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Spatial discretization of strain localization
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ABSTRACT

In recent years novel finite element techniques have been developed for capturing
strain localization. Their objective is to minimize mesh sensitivity of numerical
solutions in the presence of destabilizing material effects due to stiffness degra-
dation, strength softening and loss of associativity. In the context of localization
analysis two computational features are examined to study the effect of arc-
length control and of enhanced finite elements in the form of the incompatible
QM6-element. This element formulation captures discontinuities due to strain
localization and thus reduces mesh locking due to directional bias.

INTRODUCTION

Strain localization is normally associated with the formation of spatial disconti-
nuities which entail jumps in the velocity gradient and consequently also in the
strain rate (see Rizzi [10]). The underlying mode of discontinuous bifurcation is
characterized by the unit vector normal to the discontinuity surface and the unit
vector which defines the localized motion. Thereby the critical localization mode
is a functional of the state of stress and of the underlying tangential constitutive
description of elastic damage and/or elastoplastic softening.

On one hand localization initiates at the constitutive level, whereby the onset
of discontinuous bifurcation is indicated by a zero eigenvalue of the localization
tensor, while the corresponding eigenvector characterizes the mode of bifurca-
tion (Borré and Maier [2], Ottosen and Runesson [7], Bigoni and Hueckel [1],
Rizzi [10]). On the other hand, localization emerges at the structural level within
the framework of progressive failure analysis which requires solution of hard
nonlinearities in the form of spatial discontinuities and strong path-dependence.
Localization analysis at the constitutive level provides additional information
which should be used to guide the failure simulation on the structural level and
to reduce mesh sensitivity due to spatial finite element discretization (Ortiz et
al. [6], Steinmann and Willam [13], Larsson and Runesson [5]). In the presence
of strain localization, progressive failure requires additional regularization of the
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post-bifurcation response in order to ensure mesh-objectivity, i.e. failure pre-
dictions which are independent of mesh orientation and mesh density (see de
Borst [4] for a concise treatment of this phenomenon). Regularization can be
achieved at the constitutive level by introducing enriched material descriptions
which prevent localization altogether (see Willam and Dietsche [15] for a compre-
hensive review of regularization strategies). Alternatively, the energy dissipation
may be controlled in the post-bifurcation response regime with the aid of an
intrinsic length scale (Larsson and Runesson [5]). If the emerging failure mode
is to be captured correctly, appropriate finite element strategies must be devel-
oped, either by alignment of standard displacement elements along the failure
band (Larsson and Runesson [5]), or by enhancement of the eigenspace of the
finite element approximation (Ortiz et al. [6], Steinmann and Willam [13]).

This contribution will illustrate the effect of two computational features on
progressive failure simulations of the axial extension test problem. To this end
a research-oriented finite element code was extended to accommodate in the
classical arc-length technique by Wempner [14] and Riks [9] in the form of the
arc-length adaptation by Crisfield [3]. A simple back-tracking strategy was in-
corporated in order to capture the post-peak and snap-back response behavior
beyond the limit/bifurcation point. As'a second feature the enriched QM6 finite
element by Wilson and Taylor was used in the mixed variational format advo-
cated by Simo and Rifai [12] which was analyzed by Steinmann and Willam [13]
in the context of localization analysis. The use of the QM6-element captures
formation of inclined shear bands which are in close agreement with the ana-
lytical predictions of discontinuous bifurcation at the constitutive level. The
regularization of post-bifurcation behavior will be addressed in a sequel to this
paper.

STRAIN LOCALIZATION CONDITIONS

Strain localization is synonymous with the formation of weak discontinuities,
i.e. jumps of the strain rather than the displacement field across a discontinuity
surface. Consequently, at the onset of bifurcation the displacement rate remains
continuous, while the rate of the displacement gradients exhibits jumps across
the discontinuity surface which separates the continuum into two regions on the
‘+’ and ‘-’ side of the discontinuity surface:

[a]=dat-a" =0 ; [Vi] = Vat — Va~ #0 1)

The jump in the displacement gradient must satisfy Maxwell’s compatibility
conditions [ Vi]=7M ® N, a topic which was examined in detail by Rizzi [10]
with a summary of related references. In the Maxwell’s relation 4 denotes the
amplitude of the jump, N the unit vector normal to the discontinuity surface,
and M the unit vector which characterizes the localization motion. Mode I
failure occurs when M || N, and mode II failure when M L N, while all other
angles indicate mixed mode localization. .

Equilibrium of surface tractions requires that the traction vector iy =N -&
remains continuous and does not exhibit jumps, i.e. [tny] = 0. Considering
constitutive rate relations in the differential format # =F. : ¢ the camhinatinn
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of both kinematic and static conditions across the discontinuity surface leads to
the localization condition Q;- M =0, where Q; defines the tangent localization

tensor as
Q:=N:-E;-N (2)

According to this notation M denotes the critical eigenvector which characterizes
the mode of localization associated with the vanishing eigenvalue of Q;. The
localization condition may be expressed in terms of the determinant det(Q;)=0
(Borré and Maier [2]) which is normalized in Fig. 1(a) by the corresponding
value of the elastic operator to plot its variation as a function of all possible
localjzation directions. Alternatively the localization condition may be expressed
in terms of the maximum hardening/softening modulus H, which is required
for discontinuous bifurcation in a given direction N. The onset of localization
is indicated by the critical localization direction which maximizes the critical
hardening parameter Hj,.=H™*", see Fig. 1(b).

The localization condition was studied analytically in the context of bifur-
cation analysis of elastoplastic solids (Ottosen and Runesson [7]), and for elastic
degradation (Bigoni and Hueckel [1], Rizzi[10]). Fig. 1 summarizes the local-
ization results for Jo-plasticity and scalar damage for loading in axial extension
(3D/plane strain analysis taken from Rizzi [10]). Fig. 1(a) depicts the variation
of the normalized localization indicator p = det(Q.p)/det(Q.) as a function of
all possible localization directions 0° < 8 < 180° assuming perfect elastoplastic
behavior. The minima depend on the Poisson’s ratio v, indicating that in plane
strain considerable softening is required for localization to occur. Fig. 1(b) illus-
trates the localization condition in terms of the maximum hardening modulus
H,, for the (1— D) scalar damage model. The differences of the critical local-
ization directions show strong dependence on Poisson’s ratio. In particular, for
v = 0.3, elastoplasticity predicts an angle of discontinuity 6., =41.17° between
the loading axis and the normal N to the shear band, whereas the scalar format
of elastic damage results in 6., =33.21°.

v=03-min 41.17
=== v=05-min4500

00 1 1 1 L . 1 . 1 0
00 200 400 600 800 1000 1200 1400 1600 1800

0
(a) Perfect Jo-elastoplasticity (H =0) (b) (1— D) scalar elastic damage

Figure 1: Analytic conditions for localization in axial extension.
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COMPUTATIONAL STRATEGIES FOR THE POST-PEAK REGIME

In the presence of strain localization, i.e. when the assumed material law and
the local state of internal variables result in spatial bifurcation, additional tech-
niques are required to monitor the numerical solution. First, an indirect force-
displacement control must be introduced to overcome limit points and snap-back
points. The classical arc-length approach by Wempner [14] and Riks [9] with the
arc-length adaptation by Crisfield [3] combined with a simple back-tracking strat-
egy captures fairly shafp snap-backs in the case of a brittle failure descriptions
when the traditional (1-D) damage model is used, see Simo and Ju [11]. Second,
the incompatible QM6-element by Wilson and Taylor and its generalization by
Simo and Rifai [12] captures localization according to the “Weak Localization
Test” by Steinmann and Willam [13], and thus should be capable to describe
shear-bands without mesh re-alignment.

Arc-length control ,

For the analysis of the post-peak and snap-back regimes the classical arc-length
control is imperative which was originally proposed by Wempner [14] and Riks [9].
In that approach the trial solution Au, in the displacement vector/load parame-
ter plane (u, A) is embedded in the tangent plane, while its correction is searched
along a path perpendicular to the tangent. The final increment Au must then
satisfy the constraint equation

Au-Au+ (A))? = (As)? (3)

where As indicates the arc-length in that plane. Since the displacement norm
uses all the components of the displacement vector, a better but problem depen-
dent approach extracts the dominant degrees of freedom in the case of highly
localized deformation patterns (de Borst [4]).

The sparsity of the tangent stiffness matrix K; can be maintained by decom-
posing the displacement increment into two contributions Au= AX Au;+Au;
and by solving two decoupled algebraic systems (Ramm [8], de Borst [4])

Kt'All;[:P; Kt'Allg=R (4)

where P denotes the load vector and R the out-of-balance force vector (Ramm [8]).

Automatic arc-length adjustment is necessary for accelerating the conver-
gence and for stabilizing the number of iterations. A simple strategy along the
line of the backtracking algorithm with trust regions for numerical unconstrained
optimization problems decreases the step size for achieving convergence near
limit points. They are detected by negative diagonal elements of the stiffness
matrix during pivoting:

As — As/a with 1< a<2 (5)

where a is conveniently chosen after a preliminary calculation. The arc-length
might decrease dramatically near the limit point. An adaptive control of the
number of iterations for each step allows to vary the step size such that the
number of iteration remains at the optimal value n°?*=4 + 5

Crisfield [3] : As « As(n°/nprey) Ramm [8] : As — As/(nP!/nprey) (6)
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The arc-length adjustment by Crisfield [3] performed better and stabilized the
number of iterations after each perturbation. Furthermore, upper and lower
bounds on the arc-length were established to assure accuracy and economy of
the numerical solution.

The QM6-Element

The incompatible QM6-element was originally formulated by Wilson and Taylor
(see Steinmann and Willam [13] for application to localization analysis) with the
purpose of enhancing the bending performance of the standard bilinear quadri-
lateral Q4-element. The four additional quadratic terms in the displacement
expansion, which are expressed in terms of normalized coordinates £, 7, are
introduced to reduce shear locking.

u=N; ui+(1-€) do+(1-7%) dro; v=N; i+(1-£€) dur+(1-7*) drz (7)

This enhancement leads to a uniform state of shear strain within the element
domain, while the direct strain components form a set of complete linear polyno-
mials. The original formulation was generalized by Simo and Rifai [12] in terms
of a mixed variational principle, in which the augmented strain é=€—V,u was
expressed as E=B; - d, where

€000 100 £700
B2=[01700]; e—-»[OlO 00 £ g (8)
00 £ 17 001 0000

This element satisfies the “Weak Localization Test” proposed by Steinmann and
Willam [13] to verify whether an element is able to capture a weak discontinuity
at the element level. According to this test the QM6-element should perform
well without introducing directional bias, thus no alignment of the mesh should
be required along the shear bands.

AXIAL EXTENSION PROBLEM

The two computational strategies are used to study the formation of shear bands
in axial extension. A rectangular specimen with the aspect ratio a/b=1/2is
considered under plane strain. Different mesh discretizations are used to examine
their effect on idealizations of the entire specimen and of a quarter subdomain
using double symmetry. The uniform state of stress and strain is perturbed in
order to induce localization. Two imperfections are considered, (i) a geometric
imperfection consisting of a small coordinate perturbation at a boundary node,
and (ii) lateral constraints at the two end surfaces which simulate the lateral
confinement of the rigid loading platens.

To compare elastic damage and softening plasticity descriptions two material
models are considered: (a) the (1—D) scalar damage model which was proposed
by Simo and Ju [11] is based on the evolution law D=1—(1-A)7,/7-A BT,
where 7=+/€ : E, : €, and where E, denotes the initial stiffness with E,=30,000
ksi, v=0.3, A=0.6, B=2 in/v/ksi, 7,=0.01 Vksi/in. (b) the Huber-Mises plas-
ticity model which is based on bilinear hardening/softening uses the same elastic
moduli while 0,=36 ksi defines the yield limit in axial tension/compression.
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The load-displacement diagrams are shown in Fig. 2 for the case of scalar
damage. The effect of the two alternative perturbations are compared together
with the two quadrilateral finite element formulations. Note the appearance of
sharp snap-back which are captured only by the highly refined mesh layouts.

Q4 mesh with imperfection (A=1%) QM6 mesh with imperfection (A=1%)
200 ¥ T Y ¥ v 200 T T T T T
————  4=0.00%
180 :‘ —~—-— lamesn 180
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20 ( Yo -~ 1 40 -
0 L 1 i - 1 i N 1 1 I
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Q4 mesh with constraints at the top QM6 mesh with constraints at the top
200 T T T T T 200 T T T T T
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g 100 | g 100 -
4 80 l| ;E 80 .
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40 \ 40 e
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0 0 1 I 1 1 1
000 001 002 003 004 005 006 000 001 002 003 004 005 006
Displacement (in) Displacement (in)

Figure 2: Axial extension problem of the elastic scalar damage specimen.

The capabilities of the QM6 elements are shown in Fig. 3, where the inclined
shear band forms at 45° in the case of the Huber-Mises material with softening
(H=-500 ksz). This is in good agreement with the analytical prediction shown
in Fig. 1. The uniform deformation state is altered by the lateral constraints
of the loading platens. Fig. 3 compares the effects of (16x32) discretization of
the quarter specimen with those of the entire specimen. It also depicts the
results of the traditional Q4-element and those of the enhanced QM6-element.
The symmetry constraint remains insignificant with respect to shear banding
since discretization of the entire specimen leads to the same failure pattern as
the quarter idealization. Separate computations with different aspect ratios of
the rectangular specimen shows that the 45° orientation is not biased by the
particular a/b=1/2-ratio. It is interesting to note that the elastoplastic shear
band orientation is fairly independent of the variation of v, while the scalar
damage material description results in an inclined shear band only for v—0.5. In
all other cases localization appears always in a single row of elements transverse
to the load direction indicating mode I type failure, which should emerge only for
v—0 according to Fig. 1(b). This seems to be due to the absence of irreversible
strains which trigger the incompressible mode of plastic bifurcation.
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Figure 3: Comparison of Q4-(left) and QM6-(right) discretizations using 16x32 FE.

The effect of different locations of the geometric imperfection on the for-
mation of shear-bands is shown in Fig. 4. The geometric imperfections are se-
quentially placed at the four corners of the rectangular specimen. The deformed
meshes are plotted with different amplification factors, which vary from 25 to
100.
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Figure 4: Discretization of entire specimen: effect of different geometric imperfections.

CONCLUSIONS

The arc-length control together with the enhanced QM6-element show promise
for the solution of boundary value problems which exhibit localization. Regu-
larization with respect to the directional properties of the mesh layout is accom-
plished by the enhanced quadrilateral element, although this should be verified
with additional realistic engineering problems. Regularization with respect to
mesh densification will be considered in a sequel of this paper.
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