threshold.

The consumption for hybrid strategy is also less volatile in the long run and it

converges towards its long term mean. Hybrid spending rule is more e�ective than

consumption-wealth ratio, as spending stream in this rule is less volatile. Actually,

an excessive volatility in the spending is not desirable.

Figure 3.6 shows ratios between consumption and wealth with di�erent values

of the weight ω for hybrid strategy. It appears that for the higher weight ω of the

in�ation method, the consumption-wealth ratio is relatively linear.

Figure 3.7 shows the e�ect of di�erent values of constant y. We see that while y

increases, so does the volatility in wealth and consumption. This �gure illustrates

that y must be chosen cautiously, to have a growth in wealth. The path of con-

sumption also depends on the value of y. If it is higher than the optimal value, then

the wealth will not grow in the long run and eventually, the consumption will also

decline to a much lower level. If y is lower than the optimal level, then the wealth

will grow in the long run but the consumption will remain lower even in the long

run, provided that the values of other parameters remain unchanged.

3.5.2 Wealth invested in the risky asset

Figure 3.8 shows the amount and percentage of wealth invested in the risky asset

under Merton's strategy with di�erent values of the weights (φc and φR). Figure 3.9

illustrates the amount and percentage of wealth invested in the risky asset under

CW strategy with di�erent values of consumption-wealth ratio y with subsistence

level Rm = 0. Both the �gures 3.8 and 3.9 shows a constant percentage of wealth

invested in the risky asset over time as all the parameters are constant. Figure 3.10

and 3.11 shows the amount and percentage of wealth invested in the risky asset

under hybrid strategy with di�erent values of the weight ω and with di�erent values

of y respectively.
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Figure 3.5: Wealth and consumption under hybrid strategy with di�erent values of
the weight ω and the dashed lines show the con�dence interval. The values of all
parameters are estimated for the period 1997-2006 as stated in Tab. 3.2.
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Figure 3.6: Hybrid strategy ratios between consumption and wealth with di�erent
values of the weight ω. The values of all parameters are estimated for the period
1997-2006 as stated in Tab. 3.2.
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Figure 3.7: Wealth and consumption under hybrid strategy with di�erent values of
y and the dashed lines show the con�dence interval. The values of all parameters
are estimated for the period 1997-2006 as stated in Tab. 3.2.
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Figure 3.8: Wealth invested in the risky asset (left column graphs) and percentage
of wealth invested in the risky asset (right column graphs) under Merton's strategy
with di�erent values of the weights (φc and φR). Dashed lines show the con�dence
interval. The values of all parameters are estimated for the period 1997-2006 as
stated in Tab. 3.2.
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Figure 3.9: Wealth invested in the risky asset (left column graphs) and percentage
of wealth invested in the risky asset (right column graphs) under CW strategy with
di�erent values of consumption-wealth ratio y with subsistence level Rm = 0. The
values of all parameters are estimated for the period 1997-2006 as stated in Tab.
3.2.
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Figure 3.10: Wealth invested in the risky asset (left column graphs) and percentage
of wealth invested in the risky asset (right column graphs) under hybrid strategy
with di�erent values of the weight ω when y = 0.02. The values of all parameters
are estimated for the period 1997-2006 as stated in Tab. 3.2.
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Figure 3.11: Wealth invested in the risky asset (left column graphs) and percentage
of wealth invested in the risky asset (right column graphs) under hybrid strategy
with di�erent values of y when ω = 0.6. The values of all parameters are estimated
for the period 1997-2006 as stated in Tab. 3.2.
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Figure 3.12: Comparison of Merton's strategy with φR = 0.98 and φc = 0.02 (con-
tinuous line), CW strategy with y = 0.04 (dashed line) and hybrid strategy with
ω = 0.8 and y = 0.04 (dotted line). The values of all parameters are estimated for
the periods 1997-2006, 2007-2011, and 2012-2016 as stated in Tab. 3.2.

3.5.3 Comparison of the strategies

Fig. 3.12 shows the comparison of wealth, consumption and risky portfolio (all

in monetary units) for Merton's, CW and hybrid strategies using the parameters

estimated for three di�erent periods: (i) 1997-2006, (ii) 2007-2011, and (iii) 2012-

2016. The graphs of the �rst column show the dynamic behavior of wealth. We can

see that:

• during the �rst period (1997-2006) under hybrid strategy, the wealth initially

declines and then recovers while under Merton's strategy, it declines sharply.

• during the second period (2007-2011), wealth declines for all strategies but the

magnitude of decline is far less for hybrid strategy compared to the other two

strategies.

• during the third period (2012-2016), wealth rises for all three strategies but it
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rises less strongly for hybrid strategy.

The graphs of the second column show the dynamic behavior of consumption. For

the comparison of consumption we chose, the consumption-wealth ratio for CW

strategy and initial consumption for hybrid strategy to match the initial optimal

consumption under Merton's strategy. We can see that:

• during the �rst period, consumption rises under Merton's strategy while it

declines under hybrid strategy in a short run and converges towards its long

term mean.

• during the second period, consumption remains constant under Merton's strat-

egy, however it declines under the other two strategies.

• during the third period, consumption increases greatly for CW and Merton's

strategy while it increases with less intensity for hybrid strategy.

The third column graphs shows the risky portfolio. We can see that during the

second period it is optimal to short sell the risky asset whereas in the third period

it is optimal to short sell the riskless asset and invest in the risky asset.

3.6 Conclusion

This chapter has provided a brief overview of di�erent spending rules applied by

endowment funds. The endowment fund managers adopt these rules to e�ectively

preserve the corpus of the fund and have a stable spending stream. We have ob-

tained the optimal investment strategy under consumption-wealth ratio and hybrid

spending rules. Furthermore, we have compared these optimal portfolios and de-

�ned spending rules with the classical Merton's optimal portfolio and consumption.

We have found that the optimal Merton's portfolio is less riskier than that un-

der consumption-wealth ratio rule, while the Merton's optimal consumption can be

replicated using consumption-wealth rule by a suitable selection of the consumption-

wealth ratio. The hybrid strategy, for some values of constant parameters, is less

risky than both Merton's and consumption-wealth ratio, and consumption under
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this strategy is less volatile compared to other strategies. The unique characteristic

of hybrid rule is that it allow �uctuation in spending during the short run. Also, it

converges towards its long term mean regardless of the initial allocation for spend-

ing. However, hybrid strategy comparatively outperforms the conventional Merton's

strategy and CW strategy when the market is highly volatile but under-performs

them when there is a low volatility. Thus, an endowment fund must evaluate, review

and modify its spending rule and investment policy periodically, depending on the

conditions of the �nancial market.

3.A Appendix A

For simpli�cation of the notation, we will use the following de�nitions throughout

this appendix:

∂A(t)

∂t
≡ At,

∂B(t, c(t))

∂t
≡ Bt,

∂B(t, c(t))

∂c
≡ Bc,

∂2B(t, c(t))

∂2c
≡ Bcc.

3.A.1 Proof of proposition 2

The value function or indirect utility function is given by

J(t, R(t)) ≡ max
c(t),θS(t)

Et

[∫ T

t

φc
(c(s)− h(s))1−δ

1− δ
e−ρ(s−t)ds+ φR

(R(T )−Rm)1−δ

1− δ
e−ρ(T−t)

]
.

We know that the above objective function must solve the following di�erential

equation (so-called Hamilton-Jacobi-Bellman HJB equation):

0 = max
c(t),θS(t)

 φc
(c(s)−h(s))1−δ

1−δ − ρJ + ∂J
∂t

+ ∂J
∂h

(α(t)c(t)− β(t)h(t))

+ ∂J
∂R

(
R(t)r(t) + θS(t)S(t)(µ− r(t))− c(t)

)
+ 1

2
∂2J
∂R2 θS(t)2S(t)2σ2

 .

(3.32)
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The HJB equation (3.32) in J(t, R(t)), needs a boundary condition so that the

value function coincide with the �nal utility function at the time T :

J(T,R(T )) = U(R(T )).

We assume the following guess function

J(t, R(t)) = A(t)δ
(R(t)− h(t)B(t))1−δ

1− δ
, (3.33)

where A(t) and B(t) are the functions that must be determined to solve equation

(3.32). Both functions must satisfy boundary conditions as follows:

A(T )δ = φR ⇒ A(T ) = φ
1
δ
R,

B(T ) = Rm,

and the �rst order conditions (FOCs) of (3.32) w.r.t. θS(t) and c(t) are:

θS(t)∗ = −µ− r(t)
S(t)σ2

∂J
∂R
∂2J
∂R2

, (3.34)

φc (c(s)− h(s))−δ =
∂J

∂R
− ∂J

∂h
α(t). (3.35)

By substituting the derivatives of the guess function into both the optimal con-

sumption (3.35) and the optimal portfolio (3.34), we obtain

c(t)∗ = h(t) + φ
1
δ
c

(R(t)− h(t)B(t)) (1 +B(t)α(t))−
1
δ

A(t)
, (3.36)

θS(t)∗ =
µ− r(t)
S(t)σ2

R(t)− h(t)B(t)

δ
. (3.37)

Inserting the optimal portfolio (3.37), the optimal consumption (3.36), and the

partial derivatives of the guess function into equation (3.32), we have
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0 =
δ

1− δ
φ

1
δ
c (1 +B(t)α(t))1− 1

δ − ρA(t)

1− δ

+
δ

1− δ
At −

A(t)h(t)Bt

R(t)− h(t)B(t)

− A(t)B(t)α(t)h(t)

R(t)− h(t)B(t)
+
A(t)B(t)β(t)h(t)

R(t)− h(t)B(t)

+ r(t)A(t) +
A(t)h(t)B(t)r(t)

R(t)− h(t)B(t)
+ A(t)

(µ− r(t))2

2σ2δ
− A(t)h(t)

R(t)− h(t)B(t)
,

which can be separated into two di�erential equations, one that consists of the terms

containing (R(t)− h(t)B(t))−1 and one without them and after few simpli�cations

we have

0 = φ
1
δ
c (1 +B(t)α(t))

δ−1
δ + At + A(t)

(
1−δ
δ
r(t)− ρ

δ
+ (1−δ)(µ−r(t))2

2δ2σ2

)
0 = Bt +B(t) (α(t)− β(t)− r(t)) + 1

(3.38)

The above ordinary di�erential equations, together with their corresponding

boundary conditions, have the following unique solutions:

A(t) = φ
1
δ
Re
−
∫ T
t

(
δ−1
δ
r(u)+ ρ

δ
+

(δ−1)(µ−r(u))2

2δ2σ2

)
du

+

∫ T

t

φ
1
δ
c (1 +B(s)α(s))

δ−1
δ e

−
∫ s
t

(
δ−1
δ
r(u)+ ρ

δ
+

(δ−1)(µ−r(u))2

2δ2σ2

)
du
ds,

B(t) = Rme
−
∫ T
t (−α(u)+β(u)+r(u))du +

∫ T

t

e−
∫ s
t (−α(u)+β(u)+r(u))duds.

• when h(t) is constant, i.e. h(t) = h, the optimal consumption and portfolio is

given by

c(t)∗ = h+ φ
1
δ
c
R(t)− hB(t)

A(t)
,

θS(t)∗ =
µ− r(t)
S(t)σ2

R(t)− hB(t)

δ
,
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where the unknown functions are given by

A(t) = φ
1
δ
Re
−
∫ T
t

(
δ−1
δ
r(u)+ ρ

δ
+

(δ−1)(µ−r(u))2

2δ2σ2

)
du

+

∫ T

t

φ
1
δ
c e
−
∫ s
t

(
δ−1
δ
r(u)+ ρ

δ
+

(δ−1)(µ−r(u))2

2δ2σ2

)
du
ds,

B(t) = Rme
−
∫ T
t r(u)du +

∫ T

t

e−
∫ s
t r(u)duds.

• when h(t) = 0, the optimal consumption and portfolio is given by

c(t)∗ = φ
1
δ
c
R(t)

A(t)
,

θS(t)∗ =
µ− r(t)
S(t)σ2

R(t)

δ
,

where the unknown functions are given by

A(t) = φ
1
δ
Re
−
∫ T
t

(
δ−1
δ
r(u)+ ρ

δ
+

(δ−1)(µ−r(u))2

2δ2σ2

)
du

+

∫ T

t

φ
1
δ
c e
−
∫ s
t

(
δ−1
δ
r(u)+ ρ

δ
+

(δ−1)(µ−r(u))2

2δ2σ2

)
du
ds,

B(t) = Rme
−
∫ T
t r(u)du +

∫ T

t

e−
∫ s
t r(u)duds.

3.A.2 Proof of proposition 3

The value function is given by

J (t, R(t)) ≡ max
θS(t)

Et

[
(R(T )−Rm)1−δ

1− δ
e−ρ(T−t)

]
.

For this objective function, we can write the following HJB equation

0 = max
θS(t)

 −ρJ + ∂J
∂t

+ ∂J
∂R

(R(t)r(t) + θS(t)S(t) (µ− r(t))− c(t))

+1
2
∂2J
∂R2 θS(t)2S(t)2σ2

 , (3.39)

and the �rst order condition (FOC) of (3.39) w.r.t. θS(t) is

θS(t)∗ = −µ− r(t)
S(t)σ2

∂J
∂R
∂2J
∂R2

. (3.40)

We assume the following guess function
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J(t, R(t)) = A(t)δ
(R(t)−B(t))1−δ

1− δ
, (3.41)

where A(t) is the function that must solve equation (3.39), with the boundary con-

dition

A(T ) = 1,

while B(t) must satisfy the boundary condition

B(T ) = Rm,

and the optimal portfolio process θS(t)∗ in (3.40), for our guess function can be

written as

θS(t)∗ =
µ− r(t)
S(t)σ2

R(t)−B(t)

δ
. (3.42)

Substituting the optimal portfolio (3.42) and partial derivatives of the guess

function into (3.39), we get

0 =
δ

1− δ
At + A(t)

(
r(t)− y − ρ

1− δ
+

1

2

(µ− r(t))2

σ2δ

)

+
A(t)

R(t)−B(t)

(
B(t)

(
r(t)− y

)
−Bt

)
,

which can be separated into two di�erential equations, one that consists of the terms

containing (R(t)− B(t))−1 and one without them and after few simpli�cations, we

have

0 = At + A(t)
(

1−δ
δ

(
r(t)− y

)
+ 1−δ

2δ2
(µ−r(t))2

σ2 − ρ
δ

)
,

0 = B(t)
(
r(t)− y

)
−Bt.

The above ordinary di�erential equations with their corresponding boundary

conditions have the following solutions:



3.A Appendix A 74

A(t) = e
−
∫ T
t

(
δ−1
δ
r(s)− δ−1

δ
y+ δ−1

2δ2
(µ−r(s))2

σ2
− ρ
δ

)
ds
,

B(t) = Rme
−
∫ T
t (r(s)−y)ds.

3.A.3 Proof of proposition 4

The value function is given by

J(t, R(t), c(t)) ≡ max
θS(t)

Et

[
(R(T )−Rm)1−δ

1− δ
e−ρ(T−t)

]
.

For this objective function, we can write the following HJB equation

0 = max
θS(t)


−ρJ + ∂J

∂t
+ ∂J

∂R

(
R(t)r(t) + θS(t)S(t)(µ− r(t))− c(t)

)
+∂J

∂c
(1− ω) (1 + y)

(
yR(t)(1+r(t))+yθS(t)S(t)(µ−r(t))

1+y
− c(t)

)
+ 1

2
∂2J
∂R2 θS(t)2S(t)2σ2

+1
2
∂2J
∂c2
a2θS(t)2S(t)2σ2 + ∂2J

∂c∂R
aθS(t)2S(t)2σ2

 ,

(3.43)

and the �rst order condition (FOC) of (3.43) w.r.t. θS(t) is

θS(t)∗ = −µ− r(t)
S(t)σ2

∂J
∂R

+ ∂J
∂c
a

∂2J
∂R2 + ∂2J

∂c2
a2 + 2 ∂2J

∂c∂R
a
. (3.44)

We assume the following guess function

J(t, R(t), c(t)) = A(t)δ
(R(t)−B(t, c(t))1−δ

1− δ
. (3.45)

Thus, the optimal portfolio process θS(t)∗ in (3.44), for our guess function can

be written as

θS(t)∗ = −µ− r(t)
S(t)σ2

A(t)δ (R(t)−B(t, c(t)))−δ
1−Bca

F (t, c(t))
,

where we de�ne
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F (t, c(t)) =− δA(t)δ(R(t)−B(t, c(t)))−δ−1 − δA(t)δ(R(t)−B(t, c(t)))−δ−1B2
ca

2

− A(t)δ(R(t)−B(t, c(t)))−δBcca
2 + 2δA(t)δ(R(t)−B(t, c(t))−δ−1Bca.

The HJB equation (3.43), under the hypotheses Bc = η and Bcc = 0, becomes

0 = −A(t)
ρ

1− δ
+

δ

1− δ
At − A(t)

Bt

R(t)−B(t, c(t)
+ A(t)r

+ A(t)
rB(t, c(t))

R(t)−B(t, c(t))
− A(t)

c(t)

R(t)−B(t, c(t))
− A(t)ηa(1 + r)

− A(t)
ηa(1 + r)B(t, c(t))

R(t)−B(t, c(t))
+ A(t)

η (1− ω) c(t)

R(t)−B(t, c(t))
+ A(t)

ηac(t)

R(t)−B(t, c(t))

+
A(t)(µ− r)2

2σ2δ
,

which can be separated into two di�erential equations, one that consists of the terms

containing (R(t)−B(t, c(t)))−1 and one without them and after few simpli�cations,

we have

0 = At + A(t)
(

1−δ
δ
r − ρ

δ
− 1−δ

δ
ηa(1 + r) + 1−δ

δ
(µ−r)2
2σ2δ

)
,

0 = Bt −B(t, c(t)) (r − ηa(1 + r)) + c(t) (1− η (1− ω)− ηa) ,

(3.46)

and the optimal portfolio in this case can be written as using (3.44)

θS(t)∗ =
µ− r
δS(t)σ2

R(t)−B(t, c(t))

1− ηa
.

These equations are both ordinary linear di�erential equations and their bound-

ary conditions can be obtained from the boundary condition of the HJB equation:

A(T, c(T )) = 1,

B(T, c(T )) = Rm.
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The solution of the above ODE (3.46), together with their boundary conditions

is given by

A(t) = e
−
(
δ−1
δ
r+ ρ

δ
− δ−1

δ
ηa(1+r)+ δ−1

δ
(µ−r)2

2σ2δ

)
(T−t)

.

Since the second di�erential equation has been obtained under the hypothesis

that Bc = η and Bcc = 0, then the only consistent functional form for B(t, c(t)) is

B(t, c(t)) = η (t) c(t) + h (t) ,

where η (t) and h (t) may be functions of time. Thus the second ODE can be

rewritten as follows

(
∂η (t)

∂t
c(t) +

∂h (t)

∂t

)
−(r − η (t) a (1 + r)) (η (t) c(t) + h (t))−(η (t) (1− ω + a)− 1) c(t) = 0,

which can be separated into two ODE's, one which contains c(t) and one which

contains all the terms without c(t)

0 =
∂η (t)

∂t
− (r − η (t) a (1 + r)) η (t)− (η (t) (1− ω + a)− 1) , (3.47)

0 =
∂h (t)

∂t
− (r − η (t) a (1 + r))h (t) , (3.48)

with the boundary condition

η (T ) c(T ) + h (T ) = Rm,

as

B(T, c(T )) = Rm,
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and consequently,

η (T ) =0,

h (T ) =Rm,

which means that η must be a constant and the ODE (3.47) (with ∂η(t)
∂t

= 0) gives

η2a (1 + r)− η (1 + r + a− ω) + 1 = 0,

which has two solutions. One of the two must be suitably chosen (η∗):

η =
(1 + r + a− ω)±

√
(1 + r + a− ω)2 − 4a (1 + r)

2a (1 + r)
.

The ODE (3.48), together with the boundary condition, has a unique solution

h (t) = Rme
−(r−η∗a(1+r))(T−t).

Therefore,

B(t, c(t)) = η∗c(t) +Rme
−(r−η∗a(1+r))(T−t), (3.49)

such that −∞ < η∗ < 1
a
.



Chapter 4

Capital adequacy management for

banks in the Lévy market

4.1 Introduction

Bank management mainly consists of four closely linked operations: (i) asset man-

agement, (ii) capital adequacy management, (iii) liability management, and (iv)

liquidity management. Capital adequacy management, from the regulatory perspec-

tive, is one of the most important component in the banking operations. It de�nes,

implements and monitors the banking operations by imposing certain limitations

on risk-taking. The primary risks associated with capital adequacy management

are credit risk, market risk, and operational risk. Capital adequacy management

involves the determination of the amount of capital that a bank is required to hold

compared to the amount of assets, to comply with the minimum capital require-

ments established by the regulator. Higher level of bank capital bene�ts the bank

owners because it reduces the chances of bank failure while it is costly because it

lowers the return on equity. The Basel Committee on Banking Supervision (BCBS),

supervises and regulates the international banking industry. The committee formu-

lates the international minimum standards on bank capital adequacy to ensure that

banks can absorb unexpected losses during a period of crisis and promotes e�ec-

tiveness and stability of banks. The capital accord Basel I was developed to assess

the bank's capital compared to the bank's credit risk. It was revised to Basel II to

78
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make the minimal capital requirements more risk sensitive. Basel III, reinforces the

capital requirement under previous accords by decreasing bank leverage, increasing

bank liquidity and requiring reserves for di�erent forms of deposits and borrowings.

Capital adequacy ratio acts as an index of capital adequacy of banks. In general,

it is calculated by dividing a measure of bank capital by an indicator of the level

of bank risk. In this study, we consider the ratio of total bank capital to the total

risk-weighted assets (TRWAs) as capital adequacy ratio (CAR). CAR mandates

the international banks to hold capital in proportion to their perceived risks, as

portfolio position is important for risk management strategy. If we denote the total

bank capital by C and the total risk-weighted assets by A then CAR Γ is given by

Γ =
C

A
,

where TRWAs are constituted by the capital charges for credit, market and opera-

tional risks.

In this chapter, we consider the problem of a bank which can invest in three

assets: a treasury, a stock index, and loans. We determine the optimal investment

portfolio under constant absolute risk aversion (CARA) preferences and then this

portfolio is used to model the dynamics of CAR. Our study has two roots in the

literature: (i) capital adequacy management, and (ii) optimal investment in the

Lévy market.

Several studies have applied stochastic optimization methods to asset manage-

ment and capital adequacy management in banking. Mukuddem-Petersen and Pe-

tersen [2006] built a stochastic model for banks and minimized the market and

capital adequacy risks by selection of security allocation and capital requirements,

respectively. They suggest an optimal portfolio choice and rate of bank capital in-

�ow that will keep the loan level as close as possible to an actuarially determined

reference process. Fouche et al. [2006] constructed continuous-time stochastic mod-

els for the dynamics of non-risk-based and risk-based CAR's. Mukuddem-Petersen

et al. [2007] solved the maximization problem involving the expected utility of dis-

counted depository consumption, a consumption of the bank's pro�ts by the taking

and holding of deposits, over a random time interval and pro�t at terminal time.
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They analyzed di�erent aspects of their banking model against the regulations of the

Basel II capital accord. Mukuddem-Petersen and Petersen [2008] optimized CAR

by optimal allocation of bank's equity using the rate at which additional equity and

debt are raised. Mulaudzi et al. [2008] investigated the bank's investment in loans

and treasuries with the objective of generating an optimal �nal fund level in the

presence of behavioral aspects such as risk and regret. Witbooi et al. [2011] incor-

porated the stochastic interest rate which follows CIR model and derived an optimal

equity allocation strategy for banks. They monitored the performance of the Basel

II CAR under the allocation strategy. Perera [2015] solved the optimal portfolio

choice problem to maximize expected utility of wealth of bank's shareholders at a

given investment horizon in an environment subject to stochastic interest rate and

in�ation uncertainty following correlated Ornstein�Uhlenbeck processes.

The second root of our research is optimal investment problems, which are based

on two approaches: (i) the dynamic programming approach which dates back to the

seminal work of Merton [1969, 1971], and (ii) the martingale approach developed by

Cox and Huang [1989]. Merton's work has been modi�ed and extended in many sub-

sequent papers, such as Lehoczky et al. [1983], Karoui et al. [2005], and Choulli et al.

[2003]. Further extensions have incorporated the Lévy market in Merton's frame-

work. The pioneering contributions on portfolio optimization with jump-di�usion

processes includes Aase [1982], Aase [1984], Aase [1986], Aase [1988], and Benth

et al. [2001]. Recently, a number of authors have focused on the addition of Lévy

processes in the insurers risk process in optimal investment-reinsurance problems.

Yang and Zhang [2005] studied the optimal investment problem for an insurer with

controlled jump-di�usion risk process and derived the closed form solution for gen-

eral objective function. The objective function included both the terminal wealth

and the survival probability of the insurer. Zhao et al. [2013] found the optimal in-

vestment�reinsurance strategy for an insurer, whose surplus process is governed by

compound Poisson risk process perturbed by di�usion process in a �nancial market

with one risk-free asset and one risky asset whose price follows the Heston model.

Liu et al. [2013] studied the maximization of expected exponential utility function

for an insurer who can purchase reinsurance with value-at-risk constraint on the
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portfolio. They solved the problem by using decomposition approach for both com-

plete and incomplete markets. Sheng et al. [2014] investigated the optimal control

strategy of excess-of-loss reinsurance and investment problem for an insurer. The

model takes into account a compound Poisson jump di�usion risk process with the

risk asset price modeled by a constant elasticity of variance (CEV) model. Zhu

et al. [2015] analyzed the optimal proportional reinsurance-investment problem for

a default able market by decomposing the problem into two sub-problems: a pre-

default case, and a post-default case. The study extended the insurer's problem of

reinsurance-investment by the addition of a corporate bond and the optimal strat-

egy that maximizes the expected CARA utility of the terminal wealth was explicitly

derived.

In this chapter, we use the martingale approach to solve our problem. It is

based on equivalent martingale measures and martingale representation theorems,

see Kramkov and Schachermayer [1999] for the detailed description. It was �rst

developed and applied in the continuous time by Harrison and Kreps [1979]. There-

after, it was applied to many problems including the optimal investment and con-

sumption problem by Karatzas and Shreve [1998], and optimal investment problem

for insurers with the risk process modeled by a Lévy process in Wang et al. [2007].

Zhou [2009] extended the problem considered by Wang et al. [2007] with the addition

of a Lévy process for the risky asset. Lòpez and Serrano [2015] studied the optimal

investment-consumption problem in a pure-jump asset pricing model with regime

switching framework. Zou and Cadenillas [2014] modeled the insurer's risk process

by a jump di�usion process which is negatively correlated with the capital gains in

the �nancial market and obtained explicit solutions for various utility functions.

This chapter mainly addresses optimal portfolio selection problem incorporating

the bank's risk process using the martingale approach. We �rst solve the asset

allocation problem and then the capital adequacy ratio process of the bank is derived,

conditional on the optimal policy chosen. In comparison with the Merton's approach,

we add a jump-di�usion process in the stock that is simultaneous to the jump in the

bank's risk process modeled by Cramer-Lundberg model. Furthermore, we have used

a jump process to model the expected losses that covered the loan loss provision.
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In our framework, the bank's investment manager dynamically chooses the amount

for investment in the risky assets (i.e. stocks and loans). We derive the optimal

investment strategy of the bank's investments in the stocks and loans with CARA

utility function.

The outline of this chapter is as follows. Section 4.2 presents the stochastic model

for a bank and formulates the optimization problem for the bank's asset portfolio.

In Section 4.3, we derive and verify the optimal solution under exponential utility

function. Section 4.4 shows the derivation of the dynamics of CAR and Section 4.5

concludes this chapter.

4.2 General framework

Stochastic framework can reasonably represent the dynamic nature of di�erent items

on the bank's balance sheet and the uncertainty associated with them. The model

presented here is highly simpli�ed for tractability purposes and omits many impor-

tant aspects of bank operations.

4.2.1 Stochastic model of a bank

Banks sell liabilities and uses the proceeds from the sales to buy assets with di�erent

properties, this process is called asset transformation. Bank's balance sheet records

the utilization of funds (assets) and sources of funds (liabilities). The items on the

balance sheet exhibit uncertainty due to unpredictable nature of risky investments,

loan demands and repayments, deposits, borrowings and regulatory capital. The

bank's balance sheet has the following well-known relationship

Bank Capital=Total Assets− Total Liabilities.

As de�ned by Mukuddem-Petersen and Petersen [2006] and Witbooi et al. [2011],

a typical commercial bank's balance sheet at time t can be represented as

C(t)︸︷︷︸
Capital

= G(t) + S(t) + L(t)︸ ︷︷ ︸
Assets

− (D(t) +B(t))︸ ︷︷ ︸
Liabilities

, (4.1)
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where G,S,L,D,B,C: Ω×R+ → R are treasury, security, loans, deposits, borrowings,

and bank capital respectively.

We consider a continuously open and frictionless �nancial market over the �xed

time interval [0, T ], where trading of assets in fractional units is permitted. We

de�ne a �ltered probability space
(
Ω,F , {Ft}t≥0 ,P

)
, where Ω is the information

structure and P denotes the real world probability measure on Ω.

4.2.2 Assets

In the �nancial market there are three assets available for investment: (i) a treasury

G (t), (ii) a security S (t), and (iii) loans L (t). The bank's objective is to invest in

assets with low default probability and follow a su�ciently diversi�ed investment

strategy. In this section, we model the risks associated with these assets by using

stochastic processes.

The treasury is a bond issued by the national Treasury. We consider the treasury

G(t), as a riskless asset which evolves according to

dG(t)

G(t)
= r(t)dt, (4.2)

where G(0) = 1, and it is the numéraire and r(t) is the instantaneous nominal

riskless interest rate.

A marketable security is a stock index fund S(t) whose price dynamics are gov-

erned by the following jump-di�usion process

dS(t)

S(t)
= µSdt+ σ1dW1(t) + γ1dN1(t), (4.3)

where µS is the appreciation rate and σ1 is the positive volatility parameters, W1(t)

is a one-dimensional standard Brownian motion and N1(t) is a one-dimensional

Poisson component with the intensity λ and the size of the jump is γ1 which satis�es

0 > γ1 ≥ −1.

The evolution of the price dynamics of the total loans L (t) is governed by the

following di�usion process
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dL(t)

L(t)
= µLdt+ σ2dW2(t), (4.4)

where µL is the appreciation rate, σ2 ∈ R+ is the volatility and dW2(t) is another

standard Brownian motion.

We capture the bank's risk by using Cramer-Lundberg model, a classical model

used in the insurance industry to model claims. The cumulative amount of losses is

given by
∑N(t)

i=1 li, where {li} is a series of independent and identically distributed

(i.i.d) random variables and N (t) is a homogeneous Poisson process with intensity

λ and independent of li. If the mean of li and intensity of N (t) are �nite, then

this compound Poisson process is a Lévy process with �nite Lévy measure. We

de�ne Mi (t) := Ni (t) − λt as the compensated Poisson process of Ni (t). Bank's

risk process is given by

dR (t) = adt+ bdW̄ (t) + γ2dN2 (t) + γ12dN1(t), (4.5)

where a, b are positive constants and W̄ (t) is a one-dimensional standard Brownian

motion. As the capital gains in the �nancial market are negatively correlated with

the liabilities, we denote ρ as the correlation coe�cient between W1(t) and W̄ (t),

which implies

W̄ (t) = ρW1(t) +
√

1− ρ2W3(t), (4.6)

whereW3(t) is another standard Brownian motion independent ofW1(t) andW2 (t).

There are three special cases for (4.6): (i) if W̄ (t) is not correlated withW1(t) that is,

ρ = 0 then W̄ (t) is equal toW3(t), (ii) if ρ2 = 1, then W̄ (t) equalsW1(t). In this case,

the risky assets and the liabilities are driven by the same source of randomness, and

(iii) if ρ2≤ 1 it means that the risk from liabilities cannot be eliminated by trading

the �nancial assets. After substituting (4.6) into (4.5) we can write
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dR (t) = adt+ bρdW1(t) + b
√

1− ρ2dW3(t) + γ12dN1(t)

+ γ2dN2(t). (4.7)

Bank's usually have provisions for some expected losses accumulated in the loan

loss reserve. If the loss l (t) is such a loss diminished by loss covered by provision of

loan losses P (l (s)) then γ2 = [l (s)− P (l (s))] and γ12 is the size of jump causing

unexpected losses. We can rewrite the risk process (4.7) as

dR (t) = adt+ bρdW1(t) + b
√

1− ρ2dW3(t) + γ12dN1(t)

+ [l (s)− P (l (s))] dN2(t). (4.8)

In our settings N1 (t) produces simultaneous jump in bank's risk process and

stock index fund. As under Basel III, banks must hold su�cient amount of capital

to cover for unexpected losses where expected losses are provided by provisions. In

addition, W1(t), W2(t), W3(t), N1(t) and N2(t) are mutually independent and are

all de�ned on (Ω,F ,Ft,P) where Ft is the usual augmentation of natural �ltration

with F = FT .

4.2.3 Loan loss reserve

The banks are required to hold provisions for the expected losses or bad debts.

According to Gideon et al. [2007], we can de�ne the provision for loan losses made

by the banks which takes the form of a continuous contribution

k(t) = [1 + ψ (t)]φ (t)E [P (l (t))] , (4.9)

where ψ (t) is the loading term which depends on the level of credit risk, φ (t) is the

deterministic frequency parameter and E [P (l (t))] is the expected loan losses.
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4.2.4 Bank's asset portfolio

The bank's assets portfolio is a linear combination of three positions namely, the

units θG(t) of treasury G(t) whose dynamics are given by (4.2), the units θS(t) of

stock index fund S(t) whose dynamics are given in (4.3), the units θL(t) of loan L(t)

whose dynamic are given in (4.4). Thus, at any instant in time t, the bank's assets

portfolio is given by

X(t) = θG(t)G(t) + θS(t)S(t) + θL(t)L(t), (4.10)

whose di�erential is given by

dX(t) = θG(t)dG(t) + θS(t)dS(t) + θL(t)dL(t)︸ ︷︷ ︸
dX1(t)

+ (S(t) + dS(t)) dθS(t) + (L(t) + dL(t)) dθL(t) +G(t)dθG(t)︸ ︷︷ ︸
dX2(t)

, (4.11)

where the term dX2 (t) must be equal to the in�ow-out�ow to the bank's assets

portfolio which is given by

dX2(t) = − [k (t) dt+ dR (t)] ,

where k (t) equates the continuous contribution to the provision for loan losses given

by (4.9) and dR (t) is the bank's risk process modeled by (4.8).

Substituting the dynamics of G (t), S(t), L(t) and dX2(t) into (4.11), we obtain

dX(t) =
(
X(t)r(t) + θS(t)S(t) (µS − r(t)) + θL(t)L(t) (µL − r(t))− a

− [1 + ψ (t)]φ (t)E [P (l (t))]
)
dt+ θS(t)S(t) (σ1dW1(t) + γ1dN1(t))

+ θL(t)L(t) (σ2dW2(t))− bρdW1(t)− b
√

1− ρ2dW3(t)− γ12dN1(t)

− [l (t)− P (l (t))] dN2(t).
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If we set πG ≡ θG(t)G(t), πS ≡ θS(t)S(t), and πL ≡ θL(t)L(t) and de�ne the

bank's strategy by π(t) := (πS(t), πL(t), P (l (t))), a Ft − predictable process, which

represents the dollar amounts invested in stock index fund πS(t), loans πL(t) and

amount of provision for loan losses P (t), then we can write bank's assets portfolio

X(t) as a controlled stochastic process depending on a strategy π (t) as

dXπ(t) =
(
Xπ(t)r(t) + πS(t) (µS − r(t)) + πL(t) (µL − r(t))− a

− [1 + ψ (t)]φ (s)E [P (l (t))]
)
dt+ (πS(t)σ1 − bρ) dW1(t)

+ πL(t)σ2dW2(t)− b
√

1− ρ2dW3(t) + (πS(t)γ1 − γ12) dN1(t)

− [l (t)− P (l (t))] dN2(t), (4.12)

where the initial asset portfolio is X(0)π = x0 > 0 and it can be written as

Xπ(t) = ertx0 +

∫ t

0

er(t−s)
(
πS(s) (µS − r(s)) + πL(s) (µL − r(s))− a

− [1 + ψ (s)]φ (s)E [P (l (s))]
)
ds+

∫ t

0

er(t−s) (πS(s)σ1 − bρ) dW1(s)

+

∫ t

0

er(t−s)πL(s)σ2dW2(s)−
∫ t

0

er(t−s)b
√

1− ρ2dW3(s)

+

∫ t

0

er(t−s) (πS (t) γ1 − γ12) dN1(s)

−
∫ t

0

er(t−s) [l (s)− P (l (s))] dN2 (s) . (4.13)

Remark 2. The bank's assets portfolio process (4.12) without loan loss provision can

be written as
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dXπ(t) = (Xπ(t)r(t) + πS(t) (µS − r(t)) + πL(t) (µL − r(t))− a) dt

+ (πS(t)σ1 − bρ) dW1(t) + πL(t)σ2dW2(t)

− b
√

1− ρ2dW3(t) + (πS(t)γ1 − γ12) dN1(t)

− l (t) dN2(t), (4.14)

where γ12 = 0, in the case of uncorrelated jumps.

4.2.5 Bank's optimization problem

The objective function de�nes the objective of the optimizer under the set of avail-

able actions and constraints imposed on those actions. However, in the case of a

bank, the objective may vary, from a shareholder's perspective, it is imperative to

maximize the utility of the asset portfolio so that their equity yields higher returns,

in the form of either dividends or stock price appreciation. On the other hand, from

the regulator's point of view, banks should make limited investment in the risky

assets and set aside substantial bu�er capital for a period with lower-than-expected

earnings, whereas the bank management is usually concerned about its own remu-

nerations and prestige attached to their positions because of which they strive for

the higher value of �rm assets.

We assume that the bank maximizes the utility of the terminal value of bank's

assets portfolio, thus the bank optimizes

max
π∈Π

E [U(X(T ))] , (4.15)

where E is the conditional expectation under probability measure P and the util-

ity function U is assumed to be strictly increasing and concave with respect to

the wealth. Π denotes the set of all admissible controls with initial asset portfo-

lio X(0) = x0. The admissible control {π}0≤t≤T is progressively measurable with

respect to �ltration {F}0≤t≤T and satis�es the conditions E
[∫ T

0
(πS(s))2 dt

]
< ∞,

E
[∫ T

0
(πL(s))2 dt

]
<∞and E

[∫ T
0

(P (l (s)))2 dt
]
<∞ and P (l (s)) ≥ 0,∀t ∈ [0, T ].
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4.3 Optimal asset portfolio

We apply the martingale approach to solve our problem (4.15) which is based on

two important Lemmas introduced below.

Lemma 1. If there exists a strategy π∗ ∈ Π, such that1

E
[
U
′
(Xπ∗(T ))×Xπ(T )

]
, (4.16)

is constant over all admissible controls, i.e. π ∈ Π, then π∗is the optimal trading

strategy.

Proof. For proof, see Wang et al. [2007] and Zhou [2009].

Lemma 2. (Martingale Representation) For any local martingale Z(t), there exists

some θ = (θ1, θ2, θ3, θ4, θ5) ∈ Θ, such that,

Z(t) = Z(0) +
3∑
i=1

∫ t

0

θi(s)dWi(s) +
5∑
i=4

∫ t

0

θi(s)dMi−3 (s) ,

for all t ∈ [0, T ]. For some notation and measureability and integrability conditions

for θi, see Tankov and Cont [2003] and Wang et al. [2007].

We obtain the optimal control to problem (4.15) through the following steps. We

conjecture the form of π∗S, π
∗
Land P

∗ that satis�es the condition (4.16). We de�ne

Z(T )∗ :=
U
′
(Xπ∗(T ))

E [U ′(Xπ∗(T ))]
, and Z (τ)∗ = E [Z (T )∗ | Fτ ] , (4.17)

almost surely for any stopping time τ ≤ T a.s. We also recall that the process Z is

strictly positive (square-integrable) martingale under P with E [Z(t)] = 1. Let Q be

a probability measure on (Ω,F) such that dQ
dP = Z(T )∗.

Using the expression of Xπ (t) in (4.13) and Lemma 1, for any stopping time

τ ≤ T a.s., let πS(t) = I[t≤τ ] and πL(t) = 0, which is apparently an admissible

control, we have

E
[
Z(T )∗

∫ τ

0

e−rs ((µS − r (s)) ds+ σ1dW1(s) + γ1dN1(s))

]
,

1where U
′
(Xπ∗(T )) = dU(Xπ∗ (T ))

dXπ∗ (T )
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which can be written as

EQ

[∫ τ

0

e−rs ((µS − r(s))ds+ σ1dW1(s) + γ1dN1(s))

]
,

is constant over all τ ≤ T , which implies

∫ t

0

e−rs(µS − r(s))ds+ e−rsσ1dW1(s) + e−rsγ1dN1(s), (4.18)

is a Q martingale. We de�ne

K(t) :=

∫ t

0

1

Z(s−)∗
dZ(s)∗,

where t ∈ [0, T ] and it is a local martingale as Z is a local martingale. By Lemma

2, there exist some predictable processes θ = (θ1, θ2, θ3, θ4, θ5) ∈ Θ such that

dK(t) =
3∑
i=1

θi(t)dWi(t) +
5∑
i=4

θi (t) dMi−3 (t) ,

i.e.,

dZ(t)∗ = Z(t−)∗

[
3∑
i=1

θi(t)dWi(t) +
5∑
i=4

θi (t) dMi−3 (t)

]
.

Moreover, from Doleans-Dade exponential formula, we have

Z(t)∗ = Z(0) exp

{∫ t

0

(θ1(s)dW1(s) + θ2(s)dW2(s) + θ3(s)dW3(s))

− 1

2

∫ t

0

(
θ2

1(s) + θ2
2(s) + θ2

3(s) + 2λθ4 (s) + 2λθ5 (s)
)
ds

+

∫ t

0

ln (1 + θ4(s)) dN1 (s) +

∫ t

0

ln (1 + θ5(s)) dN2 (s)

}
. (4.19)

By Girsanov's Theorem, we know that dWi(t) − θi(t)dt for i = 1 − 3 and

dNi−3 (t) − λ (1 + θi (t)) dt for i = 4 − 5 are martingale under Q, which together

with (4.18) imply that θ1 must satisfy the equation

σ1θ1 (t) + γ1λ (1 + θ4 (t)) = − (µS − r(t)) . (4.20)



4.3 Optimal asset portfolio 91

By using the expression of Xπ (t) in (4.13) and Lemma 1, for any stopping time

τ ≤ T a.s., let πS(t) = 0 and πL(t) = I[t≤τ ] and following the steps above we get

θ2(t) = −µL − r(t)
σ2

. (4.21)

Remark 3. The conditions (4.20) and (4.21) satisfy even for our two special cases,

i.e. (i) uncorrelated jump processes, and (ii) in the absence of loan loss provision.

4.3.1 CARA utility function

Proposition 5. When the utility function is U(X(t)) = −1
δ
e−δX(t) (CARA utility

function) where δ > 0 and U
′
(X(t)) = e−δX(t), then the optimal policies (π∗S,π

∗
L,P

∗)

are given by

πS(t)∗ =
bρ

σ1

− θ1(t)e−r(T−t)

δσ1

,

πL(t)∗ = −θ2(t)e−r(T−t)

δσ2

,

P (l (s))∗ = l (s)− ln (1 + θ5(t))

δer(T−t)
,

θ1 (t) +
γ1λ

σ1

(1 + θ4 (t)) = −µS − r(t)
σ1

,

θ2(t) = −µL − r(t)
σ2

,

θ3(t) = δer(T−t)b
√

1− ρ2,

θ4(t) = exp
(
−δer(T−t) (πS (t)∗ γ1 − γ12)

)
− 1,

θ5(t) = exp
(
δer(T−t) (l (s)− P (l (s)))∗

)
− 1

Proof. The condition (4.16) for our utility function can be rewritten as

E
[
e−δX

π∗ (T )Xπ(T )
]
, (4.22)

Replacing Xπ(T ) by solution given in (4.13), we obtain the expression
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E

[
e−δX

π∗ (T )

∫ T

0

e−rs
(
πS(s) (µS − r(s)) + πL(s) (µL − r(s))

− [1 + ψ (s)]φ (s)E [P (l (s))]
)
ds

+

∫ T

0

e−rsπS(s)σ1dW1(s) +

∫ T

0

e−rsπL(s)σ2dW2(s)

+

∫ t

0

er(t−s)πS (t) γ1dN1(s)

]
, (4.23)

which is constant over (πS
∗, πL

∗, P ∗) ∈ Π.

We apply the following three steps to prove the above theorem.

Step 1: We de�ne the Radon-Nikodym process using the conjecture (4.17) which

satis�es the condition (4.22), we have

Z(T )∗ :=
e−δX

π∗ (T )

E
[
e−δXπ∗ (T )

] , and Z(τ)∗ = E [Z(T )∗ | Fτ ] , (4.24)

a.s. for any stopping time τ ≤ T a.s. Let Q be a probability measure on (Ω,F)

such that dQ
dP = Z (T )∗.

From stochastic di�erential equation (4.13), we can calculate

exp
{
−δXπ∗(T )

}
= exp

{
−δerTx0 − δ

∫ T

0

er(T−s)
(
πS(s)∗ (µS − r(s)) + πL(s)∗ (µL − r(s))− a

− [1 + ψ (s)]φ (s)E [P (l (s))]
)
ds− δ

∫ T

0

er(T−s) (πS(s)∗σ1 − bρ) dW1(s)

− δ
∫ T

0

er(T−s)πL(s)∗σ2dW2(s) + δ

∫ T

0

er(T−s)b
√

1− ρ2dW3(s)

− δ
∫ T

0

er(T−s) (πS (t)∗ γ1 − γ12) dN1(s)

+ δ

∫ T

0

er(T−s) [l (s)− P (l (s))∗] dN2(s)

}
, (4.25)

We compare the terms dW1(t),dW2(t),dW3(t),dN1(t) and dN2(t)- terms in (4.19)

with those in (4.25) to obtain the term required for (4.24), we conjecture that
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

θ1(t) = −δer(T−t) (πS(t)∗σ1 − bρ)

θ2(t) = −δer(T−t)πL(t)∗σ2

θ3(t) = δer(T−t)b
√

1− ρ2

ln (1 + θ4(t)) = −δer(T−t) (πS (t) γ1 − γ12)

ln (1 + θ5(t)) = δer(T−t) (l (s)− P (l (s))∗)

σ1θ1 (t) = − (µS − r(t))− γ1λ (1 + θ4 (t))

θ2(t) = −µL−r(t)
σ2

,

i.e.,



πS(t)∗ = bρ
σ1
− θ1(t)e−r(T−t)

δσ1

πL(t)∗ = − θ2(t)e−r(T−t)

δσ2

θ3(t) = δer(T−t)b
√

1− ρ2

θ4(t) = exp
(
−δer(T−t) (πS (t)∗ γ1 − γ12)

)
− 1.

P (l (s))∗ = l (s)− ln(1+θ5(t))

δer(T−t)

θ1 (t) = − (µS−r(t))+γ1λ(1+θ4(t))
σ1

θ2(t) = −µL−r(t)
σ2

(4.26)

Step 2: We verify that Z(T )∗ de�ned in (4.19) is consistent with our conjecture

in (4.24). We rewrite (4.25) as

exp
{
−δXπ∗(T )

}
= I(T )H(T ), (4.27)

where
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I(T ) = exp

{
−δerTx0 − δ

∫ T

0

er(T−s)
(
πS(s)∗ (µS − r(s)) + πL(s)∗ (µL − r(s))− a

− [1 + ψ (s)]φ (s)E [P (l (s))∗]
)
ds

}
,

H(T ) = exp

{
−δ
∫ T

0

er(T−s) (πS(s)∗σ1 − bρ) dW1(s)− δ
∫ T

0

er(T−s)πL(s)∗σ2dW2(s)

+ δ

∫ T

0

er(T−s)b
√

1− ρ2dW3(s)− δ
∫ T

0

er(T−s) (πS (t)∗ γ1 − γ12) dN1(s)

+ δ

∫ T

0

er(T−s) [l (s)− P (l (s))∗] dN2 (s)

}
.

By substituting (4.26) back into (4.19), we obtain

Z(T )∗ = J(T )H(T ), (4.28)

i.e.,

J(T )∗ = exp

{∫ T

0

δ2e2r(T−s)
(
−1

2
π2
S(s)∗σ2

1 + πS(s)∗σ1 −
1

2
π2
L(s)∗σ2

2 −
1

2
b2

)
ds

−
∫ T

0

λ

(
θ4 (s) exp

(
−δer(T−s) (πS (s)∗ γ1 − γ12)

)
− 1

)
ds

−
∫ T

0

λ

(
exp

(
δer(T−s) [l (s)− P (l (s))∗]

)
− 1

)
ds

}

is constant. Since Z∗ is a martingale, we have E [Z(T )∗] = 1 and hence

E [H(T )∗] = J(T )−1. (4.29)

Finally, from (4.27),(4.28) and (4.29), we obtain
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exp
{
−δXπ∗(T )

}
E [exp {−δXπ∗(T )}]

=
I(T )H(T )

I(T )E [H(T )]

= J(T )H(T )

= Z(T )∗,

which is just what we desired.

Step 3: We verify that our optimal policies π∗ = (π∗S, π
∗
L, P

∗), given in (4.26) are

indeed the optimal strategies that satisfy the condition (4.22). For any admissible

strategy π, we de�ne a new process Mπ (t) as:

Mπ(t) :=

∫ t

0

e−rs
(
πS(s) (µS − r(s)) + πL(s) (µL − r(s))

− [1 + ψ (s)]φ (s)E [P (l (s))∗]
)
ds+

∫ t

0

e−rsπS(s)σ1dW1(s)

+

∫ t

0

e−rsπL(s)σ2dW2(s) +

∫ t

0

e−rsπS (t) γ1dN1(s),

is a local martingale under Q by Girsanov's Theorem E [Z(T )∗] < ∞ for any ad-

missible strategy (πS, πL, P ) and by Burkholder-Davis-Gundy Inequality Revuz and

Yor [1991], we have

EQ

[
sup

0≤t≤T
|Mπ(t)|

]
= E

[
Z(T )∗ sup

0≤t≤T
|Mπ(t)|

]
≤
√
E
[
(Z(T )∗)2]√E

[
sup

0≤t≤T
|Mπ(t)|2

]
<∞.

This implies, for a family of stopping times {Mπ(τ) : τ is a stopping time and τ ≤ T}

is uniformly integrable underQ andMπ(t) is aQ-martingale and hence EQ [Mπ(t)] =

0.

Corollary 7. If we assume the problem (4.15) in the absence of loan loss reserve,

then the optimal policies (π∗S,π
∗
L) are given by
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πS(t)∗ =
bρ

σ1

− θ1(t)e−r(T−t)

δσ1

πL(t)∗ = −θ2(t)e−r(T−t)

δσ2

θ1 (t) +
γ1λ

σ1

(1 + θ4 (t)) = −µS − r(t)
σ1

,

θ2(t) = −µL − r(t)
σ2

θ3(t) = δer(T−t)b
√

1− ρ2

θ4(t) = exp
(
−δer(T−t) (πS (t) γ1 − γ12)

)
− 1

θ5(t) = exp
(
δer(T−t)γ2

)
− 1

where γ12 = 0 if the jump in the risk process is not correlated with jump in the

�nancial market.

4.4 Capital dynamics

Bank's capital include retained earnings, capital raised by selling new equity, and

debt acquired. The total bank's capital C(t) can be divided into two tiers according

to Basel III capital accord:

C(t) = C1(t) + C2(t),

where C1(t) is the sum of book value of stocks E(t) and retained earnings Er(t).

C2(t) (also known as supplementary capital) is a sum of subordinate loans SD (t) and

loan-loss reserves or provisions for bad debts RL (t). As a result, the total capital

can be written as

C(t) = E(t) + Er(t) + SD (t) +RL (t) , (4.30)

Here, for the sake of simplicity, we assume the market value of SD is given by
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SD (t) = SD (0) exp

(∫ t

0

r (u) du

)
.

We follow the dynamics of capital as reported in the existing literature (see for

instance, Perera [2015] and Witbooi et al. [2011]) and assume that bank holds its

capital in n + 1 categories, one category is related to the subordinated debt and n

categories are bank's equity. The return on the ith bank equity can be written as

dei (t) = ei (t)

[(
r (t) +

n∑
j=1

σijυj

)
dt+

n∑
j=1

σijdŴj (t)

]
,

where the market price of risk and co-variance matrix are constants and are given

by Υ = (υ1, ...υn)
′
and Φ = (σij)

n
i,j=1 respectively. As retained earnings Er (t) and

loan-loss reserves RL (t) are non-dynamic in nature, we consider them as inactive

components of bank's capital which implies dEr = 0 and dRL = 0, similar to

the previous literature (see for instance Mukuddem-Petersen and Petersen [2008];

Witbooi et al. [2011] and Perera [2015]). We assume the bank's capital is being

converted into loans and securities is βX (t), where β is a constant and X (t) =

G (t) + S (t) + L (t) which represents the total asset portfolio of the bank at time t.

Thus, the capital dynamics can be represented as

dC (t) = C (t)

[
n∑
i=1

π̃i (t)
dei (t)

ei (t)
+

(
1−

n∑
i=1

π̃i (t)

)
dSD (t)

SD (t)

]
− βX (t) dt,

= C (t)
[(
r (t) + π̃ (t)

′
ΦΥ
)
dt+ π̃ (t)

′
ΦdŴ (t)

]
− βX (t) dt, (4.31)

where π̃ (t)
′
is a transposed vector containing the proportions invested in securities

and loans and π̃ (t)
′
ΦdŴ (t) forms the correlation between total risk-weighted assets

and bank's capital.

4.4.1 Capital Ratio

Capital adequacy requirements in Basel III instructs the bank's to maintain capital

adequacy ratio Γ such that, Γ ≥ 0.08, for an adequately capitalized bank. At a time
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t it is given by

Γ(t) =
C(t)

A (t)
, (4.32)

where the total TRWAs A (t), are the risk weighted bank's assets, comprised of

treasuries G (t), securities S (t) and loans L (t) assigned the weights ωG, ωS and ωL

respectively. The weights are assigned to the assets according to perceived risks,

which means that a more risky the asset has a higher risk weight.

The CAR may increase while the actual levels of capital C (t) may decrease as

it also depends on TRWAs which is sensitive to risk changes. Thus in this case

the bank should hold more regulatory capital means that a given CAR can only be

sustained if banks hold more regulatory capital.

Remark 4. TRWAs is a weighted sum of the di�erent assets of the bank whose

dynamics may be expressed as:

dA(t) = ωGπ̃G (t)
dG (t)

G (t)
+ ωSπ̃S (t)

dS (t)

S (t)
+ ωLπ̃L (t)

dL (t)

L (t)
,

where π̃G (t) ≡ πG (t)X(t), π̃S (t) ≡ πS (t)X(t), and π̃L (t) ≡ πL (t)X(t), represent-

ing the proportion of asset portfolio invested in the treasury, stock index fund and

loans. We can rearrange the above equation as

dA(t)

A(t)
= (ωGπ̃G (t) r(t)dt+ ωSπ̃S (t)µSdt+ ωLπ̃L (t)µL) dt

+ ωSπ̃S (t)σ1dW1(t) + ωLπ̃L (t)σ2dW2(t) + ωSπ̃S (t) γ1dN1(t), (4.33)

Proposition 6. Under the dynamics of the total bank capital described in (4.31)

and dynamics of TRWAs given by (4.33), the dynamics of the Capital Ratio (CAR)

can be expressed as
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dΓ(t) = Γ(t)
[
(α0 − α1 + α2) dt− α3dW1(t)− α4dW2(t)− α5dN2 + α6dŴ (t)

]
− βX (t)

A (t)
dt,

where,

α0 = r (t) + π̃ (t)
′
ΦΥ, α1 = ωGπ̃G (t) r(t)dt+ ωSπ̃S (t)µSdt+ ωLπ̃L (t)µL,

α2 = ω2
Sπ̃

2
S (t)σ2

1 + ω2
Lπ̃

2
L (t)σ2

2, α3 = ωSπ̃S (t)σ1, α4 = ωLπ̃L (t)σ2,

α5 =
ωSπ̃S (t) γ1

A (t) + ωSπ̃S (t) γ1

, α6 = π̃ (t)
′
Φ.

Proof. Let f (A (t)) = (A (t))−1, by the application of Ito's lemma for jump di�usion

processes we obtain,

df (t, A (t)) =
1

A(t)

(
− (ωGπ̃G (t) r(t)dt+ ωSπ̃S (t)µSdt+ ωLπ̃L (t)µL) + ω2

Sπ̃
2
S (t)σ2

1

+ ω2
Lπ̃

2
L (t)σ2

2

)
dt− 1

A(t)
(ωSπ̃S (t)σ1dW1(t) + ωLπ̃L (t)σ2dW2(t))

+
1

A (t)

(
−ωSπ̃S (t) γ1

A (t) + ωSπ̃S (t) γ1

)
dN2. (4.34)

The capital ratio (4.32) is given by

Γ(t) = C (t) f (A (t)) .

We apply Ito's product rule to Γ(t). As W1(t), W2(t), Ŵ (t), and N1(t) are

mutually independent, as a result we have
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Table 4.1: Risk weights of di�erent asset categories.

Asset Types Risk weights

Cash, reserves, treasuries 0

Securities 1
5

Loans 1
2

dΓ(t) = C (t) d (f (A (t))) + f (A (t)) dC (t) + df (A (t)) dC (t) ,

dΓ(t) = Γ(t)

[
− (ωGπ̃G (t) r(t)dt+ ωSπ̃S (t)µSdt+ ωLπ̃L (t)µL) dt

+
(
ω2
Sπ̃

2
S (t)σ2

1 + ω2
Lπ̃

2
L (t)σ2

2

)
dt− (ωSπ̃S (t)σ1dW1(t) + ωLπ̃L (t)σ2dW2(t))

− ωSπ̃S (t) γ1

A (t) + ωSπ̃S (t) γ1

dN2

]

+ Γ(t)
[(
r (t) + π̃ (t)

′
ΦΥ
)
dt+ π̃ (t)

′
ΦdŴ (t)

]
− βX (t)

A (t)
dt (4.35)

dΓ(t) = Γ(t)
[
(α0 − α1 + α2) dt− α3dW1(t)− α4dW2(t)− α5dN2 + α6dŴ (t)

]
− βX (t)

A (t)
dt.

Example 1. For illustration purposes, we consider an example of risk weights for

di�erent asset categories given in Table 4.1.

We can substitute the risk weights into the dynamics of CAR given in (4.35) to

get
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dΓ(t) = Γ(t)

[
−
(

1

5
π̃S (t)µSdt+

1

2
π̃L (t)µL

)
dt

+

((
1

5

)2

π̃2
S (t)σ2

1 +

(
1

2

)2

π̃2
L (t)σ2

2

)
dt−

(
1

5
π̃S (t)σ1dW1(t) +

1

2
π̃L (t)σ2dW2(t)

)

−
1
5
π̃S (t) γ1

A (t) + 1
5
π̃S (t) γ1

dN2

]

+ Γ(t)
[(
r (t) + π̃ (t)

′
ΦΥ
)
dt+ π̃ (t)

′
ΦdŴ (t)

]
− βX (t)

A (t)
dt. (4.36)

4.5 Conclusion

This chapter analyses the optimal risk control asset portfolio of a bank under CARA

preferences when the bank is allowed to invest in treasuries, stock index fund and

loans in the presence of jumps. The risk process of bank is modeled by Cramer-

Lundberg model. We considered the simultaneous jumps in the dynamics of stock

index fund and risk process to consider the unexpected losses whereas an additional

jump process is used to model the expected losses which are diminished by the loan

loss provision. We derived an optimal investment policy and dynamics of the CAR,

which mandates that banks are subject to certain limitations and banks must hold

su�cient amount of capital to provide for unexpected losses. The model presented

here can be adopted by banking industry as an internal model to make an assessment

of CAR. The main thrust of future research may involve simulation of CAR using

various models applied in the literature.
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