
UNIVERSITY OF BERGAMO

School of Doctoral Studies

Doctoral Degree in

ANALYTICS FOR ECONOMICS AND BUSINESS

XXXI Cycle

Stochastic programming models for distribution logistics,

bikesharing and production management

Co–ordinator:

Prof. Marida Bertocchi †

Prof. Adriana Gnudi

Advisors:

Prof. Francesca Maggioni

Prof. Luca Bertazzi

Co–ordinator:

Adriana Gnudi

Candidate:

Rossana Cavagnini

Candidate ID: 1038840

Academic year: 2018/2019

To my parents and to Michele.

Declaration of Autorship

I, Rossana Cavagnini, declare that this thesis titled, Stochastic programming models for distribution

logistics, bikesharing and production management, and the work presented in it are my own. I confirm

that:

• This work was done wholly or mainly while in candidature for a research degree at this University.

• Where any part of this thesis has previously been submitted for a degree or any other qualification

at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the exception of

such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made clear exactly

what was done by others and what I have contributed myself.

Signed:

Date:

2

Acknowledgements

I sincerely thank my supervisors, Prof. F. Maggioni and Prof. L. Bertazzi, for the passion for Op-

erations Research shared with me, for their patience and for all their precious advices during these

years. Furthermore, I want to thank them for motivating me, for continuing pushing me to do my

best and for all the opportunities they have offered me these years. Part of this thesis is the result of

the joint work with Prof. M. Hewitt, who supervised me during the year I spent in Chicago. I would

like to thank him for teaching me the importance of being concise, concrete and of motivating every

choice. Many thanks also to Prof. M. Bertocchi for having meticulously coordinated the PhD school

during the first year of this PhD cycle and many thanks to Prof. A. Gnudi for the work she is doing as

coordinator. I thank the Professors of the Department of Quantitative Methods at the University of

Bergamo and the ones of the OR group at the University of Brescia for the precious courses organized

during the first PhD year.

Words could never be enough to express gratitude to my parents, who always remind me the

importance of having an education and who pushed me towards wider horizons than the ones I come

from. Thanks for all the sacrifices they have done in past years to provide me with a good education

and for teaching me what is important in life. I feel blessed for their unconditioned love and for their

constant presence.

My special thanks to Michele for being by my side since years and for being such an incredible life

partner. Thanks for always showing me the positive side of things, for motivating me and for your

concreteness. Thanks also for your immense patience with me, for our sacrifices, for letting me free to

take decisions. Thanks also to the whole Michele’s family for always being there and supportive.

Thanks to my grandmothers for supporting me and to my grandfathers, who would be proud of

my achievements. I thank all of them for teaching me the values of honesty, humility, commitment

and diligence. Thanks also to my aunt, to my uncles and to the little Alice, whom I wish to be driven

by the same passion that drove me during my studies.

I thank my friends of a life, for sharing happy and difficult moments while growing up together and

for still being there. Last, many thanks to my colleagues of PhD studies for all the crazy moments of

study we shared together.

3

Preface

Logistics is the collection of the activities devoted to managing the flows of goods and providing

services in an efficient way. Consequently, it involves various and different operations, such as supply,

production, stock and distribution activities. Its objectives can be summarized by the so-called “7

R”: the Right product (or service), in the Right quantity, at the Right place, at the Right time, at

the Right costs, at the Right conditions, for the Right customer. The U.S.A government estimated

that, in 2016, the logistics and transportation industry represented 7.5% of U.S.A. GDP (International

Trade Administration [47] (2017)). As a matter of fact, nowadays, as the competitive pressure is

increasing, a good management of logistic activities is fundamental to limit the impact on costs and to

provide a good quality service level. Consequently, this aspect has received increasing attention from

the involved companies and service providers, who struggle to effectively deal with strategical, tactical

and operational problems ever growing in terms of dimension and complexity.

Traditionally, most of the extant literature has focused on logistics problems by representing and

solving them through deterministic optimization models, in which all parameters values are supposed

to be known. However, logistics problems are typically characterized by highly dynamic information

processes, and, consequently, by uncertainty about the future, as some parameters may be revealed

over time. One of the available tools to make decisions that hedge against the future is represented by

Stochastic Programming (Birge and Louveaux [12] (2011), King and Wallace [52] (2012), Wallace and

Ziemba [90] (2005)) which studies how to incorporate uncertainty into decision-making problems over

time. As a matter of fact, there is plenty of real problems in which a decision-maker has to take some

decisions immediately, before the realization of a random event, which typically is affecting the outcome

of the initial decision. Then, as the uncertainty becomes known period by period, recourse decisions

responding to the new information can be made in order to compensate for any undesiderable effects.

Concerning the uncertainty, it can be in the models parameters or in the model itself. Specifically, in

this work, we consider stochastic parameters which can be due to lack of reliable data, measurement

errors, and/or future and unobservable events. Moreover, uncertainty is modeled over time using trees

composed of scenarios which approximate and discretize the future realization of the random event.

As such, Stochastic Programming turns out to be an effective tool in order to avoid adverse effects

caused by uncertainty in the logistic industry, to ensure the regularity of activities and to enhance

flexibility to minimize costs.

In this thesis, the first four chapters are devoted to the study of four different problems. The

common feature of all these problems is the presence of uncertainty in some parameters. Across all

these applications, we show that the solutions of Stochastic Programming models provide efficient

policies, because they explicitely model the value of future decisions that are taken after uncertainty

4

has revealed. We also highlight managerial insights which can be valuable for practitioners. Moreover,

as stochastic integer programs may be very difficult to solve (even with only two-stages), we also present

some preliminary results concerning a methodology to obtain monotonic chains of lower bounds for

these programs.

The thesis is organized as follows.

In Chapter 1, a problem arising in distribution logistics with transshipment and backordering is

analyzed. With respect to the extant literature, the aim of this chapter is to formulate a new stochastic

optimization model for this problem and to provide complexity results. Furthermore, we analyze how

stochasticity influences different configurations of a distribution system and we show in which cases the

solution of the deterministic problem represents a good starting point in order to solve the stochastic

model to optimality, with less time effort.

Chapter 2 presents an extension of the problem presented in Chapter 1 to the multi-stage case.

After formulating a multi-stage stochastic optimization model, we present two polynomially solvable

cases. As the complexity increases with the number of considered periods, for the two polynomially

solvable cases we provide optimal policies, while for the general case, the performance of a rolling

horizon approach is tested. We finally report some sensitivity results and managerial insights.

In Chapter 3, an allocation and rebalancing bike sharing problem with stochastic demand is in-

vestigated. With respect to the extant literature, we stress the role of uncertainty and we first show

the benefits of solving our stochastic program with respect to the solution of the deterministic equiv-

alent formulation. Then, we compare the solution of the stochastic program to the solutions obtained

through heuristics based on Newsvendor models. Finally, we benchmark our approach on a real bike-

sharing system.

Chapter 4 studies a workforce allocation problem considering that workers learn according to

stochastic rates. With respect to the extant literature, we investigate how uncertainty in learning

rates impact on the choices of assignments, cross-training and practice. As a matter of fact, nowadays,

managers can take decisions about workforce scheduling by exploting data analysis deeply, rather than

using the traditional ways based upon personal relationships, personal experience and feelings. This

new field is referred to as “People analytics”, in which the methods of analytics can help decision-

makers in managing employees or workforce. Thanks to the combination of technologies, statistics and

mathematical models applied to large sets of data (i.e. “big data”), managers make better decisions

in the companies, which are interested in increasing the return on their investment in people.

Finally, Chapter 5 introduces a methodology which allows us to build monotonic chains of lower

bounds for two-stage stochastic integer programs which are difficult to solve. Specifically, with respect

to the extant literature, we derive a mixed integer model according to which it is possible to build

5

disjoint scenario groups. The criterion according to which scenarios groups are built is based on the

maximization of the estimated improvement obtained by solving the stochastic program on scenarios

subgroups with respect to the wait-and-see solution. Some preliminary results for benchmark instances

from the literature are presented.

6

STUDIUM UNIVERSITATIS BERGOMENSIS

UNIVERSITY OF BERGAMO

Abstract

Stochastic programming models for distribution logistics, bikesharing and

production management

Rossana Cavagnini

In this thesis, we study four different problems, all characterized by the presence of uncertainty.

The first two of them deal with a distribution system in which transshipment and/or backordering

are allowed. For the first problem, we propose a two-stage stochastic program, we provide complexity

results and we show that considering uncertainty explicitly in the model leads to better solutions with

respect to the ones provided by the corresponding deterministic program, especially if limited recourse

actions are admitted. For the second distribution problem, we propose a multi-stage stochastic model.

As the complexity increases with the number of stages, we first derive optimal policies useful for solving

two polynomially solvable cases. Then, for the general case, we show that the rolling horizon heuristic

performs well by properly decomposing the time horizon. For the third problem, we derive a two-stage

stochastic model to optimize the allocation and rebalancing activities in a bikesharing system. After

showing the benefits of modeling uncertainty, we compare the solution of our stochastic program with

the one obtained by Newsvendor model-based heuristics and with the real implemented system. For

the fourth problem, we propose a two-stage stochastic programming model that quantifies the impact

of worker assignment decisions to produce through an exponential stochastic learning curve. After

linearizing it through a mixed integer program that can be solved efficiently, we perform a rigorously

designed computational study and statistical analysis to derive tactics and managerial insights for how

an organization should plan its production operations about assignment, cross-training and practicing.

Finally, given the complexity of solving stochastic integer programs (even for the two-stage case), we

propose a methodology in order to obtain monotonic chains of lower bounds for problems hard to be

solved and we present some preliminary results based on instances from the literature.

7

Contents

Declaration of Authorship . 2

Acknowledgements . 3

Preface . 4

Abstract . 7

List of Figures . 12

List of Tables . 15

1 A two-stage stochastic model for distribution logistics with transshipment and

backordering: stochastic vs deterministic solutions 16

1.1 Introduction . 17

1.2 Problem Description and Formulation . 17

1.3 Computational complexity . 20

1.4 Computational results . 22

1.4.1 Stochastic solution analysis . 23

1.5 Conclusions . 24

2 Effectiveness of the Rolling horizon approach in solving a multi-stage stochastic

distribution logistic problem with transshipment and backordering 26

2.1 Introduction . 27

2.2 Literature review . 28

2.3 Problem description and formulation . 30

2.4 Two particular cases . 34

2.5 Computational results . 37

2.5.1 Instances description . 37

2.5.2 Solving the multi-stage stochastic programming models 39

2.5.3 Analysis of the (T+1)-stage stochastic model . 41

2.5.4 The Rolling horizon approach . 44

2.6 Managerial insights . 50

2.7 Conclusions . 51

3 A two-stage stochastic optimization model for the Bike sharing allocation and re-

balancing problem 52

3.1 Introduction . 53

3.2 Literature Review . 54

3.2.1 Deterministic bikesharing problems . 55

3.2.2 Stochastic bikesharing problems . 56

3.2.3 Dynamic rebalancing problem . 57

3.3 Problem description . 57

3.4 A two-stage stochastic programming formulation . 58

3.4.1 Newsvendor-based heuristics . 63

3.5 Numerical Results . 65

3.5.1 State of art of San Francisco bikesharing system 65

3.5.2 Test setting . 66

3.5.3 Analyzing the value of uncertainty and the quality of the expected value solution 71

3.5.4 Newsvendor-based heuristics . 74

3.5.5 A comparison with the implemented system . 77

3.6 Managerial insights . 77

3.7 Conclusions and future works . 79

4 Workforce production planning under uncertain learning rates 81

4.1 Introduction . 82

4.2 Literature Review . 83

4.2.1 Learning and worker assignment . 83

4.2.2 Cross-training and practicing . 84

4.3 Production setting and managerial tactics . 86

4.3.1 Production setting . 86

4.3.2 Managerial tactics . 87

4.4 Methodology . 89

4.4.1 A two-stage stochastic programming model . 89

4.4.2 Production planning indicators . 92

4.4.3 Linear regression models . 93

9

4.5 Experimental setting . 94

4.5.1 Instance parameter values . 95

4.5.2 Size of the scenario tree . 97

4.5.3 Number of instances . 98

4.6 Results and analysis . 98

4.6.1 Value in modeling uncertain learning rates . 99

4.6.2 Regression results for hypotheses testing . 103

4.6.3 Which types of workers should produce more often? 103

4.6.4 Which types of workers should produce more products? 104

4.6.5 Which types of workers should cross-train and which should practice? 105

4.6.6 Tactics for accommodating uncertainty in worker learning rates 106

4.7 Conclusions and future works . 106

5 Optimization driven monotonic bounds for two-stage stochastic integer programs 108

5.1 Introduction . 109

5.2 Scenario grouping in refinement levels . 109

5.2.1 Notation and Preliminaries . 109

5.2.2 MIP formulation for scenario grouping . 114

5.3 Computational Results . 116

5.3.1 Two-stage stochastic optimization integer model for the Bike sharing allocation

and rebalancing problem . 117

5.3.2 SSLP 10 50 50 . 122

5.4 Conclusions . 124

Appendices 125

I Chapter 2 . 125

I.a Model linearization . 125

II Chapter 3 . 127

II.a Model linearization . 127

II.b Determining the initial bike requirement for each station 128

II.c The Sequence based Heuristic (SBH) . 129

III Chapter 4 . 132

III.a Reformulation . 132

III.b Detailed regression results . 134

10

List of Figures

2.1 Total cost comparison between the optimal (or near optimal) solution and the Rolling

horizon approach (RH) for every instance of Case (1) with W = 1 and deadline T = 3

and unit inventory costs equal to 5% and 20% of the unit item price. 48

2.2 Total cost comparison between the optimal (or near optimal) solution and the Rolling

horizon approach (RH) for every instance of Case (1) with W = 2 and deadline T = 3

and unit inventory costs equal to 5% and 20% of the unit item price. 48

3.1 Illustration of the two-stage decision-making process . 59

3.2 Congestion and starvation average frequencies in the real case for year 2016, considering

the months from May to August and the time interval between 6 a.m. and 11.59 a.m. . 66

3.3 San Francisco bike sharing system . 67

3.4 Empirical distributions and Monte Carlo sampling for two different stations 68

3.5 In sample and out-of-sample analysis . 70

3.6 Distributions of bikes to stations in the EV and SP solutions 73

3.7 Number of allocated bikes vs demand variance. 74

4.1 Illustration of production setting . 88

4.2 Illustration of the sequence of decisions and events . 90

4.3 Learning rate distributions . 96

4.4 Different factor levels combinations . 96

4.6 Comparing scheduling and production decisions . 101

4.5 Stochastic solution analysis for an instance . 102

4.7 Coefficients for na regression. 104

4.8 Coefficients for np regression. 105

4.9 Coefficients for CTI, PI regressions with p-value < .05 106

5.1 A refinement chain with disjoint groups . 112

5.2 An alternative refinement chain with disjoint groups (1) 112

5.3 An alternative refinement chain with disjoint groups (2) 113

5.4 An alternative refinement chain with disjoint groups (3) 113

5.5 Scenario objective function values for the Bikesharing Allocation and Rebalancing Prob-

lem for an increasing number of scenarios. 117

5.6 Scenario objective function values for the SSLP 10 50 50 122

12

List of Tables

1.1 Transshipment and backordering fixed and unit costs . 22

1.2 Average values for the stochastic solution analysis indicators for every special case with

two retailers . 24

1.3 Values for the stochastic solution analysis indicators for every special case with four

retailers and “Medium” cost level . 24

2.1 Shipment, transshipment and backordering fixed and variable costs for every case and

instance. 39

2.2 Case (1): Summary statistics . 40

2.3 Case (2): Summary statistics . 40

2.4 Case (3): Summary statistics for subcases a), b), c) . 41

2.5 Case (1): Optimal value of the first-stage variables x0∗ and of the total cost, for different

time horizons, different unit inventory costs and different vehicle capacities. 42

2.6 Optimal value of the first-stage variables x0∗ and total cost and CPU time (in seconds)

for the Rolling horizon approach with W = 1 and W = 2, respectively, for instances

belonging to Case (1) with deadline T = 3 (i.e. four-stage) and unit inventory costs

equal to 5% of the item price. 45

2.7 Comparison in terms of objective value and CPU seconds of the solution provided by

the Rolling horizon approach, with W = 1 and W = 2, respectively, with respect to the

optimal (or near-optimal) solution, for instances belonging to Case (1) with deadline

T = 3 (i.e. four-stage) and unit inventory costs equal to 5% of the item price. 46

2.8 Optimal value of the first-stage variables x0∗ and total cost and CPU time (in seconds)

for the Rolling horizon approach with W = 1 and W = 2, respectively, for instances

belonging to Case (1) with deadline T = 3 (i.e. four-stage) and unit inventory costs

equal to 20% of the item price. 47

2.9 Comparison in terms of objective value and CPU seconds of the solution provided by

the Rolling horizon approach, with W = 1 and W = 2, respectively, with respect to the

optimal (or near-optimal) solution, for instances belonging to Case (1) with deadline

T = 3 (i.e. four-stage) and unit inventory costs equal to 20% of the item price. 47

2.10 Optimal value of the first-stage variables x0∗ and total cost and CPU time (in seconds)

for the Rolling horizon approach with W = 1, for instances belonging to case (1) with

deadline T = 4 (i.e. five-stage model) and unit inventory costs equal to 5% of the item

price. 49

2.11 Comparison in terms of objective value and CPU seconds of the solution provided by the

Rolling horizon approach, with W = 1, with respect to the optimal (or near-optimal)

solution, for instances belonging to Case (1) with deadline T = 4 (i.e. five-stage) and

unit inventory costs equal to 5% of the item price. 50

3.1 Simulation-based comparison of solutions to stochastic and deterministic problems. . . . 72

3.2 Objective function and computational time results comparison of the stochastic program

and the SBH’s. 75

3.3 Simulation results comparison of the stochastic program and the SBH’s. 76

3.4 Comparison of implemented plan and plan from stochastic program 77

3.5 Comparison of implemented plan and plan from stochastic program, when allocating

same number of bikes. 78

4.1 Parameter values . 96

4.2 Instance factors . 96

4.3 In-sample analysis results . 97

4.4 Out-of-sample analysis results . 98

4.5 Summary regression results . 103

5.1 Comparison of lower bounds found through model (5.8)-(5.17), Maggioni and Pflug [55]

(2016) and Ryan, Ahmed, Dey, and Rajan [82] (2016) for the Bikesharing problem with

16 scenarios. 119

5.2 Comparison of lower bounds found through model (5.8)-(5.17), Maggioni and Pflug [55]

(2016) and Ryan, Ahmed, Dey, and Rajan [82] (2016) for the Bikesharing problem with

100 scenarios. 120

14

5.3 Comparison of lower bounds found through model (5.8)-(5.17), Maggioni and Pflug [55]

(2016) and Ryan, Ahmed, Dey, and Rajan [82] (2016) for the Bikesharing problem with

140 scenarios. 121

5.4 Comparison of lower bounds for the SSLP 10 50 50, found through model (5.8)-(5.17),

Maggioni and Pflug [55] (2016) and Ryan, Ahmed, Dey, and Rajan [82] (2016). 123

II.1 Congestion and starvation relative frequencies by method of determining initial bike

requirement . 129

III.1 Detailed linear regression results for na . 134

III.2 Detailed linear regression results for np . 135

III.3 Detailed linear regression results for CTI . 136

III.4 Detailed linear regression results for PI . 137

15

Chapter 1

A two-stage stochastic model for

distribution logistics with

transshipment and backordering:

stochastic vs deterministic solutions

Authors: Rossana Cavagnini1, Luca Bertazzi2 and Francesca Maggioni3

(Accepted for publication in “New Trends in Emerging Complex Real Life Problems”, International

Conference on Optimization and Decision Science (ODS) 2018, Airo Springer Series. Manuscript

Reference number: ODS2018 015)

Keywords: Optimization under Uncertainty, Transshipment, Backordering, Stochastic solution anal-

ysis

1University of Bergamo, Via dei Caniana, 2, Bergamo, Italy, e-mail: r.cavagnini@studenti.unibg.it
2University of Brescia, Contrada Santa Chiara, 50, Brescia, Italy, e-mail: luca.bertazzi@unibs.it
3University of Bergamo, Via dei Caniana, 2, Bergamo, Italy, e-mail: francesca.maggioni@unibg.it

16

1.1 Introduction

In recent years, competition pressure has increased and logistics has become more and more crucial

for the success of companies due to its impact on costs and service levels. An efficient distribution

system is fundamental to satisfy customers’ requests with reduced lead times and with a good service

level. Traditionally, the distribution network is organized as a hierarchical process in which the flow of

goods is shipped from the uppermost level of the distribution chain to the lowest. One of the purposes

of this paper is to study a more flexible distribution network, where the shipment of products between

locations at the same level of the distribution system is admitted. This strategy is called transshipment

and it allows companies to reduce stock out risks, to share surplus stocks and to improve warehouses

management, coping with demand uncertainty.

Based on the inventory system, ordering and transshipment characteristics, Paterson, Kiesmüller,

Teunter, and Glazebrook [73] present a complete review of the transshipment literature. Examples of

stochastic transshipment problems are Herer and Rashit [40] (1999), where fixed replenishment costs

are taken into account, while Olsson [71] (2010) considers the unidirectional transshipment problem,

where locations have different backordering and stockout costs. Backordering is not considered in Wee

and Dada [91] (2005), while Yücesan et al. [93] (2012) studies the multi-location transshipment problem

including lead times. Finally, Rottkemper, Fischer, and Blecken [81] (2012) proposes a stochastic

transshipment model for humanitarian emergencies.

Our contribution is to provide insights about the importance of considering uncertainty in a dis-

tribution system with transshipment and backordering.

The remainder of the paper is organized as follows. Section 1.2 presents the problem description

and formulation. Section 1.4 shows our computational results and, finally, in Section 1.5, conclusions

and research perspectives are outlined.

1.2 Problem Description and Formulation

The analyzed problem deals with a single echelon distribution system composed of a single supplier

and a set I of M retailers with a centralized decision making. Transshipment is admitted and, in

order to keep track of the origin and destination of product flows, we represent retailers performing

transshipment by index i and retailers receiving transshipped quantities by index j (i ∈ I, j ∈ I). In

this problem transshipment is intra-level (since it involves only retailers), bi-directional (each retailer

can both transship products to other retailers and receive products from them) and reactive (it is

performed in emergency situations, after demand realization). We deal with a single product complete

pooling transshipment (retailer i can not keep any inventory quantity if retailer j has a shortage of

17

product), where the priority principle is respected (each retailer satisfies its demand at first and then

transshipment is performed if necessary), backordering to supplier is allowed and, consequently, the

demand can potentially be covered with supplied quantities, with transshipment quantities and with

backordered quantities. The unsatisfied demand represents a lost sale. Since retailers are supposed

to be close to each other, lead times are considered negligible. Our problem is described on two time

intervals: t0, which represents the time at which we have to take the decision about the quantities to

ship from the supplier to retailers and t1, in which, after demand realization, we decide the quantities

to transship and the quantities to backorder.

Moreover, the problem is characterized by risk presence: the demand is a phenomenon which can

not be exactly forecast, but it is stochastic. We denote by d all possible values for the demand, that

is a random variable having discrete (mutually indipendent) probability distributions Di, defined over

the support U1 = {d, . . . , d}, where 0 < d ≤ d. Furthermore, we represent by S the set of scenarios

s, s = 1, . . . , S and by prs the probability of each scenario s ∈ S, so that dsi denotes the demand

realization for retailer i in scenario s. The measure adopted to evaluate the system performance is the

total expected cost.

At time t0, the decision variables of this model are xi, which represent the decisions to take at

the first stage, i.e. the quantity to ship from the supplier to each retailer i, taking into account the

supplier’s total inventory availability q and the associated unit inventory cost h0. We introduce a

capacity Ci for each vehicle employed in the shipment of units from the supplier to retailer i and an

integer variable vi, standing for the number of total vehicles used to serve retailer i by direct shipping.

The transportation cost between the supplier and each retailer is represented by a variable cost fi,

proportional to the number of shipped units and by a fixed component Fi, paid for each vehicle used.

If retailer j has to face a demand dsj greater than the initial inventory level Ii0 plus the quantity xi

received from the supplier, transshipment and/or backordering can be used to avoid stock-out. Thus,

at t1 the decision variables are represented by ysij which stand for the quantity to transship from retailer

i to retailer j, for each possible scenario s, after the demand realization dsi and by bsi which represent

the quantity to backorder from the supplier for each retailer and for each possible scenario s, after

demand realization dsi . On one hand, we introduce a capacity CT for vehicles used to transship units

(note that the capacity of vehicles used to ship units from supplier to retailers is typically bigger than

the capacity of vehicles used for transshipment) and integer variables V sij representing the number

of vehicles employed for transshipment from retailer i to retailer j for each scenario s. The total

transshipment cost is composed of a unit cost tij for each transshipped unit and a fixed cost Tij for

each vehicle used. On the other hand, backordering is done by using vehicles with the same capacity

Ci of vehicles used for the shipment from the supplier to retailer i and we represent the number of

18

vehicles used for backordering with the variables rsi . The total backordering cost is composed of a unit

backordering cost gi for each backordered unit and a fixed cost Gi for each vehicle used. Finally, the

variables Isi represent the balance quantity at each retailer i for each scenario s and they are given

by the sum of the initial inventory level Ii0 plus the quantity received from the supplier, the quantity

received through transshipment and through backordering minus the sum of the customers’ demand

and of the transshipped units. If this quantity is positive, it stands for the inventory level and the

associated unit cost is represented by hi. If the quantity is negative, then the balance quantity stands

for the stock-out quantity and retailer j has to pay a unit penality cost pj . In particular, if the product

surplus at retailer i is transshipped to retailer j, but it is not sufficient to fully cover the shortage of

product of retailer j, and no quantities are backordered, retailer i has neither inventory nor stock-out

costs, while retailer j has to face stock-out costs for the unsatisfied demand. We also consider the

warehouse capacity Qi for each retailer i.

Consequently, we formulate the following integer non linear two stage stochastic programming

model.

Model T

min h0(q −
∑
i∈I

xi) +
∑
i∈I

(fixi + Fivi)+

+
∑
s∈S

prs[h0(q −
∑
i∈I

xi −
∑
i∈I

bsi) +
∑
i∈I

(gib
s
i +Gir

s
i)+

+
∑
i∈I

hi max{Isi , 0}+
∑
i∈I

∑
j∈I:i 6=j

(tijy
s
ij + TijV

s
ij)−

∑
j∈I

pj min{Isj , 0}]

(1.1)

s.t. ∑
i∈I

(xi + bsi) ≤ q s ∈ S (1.2)

Isi = Ii0 + xi + bsi − dsi +
∑

j∈I:i 6=j

(ysji − ysij) i ∈ I, s ∈ S (1.3)

Isi ≤ Qi i ∈ I, s ∈ S (1.4)

xi ≤ Civi i ∈ I (1.5)

bsi ≤ Cirsi i ∈ I, s ∈ S (1.6)

ysij ≤ CTV sij i ∈ I, j ∈ I : j 6= i, s ∈ S (1.7)

xi ≥ 0 integer i ∈ I (1.8)

ysij ≥ 0 integer i ∈ I, j ∈ I : j 6= i, s ∈ S (1.9)

bsi ≥ 0 integer i ∈ I, s ∈ S (1.10)

19

vi ≥ 0 integer i ∈ I (1.11)

rsi ≥ 0 integer i ∈ I, s ∈ S (1.12)

V sij ≥ 0 integer i ∈ I, j ∈ I : j 6= i, s ∈ S (1.13)

Isi free i ∈ I, s ∈ S (1.14)

where the objective function (1.1) represents the minimization of the total expected cost, obtained

through the sum of the supplier’s inventory cost, the total shipment costs from supplier to retailers, the

expected supplier’s inventory costs, the total expected backordering cost, the total expected retailers’

inventory cost, the total expected transshipment costs and the expected stock-out costs. Constraints

(1.2) implies that the total quantity shipped from the supplier to all retailers (through usual shipment

and backordering) cannot be greater than the supplier’s initial inventory. Constraints (1.3) are the

balance constraints. Constraints (1.4) imply that the balance quantity (computed as in (1.3)) cannot

exceed the warehouse capacity Qi for each retailer i. Constraints (1.5), (1.6) and (1.7) link together

the decision variables xi, b
s
i and ysij with the respective integer variables vi, r

s
i and V sij so that if the

first ones are positive, these quantities are splitted in a certain number of vehicles represented by the

latter ones, considering the respective vehicles capacities Ci and CT and, consequently, the associated

fixed costs Fi, Gi and Tij are charged in the objective function. Finally, constraints from (1.8) to (1.14)

are variables definition constraints. Due to the non-linearity of Model T , we linearize it following the

approach described in Cavagnini, Bertazzi, Maggioni, and Hewitt [19] (2018) and we call the linearized

problem “Model T L”.

1.3 Computational complexity

In this section, we prove the computational complexity of Model T L.

Theorem 1. Model T L is NP-hard.

Proof. Consider the set of istances such that the demand for each retailer is deterministic and

represented by di, with
∑
i∈I di = q, Īi0 = 0, Ci≥ maxi∈I{di}, CT ≥

∑
i∈I di and Qi =∞. Moreover,

suppose that the supplier’s inventory cost h0 = 0, the inventory and stock-out costs hi = ∞ and

pj = ∞, respectively, and that the backordering and transshipment fixed and variable costs Gi = ∞,

gi =∞, Tij =∞, tij =∞, respectively. Then, Model T L becomes:

min
∑
i∈I

(fixi + Fivi) +
∑
i∈I

(gibi +Giri)+

+
∑
i∈I

hi max{Ii, 0}+
∑
i∈I

∑
j∈I:i6=j

(tijyij + TijVij)−
∑
j∈I

pj min{Ij , 0}]
(1.15)

20

s.t. ∑
i∈I

(xi + bi) ≤ q (1.16)

Ii = Ii0 + xi + bi − di +
∑

j∈I:i 6=j

(yji − yij) i ∈ I (1.17)

Isi ≤ Qi i ∈ I, s ∈ S (1.18)

xi ≤ Civi i ∈ I (1.19)

bi ≤ Ciri i ∈ I (1.20)

yij ≤ CTVij i ∈ I, j ∈ I : j 6= i (1.21)

xi ≥ 0 integer i ∈ I (1.22)

yij ≥ 0 integer i ∈ I, j ∈ I : j 6= i (1.23)

bi ≥ 0 integer i ∈ I (1.24)

vi ∈ {0, 1} i ∈ I (1.25)

ri ∈ {0, 1} i ∈ I (1.26)

Vij ∈ {0, 1} i ∈ I, j ∈ I : j 6= i (1.27)

Ii free i ∈ I (1.28)

which is equivalent to the following Fixed Charge Transportation Problem (see Klose [53] (2006) and

Roberti, Bartolini, and Mingozzi [79]) (2014):

min
∑
i∈I

(fixi + Fivi) (1.29)

xi = di i ∈ I (1.30)∑
i∈I

xi =
∑
i∈I

di = q (1.31)

0 ≤ xi ≤ Civi i ∈ I (1.32)

vi ∈ {0, 1} (1.33)

which is known to be NP-hard.

21

1.4 Computational results

Model T L was implemented in Python 3.6.1 using the Gurobi 7.5.1 solver, and run on an Intel

Core i7-7500U 2.70 GHz and 8GB RAM personal computer. Due to the complexity of Model T L, the

running is stopped when a 1% relative gap to the optimal solution or a time limit of 1 hour is reached.

We first consider the case with two retailers (i.e. | I |=2). Our instances are inspired by a real case

presented in Bertazzi and Maggioni [11] (2018), in which the uncertain demand of pallets should be

satisfied by using trucks with limited capacity. The support of the demand probability distribution is

in the set of integer numbers in the interval [30, 130], while the probability distribution is given by a

Beta distribution (α, β), where α=20 and β=16, having average demand E(d) = 85.55556 pallets. The

supplier’s inventory level q is equal to 200 pallets, the capacity Ci of the vehicles used for shipment and

backordering to all retailers is equal to 34 pallets, the capacity CT of the vehicle used for transshipment

is 17 pallets, while the retailers’ warehouse capacity Qi is equal to 170 pallets. Furthermore, we define

the value P of a pallet to be equal to 1053 Euros, and since the unit inventory costs approximatively

correspond to 5% of the value of a pallet of 100 kilograms, we set the supplier’s inventory cost equal to

5% P , and the retailers’ inventory costs equal to 6% P . Moreover, since the penalty cost corresponds

to a lost sale and to a reputation damage, we let pj equal to 1.5 P . As in Bertazzi and Maggioni [11]

(2018), we consider a unit shipment cost of a pallet with 100-200 kilograms weight on a distance up to

500 kilometers equal to 93.60 Euros and a fixed shipment cost equal to fiCi
θ , where θ = 0.5. Finally,

considering that the fixed transshipment and backordering costs are computed as a function of the unit

transshipment and backordering costs, 25 different instances are generated by combining all possible

values, as displayed in Table 1.1. We notice that Model T L can be reduced into different special

cases, which facilitate a trade-off analysis. In particular, in the “Extremely High case”, obtained by

assigning to transshipment and backordering costs a very high value (for example, equal to infinity),

we get one instance in which both transshipment and backordering are not allowed, four instances in

which only backordering is allowed and four instances in which only transshipment is allowed. The

same parameters are considered also in the case with four retailers, (i.e. | I |= 4), apart from q which

is equal to 350 pallet.

Cost Extremely Low case (EL) Low (L) Medium (M) High (H) Extremely High case (EH)

tij 0 0.75fi
2 = 35.1 fi

2 = 46.8 1.25fi
2 = 58.5 +∞

Tij 0
tijC

T

0.5 = 1193.4
tijC

T

0.5 = 1591.2
tijC

T

0.5 = 1989 +∞

gi 0 0.75fi = 70.2 fi = 93.6 1.25fi = 117 +∞

Gi 0 giC
0.5 = 4773.6 Fi = 6364.8 giC

0.5 = 7956 +∞

Table 1.1: Transshipment and backordering fixed and unit costs

22

In order to determine the right number of scenarios which have to be considered for the stochastic

setting, we perform the in-sample stability analysis identifying as benchmark scenario tree, the one

with 500 scenarios. The out-of-sample stability analysis in the benchmark tree is obtained with 300

scenarios.

1.4.1 Stochastic solution analysis

In this section, we perform the stochastic solution analysis considering the benchmark scenario tree

with 500 scenarios and computing the indicators presented in Maggioni and Wallace [56] (2012). Table

1.2 displays the average results for the two retailers case, where with “Other” we refer to instances not

belonging to any special case (i.e. the ones in which both transshipment and backordering are allowed).

First, the availability of a perfect information about the future is more important if recourse decisions

(i.e. backordering and transshipment) are not allowed or just transshipment is admitted with an

EV PI of 12.07% in the first case and approx. 10% in the second. The case in which only backordering

is allowed is the most flexible with an EV PI of 1.72%, as new quantities can be introduced in the

system through the recourse decision, while when only transshipment is allowed, there can be a flow of

goods between retailers, but further quantities are not available. Concerning the Value of Stochastic

Solution, VSS, results show there are more advantages in including stochasticity in the cases where no

recourse actions are admitted or only less flexible recourse actions are allowed (i.e. transshipment).

In order to understand why the deterministic solution is worse compared to the stochastic one, we

compute the LUSS and the LUDS indicators. Through the LUSS, we see that in the cases where

no recourse decisions or just one of them are admitted, the deterministic solution identifies the same

retailers selected by the stochastic solution, but with wrong delivered quantities. In the other cases,

the retailers receiving zero quantities are different in the stochastic and in the deterministic solution

and, as a consequence, the poor performance is due both to the selection of retailers and to the

selection of the quantities. Through the LUDS, we notice that the solution is perfectly upgreadable

only if both backordering and transshipment are not allowed, meaning that these quantities are always

lower or equal to the ones suggested by the stochastic program. For all other cases, the LUDS is

not null, meaning that the deterministic solution is only partially upgreadable (at least in one case,

the stochastic solution delivers a lower number of pallets than the one suggested by the deterministic

solution).

23

Cases RP WS EVPI EEV VSS ESSV LUSS EIV LUDS

No transshipment

No backordering
56941.68 50066.85 12.07% 57688.54 1.31% 56941.68 0.00% 56941.68 0.00 %

Only backordering 40856.24 40153.84 1.72% 40956.26 0.25% 40856.24 0.00% 40876.56 0.05%

Only transshipment 53557.80 48337.35 9.75% 54600.35 1.95% 53557.80 0.00% 53567.35 0.02%

Other 39487.43 38979.73 1.29% 39723.29 0.60% 39512.12 0.06% 39504.06 0.04%

Table 1.2: Average values for the stochastic solution analysis indicators for every special case with two

retailers

Finally, we focus on the case with four retailers. Due to the computational complexity of the

problem, with the exception of the case “No transshipment, No backordering”, we analyze only the

instances whose costs of the allowed strategy are set at a “Medium” level (i.e. only one instance for

each case is considered). Results are displayed in Table 1.3. We specify that after 549090 seconds,

the gap to the optimal solution of the RP for the “Other” case was not closed and we calculate only

the EVPI and the VSS, since the other indicators require further constraints which make the model

even more difficult to get solved to optimality. Differently from Table 1.2, now, if only backordering is

allowed the cost is higher than the case in which only transshipment is admitted, while for the EVPI,

the previous results are confirmed. Concerning the VSS, the results are now different, as there are

more advantages in including stochasticity in the case where only backordering is allowed. Even if

with only backordering, the quantities delivered in the first stage are fewer, transshipment is cheaper if

only few quantity adjustments are needed and the presence of more retailers provides more flexibility

to the distribution system.

Cases RP WS EVPI EEV VSS

No transshipment

No backordering
120144.82 109191.65 10.03% 131098.04 9.12%

Only backordering 112319.31 109191.65 2.86% 122822.55 9.35%

Only transshipment 107613.10 103077.98 4.40% 111960.39 4.04%

Other 105432.62 (2.27%) 103077.98 2.28% 106535.91 1.05%

Table 1.3: Values for the stochastic solution analysis indicators for every special case with four retailers

and “Medium” cost level

1.5 Conclusions

We presented a real problem arising in logistics and after modeling it with an integer stochastic

program, we stated that this is NP-hard. Furthermore, we show that with two retailers, a decision-

24

maker has a greater advantage by including uncertainty, especially if no recourse actions or only

transshipment is admitted. We also show that in some cases, the selection of retailers to which

quantities should be delivered is the same both in the deterministic and in the stochastic solution.

Nevertheless, the deterministic solution can be upgrated only in the special case where no recourse

actions are allowed. Conversely, with four retailers, transshipment provides more flexibility. Future

research could be devoted to analyze the multistage version of this problem by exploiting lower bounds

(see Maggioni, Allevi, and Bertocchi [58] (2016), Maggioni and Pflug [55] (2016)) and, as in Bertazzi

and Maggioni [11] (2018), to compare the stochastic solution to the one obtained through a rolling-

horizon heuristic. Another stream of research could be analyzing robust optimization approaches

(see Maggioni, Potra, and Bertocchi [59] (2017)) or adapting approaches presented in Bertazzi and

Maggioni [10] (2015).

25

Chapter 2

Effectiveness of the Rolling horizon

approach in solving a multi-stage

stochastic distribution logistic

problem with transshipment and

backordering

Authors: Rossana Cavagnini1, Francesca Maggioni2, Luca Bertazzi3

Keywords: Logistics, Fixed-charge transshipment problem, Multi-stage stochastic programming,

Rolling horizon approach

1University of Bergamo, Via dei Caniana, 2, Bergamo, Italy, e-mail: r.cavagnini@studenti.unibg.it
2University of Bergamo, Via dei Caniana, 2, Bergamo, Italy, e-mail: francesca.maggioni@unibg.it
3University of Brescia, Contrada Santa Chiara, 50, Brescia, Italy, e-mail: luca.bertazzi@unibs.it

26

2.1 Introduction

In recent years, competition pressure has increased and an effective management of distribution

logistics has become fundamental for companies’ profitability, due to its impact on costs and service

levels. As a consequence, the efficient distribution system should satisfy customers’ requests, while

keeping costs as low as possible. Traditionally, distribution networks are organized as a hierarchical

process, in which the products are shipped from the uppermost level of the distribution chain to

the lowest. Nevertheless, physical pooling of inventories (Eppen [30] (1979)) is frequently used by

practitioners to achieve the best trade-off between customers’ satisfaction and cost reduction. This

strategy has also been referred to as “transshipment”; it allows companies to reduce stock-out risks,

to share surplus stocks and to improve warehouses management, coping with demand uncertainty.

In this paper, we study a distribution system with uncertain demand, where each retailer has to

decide the quantities to receive through usual shipment and, then, after the realization of the demand,

how many units to receive through transshipment and backordering.

This problem arises in different contexts in the real-world. For example, companies whose distri-

bution operations are in charge of retailers are interested in satisfying as much demand as possible to

increase profits and to keep the company reputation high by offering a good service level. Furthermore,

they desire to keep the inventory levels as low as possible, because of the associated costs and because

of the obsolescence risk (especially for fashion and technology industries). These two objectives are

even more important for e-commerce companies (for example, Amazon) in which there is a big central

warehouse and some regional depots and the demand for fast deliveries is increasing. In order to

prevent stockouts, backordering is a useful strategy, but it has two main drawbacks. The first is that it

does not contribute to rebalance inventory levels through retailers. The second is that, the supplier or

the central warehouse is often located far from the retailers or from the regional depots. Consequently,

transshipment is a valid strategy to overcome these pitfalls. On one hand, through transshipment,

retailers can share inventory quantities. On the other hand, transshipment allows retailers to limit

stockouts through quicker shipments than the ones originating from the supplier or from the central

warehouse.

Motivated by the stochastic and dynamic nature of this problem, we formulate a multi-stage

stochastic program. However, it is well known that solving a problem over a long time horizon can

be very time consuming. As such, heuristic methods, such as the Rolling horizon, in which the time

horizon is decomposed into periods of shorter length, give rise to subproblems easier to solve. In this

paper, we test the performance of a Rolling horizon approach. In a rolling horizon decision-making

framework, a manager must decide the length of the reduced time horizon. In making this choice,

his/her main objectives are (1) the reduction of the computational time (as he/she would like to be

27

able to solve the problem as quickly as possible) and (2) the minimization of the increase in the ob-

jective function value due to a suboptimal first-stage decision (a phenomenon which is also known as

“end-of-horizon effect”). These two objectives become even more important if decisions must be taken

day-by-day (at a tactical/operational level). Furthermore, understanding the length of the reduced

time horizon which should be taken into account is valuable, as further evaluations become unnecessary

(Chand, Hsu, and Sethi [20] (2002)).

The main contributions of this paper with respect to the extant literature are the following. First,

a new problem (a multi-stage stochastic fixed charge distribution problem with transshipment and

backordering) is studied, and a new multi-stage stochastic optimization model for this problem is

formulated. Second, two polynomial solvable cases are derived. Third, through a systematic and

extensive computational study, the maximum dimension of the multi-stage stochastic programming

models which can be solved by an off-the-shelf solver (both for the polynomial and for the general

cases) is provided and the sensitivity of the optimal policies to the number of periods, to the unit

inventory costs and to the vehicles capacities is studied. Finally, the performance of the Rolling

horizon approach is benchmarked against optimal solutions, also by considering different inventory

unit costs and different reduced time horizons.

The paper is organized as follows. In Section 2.2, the extant literature with respect to the main

contributions of our work is reviewed. Section 2.3 presents the problem description, as well as the model

formulation. In Section 2.4, we provide two polynomially solvable cases, namely the one in which only

backordering is allowed, and the one in which the warehouses are always undersized with respect to the

demand. Section 2.5 shows the computational results, Section 2.6 provides some managerial insights.

Finally, in Section 2.7, we draw some conclusions and describe the future developments of our work.

2.2 Literature review

Multiple different transshipment problems and variants have been studied in the literature. Pater-

son, Kiesmüller, Teunter, and Glazebrook [73] (2011) present a complete review of the transshipment

literature, based on the inventory system, ordering and transshipment characteristics. According to

their classification, our problem studies a single echelon distribution system with centralized decision-

making and composed of two different locations dealing with a single commodity. Moreover, in their

categorization, transshipment is classified as reactive, complete pooling and the associated cost struc-

ture includes both variable and fixed costs. Backordering and lost sales are allowed too. Concerning

the characteristics of the problem we study, one of the main distinguishing features lies in the consid-

eration of both fixed and variable transshipment costs. Other papers have previously considered these

28

features (see, for example, Robinson [80] (1990), Chang and Lin [21] (1991), Herer and Rashit [40]

(1999), Herer and Tzur [41] (2001), Herer and Tzur [42] (2003), Chiu and Huang [23] (2003), Minner,

Silver, and Robb [67] (2003), Axsäter [6] (2003), Minner and Silver [66] (2005)). Nevertheless, all

these papers differ from ours as some consider a decentralized decision-making, and/or partial pooling,

and/or no backordering, and/or identical depots. Furthermore, differently from the literature, in which

typically it is assumed that backordering and transshipment are outsourced or performed by owned

vehicles, we compare both the two options.

A stream of research has also addressed the stochastic transshipment problems. Rottkemper, Fis-

cher, and Blecken [81] (2012) consider a distribution and inventory relocation problem in humanitarian

operations with uncertainty in demand. Specifically, they focus on the minimization of the unsatisfied

demand and perform a sensitivity analysis by using a rolling horizon solution method, motivated by

the dynamic nature of the analyzed problem. Moreover, Yücesan et al. [93] (2012) study a prob-

lem with non-negligle replenishment lead times in a distribution system with stochastic demand and

derive a duality-based gradient method to improve computational efficiency for examining the multi-

location transshipment problem. Mirzapour Al-e hashem, Rekik, and Hoseinhajlou [68] (2017) study

the environmental impacts related to an Inventory routing problem with transshipment and stochastic

demand. Finally, Cavagnini, Bertazzi, and Maggioni [18] (2018) present a two-stage stochastic program

for a distribution system with transshipment and backordering and provide a comparison between the

stochastic and the determinstic solution, in the case with two and four retailers. They show that, by

explicitely considering uncertainty in demand, a decision-maker can make better decisions.

Another group of research has focused on deriving optimal ordering and/or replenishment policies

where transshipment is allowed. Among these papers, we mention Wee and Dada [91] (2005), Özdemir,

Yücesan, and Herer [72] (2006) (in which vehicles capacities are considered too), Herer, Tzur, and

Yücesan [43] (2006), Feng, Moon, and Ryu [34] (2017) and van Wijk, Adan, and van Houtum [89]

(2018).

The computational complexity of transshipment problems has seldom been studied in the literature.

To the best of our knowledge, only Herer and Tzur [42] (2003) provide a formal proof of the NP-

hardness of a deterministic model with transshipment, but without backordering. Moreover, Olsson

[71] (2010) and Axsäter [5] (2003) study a unidirectional lateral transshipment problem, motivated by

the advantage of being much less complex than a system in which transshipment is allowed between all

locations. However, we believe that this unidirectional flow structure rarely fits to real-world problems.

Consequently, the problem should be considered in all its complexity, and heuristic algorithms become

needed and valuable. In this work, we test the performance of a rolling horizon approach. This

approach has been extensively used in the literature (see Chand, Hsu, and Sethi [20] (2002) for a

29

classified bibliography of the literature). Some examples of its application to transportation problems

are Maggioni, Kaut, and Bertazzi [57] (2009), Shen, Chu, and Chen [84] (2011) and Bertazzi and

Maggioni [11] (2018), which also provide a worst-case analysis of the rolling horizon approach.

2.3 Problem description and formulation

The analyzed problem deals with a single echelon distribution system composed of a single supplier

and a set I of M retailers with a centralized decision making. Transshipment between pairs of retailers

is admitted and, in order to keep track of the origin and destination of product flows, we represent

retailers performing transshipment by index i and retailers receiving transshipped quantities by index

j (i ∈ I, j ∈ I). In this problem, transshipment is intra-level (since it involves only retailers), bi-

directional (each retailer can both transship products to other retailers and receive products from

them) and reactive (it is performed in emergency situations, after demand realization). We deal

with a single product complete pooling transshipment (retailer i cannot keep any inventory quantity if

retailer j has a shortage of product), where the priority principle is respected (each retailer satisfies

its demand at first and then transshipment is performed, if necessary), backordering to supplier is

allowed. Consequently, the demand can be satisfied with supplied quantities, with transshipment

quantities and with backordered quantities. The unsatisfied demand represents a lost sale. Since

retailers are supposed to be close to each other, lead times are considered negligible (not greater than

the time unit).

The time horizon is composed of t ∈ T = {0, . . . , T} discrete time periods. Shipments between

supplier and retailers can be done at any of the discrete time periods t ∈ T ′ = {0, . . . , T − 1}, while

transshipment and backordering can be performed at t ∈ T ′′ = {1, . . . , T} as they are recourse actions.

The demand di of retailer i is a random variable having discrete (mutually indipendent) probability

distribution Di, defined over the support U1 = {d, . . . , d}, where 0 < d ≤ d. The information structure

can be described by a scenario tree where, at each stage t ∈ T , there is a discrete number of nodes

| nt |, where a specific realization of the uncertain demand takes place. There are T levels (stages)

in the tree, corresponding to specific time periods. The final | nT | nodes are called the leaves. We

introduce the set N t to describe the set of ordered nodes of the tree at stage t = 0, . . . , T . Note that

N 0 is composed of a unique node, i.e. the root. Each node at stage t, except the root, is connected

to a unique node at stage t − 1, which is called ancestor node a(n) and to nodes at stage t + 1,

called successors. We denote with πa(n),n the conditional probability of the random process at node

n given its history up to the ancestor node a(n). A scenario is a path through nodes from the root

node to the leaf node. We represent with πn the probability of node n (at stage t): if node n at

30

stage t is reachable through node n1 at stage 1, node n2 at stage 2, node nt−1 at stage t − 1, then

πn := πn1,n2 ·πn2,n3 , · . . . ·πnt−1,nt . Furthermore,
∑
n∈N t p

n = 1. We represent the demand realization

for retailer i at node n ∈ N t, t ∈ T ′′ by dni . We also assume that the probability distributions Dti are

stage indipendent and mutually indipendent and that the realization of the random variables in each

time period becomes known at the end of the time period.

The measure adopted to evaluate the system performance is the total expected cost. At time

periods t ∈ T ′, the decision variables of this model are xni , n ∈ N t, which represent the decisions to

take at the beginning of each time period, i.e. the quantity to ship from the supplier to each retailer

i. We introduce a capacity C for each vehicle employed in the shipment from the supplier to retailer

i and an integer variable vni , standing for the number of vehicles used to serve retailer i by direct

shipping. The transportation cost between the supplier and each retailer i is represented by a variable

cost fi, proportional to the number of shipped units and by a fixed cost Fi, paid for each vehicle used.

If retailer j has to face a demand dnj greater than the sum of its initial inventory level and the quantity

received from the supplier, transshipment or backordering can be used to avoid stock-out. Thus, at

t ∈ T ′′ the decision variables are represented by ynij , n ∈ N t, which stand for the quantity to transship

from retailer i to retailer j, for each node at each period t ∈ T ′′, after the demand realization dni , and

by bni , which represent the quantity to backorder from the supplier for each retailer i for each node

n ∈ N t at each each period t ∈ T ′′, after demand realization dni . Even though lead times are not

considered, we suppose that the time in which the recourse actions are performed is limited and thus,

the backordered quantities cannot be used for transshipment in the same time period. For the same

reason, we also consider that transshipment is performed between pairs of retailers. We introduce a

capacity CTB for vehicles used to transship and to backorder units (note that the capacity of vehicles

used to ship units from supplier to retailers is typically larger than the capacity of vehicles used for

transshipment and backordering). We define integer variables V nij representing the number of vehicles

employed for transshipment from retailer i to retailer j for each node n ∈ N t at each stage t ∈ T ′′. The

total transshipment cost is composed of a unit cost tij for each transshipped unit and a fixed cost Tij

for each vehicle used. We indicate the number of vehicles used for backordering with the variables rni .

The total backordering cost is composed of a unit backordering cost gi for each backordered unit and a

fixed cost Gi for each vehicle used. Finally, the variables Ini represent the inventory level at each retailer

i for each node n ∈ N t at each stage t ∈ T ′′ and they are given by the sum of the initial inventory

level, plus the quantity received from the supplier, the quantity received through transshipment and

through backordering, minus the sum of the customers’ demand and of the transshipped units to other

retailers. If this quantity is positive, it stands for the inventory level and the associated unit cost is

represented by hi. If the quantity is negative, then the inventory level stands for a stock-out quantity.

31

In this case, the retailer i has to pay a unit penality cost pi. In particular, if the product surplus at

retailer i is transshipped to retailer j, but it is not sufficient to fully cover the shortage at retailer j,

and no quantities are backordered, retailer i has neither inventory nor stock-out costs, while retailer

j has to face stock-out costs for the unsatisfied demand. We also consider the warehouse capacity Qi

for each retailer i.

We assume the following notation.

Sets:

I: set of retailers;

T = {t : 0, . . . , T}: set of stages;

T ′ = {t : t = 0, . . . , T − 1}: set of stages (leaf nodes excluded);

T ′′ = {t : t = 1, . . . , T}: set of stages (root node excluded);

N 0 = {n : n = 0}: root node at stage 0;

N t = {n : n = 1, . . . , nt}: set of ordered nodes of the tree at stage t ∈ T ′′, where nt is the number of

nodes at stage t.

Deterministic parameters:

fi: unit shipment cost for retailer i ∈ I;

Fi: fixed shipment cost for retailer i ∈ I;

gi: unit backordering cost for retailer i ∈ I;

Gi: fixed backordering cost for retailer i ∈ I;

hi: unit inventory cost for retailer i ∈ I;

tij : unit transshipment cost from retailer i ∈ I to retailer j ∈ I;

Tij : fixed transshipment cost from retailer i ∈ I to retailer j ∈ I;

pj : unit stock-out penalty cost for retailer i ∈ I;

I0
i : initial inventory at retailer i ∈ I, at time t = 0;

Qi: warehouse capacity of retailer i ∈ I;

C: vehicle capacity for shipment;

CTB : vehicle capacity for transshipment and backordering;

a(n): ancestor of the node n ∈ N t, t ∈ T ′′ in the scenario tree.

Stochastic parameters:

pn: probability of node n ∈ N t, t ∈ T ;

dni : demand at retailer i ∈ I at node n ∈ N t, t ∈ T ′′.

32

Variables:

xni ∈ Z+: quantity to ship from the supplier to retailer i ∈ I, for n ∈ N t, t ∈ T ′;

vni ∈ Z+: number of vehicles used for shipment from the supplier to retailer i ∈ I, for n ∈ N t, t ∈ T ′;

bni ∈ Z+: quantity to backorder from the supplier to retailer i ∈ I, for n ∈ N t, t ∈ T ′′;

rni ∈ Z+: number of vehicles used for backordering from the supplier to retailer i ∈ I, for n ∈ N t,

t ∈ T ′′;

ynij ∈ Z+: quantity to transship from retailer i ∈ I to retailer j ∈ I, for n ∈ N t, t ∈ T ′′;

V ni ∈ Z+: number of vehicles used for transshipment from retailer i ∈ I to retailer j ∈ I, for n ∈ N t,

t ∈ T ′′;

Ini ∈ Z: inventory levels at retailer i ∈ I, for n ∈ N t, t ∈ T ′′.

The multi-stage mixed integer non-linear programming model (MINLP) is formulated as follows:

Problem P1

min
∑
t∈T ′

∑
n∈N t

πn
[∑
i∈I

(fix
n
i + Fiv

n
i)

]
+

+
∑
t∈T ′′

∑
n∈N t

πn
[∑
i∈I

(gib
n
i +Gir

n
i) +

∑
i∈I

hi max{Ini , 0}+

+
∑
i∈I

∑
j∈I:i6=j

(tijy
n
ij + TijV

n
ij)−

∑
i∈I

pi min{Ini , 0}
]

s.t.

(2.1)

Ini = max{Ia(n)
i , 0}+ x

a(n)
i + bni − dni +

∑
j∈I:i 6=j

(ynji − ynij) i ∈ I, n ∈ N t, t ∈ T ′′ (2.2)

max{Ia(n)
i , 0}+ x

a(n)
i + bni +

∑
j∈I:j 6=i

ynji ≤ Qi i ∈ I, n ∈ N t, t ∈ T ′′ (2.3)

xni ≤ Cvni i ∈ I, n ∈ N t, t ∈ T ′ (2.4)

bni ≤ CTBrni i ∈ I, n ∈ N t, t ∈ T ′′ (2.5)

ynij ≤ CTBV nij i ∈ I, j ∈ I : j 6= i, n ∈ N t, t ∈ T ′′ (2.6)∑
j∈I:j 6=i

ynij ≤ max{0, (Ia(n)
i + x

a(n)
i − dni)} i ∈ I, n ∈ N t, t ∈ T ′′ (2.7)

xni ≥ 0 integer i ∈ I, n ∈ N t, t ∈ T ′ (2.8)

vni ≥ 0 integer i ∈ I, n ∈ N t, t ∈ T ′ (2.9)

ynij ≥ 0 integer i ∈ I, j ∈ I : j 6= i, n ∈ N t, t ∈ T ′′ (2.10)

V nij ≥ 0 integer i ∈ I, j ∈ I : j 6= i, n ∈ N t, t ∈ T ′′ (2.11)

33

bni ≥ 0 integer i ∈ I, n ∈ N t, t ∈ T ′′ (2.12)

rni ≥ 0 integer i ∈ I, n ∈ N t, t ∈ T ′′ (2.13)

Ini free and integer i ∈ I, n ∈ N t, t ∈ T ′′ (2.14)

The first sum in the objective function (2.1) denotes the expected retailers’ variable and fixed shipment

costs, while the second represents the expected backordering, inventory, transshipment and penalty

costs. Constraints (2.2) represent the inventory levels at the end of each stage t ∈ T ′′, while Constraints

(2.3) imply that the maximum inventory level at retailer i cannot exceed the warehouse capacity Qi

for each stage t ∈ T ′′. Constraints (2.4), (2.5) and (2.6) link together the decision variables xni , bni

and ynij with the respective integer variables vni , rni and V nij . Moreover, constraints (2.7) impose that

the total transshipped quantities from retailer i cannot be greater than the sum of the total available

quantity and the quantity received by direct shipping, minus the demand. Finally, constraints from

(2.8) to (2.14) are variables definition constraints.

Due to the non-linearity of Problem P1 for the presence of max and min terms, we linearize it

following the approach described in Cavagnini, Bertazzi, Maggioni, and Hewitt [19] (2018) and we call

the linearized problem “Problem P1L” (see Appendix (I.a) for details). Without loss of generality, in

what follows, we will sometimes refer to Problem P1L as “Case (1)”.

2.4 Two particular cases

In this section, we study in more detail two particular cases in order to obtain their optimal solutions

analytically and to provide some complexity results.

Case (2): only external backordering (uncapacitated)

This case arises at the operational level, when a supplier has to ship an unknown demand to retailers

(with unlimited warehouses capacity) only through backordering by using external transportation

companies, so that vehicles fixed costs and capacities can be ignored.

Consequently, the model is the same of Problem P1L, with the exception that the decision variables

concerning direct shipment and transshipment are removed and constraints (2.3) and (2.5) are not

binding. Then, the model reduces to:

Problem P2

min
∑
t∈T ′′

∑
n∈N t

πn
[∑
i∈I

gib
n
i +

∑
i∈I

hi max{Ini , 0} −
∑
i∈I

pi min{Ini , 0}
]

s.t.

(2.15)

34

Ini = max{Ia(n)
i , 0}+ bni − dni i ∈ I, n ∈ N t, t ∈ T ′′ (2.16)

bni ≥ 0 integer i ∈ I, n ∈ N t, t ∈ T ′′ (2.17)

Ini free and integer i ∈ I, n ∈ N t, t ∈ T ′′. (2.18)

Proposition 2.4.1. The optimal total cost of Problem P2 is

z∗ = min{
∑
t∈T ′′

∑
n∈N t

πn
∑
i∈I

gi(d
n
i − I

a(n)
i)}, (2.19)

and, bn∗i = dni − I
a(n)
i , i ∈ I, n ∈ N t, t ∈ T ′′ and xn∗i = 0, i ∈ I, n ∈ N t, t ∈ T ′ . Therefore, an optimal

policy can be computed in O(
∑|T ′′|
t=1 | N t | · | I |) time.

Proof. As for the company it is not convenient to pay inventory or stockout costs, from constraint

(2.16), it is clear that the optimal solution is the one such that In∗i =0. Consequently, the optimal

solution should be the one according to which: bn∗i = dni − I
a(n)
i , and, substituting in the objective

function (2.15), we obtain the optimal total cost. �

Since this stochastic program has fixed objective coefficients, fixed recourse matrix and the uncer-

tainty appears in the right-hand-side of the model, we know that the chain EV ≤WS ≤ RP ≤ EEV

(see Birge and Louveaux [12] (2011)) holds and, furthermore, for case (2), the chain is valid with

equalities: EV = WS = RP = EEV . Specifically, we note that EV = RP because the optimal first-

stage solution is equal zero for both the EV and the RP solution, i.e. xn∗i = xn∗i = 0. Consequently,

EV = RP and EEV = RP because the first-stage solution is again xn∗i = 0.

Case (3): under-sized warehouses (capacitated)

Assume that dni > Qi, i ∈ I, n ∈ N t, t ∈ T ′′ , that is the demand is always greater than the retailers’

warehouse capacity, and that only direct shipments are allowed. Then, the model reduces to:

Problem P3

min
∑
t∈T ′

∑
n∈N t

πn
[∑
i∈I

(fix
n
i + Fiv

n
i)

]
+
∑
t∈T ′′

∑
n∈N t

πn
[
−
∑
j∈I

pj min{Inj , 0}
]

(2.20)

s.t.

Ini = max{Ia(n)
i , 0}+ x

a(n)
i − dni i ∈ I, n ∈ N t, t ∈ T ′′ (2.21)

max{Ia(n)
i , 0}+ x

a(n)
i ≤ Qi i ∈ I, n ∈ N t, t ∈ T ′′ (2.22)

xni ≤ Cvni i ∈ I, n ∈ N t, t ∈ T ′ (2.23)

xni ≥ 0 integer i ∈ I, n ∈ N t, t ∈ T ′′ (2.24)

vni ≥ 0 integer i ∈ I, n ∈ N t, t ∈ T ′ (2.25)

35

Ini free and integer i ∈ I, n ∈ N t, t ∈ T ′′. (2.26)

In fact, since dni > Qi, there are no surplus quantities and inventory costs does not occur.

Before introducing the following result, we specify that, the shipment cost for a full-container-load

(FCL) per unit (FCLUC) is represented by fi + Fi
C . On the other hand, the shipment cost for a

less-container-load (LCL) per unit (LCLUC) is represented by fi + Fi

Qi−Ia(n)
i −Cb

Qi−I
a(n)
i
C c

.

Proposition 2.4.2. For Problem P3 :

a) If FCLUC < pi and LCLUC < pi, the optimal policy is to deliver all the quantity in order to

fill the warehouse (no matter il the vehicles are fully or partially loaded), i.e. xn∗i = Qi − Ia(n)
i ,

vn∗i = dQi−I
a(n)
i

C e and In∗i = Qi − dni . Hence, the optimal cost of Problem P3 is:

z∗ =
∑
t∈T ′

∑
n∈N t

πn[
∑
i∈I

fi(Qi−Ia(n)
i)+Fid

Qi − Ia(n)
i

C
e)]+

∑
t∈T ′′

∑
n∈N t

πn[−
∑
i∈I

pi(Qi−dni)]; (2.27)

b) If FCLUC < pi and LCLUC > pi, the optimal policy is to deliver only the quantity in order

to completely fill the vehicles, i.e. xn∗i = Cb (Qi−Ia(n)
i)

C c, vn∗i = bQi−I
a(n)
i

C c and In∗i = I
a(n)
i +

CbQi−I
a(n)
i

C c − dni . Hence, the optimal cost of Problem P3 is:

z
∗

=
∑
t∈T ′

∑
n∈Nt

π
n

[
∑
i∈I

fiCb
(Qi − Ia(n)

i)

C
c+ Fib

Qi − Ia(n)
i

C
c)] +

∑
t∈T ′′

∑
n∈Nt

π
n

[−
∑
i∈I

pi(I
a(n)
i + Cb

Qi − Ia(n)
i

C
c − dni)];

(2.28)

c) If FCLUC > pi and LCLUC > pi, the optimal policy is to deliver zero quantities, i.e. xn∗i = 0,

vn∗i = 0 and In∗i = I
a(n)
i − dni . Hence, the optimal cost of Problem P3 is:

z∗ =
∑
t∈T ′′

∑
n∈N t

πn[−
∑
i∈I

pi(I
a(n)
i − dni)]. (2.29)

Therefore, an optimal policy can be computed in O(
∑|T ′′|
t=1 | N t | · | I |) time.

Proof.

a) Assume, by contradiction, that xni 6= Qi − Iai (n). Then two cases can arise:

• xni > Qi − Ia(n)
i : but this case cannot occur because of Constraints (2.22).

• xni < Qi−Ia(n)
i : in this case, the optimal cost of Problem P3 can be written in the following

way, where η represents the number of pallets such that xni + η = Qi − Ia(n)
i :

z∗C =
∑
t∈T ′

∑
n∈N t

πn[
∑
i∈I

fi(Qi − Ia(n)
i − η) + Fid

Qi − Ia(n)
i − η
C

e)]+

∑
t∈T ′′

∑
n∈N t

πn[−
∑
i∈I

pi(I
a(n)
i + (Qi − Ia(n)

i − η)− dni)].

(2.30)

36

The variable shipment cost given by the first term in equation (2.30) is less than the variable

shipment cost in equation (2.27), since it is proportional to the number of delivered pallets.

Concerning the fixed cost, in equation (2.30), it is less or equal to the fixed cost in (2.27).

As a consequence, the total shipping cost of equation (2.30) is lower than the total shipment

cost of equation (2.27). Nevertheless, the stockout cost given by the second term in equation

(2.30) is higher than the corrisponding term in equation (2.27) and, since LCLUC < pi, the

cost increase associated to each stockout unit is higher than the cost decrease associated

to each shipped unit. Consequently, z∗ < z∗C , contraddicting the assumption that z∗C is

optimal.

b) - c) The proof works in a similar way of point a). �

2.5 Computational results

In this section, our aim is three-fold. First, for Cases (1), (2) and (3), we provide the maximum

dimension of the multi-stage stochastic programming models (both polynomial and general cases)

which can be solved by an off-the-shelf solver. Second, we want to test the sensitivity of the optimal

solution with respect to (1) the considered time horizon, (2) the unit inventory cost, (3) the capacity

of the vehicles used for shipment, transshipment and backordering, both in the case in which the

company performs transshipment and backordering through owned vehicles, and in the case where the

company outsources these operations. Third, we test the performance of the Rolling horizon heuristic,

by considering different reduced time horizons and different inventory costs. With this analysis, we

also want to quantify the end-of-horizon effect.

All codes were implemented in Python 3.6.1 and models were solved using Gurobi 7.5.1 solver. All

computational experiments were run on an Intel Core i7-7500U 64-bit machine with 8 GB of RAM

and 2.70 gigahertz processor.

We now describe the generated instances for all three considered cases.

2.5.1 Instances description

Our instances are inspired by a real company which sells sport equipments and clothing. We

consider a time horizon of one working week (i.e. T = {0, . . . , 5}, T ′ = {0, . . . , 4}, T ′′ = {1, . . . , 5}).

The company has one central depot with unlimited availability and two retailers (i.e. | I |=2),

corresponding to big stores.

The following instances have been generated for case (1). The capacity C of the vehicles used for

shipment is equal to 33 pallets, while the one of the vehicles used for transshipment and backordering

37

is 22 pallets. Furthermore, we define the value P of a pallet to be equal to 50 Euros, and, since the

unit inventory costs approximatively correspond to 5% of the value of a pallet, we set the retailers’

inventory costs hi equal to 2.5 Euros. Since the penalty cost corresponds to a lost sale, we let pj

equal to 1P , that is 50 Euros. The first retailer has a small capacity Q1 = 66, while the second has

a bigger capacity Q2 = 111. The demand can only assume values multiples of 11, between 0 and

33. As such, the support of the demand probability distribution is in the set of the following integer

numbers {0, 11, 22, 33}. Obviously, the retailer with bigger warehouse capacity is also characterized

by higher demand values. Consequently, its probability distribution is given by a Beta distribution

(α, β), where α = 17 and β = 10, having average demand E(d) = 22.07172 pallets. Conversely, the

smaller retailer’s demand follows a Beta distribution (α, β), where α = 6 and β = 10, having average

demand E(d) = 11.03636 pallets. We analyze and compare two different options. The first one, which

we call “A”, refers to the situation in which the supplier executes shipments through owned vehicles,

while transshipment and backordering are performed by using vehicles owned by an external company.

In this case, for the traditional shipments, only fixed costs are considered (and, consequently, vehicle

capacities), while for transshipment and backordering we only consider variable costs (and we neglect

the capacities of vehicles used for transshipment and backordering). The second one, which we call

“B”, studies the situation in which shipments, transshipment and backordering are all executed by

company owned vehicles. In this case, we will consider only fixed costs and vehicle capacities. In

each of these two different options, we notice that Problem P1L can be reduced into three special

cases, which facilitate a trade-off analysis. In particular, we consider the following instances: (1) both

transshipment and backordering are allowed; (2) transshipment is not allowed; (3) backordering is not

allowed. Finally, we assume that performing backordering is more expensive than transshipment, since

a longer distance has to be traveled, and that backordering is more expensive than direct shipping,

as backordering is a recourse actions which requires extra workers’ commitment and also subtracts

vehicles availability for other operations. Table (2.1) summarizes the different instances.

38

Instance fi Fi tij Tij gi Gi

Case

A

1A - 225 8.64 - 12.95 -

2A - 225 +∞ - 12.95 -

3A - 225 8.64 - +∞ -

Case

B

1B - 225 - 190 - 285

2B - 225 - +∞ - 285

3B - 225 - 190 - +∞

Table 2.1: Shipment, transshipment and backordering fixed and variable costs for every case and

instance.

For case (2), we set the capacity of the vehicles used for usual shipments and for transshipment and

backordering equal to infinity, that is C = +∞ and CTB = +∞, respectively. Furthermore, we set the

inventory cost hi = 10 Euros, the fixed shipment cost Fi = 225 Euros and the unit transshipment and

backordering costs tij = bij = 8.64 Euros.

For case (3), we need to modify the support of the demand which is now {11, 22, 33, 44}. Moreover,

we set the capacity of the vehicles used for usual shipments C = 3, the capacity of the vehicles used for

transshipment and backordering CTB = 2, and the retailers’ warehouse capacities Q1 = 8, Q2 = 10,

respectively. Finally, based on the three different subcases presented in Theorem 2.4.2, the fixed

shipment cost, and the fixed transshipment and backordering costs must be modified as follows:

a) Fi = 30, Tij = Gi = 190;

b) Fi = 120, Tij = Gi = 400;

c) Fi = 200, Tij = Gi = 400.

For all three cases, we represent the demand uncertainty through a complete scenario tree including

six stages. Since we are considering two retailers, and four possible demand realizations for each retailer,

the tree will have the following branching structure: 16 branches from the root, 16 branches from each

of the second, third, fourth and fifth-stage nodes, resulting in S = 16× 16× 16× 16× 16 = 1, 048, 576

scenarios and 1,118,481 nodes.

2.5.2 Solving the multi-stage stochastic programming models

In this subsection, we illustrate statistics about the performance of GUROBI in solving cases (1)-

(3). Specifically, Tables 2.2-2.4 display the number of simplex iterations and the CPU time in seconds

in the cases (1), (2) and (3), respectively, required by GUROBI to find an optimal solution of the

39

stochastic programming model, for an increasing number of stages. We notice that, as our model is a

MILP, the simplex iterations refer to the total number of iterations done by the simplex algorithm in

all the steps of the branch and bound relaxations.

These results show that GUROBI runs out of memory starting from the sixth-stage, even for

the polynomially solvable cases. This makes the optimal policies provided in Section 2.4 even more

valuable. Furthermore, for case (1), an optimal solution can be obtained in a reasonable time up to the

third-stage, while with four stages (for some instances) and with five stages (for all instances), GUROBI

is not able to provide an optimal solution with the time limit of 86400 seconds (24 hours). Furthermore,

we observe that instances characterized by only fixed costs for transshipment and backordering are

the most difficult to solve. Consequently, heuristic algorithms, like the Rolling horizon approach, are

required.

Two-stage Three-stage Four-stage Five-stage Six-stage

Number of scenarios 16 256 4096 65536 1048576

Number of nodes 17 273 4369 69905 1118481

Case

A

1A
Simplex iterations 136 12355 4616013 32752088 Out of memory

CPU time (seconds) 0.05 2.82 7614.90 86400 (11.81% gap) -

2A
Simplex iterations 28 904 55551 57055701 Out of memory

CPU time (seconds) 0.04 0.33 38.93 86400 (0.06% gap) -

3A
Simplex iterations 331 24835 167681654 8373595 Out of memory

CPU time (seconds) 0.11 3.84 86400 (8.98e-08% gap) 86400 (37.70% gap) -

Case

B

1B
Simplex iterations 686 169068 178691772 10349728 Out of memory

CPU time (seconds) 0.20 17.99 86400 (0.72% gap) 86400 (19.44%) -

2B
Simplex iterations 58 1911 916731 55073892 Out of memory

CPU time (seconds) 0.04 0.61 434.23 86400 (1.52% gap) -

3B
Simplex iterations 761 60072 73834968 7865480 Out of memory

CPU time (seconds) 0.19 7.88 86400 (0.27% gap) 86400 (44.10% gap) -

Table 2.2: Case (1): Summary statistics

Two-stage Three-stage Four-stage Five-stage Six-stage

Simplex iterations 0 0 0 0 Out of memory

CPU time (seconds) 0.01 0.10 1.83 32.84 -

Table 2.3: Case (2): Summary statistics

40

Two-stage Three-stage Four-stage Five-stage Six-stage

a)
Simplex iterations 1 1 1 1 Out of memory

CPU time (seconds) 0.03 0.06 0.68 13.82 -

b)
Simplex iterations 1 1 4 3 Out of memory

CPU time (seconds) 0.04 0.09 0.86 16.58 -

c)
Simplex iterations 2 2 6 7 Out of memory

CPU time (seconds) 0.03 0.07 0.67 12.71 -

Table 2.4: Case (3): Summary statistics for subcases a), b), c)

2.5.3 Analysis of the (T+1)-stage stochastic model

In this subsection, we perform a sensitivity analysis of the optimal solution and of the total cost

for case (1) with respect to the reduced time horizon T . Our aim is to understand if different values

of the unit inventory cost, of the reduced time horizon, and of different vehicles capacities affect the

optimal value of the first-stage variable and the total cost. We focus only on case (1) for two reasons.

The first is that case (2) and case (3) are subject to particular parameter requirements which may be

violated by performing this sensitivity analysis. The second is that these cases may not depend on

the modified parameters (for example, the optimal solution of case (3) does not depend on the vehicle

capacities, but on the warehouse capacities).

Table 2.5 shows the optimal value of the first-stage variables x0∗ and the total cost of case (1)

for different time horizons, different inventory unit costs (5% or 20% of the item unit price P) and

different vehicle capacities. We do not show the optimal values of xn∗ for n ∈ N t, t > 0, because they

depend on the nodes. Furthermore, we only considered T = 1 (two-stage), T = 2 (three-stage), as the

optimal solution cannot be computed in reasonable time for larger T . In the following paragraphs, we

present insights which can be drawn from Table 2.5.

41

T=1

(two-stage)

T=2

(three-stage)

C = 33, CTB = 22 C = 22, CTB = 11 C = 33, CTB = 22 C = 22, CTB = 11

Instance hi x0∗ Total cost x0∗ Total cost x0∗ Total cost x0∗ Total cost

1A
5% [0, 33] 336.29 [0, 22] 377.80 [33, 33] 656.95 [0, 22] 753.27

20% [0, 33] 353.33 [0, 22] 378.84 [0, 33] 691.99 [0,22] 756.51

2A
5% [0, 22] 383.18 [0, 22] 383.18 [0, 33] 679.54 [0, 22] 758.19

20% [0, 22] 390.14 [0, 22] 390.14 [0, 33] 762.73 [0, 22] 771.52

3A
5% [0, 33] 424.45 [22, 22] 492.91 [33, 33] 727.39 [22, 22] 857.53

20% [0, 33] 441.49 [22, 22] 575.79 [0, 33] 881.11 [22, 22] 982.69

1B
5% [0, 33] 415.23 [22, 22] 496.41 [33, 33] 737.36 [22, 22] 825.85

20% [0, 33] 442.48 [0, 22] 531.39 [0, 33] 874.00 [22, 22] 942.41

2B
5% [0, 33] 495.26 [22, 22] 505.87 [33, 33] 800.44 [22, 22] 834.38

20% [0, 22] 503.11 [11, 22] 544.72 [22, 22] 949.77 [22, 22] 956.26

3B
5% [0, 33] 496.77 [22, 22] 500.24 [33, 33] 782.06 [22, 22] 871.37

20% [0, 33] 513.80 [22, 22] 583.12 [22, 22] 981.08 [22, 22] 996.52

Table 2.5: Case (1): Optimal value of the first-stage variables x0∗ and of the total cost, for different

time horizons, different unit inventory costs and different vehicle capacities.

Recourse actions analysis

From the results, we observe that, indipendently of the time horizon length, of the unit inventory

cost and of the vehicle capacities, it is more convenient to outsource the operations of backordering

and transshipment. This is due to the fact that, in Case A (where backordering and transshipment

are outsourced), there is more freedom in the quantities which are moved through backordering and

transshipment, since only variable costs are applied. Conversely, in Case B (where backordering and

transshipment are performed by the company through owned vehicles), fixed costs are paid and they

impact more if the vehicles capacities are not fully utilized. This also explains the higher number of

delivered pallets in cases B. Furthermore, both in Case A and B, lower costs are obtained if both back-

ordering and transshipment are allowed, followed, in general, by the cases in which only backordering

can be performed as recourse action. As a matter of fact, backordering gives a higher degree of flexibil-

ity with respect to transshipment, since new quantities can be introduced in the distribution system.

Finally, we observe that the main difference between Cases A and B is given by the instances in which

backordering is allowed. This suggests that when transshipment can be performed, the capacity of the

vehicles used for transshipment is fully or almost fully used. On the contrary, when backordering can

occur, the capacity of the vehicles used for backordering is only partially used.

42

Time horizon length impact

From Table 2.5, we observe that, as expected, as the time horizon length increases, the costs

increase too. However, the increase is less than proportional, suggesting that a decision-maker would

be able to take a better decision by considering a longer time horizon. At the same time, also the

delivered quantities in the first-stage increase as the time horizon length increases, and in particular

in the case with higher vehicles capacity and if the company performs all the operations using owned

vehicles. This increase is due to the end-of-horizon effect.

Furthermore, when the unit inventory costs and the vehicles capacities are low, there is no difference

in the first-stage variables solution. With low capacities and high unit inventory costs, we only notice

a difference for the case in which the company performs backordering by using its own vehicles (cases

1B and 2B). As a matter of fact, for these cases, as the time horizon length increases, the optimal

first-stage variables solution suggests to deliver a higher number of pallets (equal to the capacity of the

vehicle used for usual deliveries). If the capacities are high, the optimal first-stage solution suggests to

deliver more pallets as the time horizon length increases. In particular, more quantities are delivered

if the inventory costs are low, and the increase is higher if the company performs all operations with

owned vehicles in order to utilize the capacities more.

Inventory unit costs impact

From Table 2.5, we observe that, in general, by increasing the inventory costs, the delivered quan-

tities are the same or decrease. In particular, focusing on the two-stages case, no matter the vehicle

capacity, these decreases incur when the company performs the operations by itself, and, in particular

only in the cases where backordering is admitted. In fact, since backordering allows to introduce more

quantities in the distribution system, when the inventory costs are high, the optimal solution would

suggest to deliver fewer quantities in the first stage (so that the delivery is postponed after demand

realization). Considering the three-stages results, if vehicles capacities are low, there will be no changes

in delivered quantities, also by varying inventory costs. On the other hand, with higher capacities,

the solution changes, especially for the cases in which transshipment is allowed. This suggests that

transshipment occurs more often in these cases.

Vehicles capacity impact

We now analyze the impact of reduced vehicle capacities on the optimal solution. In general, we

observe that, with a reduced capacity, the costs are higher, as more vehicles are needed and, thus, more

fixed costs must be paid. In the second-stage case, the increase in costs can be observed especially for

cases with higher inventory costs, if the company performs the recourse actions with owned vehicles,

43

and if transshipment is allowed. In the three-stage case, the reduced vehicles capacity causes higher

costs especially for low inventory costs (as, potentially, more quantities can be delivered) and if the

company outsources the backordering and transshipment operations, especially for cases in which

transshipment is allowed.

2.5.4 The Rolling horizon approach

Due to the impossibility of obtaining an optimal solution in reasonable time for some instances of

case (1), starting from the fourth-stage, heuristic algorithms could be valuable and required. As such,

in this subsection, we analyze the performance of the Rolling horizon approach.

The Rolling horizon approach consists in solving the multi-stage problem by building in sequence

submodels with less number of consecutive periods. Specifically, at first, the (W + 1)-stage stochastic

programming model defined on t = 0, 1, . . . ,W < T is optimally solved and only the values of the first-

stage decision variables xni , i ∈ I, n ∈ N t, are stored. Then, the (W +1)-stage stochastic programming

model defined on t = 1, 2, . . . ,W + 1 is optimally solved by setting the initial inventory level equal to

the residual quantity in retailers’ warehouses at the end of the previous time period, represented by

I
a(n)
i . Once again, only the first-stage variables values xni , i ∈ I, n ∈ N t are captured. The process

is repeated until stage t = T −W . After solving the last (W + 1)-stage stochastic program, a W-

stage stochastic program on t = T −W + 1, T −W + 2, . . . , T is solved and then a (W − 1)-stage

stochastic programming model on t = T −W + 2, T −W + 3, . . . , T is solved. The process is repeated

until the 2-stage stochastic programming model defined on t = T − 1, T is solved. As a result, the

computational complexity of the problem decreases with respect to the recourse problem, since the

number of scenarios is reduced by considering the stochasticity only one (or a few) stages at a time.

First, we test the performance of the Rolling horizon approach on all the instances of case (1),

by considering W = 1 and W = 2 and a deadline T = 3 (that is, the four-stage model). We also

led the analysis by considering W = 1 and W = 2 and a deadline T = 4 (i.e. the five-stage model).

Nevertheless, for some subproblems of the case with W = 2, we were not able to obtain the optimal

solution within the time limit of 86,400 seconds. Consequently, we report only the results for the case

with W = 1.

Performance of the Rolling horizon heuristic with T = 3

In this subsection, we test the performance of the Rolling horizon approach on all the instances of

case (1), by considering W=1 and W=2 and a deadline T = 3 (that is, the four-stage model).

We report the outcomes in Tables 2.6 and 2.7. From the results, we observe that by considering

W = 1 the Rolling horizon heuristic performs poorly, with respect to the optimal policy obtained by

44

solving the full stochastic program, with an average cost increase of 25.32% for instances solved to

optimality, and an average cost increase of 30.75% for instances not solved to optimality within the time

limit of 86,400 seconds. Instead, with W = 2, we obtain very good results in almost all the instances.

Specifically, with respect to the instances for which the optimal solution has been obtained within the

time limit of 86,400 seconds, the Rolling horizon approach gives the same solutions in almost all cases

(Instances (1A), (2B)). Nevertheless, for instance (2A), we notice that the solution obtained through

the Rolling horizon approach is worse than the optimal policy. In fact, the percent cost increase of the

Rolling horizon approach with respect to the optimal cost is equal to 6.81%. Futhermore, we see that

with respect to instances which were not solved to optimality with the time limit of 86,400 seconds,

the Rolling horizon approach provides the same solution quality (Instances(3A) and (3B))), or even a

better solution (Instance (1B)). Finally, we notice that for all instances, the Rolling horizon approach

with W = 2 is able to provide a good-quality solution in less time than the one required by the full

stochastic program.

W = 1 W = 2 Optimal policy

Instance x0∗ Total cost CPU s x0∗ Total cost CPU s x0∗ Total cost CPU s

1A [0, 33] 988.33 13.56 [33, 33] 919.45 132.55 [33, 33] 919.45 7614.90

2A [0, 22] 1133.89 1.40 [0, 33] 991.55 11.12 [33, 33] 928.31 38.93

3A [0, 33] 1232.07 21.58 [33, 33] 992.81 196.79 [33, 33] 992.81 (8.98e-08% gap) 86400

1B [0, 33] 1231.41 129.94 [33, 33] 975.25 842.09 [33, 33] 975.27 (0.72% gap) 86400

2B [0, 33] 1449.59 4.86 [33, 33] 990.72 16.14 [33, 33] 990.72 434.23

3B [0, 33] 1429.69 102.78 [33, 33] 1007.65 240.32 [33, 33] 1007.65 (0.27% gap) 86400

Table 2.6: Optimal value of the first-stage variables x0∗ and total cost and CPU time (in seconds) for

the Rolling horizon approach with W = 1 and W = 2, respectively, for instances belonging to Case

(1) with deadline T = 3 (i.e. four-stage) and unit inventory costs equal to 5% of the item price.

45

W = 1 W = 2

Instance Total cost CPU s Total cost CPU s

1A 7.49% -99.82% 0.00% -98.26%

2A 22.15% -96,40% 6.81% -71.44%

3A 24.10% -99.98% 0.00% -99.77%

1B 26.26% -99.85% -0.002% -99.03%

2B 46.32% -98.88% 0.00% -96.28%

3B 41.88% -99.88% 0.00% -99.72%

Table 2.7: Comparison in terms of objective value and CPU seconds of the solution provided by the

Rolling horizon approach, with W = 1 and W = 2, respectively, with respect to the optimal (or

near-optimal) solution, for instances belonging to Case (1) with deadline T = 3 (i.e. four-stage) and

unit inventory costs equal to 5% of the item price.

We now test how the Rolling horizon approach performs with another set of instances. Specifically,

given the sensitivity results obtained in Table 2.5, we choose the set of instances with more variability

in the solution with respect to the reduced time horizon, that is the set of instances for which the unit

inventory costs are equal to 20% of the item price and the capacities of the vehicles used for direct

shipment and for transshipment and/or backordering are the same than the ones of the previous test

(i.e. 33 and 22 pallets, respectively).

The results are shown in Tables 2.8 and 2.9. We observe that, by considering W = 1, the Rolling

horizon heuristic provides worse-quality results than the ones provided by considering W = 2. In fact,

by considering W = 2 and the instances which cannot be solved to optimality within the time limit of

86,400 seconds (Instances 3A, 1B, 2B, 3B), we always obtain better results (apart from instance 2B,

in which only backordering is admitted). On the other hand, by considering the instances solved to

optimality (Instances 1A and 2A), the solution provided by the Rolling horizon approach is very close

to the optimal one (with the one of the case where only outsourced backordering is allowed as recourse

action performing the worst).

46

W = 1 W = 2 Optimal policy

Instance x0∗ Total cost CPU s x0∗ Total cost CPU s x0∗ Total cost CPU s

1A [0, 33] 1033.51 12.70 [0, 33] 1033.50 86.13 [0, 33] 1033.49 564.80

2A [0, 22] 1153.64 1.42 [0, 33] 1150.52 3.90 [0, 22] 1145.59 12.92

3A [0, 33] 1316.28 17.91 [0, 33] 1307.67 212.62 [0, 33] 1307.68 (0.09% gap) 86400

1B [0, 33] 1322.12 144.84 [0, 33] 1294.49 2466.65 [0, 33] 1294.50 (0.24% gap) 86400

2B [0, 22] 1509.33 2.10 [22, 22] 1394.32 18.67 [22, 22] 1394.31 (0.03% gap) 86400

3B [0, 33] 1522.43 25.31 [22, 22] 1441.17 382.16 [22, 22] 1441.23 (0.50% gap) 86400

Table 2.8: Optimal value of the first-stage variables x0∗ and total cost and CPU time (in seconds) for

the Rolling horizon approach with W = 1 and W = 2, respectively, for instances belonging to Case

(1) with deadline T = 3 (i.e. four-stage) and unit inventory costs equal to 20% of the item price.

W = 1 W = 2

Instance Total cost CPU s Total cost CPU s

1A 0.002% -97.75% 0.001% -84.75%

2A 0.70% -89.00% 0.43% -69.81%

3A 0.66% -99.98% -0.0008% -99.75%

1B 2.13% -99.83% -0.0008% -97.15%

2B 8.25% -99.99% 0.0008% -99.98%

3B 5.63% -99.97% -0.004% -99.56%

Table 2.9: Comparison in terms of objective value and CPU seconds of the solution provided by the

Rolling horizon approach, with W = 1 and W = 2, respectively, with respect to the optimal (or

near-optimal) solution, for instances belonging to Case (1) with deadline T = 3 (i.e. four-stage) and

unit inventory costs equal to 20% of the item price.

Figures (2.1) and (2.2) summarize the comparison between the objective function value of the

optimal (or near optimal) solution and the objective function value of the Rolling horizon approach,

for every considered instance based on the different considered W . By considering W = 1 (see Figure

(2.1)), we notice a poor performance, especially in the case with low inventory costs and in the

cases where backordering and transshipment are performed by owned vehicles (Instances 1B, 2B, 3B).

Nevertheless, from Figure (2.2), it is clear that, by considering W = 2, the Rolling horizon approach

performs very well. In this case, the instances for which the Rolling horizon approach performs the

worst are the ones in which only backordering is allowed as recourse action (in particular, if it is

outsourced and if the unit inventory costs are low).

47

Figure 2.1: Total cost comparison between the optimal (or near optimal) solution and the Rolling

horizon approach (RH) for every instance of Case (1) with W = 1 and deadline T = 3 and unit

inventory costs equal to 5% and 20% of the unit item price.

Figure 2.2: Total cost comparison between the optimal (or near optimal) solution and the Rolling

horizon approach (RH) for every instance of Case (1) with W = 2 and deadline T = 3 and unit

inventory costs equal to 5% and 20% of the unit item price.

To summarize, by considering W = 2, the end-of-horizon effect is mitigated (and in most instances,

stability of the first-stage solutions is achieved). As a matter of fact, with W = 2, the solution provided

by the Rolling horizon approach suggests to deliver an equal or higher amount of pallets than the one

provided with W = 1. As a consequence, if a manager has to consider an horizon of 4 stages, it is

sufficient to solve a three-stage stochastic program to end up with a good quality solution with low

computational effort. Furthermore, considering W = 2 and instance 2A with low and high inventory

costs, the end-of-horizon effect is only partially mitigated in the case of low inventory costs, as the

48

discrepancy with respect to the quantities delivered in the optimal solution is higher. In fact, with low

inventory costs, the Rolling horizon approach suggests to deliver 33 fewer pallets (in total) than the

ones delivered in the optimal solution (which leads to lower warehouse availability at the end of the

second stage). Conversely, with higher inventory costs, the Rolling horizon approach delivers 11 more

pallets in total (which, in turn, leads to a superior warehouse availability at the end of the second

stage). As such, the impact of the end-of-horizon effect caused by the Rolling horizon approach on

total costs is different. In the first case (with low inventory costs), there is more need for backordering

operations or more stockout, while in the second case (with high inventory costs), the inventory costs

will be higher.

Performance of the Rolling horizon approach with T = 4

In this subsection, we test the performance of the Rolling horizon approach on all the instances of

case (1), by considering W=1 and a deadline T = 4 (that is, the five-stage model).

We report the outcomes in Table 2.10. From the results, we can see that the Rolling horizon

approach provides a better solution than the one of the recourse problem, only in three cases out of

six, and, specifically, for those in which transshipment is outsourced and allowed, and for the one with

transshipment as unique recourse action performed by owned vehicles. Consequently, it cannot be used

as a valid tool for solving the five-stage model and alternative methods will be evaluated for future

developments.

W = 1 Optimal policy

Instance x0∗ Total cost CPU s x0∗ Total cost CPU s

1A [0, 33] 1315.02 5026.45 [0, 33] 1342.80 (11.81% gap) 86400

2A [0, 22] 1508.93 34.3 [33, 33] 1247.19 (0.06% gap) 86400

3A [0, 33] 1621.59 8330.65 [22, 22] 1828.57 (37.70% gap) 86400

1B [0, 33] 1642.69 18246.75 [22, 33] 1479.94 (19.44% gap) 86400

2B [0, 33] 1927.41 266.43 [33, 33] 1348.11 (1.52% gap) 86400

3B [0, 33] 1880.19 11748.6 [11, 33] 2026.69 (44.10% gap) 86400

Table 2.10: Optimal value of the first-stage variables x0∗ and total cost and CPU time (in seconds)

for the Rolling horizon approach with W = 1, for instances belonging to case (1) with deadline T = 4

(i.e. five-stage model) and unit inventory costs equal to 5% of the item price.

49

W = 1

Instance Total cost CPU s

1A -2.07% -94.18%

2A 20.99% -99.96%

3A -11.32% -90.36%

1B 11.00% -78.88%

2B 42.97% -99.69%

3B -7.23% -86.40%

Table 2.11: Comparison in terms of objective value and CPU seconds of the solution provided by the

Rolling horizon approach, with W = 1, with respect to the optimal (or near-optimal) solution, for

instances belonging to Case (1) with deadline T = 4 (i.e. five-stage) and unit inventory costs equal to

5% of the item price.

2.6 Managerial insights

In this section, we summarize the managerial insights which can be drawn from our computational

experiments.

First, we have shown that case (1) is very difficult to be solved by the state-of-the-art solvers. For

some instances belonging to this case, we are able to obtain the optimal solution in a time limit of

86,400 seconds, only up to three-stages. Thus, managers should consider the idea of using heuristics,

such as the Rolling horizon approach.

As a consequence, the performance of the Rolling horizon approach has been tested. The results

show that, in general, by properly decomposing the time horizon on which the stochastic program has

to be repeatedly solved, managers can get an advantage from using this heuristic approach both in

terms of solution quality and of time. However, it is important for practitioners to carefully evaluate

the average performance of the Rolling horizon approach in the particular set of instances which the

company is interested to. As an example, in the case in which only outsourced backordering is allowed

as recourse action, the performance of the Rolling horizon approach does not provide a good quality

solution. Furthermore, the higher the inventory costs, the better the performance of the Rolling horizon

approach is, as the delivered quantities are more stable.

Finally, through an extensive sensitivity analysis, we got multiple insights. Firstly, practitioners

should rely both on transshipment and on backordering, and they should outsource these recourse

operations (especially in cases where backordering is allowed). Secondly, managers would be able to

take a less myopic decision if they consider a longer time horizon (particularly, if the recourse actions are

performed by owned vehicles with high capacities and the inventory costs are low). Thirdly, higher unit

inventory costs impact more in the case in which transshipment is performed by the company through

50

owned vehicles with high capacities. Finally, based on the choice of outsourcing the recourse operations

or doing them internally, practitioners should carefully evaluate the vehicle capacities impact.

2.7 Conclusions

In this paper, we studied a distribution logistic system with transshipment and backordering with

stochastic demand and proposed a multi-stage stochastic model. Two optimal policies for polynomially

solvable cases have been presented and they turned out to be critical as GUROBI was able to provide a

solution just up to the fifth-stage. Furthermore, since the general case cannot be solved to optimality

in reasonable time starting from the fourth-stage, it is valuable to use heuristic methods. For this

reason, we tested the performance of the Rolling horizon approach and we found out that, if the

reduced time horizon is properly chosen, this heuristic provides good quality results with a very reduced

computational effort. Finally, through a sensitivity analysis, we drew managerial insights concerning

the time horizon, the unit inventory costs and the vehicle capacities influence on the optimal solution.

Future developments of this work include a worst-case analysis of the Rolling horizon approach

applied to this problem. Finally, considering that every subproblem of the Rolling horizon approach

can be solved to optimality within the time limit of 86,400 seconds only up to the four-stage model,

the performance of this approach under time limits for the five-stage model will be investigated and

compared to the solution obtained by solving the full stochastic program.

51

Chapter 3

A two-stage stochastic optimization

model for the Bike sharing

allocation and rebalancing problem

Authors: Rossana Cavagnini1, Luca Bertazzi2, Francesca Maggioni3 and Mike Hewitt4

(An extract of this chapter is under evaluation in Omega. Manuscript Reference Number: OMEGA 2018 539)

Keywords: Bike sharing, Rebalancing, Stochastic programming, Stochastic solution analysis.

1University of Bergamo, Via dei Caniana, 2, Bergamo, Italy, e-mail: r.cavagnini@studenti.unibg.it
2University of Brescia, Contrada Santa Chiara, 50, Brescia, Italy, e-mail: luca.bertazzi@unibs.it
3University of Bergamo, Via dei Caniana, 2, Bergamo, Italy, e-mail: francesca.maggioni@unibg.it
4Loyola University Chicago, Chicago, U.S.A, e-mail: mhewitt3@luc.edu

52

3.1 Introduction

Bike sharing systems are becoming more prevalent and popular throughout the world, doubling

their number from 550 in 2012, to more than 1000 in 2016 (World Economic Forum [92] (2016)).

In North America, bike sharing systems can be found in New York, Chicago, Washington, the San

Francisco Bay Area, and Boston, whereas in South America, they can be found in Buenos Aires and

Rio de Janeiro. In Europe, systems can be found in Copenhagen, London, and Paris. Finally, in

Asia, the Wuhan and Hangzhou systems are two of the largest in the world, whereas in Oceania, large

bike sharing systems can be found in Brisbane and Melbourne. The prevalence of these systems can

be attributed to an increasing interest in reducing pollution and traffic, as well as promoting healthy

lifestyles, worldwide.

Bike sharing systems provide a fleet of bikes for use (typically via a rental agreement) by different

individuals throughout the day. These systems typically consist of a depot (or set of depots), wherein

bikes are stored at the beginning of the day, and multiple stations located throughout the city, from

which an individual can withdraw a bike for a (usually short) journey and then return that bike when

done. We note that the rider need not return the bike to the station from which it was withdrawn.

These stations typically have a fixed number of slots for holding bikes, although their capacity can be

expanded on a temporary basis. Finally, these stations often have technology that enables them to

communicate information regarding their status (e.g. how many bikes are currently there) to a central

manager/planner.

Typically, bike sharing systems are financed by public and/or private entities and managed by

service providers, who are involved in strategic, tactical, and operational decision-making. Strategic

decisions can include determining the number, location, and capacity of stations for bike rental and

return, whereas tactical decisions can include fleet sizing and allocation decisions. Daily, operational

decisions include determining how to periodically re-destribute bikes to stations.

This paper studies a bikesharing system composed of one depot (with an initial availability of bikes)

and multiple capacitated stations. The capacity of the stations can be enlarged by individuals who

can accept returning bikes even when the station is at capacity (the so called “valet service”). The

service provider has to decide first how to allocate bikes to stations and then how to re-distribute

bikes among stations, to rebalance the system. Rebalancing is performed after the realization of the

demand, through a capacitated vehicle that follows a given route. The service provider tries to limit

the cases in which an individual arrives at a station in hopes of renting a bike, but none is available (a

situation we refer to as “starvation”). On the other hand, the service provider tries to limit the cases

in which an individual seeks to return a bike to a station, but the station is already full (a situation

we refer to as “congestion”). Both cases negatively impact the user’s experience with the bike sharing

53

service, as they both (potentially) require the user to travel to another station. At the same time, they

are somewhat competing objectives, as the more bikes allocated to a station, the less the likelihood of

a starvation event, but the greater the likelihood of a congestion event. The service provider may also

seek to limit the size of the bike fleet in use (to prevent it from demages and deterioration), as well as

the number of bikes that are redistributed through the day.

We formulate a two-stage stochastic optimization model for allocating and re-distributing bikes,

and show that explicitly acknowledging uncertainty leads to improvements along multiple performance

dimensions over using a deterministic model. Specifically, our stochastic program includes objectives

that measure each of the performance dimensions mentioned above (congestion, starvation, fleet size,

rebalancing frequency). The impact of the stochastic demand on the problem solution is examined,

showing the benefits of the proposed methodology in the solution quality when compared to solving

the deterministic equivalent formulation. Nevertheless, by assessing the upgradeability of solutions

from a deterministic version of this problem, we derive a heuristic procedure for solving the stochastic

program that significantly reduces its solution time without losing solution quality.

To evaluate the plan produced by the stochastic program, we execute it in the context of a simulation

of one week of operation for the San Francisco bike sharing system. To measure the impact of this

plan on user experience, during this simulation we compute the frequency of congestion and starvation

events at stations. To measure its impact on penalties, we measure the number of bikes allocated to

and reallocated between stations. As the allocation of bikes to stations can be seen as an inventory

problem, we propose heuristics based on a Newsvendor model-type analysis that differ in how the

critical ratio is calculated. We see that the stochastic program is superior, as it outperforms both the

Newsvendor heuristics and the actual plan on all dimensions.

The chapter is organized as follows. In Section 3.2, we discuss the relevant literature, and contrast

both the problems studied and methodologies with the research proposed in this paper. Next, in

Section 3.3, we describe the problem and, in Section 3.4, we formulate the associated model and we

introduce the Newsvendor model based heuristics. In Section 3.5, we present computational results

and analysis, while Section 3.6 includes managerial insights. Finally, Section 3.7 provides conclusions

and suggestions for future works.

3.2 Literature Review

In this section, we review the literature that is relevant to the problem we study. It has five key

features: (1) it includes various and contrasting objectives, as it considers both measures of customer

service and the penalties associated with providing that service; (2) it is stochastic, as it explicitly

54

recognizes that both the number of bikes rented from and returned to each station is not known with

certainty but a probability distribution is given; (3) it captures the opportunity to rebalance bikes

at a point in time later in the day; (4) it considers that rebalancing is done with a fixed and static

route, as motivated by the advantages highlighted in Erera, Savelsbergh, and Uyar [32] (2009), such

as the regularity of the service, the simplification of the planning process and the familiarization of

drivers with the delivery area. This is a fundamental difference from much of the existing literature, as

much of it also considers the opportunity to determine the vehicle route used to support rebalancing

each day; (5) it includes the presence of a Valet service, wherein station capacity is augmented by

another resource (an individual) who can accept returning bikes. This service has been provided

by the bikesharing system of Chicago (www.divvybikes.com/valet). When discussing the relevant

literature, we will highlight how that work compares with respect to these features.

A natural categorization of the relevant literature is into problems that recognize uncertainty in

bike usage and those that do not. Thus, in subsection 3.2.1 we first review the literature that considers

deterministic problems and then, in subsection 3.2.2, the literature that studies problems that recognize

this source of uncertainty. However, there is a literature on dynamic rebalancing problems, wherein

(rebalancing) decisions are made while bikes are in use and thus, in subsection 3.2.3, we provide also

a discussion on that literature.

3.2.1 Deterministic bikesharing problems

The majority of papers in the literature assumes that the use of bikes (i.e. how many are withdrawn

from and returned to each station) is known when allocation and (potentially) rebalancing decisions

are made. Raviv and Kolka [76] (2013) propose a deterministic bi-objective inventory model, in which

the only decision to take is the initial allocation of bikes to stations. The model penalizes both when

a user cannot withdraw a bike from a given station because it has stocked out as well as when a user

cannot return a bike to a given station because it is at capacity. The model then seeks to minimize the

sum of these penalties. However, these penalties are the same for all stations. In contrast, we propose

to base these penalties on the distance between a station and the next closest station to capture that

the individual may have to travel to that next closest station to either rent or return a bike. Differently

from our work, this model also does not consider the option to rebalance at a later point in time.

Much of the literature focuses on what is referred to as the static bike rebalancing problem (BRP),

which models the rebalancing of bikes at a point in time where there is very little usage (e.g. late

at night). Such a problem can be viewed as a static pickup and delivery problem. A review and

classification of this family of problems is presented in Berbeglia, Cordeau, Gribkovskaia, and Laporte

[9] (2007). According to their classification, the problem we study is most similar to the one-to-one

55

PDP (pick up and delivery problem) with transshipment, since each rebalancing flow has exactly one

pickup station and one delivery station, and these stations are determined by the order in which the

rebalancing route visits stations. However, in contrast to our problem, this variant of the PDP does

not model the customer service aspect of the problem.

Conversely, Raviv, Tzur, and Forma [77] (2013) model the static rebalancing problem with a

multi-objective mathematical program wherein they seek to minimize an objective that consists of

three terms: (1) penalties for stockouts, (2) penalties for stations being at capacity when users wish to

return bikes, and, (3) the operational costs incurred when rebalancing. They present two formulations

of the problem, with the first restricting how rebalancing can be performed in order to make the model

easier to solve. The second formulation then relaxes some of those restrictions. A variant of the first

formulation is also studied in Forma, Raviv, and Tzur [35] (2015) and in Ho and Szeto [45] (2014).

Benchimol, Benchimol, Chappert, De La Taille, Laroche, Meunier, and Robinet [8] (2011), Chemla,

Meunier, and Calvo [22] (2013), and Erdoğan, Laporte, and Calvo [31] (2014) also focus on the static

rebalancing problem. In addition, all three propose models that seek to minimize some measure of the

costs incurred by rebalancing. Benchimol, Benchimol, Chappert, De La Taille, Laroche, Meunier, and

Robinet [8] (2011) and Chemla, Meunier, and Calvo [22] (2013) model the desire to avoid starvation

and congestion with the use of pre-determined target levels for the number of bikes at each station

after rebalancing. Brinkmann, Ulmer, and Mattfeld [14] (2016) also consider a target level for the

number of bikes at each station, but minimizes an objective that measures deviations from those

targets. Similarly, Erdoğan, Laporte, and Calvo [31] (2014) presume a pre-determined range for how

many bikes should be at each station, while we only impose a lower bound and similarly to our model,

Erdoğan, Laporte, and Calvo [31] (2014) assume rebalancing is done with a single vehicle that follows

a fixed route. Finally, Dell’Amico, Hadjicostantinou, Iori, and Novellani [28] (2014) and Dell’Amico,

Iori, Novellani, Stützle, et al. [29] (2016) propose models that minimize rebalancing costs with the use

of a fleet of capacitated vehicles, instead of a unique vehicle.

3.2.2 Stochastic bikesharing problems

We next turn our attention to models that recognize uncertainty in how bikes will be used. Lu

[54] (2016) studies a problem that focuses on both the initial allocation and rebalancing of bikes,

wherein there is uncertainty in how bike usage will deviate from what is expected. Their objective

measures bike supply cost, inventory and redistribution costs, and penalties associated with stock-outs.

Differently from our approach, they propose a robust model of this problem that seeks to minimize

their objective under a maximum demand scenario generated from two different uncertainty sets.

Brinkmann, Ulmer, and Mattfeld [13] (2015) present a stochastic model of the rebalancing problem in

56

which they seek to minimize the expected number of starvations. They present heuristics for solving

this model. Conversely, Datner, Raviv, Tzur, and Chemla [27] (2017) focus solely on determining

the initial allocation of bikes to stations, with the goal of minimizing the frequency of congestion and

starvation events under demand realizations drawn from a stochastic process. However, in contrast to

our model, they do not consider station capacities or that the fleet of bikes that may be allocated to

stations can be of limited size.

Bike sharing systems are, in a sense, similar to car sharing systems. Fan [33] (2014) proposes a

multistage stochastic model for allocating and redistributing cars wherein they consider uncertainty

in the demand for cars at each “station”. Their model seeks to maximize expected profit, which

is calculated as the difference between total revenue and rebalancing costs. However, they do not

consider the quality of service provided by the system (i.e. the number of starvation or congestion

events) and they use only three scenarios, while our work presents an extensive study to better describe

the uncertainty.

3.2.3 Dynamic rebalancing problem

In contrast to the static rebalancing problem, wherein it is assumed that rebalancing is done at

night when no bikes are in use, researchers have also studied a dynamic rebalancing problem, wherein

rebalancing is done while bikes are in use. As a result, in the dynamic problem, the locations of bikes

may change during the rebalancing operation. For this problem, Ghosh, Varakantham, Adulyasak,

and Jaillet [37] (2017) propose a deterministic optimization model that seeks to maximize a measure

of profit that is a function of both user ride length and rebalancing costs. Finally, Regue and Recker

[78] (2014), present a sequential framework for the dynamic rebalancing problem. The first step in this

framework is to forecast demand at each station, from which a target inventory level for that station

is determined. The second step is to determine a rebalancing plan based upon those target inventory

levels, which dictates how many bikes should be transported from one station to another. Then, the

third step is to determine vehicle routes to execute that rebalancing plan.

3.3 Problem description

In this section, we provide a description of the problem. Specifically, we study a bikesharing system

managed by a service provider wherein the decision-making is centralized. The service provider has

to determine the number of bikes to allocate at the beginning of the day and how they should be

rebalanced at a later point in the day, under uncertain demand. When making these decisions, the

service provider seeks to both ensure that a customer who seeks to rent a bike from a specific station

57

can do so, and, that a customer who seeks to return a bike to a specific station can do so. In addition,

the service provider wishes to provide a high level of service with few bikes and little rebalancing. We

consider a single depot (although the methods we propose could be extended to systems with multiple

depots) and multiple stations, which are represented by the set I. Since we presume rebalancing is

done via a fixed route, I is an ordered set, with the ordering determined by the sequence in which the

route visits stations. Since the route ends at the depot, we consider the depot as such a station, and

represent it by I (∈ I). We assume that there is a limited number of bikes II0 at the depot that can

be allocated to stations and that this number also corresponds to the depot capacity. On the other

hand, each station i ∈ I \ {I} is characterized by a bike capacity Qi and by a number of bikes that is

initially at that station, Ii0 (which may be 0). We presume rebalancing is executed by a vehicle with

capacity C, that travels along a known and fixed route (determined a priori by solving a Travelling

Salesman Problem (TSP)) that begins at the depot, visits each station, and then ends at the depot.

Finally, while each station has a capacity, it can also be expanded on a temporary basis using what

has been referred to as a “valet service”, which involves stations being staffed with individuals who

can accept returning bikes even when the station is at capacity.

3.4 A two-stage stochastic programming formulation

In this section, we propose a two-stage stochastic programming formulation of the problem pre-

sented in Section 3.3. At the beginning of the day (say 6 a.m.), the first stage decision is to determine

the number of bikes to deliver from the depot to each station i ∈ I \ {I} (before knowing the station

demand) and we represent it with the variables xi. In order to ensure that a station can satisfy bike

rental requests in the early hours, before any bikes are returned, we compute a minimum number of

bikes that have to be allocated to each station, xi (which may be 0).

We presume that, when the decision regarding the allocation of bikes to stations is made, only a

probability distribution of station demand is known. Recalling that the bike demand level at each

station i ∈ I \ {I} is a random variable, we denote the set of possible realizations (or scenarios) of

the uncertain parameter with S. Furthermore, we represent the stochastic bike demand at station

i ∈ I \{I} in scenario s ∈ S with dsi and the probability assigned to each scenario s ∈ S with prs. Bike

sharing systems are rental systems. Thus, product demand is different from what is considered in many

inventory models wherein products are purchased, and from the supplier’s perspective, disappear. As

such, we measure demand at the station level, and during the period between when bikes are initially

allocated and redistributed, as the difference between the number of rented and returned bikes at that

station during that period. Note, this means that dsi may be either positive (more bikes withdrawn

58

from station i than returned in scenario s) or negative (more bikes returned to station i than withdrawn

in scenario s).

Then, we presume that at a later point in the day (say 12 p.m.), after the system has been in

use and consequently stations’ demand has realized, the service provider observes the number of bikes

at each station and determines a rebalancing plan. As a result, we model the determination of this

rebalancing plan with second stage, scenario-dependent variables ysi,i+1, which dictate the number of

bikes to re-distribute from station i ∈ I \ {I} to the next station on the fixed route. We do not

currently model the opportunity to allocate bikes from the depot to a station during the rebalancing

operation. However, the model can be extended to accommodate that operation. We notice that doing

so allows us to measure the ideal fleet size as the total number of bikes initially allocated to stations.

On the other hand, if we allowed rebalancing from the depot, the number of allocated bikes could not

be representative of the fleet size, as it could be adjusted according to scenario realization.

We illustrate the sequence of decisions and events in Figure 3.1.

Figure 3.1: Illustration of the two-stage decision-making process

We recall that our problem includes different objectives. Specifically, the service provider seeks to

avoid the occurrence of both congestion (a user wishes to return a bike to a station but it is full) and

starvation (a user wishes to rent a bike from a station but it is empty). At the same time, the provider

seeks to minimize both the number of bikes allocated to prevent bikes damage and rebalanced. To

handle these different objectives, we next discuss how we measure each of these dimensions.

Starvation is measured by the number of bike rental requests at a station during the period of time

between initial allocation and rebalancing that are in excess of the number of bikes that are positioned

59

there at the end of the second stage, which we denote as Is−i , i ∈ I \ {I}. We refer to the weight

associated with starvation as the “stock-out penalty” pi, i ∈ I \{I}. Congestion is measured with two

terms, Bs+i , i ∈ I \ {I} and Es+i , i ∈ I \ {I}, with the first measuring the number of bikes at a station

above and beyond the number initially allocated (which we term “extra inventory”), and the second

measuring the number of bikes in excess of station capacity (which we term “excess inventory”). We

refer to the weight associated with “excess inventory” as the “excess penalty,” ci, ∀i ∈ I \ {I} and

the weight associated with “extra inventory” as the “extra penalty,” ci
Qi
, ∀i ∈ I \ {I}.

We choose to model both extra and excess inventory for multiple reasons. First, we interpret the

first stage decisions as indicating the inventory level for bikes at each station that best prevents both

congestion and starvation. Thus, we penalize when there are more bikes (but fewer that the station

capacity) at a station than in that initial allocation. Second, as we seek to limit the occurrence of

congestion, we penalize if the surplus with respect to the station capacity occurs, since it implies higher

operational costs due for having a staff member at a station (“valet service”).

Regarding the penalties associated with providing the service, the objective contains a term regard-

ing initial allocation, which is measured as the number of bikes allocated to each station. A “delivery

penalty”, fi, ∀i ∈ I \ {I}, is associated with this number. Finally, the objective includes a term

regarding re-balancing, which is measured by the total number of bikes moved between stations. The

weight associated with this quantity is referred to as the “rebalancing penalty” ti,i+1, i ∈ I \ {I}.

To address this problem, we now summarize the notation and we propose an integer non linear

stochastic program, which we linearize (details in Appendix II.a) in order to solve it with an off-the-

shelf mixed integer programming (MIP) program solver.

Notation.

Sets:

I = {1, . . . , I}, set of stations (depot included);

S = {1, . . . , S}, set of scenarios;

Deterministic parameters:

xi, minimum number of bikes that has to be allocated to station i ∈ I \ {I};

II0, initial availability of bikes at the depot and depot capacity;

Qi, capacity of station i ∈ I \ {I};

Ii0, initial availability of bikes at station i ∈ I \ {I};

C, capacity of the vehicle used for transshipment;

pi, stock-out penalty at station i ∈ I \ {I};

ci, excess penalty at station i ∈ I \ {I};

60

ci
Qi

, extra penalty at station i ∈ I \ {I};

fi, delivery penalty at station i ∈ I \ {I};

ti,i+1, rebalancing penalty at station i ∈ I \ {I};

Stochastic parameters:

dsi , stochastic demand of bikes at station i ∈ I \ {I} in scenario s ∈ S;

prs, probability of scenario s ∈ S;

Variables:

xi ∈ Z+, first-stage variables representing the number of bikes to allocate at station i ∈ I \ {I};

ysi,i+1 ∈ Z+, second-stage variables representing the number of bikes to relocate from station i ∈ I\{I}

to station i+ 1;

Isi ∈ Z, balance of bikes at station i ∈ I \ {I} in scenario s ∈ S;

Is+i ∈ Z+, units of surplus at station i ∈ I \ {I} in scenario s ∈ S;

Is−i ∈ Z−, units of stock-out at station i ∈ I \ {I} in scenario s ∈ S;

Bsi ∈ Z, extra inventory balance at station i ∈ I \ {I} in scenario s ∈ S;

Bs+i ∈ Z+, units of extra inventory at station i ∈ I \ {I} in scenario s ∈ S;

Esi ∈ Z, excess inventory balance at station i ∈ I \ {I} in scenario s ∈ S;

Es+i ∈ Z+, units of excess inventory at station i ∈ I \ {I} in scenario s ∈ S;

The model is:

Problem B

min
∑
i∈I

fixi +
∑
s∈S

prs[
∑

i∈I\{I}

(ti,i+1y
s
i,i+1 +

ci
Qi
Bs+i + ciE

s+
i + pi(−Is−i))] (3.1)

s.t:

xi ≥ xi i ∈ I \ {I} (3.2)

Ii0 + xi ≤ Qi i ∈ I \ {I} (3.3)∑
i∈I\{I}

xi ≤ II0 (3.4)

ysi,i+1 ≤ C i ∈ I \ {I}, s ∈ S (3.5)

IsI = II0 −
∑

i∈I\{I}

xi + ysI−1,I s ∈ S (3.6)

IsI ≤ II0 s ∈ S (3.7)

Is1 = I10 + x1 − ds1 − ys1,2 s ∈ S (3.8)

61

Isi = Ii0 + xi − dsi + ysi−1,i − ysi,i+1 i ∈ I \ {1, I}, s ∈ S (3.9)

Is+i = max{0, Isi } i ∈ I \ {I}, s ∈ S (3.10)

Is−i = min{0, Isi } i ∈ I \ {I}, s ∈ S (3.11)

Esi = Is+i −Qi i ∈ I \ {I}, s ∈ S (3.12)

Es+i = max{0, Esi } i ∈ I \ {I}, s ∈ S (3.13)

Bsi = Is+i − xi − Ii0 − E
s+
i i ∈ I \ {I}, s ∈ S (3.14)

Bs+i = max{0, Bsi } i ∈ I \ {I}, s ∈ S (3.15)

xi ≥ 0 integer i ∈ I \ {I} (3.16)

ysi,i+1 ≥ 0 integer i ∈ I \ {I}, s ∈ S (3.17)

Isi free and integer i ∈ I \ {I}, s ∈ S (3.18)

Is+i ≥ 0 integer i ∈ I \ {I}, s ∈ S (3.19)

Is−i ≤ 0 integer i ∈ I \ {I}, s ∈ S (3.20)

Bsi free and integer i ∈ I \ {I}, s ∈ S (3.21)

Bs+i ≥ 0 integer i ∈ I \ {I}, s ∈ S (3.22)

Esi free and integer i ∈ I \ {I}, s ∈ S (3.23)

Es+i ≥ 0 integer i ∈ I \ {I}, s ∈ S (3.24)

The objective function (3.1) represents the minimization of the total expected penalty, obtained

through the sum of all the charged penalities for delivery, rebalancing, extra and excess inventory

and stock-out. Constraints (3.2) impose that the delivered quantity to each station has to be at least

as great as the initial requirement at that station. Constraints (3.3) guarantee that the sum between

the quantity allocated and initially available at each station does not exceed the station capacity.

Constraint (3.4) implies that the total number of delivered bikes to stations is less than the available

quantity at the depot. Constraints (3.5) ensure that the number of bikes carried by the vehicle during

rebalancing never exceeds its capacity in each scenario s ∈ S. We recall that rebalancing occurs on

a fixed route that begins and ends at the depot, but that rebalancing does not involve bringing bikes

from the depot to the first station on this route. As such, constraints (3.6) ensure that, for the depot,

in each scenario s ∈ S, the quantity at the end of the period is equal to the initial bike availability

and the quantity received from the last visited station minus the quantities delivered to stations. Con-

straints (3.7) ensure that, in each scenario s ∈ S, at the end of the rebalancing period, the number of

62

bikes at the depot does not exceed its capacity. Moreover, the “flow balance” constraints for bikes at

the first station on this route is different from the remaining stations. Specifically, constraints (3.8)

ensure that, for the first visited station, the quantity at the end of rebalancing is equal to the sum

between the initial available quantity and the quantity received from the depot minus the quantities

used to satisfy the demand and those bikes that are redistributed to subsequent stations on the route

in each scenario s ∈ S. Similarly, constraints (3.9) determine the inventory position (which can be

negative or positive) at a station other than the first, as a function of the initial inventory level, the

number allocated, the number withdrawn/returned, and the number redistributed to another station

in each scenario s ∈ S. Constraints (3.10) and (3.11) determine the surplus and stock-out quantities,

respectively, for each station and for each scenario s ∈ S. Recalling that we model the presence of

a valet service, wherein bikes can be returned to stations that are full, constraints (3.12) and (3.13)

calculate the number of bikes at each station that are in excess of station capacity, in each scenario

s ∈ S. Similarly, constraints (3.14) and (3.15) determine, for each scenario s ∈ S, when there are

more bikes positioned at a station after rebalancing than were initially allocated, but not more than

station capacity. If there is, these constraints ensure that Bs+i represents that number of bikes. Finally,

Constraints (3.16) to (3.24) are variable definition constraints.

We notice that, in this model, infeasibility cannot occur since there are no constraints imposing

the demand satisfaction and if there are no bikes to satisfy the demand or if the station is more than

full, a penalty is added in the objective function.

3.4.1 Newsvendor-based heuristics

The problem of determining the initial bikes allocation can be seen as an inventory model as we

have penalties associated to inventory and stock-outs. Consequently, practitioners may be interested

in assessing the quality of the solution if a Newsvendor model approach is used. In this section,

we propose three heuristics for determining the initial allocation of bikes to stations. Each can be

classified as a Newsvendor model-based approach (Cachon and Terwiesch [16] (2009)). Recall that

the Newsvendor model is appropriate for a single-period inventory context wherein there is a penalty

associated with stocking out (e.g. penalties associated with lost sales) that needs to be balanced

against costs associated with having excess inventory (e.g. holding costs, salvage costs). It has been

shown that there is a percentage of demand that should be served by inventory on-hand that maximizes

profit. This percentage is often referred to as the critical ratio.

To use a Newsvendor (Cachon and Terwiesch [16] (2009)) approach, we calculate a critical ratio for

each station that is a function of an underage component (the loss incurred with each stock-out, or,

in our case, each customer that cannot rent a bike at a station when he/she wants to) and an overage

63

component (the loss incurred for each extra bike allocated to a station). Specifically, the critical ratio

is calculated as underage/(underage + overage). We call these ”Sequence based heuristics (SBH)”

and execute them by solving the stochastic program presented above, albeit with the values of the

first-stage variables fixed to those indicated by the heuristic (the detailed algorithm is presented in

Appendix II.c). Consequently, the number of bikes to allocate to each station, which is determined by

these Newsvendor approaches, is used as input in our original stochastic program, which returns the

rebalancing decisions as output.

For all three heuristics, the underage is set to the “stock-out penalty”, pi, that is used in the

objective function of the stochastic program. The heuristics differ in how the overage is calculated,

which we discuss below:

• CR1: CRi = pi
pi+ci

. In this case, the overage component accounts only for the penalty, ci,

associated with having bikes in excess of station capacity.

• CR2: CRi = pi
pi+ci+fi+

ci
Qi

. In this case, the overage component includes the excess penalty, ci,

as well as the penalty, fi, associated with delivering a bike to that station. However, the overage

also includes the penalty ci/Qi incurred when there are “extra” bikes at a station relative to the

initial allocation.

• CR3: CRi = pi
pi+0.5ci+0.5(fi+

ci
Qi

)
. The overage component again considers the cost of delivering

a bike to a station. However, as the excess and extra penalties are not paid at the same time,

the overage component is based on a 50% chance of each occurring.

Once the critical ratio is calculated, we determine the number of bikes to allocate. Specifically,

for each station, we compute its cumulative probability distribution of the demand and, in order

to establish the first stage variable, we select the demand level which corresponds to the value of

the cumulative probability distribution equal to the critical ratio. Since we want to ensure that the

minimum requirement xi is met, letting xi(CRi) represent the quantity to be allocated to station i

that is prescribed by the critical ratio, we set the number of bikes to allocate to station i equal to

xNHi = max(xi(CRi), xi). However, as the calculation of CRi does not consider that there may be

a limited number of bikes in total, II0 (while the stochastic program recognizes this), we may have∑
i∈I\{I} x

NH
i > II0. When that is the case, we assume an ordering to the stations (derived from the

order in which the vehicle visits the stations), and allocate bikes to stations in that order. Specifically,

the heuristic delivers the determined quantity starting from the first visited station, and then continues

on delivering to each subsequent station, until either there are no more bikes or each station has received

its allocation. Notice that, coherently with the stochastic program, we do not assume a capacity for

the vehicle used for allocating bikes to stations, so that the allocated bikes are not influenced by the

64

vehicle capacity. Similarly, these CRi calculations do not consider station capacity. As such, if the

newsvendor-derived quantity exceeds a station’s capacity (i.e. xNHi > Qi), the excess is delivered to a

station that occurs earlier in the delivery route and has space left for additional bikes. Specifically, we

distribute the Qi − xNHi excess bikes to stations i′(i′ < i) that are visited before i and are such that

xNHi′ < Qi′ . We provide more details regarding how this is done in Appendix II.c.

3.5 Numerical Results

In this section, we present and analyze the results of our computational study. With this study, we

seek to assess the benefits of modeling uncertainty. We also compare the quality of the initial allocation

plan prescribed by the solution to the stochastic program with an estimate based on historical data of

how bikes were allocated in practice. Finally, we benchmark the performance of the Newsvendor-based

heuristics against the solutions provided by the stochastic program.

Our computational study is based on the bike sharing system in San Francisco, CA. Specifically,

we use publicly available data (open data) to simulate the use of different initial allocation plans for

that system, and calculate performance metrics related to customer service and cost. As such, we first

illustrate the state of art of the San Francisco system which also represents the motivation for our

work. After that, we describe how we generated an instance of the stochastic program based upon

this system, as well as how we simulated the use of those initial allocation plans in the context of that

system. We then present the results of our analysis. All computational experiments were run on a

computer with 8 GB of RAM and a 2.70 GHz CPU. All software was implemented in Python 3.6.1,

with optimization problems solved with Gurobi 7.5.1.

3.5.1 State of art of San Francisco bikesharing system

To estimate the magnitude of congestion and starvation in a realistic setting, we simulated the

bike sharing system of the city of San Francisco. This simulation was based on publicly available data

regarding ridership and bike availabilities in the time interval of 6 am to 11:59 am for the months of

May through August, 2016. We illustrate in Figure 3.2a the percentage of minutes with congestion

(computed with respect to the overall considered time interval), by station, and with separate graphs

for weekdays and weekends. We see that congestion is more likely during the week, with some stations

seeing an event 20% of the time. Figure 3.2b is similar, only it reports the percentage of minutes with

starvation. Here we see an even greater frequency, with some stations experiencing a starvation event

in over 30% of the simulated overall time interval.

65

(a) Congestion frequency during weekdays and

weekend

(b) Starvation frequency during weekdays and

weekend

Figure 3.2: Congestion and starvation average frequencies in the real case for year 2016, considering

the months from May to August and the time interval between 6 a.m. and 11.59 a.m.

3.5.2 Test setting

Figure 3.3 illustrates the bike sharing system of the city of San Francisco, with markers indicat-

ing its 33 stations (in August, 2016). Ridership data for this system can be found at the website

www.bayareabikeshare.com/open-data. We derived our instances, and simulation model, from rider-

ship data from the summer months (May through August) in the period of time between August, 2013

(the launch of the bike sharing service) and August 2016. We note that when we first accessed the

website, it was indicated that the system consisted of 350 bikes, and we used that number in both

settings (instances and simulation model).

66

Image created with Google Earth

Figure 3.3: San Francisco bike sharing system

In our computational study, both the allocation penalty, fi, and rebalancing penalty, ti,i+1 are set

to the same value for each station. Specifically, we set fi = 1, and ti,i+1 = 2 for all stations i. We

penalize congestion and starvation by modeling that when a user can not return (withdraw) a bike

to (from) the station they desire, they will instead walk to the next-closest station. As such, we set

both ci = pi = κ(1 + minj∈I:j 6=i δij), for all stations i, where δij is the distance between station i

and j calculated as the geodesic distance using the great-circle distance formula (Banerjee [7] (2005)).

Specifically, we set κ = 46, so that, in most of cases, the model redistributes bikes from a station when

there is extra inventory to one of the following stations (since it is cheaper to rebalance than having

congestion or starvation). Regarding other model parameter values, we presume the vehicle used for

rebalancing bikes has a capacity of 25 bikes. This is the same value that was used in Forma, Raviv,

and Tzur [35] (2015).

Scenario generation

Scenario generation is an important part of the modelling process, since a bad scenario tree can

lead to a not meaningful solution of the optimization problem. We recall that a typical assumption

of stochastic programming is that the distribution of the random variable is known. However, in

most practical applications, the distributions of the stochastic parameters have to be approximated

by discrete distributions with a limited number of outcomes. The discretization is called a scenario

tree. We assume that the random variable given by the demand at each station, has a finite number

of possible outcomes at the end of the considered period, assumed to be exogenous to the problem.

Consequently, the probability distribution is not influenced as well by decisions. Making these as-

sumptions, we can represent the stochastic process demand dsi , i ∈ I, s ∈ S, using a scenario tree

which contains a root and a finite set of leaves. In the problem under consideration, the random vector

67

is high-dimensional, and presents complicated dependencies among stations. These factors make the

uncertainty very difficult to represent. For this reason, we derived an empirical distribution of each

station’s demand as inverse of the Kaplan-Meier estimate of the cumulative distribution function (also

known as the empirical cdf) of the real historical ridership data that we collected and that we denote

as dni , i ∈ I \ {I}, n = 1, . . . , N , where N is the total number of collected data. Specifically, for each

day and each station, we computed the number of withdrawn and returned bikes between 6 am and

11:59 am, and set the demand for that day as the difference between those two numbers (withdrawn-

returned). Since we add penalties in the objective function for extra and excess inventory and for

stockout, we do not bound the demand values to stations capacities. From the empirical demand

distributions, several scenario trees of increasing size are then generated according to a Monte Carlo

sampling procedure. Pseudo-code (1) presents the details for scenario generation. Finally, figures 3.4a

and 3.4b illustrate for two chosen stations in San Francisco a comparison of the empirical distribution

based on 369 real observations and Monte Carlo sampling based on 2,000 observations. Results show

that the two patterns follow a similar behaviour with only a difference in scale, due to the number of

considered samples.

(a) Station 1 (b) Station 2

Figure 3.4: Empirical distributions and Monte Carlo sampling for two different stations

68

Pseudo-code 1: Scenario generation process

1 Input: dni ∈ Z , i ∈ I \ {I}, n = 1, . . . , N

2 for i ∈ I \ {I} do

3 K := {n′, n′′ = 1, . . . , N : dn
′

i 6= dn
′′

i }

4 if dn
′

i < dn
′′

i then

5 n′ < n′′

6 end

7 for k ∈ K do

8 cdfi[k] :=

∑
n′,n′′=1,...,N 1

(dn
′
i

=dn
′′
i

)

N

9 inv.cdfi[k] := dki

10 end

11 for s ∈ S do

12 sample a random number (“random”) in [0,1]

13 for k ∈ K do

14 if random <= cdfi[k] and random > cdfi[k − 1] then

15 dsi = inv.cdfi[k]

16 end

17 end

18 return dsi

19 end

20 end

Determining the size of the scenario tree

In order to understand how many scenarios are needed to obtain a stable objective function, we

performed both an in-sample and out-of-sample stability analysis of our stochastic program, following

the procedure described in Kaut and Wallace [51] (2007). We illustrate the results of these analyses in

Figures 3.5a and 3.5b. Regarding the in-sample analysis, we solved the stochastic program for scenario

trees of increasing size. Figure 3.5a indicates that the objective function value stabilizes with 1,200

scenarios. However, we have to remember that in-sample values are not directly comparable. To be

able to estimate the effect of using a larger scenario tree, we have to compare the out-of-sample costs.

For this purpose, we declare a scenario tree with 2,000 scenarios to be the true representation of the

real world, and we use it as a benchmark to evaluate the cost of the optimal solutions obtained using

scenario trees with a smaller size. We see in Figure 3.5b that convergence is nearly monotonic and

69

decreasing with a percentage gap under 0.1%. We notice that, even if the model is an integer linear

program, an optimal integer solution has always been obtained by solving the continuous relaxation

at the root node. As a consequence, considering that the continuous relaxation of the model with

1,200 scenarios required 66 seconds to solve, whereas one with 2,000 required 115 seconds, we base

our computational study on a set of 1,200 scenarios. We note that we presume the scenarios are

equi-probable, i.e. we set prs = 1
|S| , ∀s ∈ S.

(a) In-sample stability analysis results (b) Out-of-sample stability analysis results

Figure 3.5: In sample and out-of-sample analysis

Notice that, as highlighted in Raviv and Kolka [76] (2013), computing demand as the difference

between the number of withdrawn and returned bikes during a time interval yields what could be

thought of as a “steady-state” demand and ignores the dynamics of the system. As an example,

consider a station where first a bike is withdrawn and then one is returned, and no other bikes are

withdrawn or returned. We would compute the resulting station demand as 0, which in turn would

indicate to the model that no bikes need to be allocated to that station (unless they were allocated

to that station only to be rebalanced later). With zero bikes allocated, however, the first withdrawal

request can not be satisfied. As such, we discuss in Appendix II.b our method for estimating the number

of bikes withdrawn from a station before any are returned, from which we derive the parameter values

xi.

Simulation of the inventory levels

We also use historical ridership data to simulate the performance of our initial allocation of bikes to

stations during the week of June 20, 2016 to June 26, 2016. Given a day during this week, we simulate

the movement of bikes based on rides taken on that day, and record statistics related to congestion and

starvation. Specifically, regarding congestion, we record the number of times during the simulation

a user wants to return a bike to a station, but it is full. Similarly, regarding starvation, we record

70

the number of times during the simulation a user wants to withdraw a bike from a station, but it is

empty. Then, we have a final inventory level at each station, Ifinali = Ii0 + xi − wi + si, where wi

and si stand for the number of withdrawn and returned bikes, respectively, at station i, defined in the

interval of integer numbers [0, Qi], from which we solve the second stage of our stochastic program in

order to determine how rebalancing should be done and the number of bikes rebalanced. Similarly, we

calculate the total number of rebalanced bike miles, as
∑
i,i+1 δi,i+1ȳi,i+1, where ȳi,i+1 indicates how

many bikes should be rebalanced from station i to station i+ 1 according to the rebalancing plan.

Since it could be interesting to observe how the system performs after rebalancing is done, an

alternative perspective on these final inventory levels is to calculate a fill rate-type statistic, wherein

we estimate the percentage of future bike withdrawals they can satisfy. We base this estimate on the

same set of scenarios described above. For a given station, i, and scenario s, we compute the fill rate

as follows:

FRsi =

1 if Ifinali − dsi ≥ 0

Ifinali

dsi
otherwise

(3.25)

We then compute an overall fill rate by averaging this statistic over all stations and scenarios.

3.5.3 Analyzing the value of uncertainty and the quality of the expected

value solution

To assess the value of modeling uncertainty, we compute the Value of the Stochastic Solution (VSS)

(Birge and Louveaux [12] (2011), Kall and Wallace [50] (1994), Maggioni, Allevi, and Bertocchi [58]

(2016)). To do so, we solve the stochastic program presented above on the benchmark scenario tree, to

get its optimal objective function value, RP. We then solve the Expected Value Problem (EV), which

is obtained by solving a deterministic variant of our stochastic program, in which the random demand

parameters are replaced with their expected values, rounded to the nearest integer (bikes demands

cannot be represented by fractional values). We then evaluate how the deterministic solution performs

in the stochastic setting by computing the Expectation of Expected Value, EEV, obtained by fixing the

first-stage expected value decisions in the stochastic program and we compute the (Relative) Value of

Stochastic Solution

V SS = (EEV −RP)/RP = 41.15%,

suggesting that significant gains can be realized by solving the stochastic program versus the expected

value approach.

We also assess how well the initial allocation plans from both the EV problem and the stochastic

program perform in our simulation model, and report statistics related to the performance of each

71

plan in Table 3.1. We see that while the stochastic program allocates 40% more bikes, it leads to a

much smaller frequency of starvation and higher fill rate. The initial plan prescribed by the stochastic

program also requires less rebalancing. However, as it allocates more bikes, the plan prescribed by the

stochastic solution also yields a higher frequency of congestion.

SP EEV

%

Congestion

%

Starvation

Miles

*

Rebalanced

Qty

Expected

Fill

Rate

Extra

Inventory

Qty

% Congestion % Starvation

Miles

*

Rebalanced

Qty

Expected

Fill

Rate

Extra

Inventory

Qty

Mon 8.81% 31.30% 19.95 85.86% 149 5.56% 39.57% 50.65 86.28% 151

Tue 9.21% 28.74% 22.17 86.28% 149 6.53% 38.32% 49.70 86.45% 153

Wed 7.27% 31.11% 16.85 87.55% 158 4.44% 40.50% 46.55 88.13% 163

Thu 6.94% 27.88% 15.34 86.43% 141 4.49% 36.01% 42.78 86.17% 145

Fri 6.68% 25.98% 19.89 86.42% 105 3.23% 36.55% 51.59 87.03% 109

Sat 7.62% 21.36% 3.36 88.22% 37 0.00% 23.30% 3.36 85.26% 37

Sun 0.00% 20.83% 2.31 91.32% 19 0.00% 25% 2.31 88.04% 19

Average 6.65% 26.74% 14.27 87.44% 108.29 3.46% 34.18% 35.28 86.77% 111

Tot

delivered

bikes

154 110

Table 3.1: Simulation-based comparison of solutions to stochastic and deterministic problems.

We next seek to understand why the solution to the EV problem performs poorly in comparison to

the solution to the stochastic program. To do so, we compute two more indicators: the Loss of Using

the Skeleton Solution (LUSS) and the Loss of Upgrading the Deterministic Solution (LUDS) defined

in Maggioni and Wallace [56] (2012).

To compute the LUSS, we examine the solution to the EV problem to determine the subset

of stations Ī to which it allocates more bikes than their initial requirement xi. We then solve the

stochastic program, fixing xi = xi for stations i ∈ I \ Ī. We refer to the objective function value of

the optimal solution to this problem as the Expected Skeleton Solution Value (ESSV) and found the

(Relative) LUSS measure,

LUSS = (ESSV −RP)/RP = 7.95%.

The positive LUSS value means that the expected value solution selects the wrong quantities to deliver

to the wrong stations and its structure (skeleton) cannot be inherited in a stochastic environment.

Relatively, we illustrate in Figure 3.6a the stations in Ī in the solution to the EV problem and in

Figure 3.6b the analogously-determined stations in the solution to the stochastic program SP. From

the figures we can conclude that the solution of the EV model allocates bikes to too few stations

compared to the SP one. Specifically, in the EV solution only 3 stations receive a higher number of

72

bikes than the initial requirement, compared to the SP in which these stations are 12. We also note

that the 3 stations activated in the EV solution are the same activated in the SP solution.

(a) First-stage EV skeleton solution (b) First-stage SP skeleton solution

Images created with Google Earth

Figure 3.6: Distributions of bikes to stations in the EV and SP solutions

This result could justify a deeper investigation of the quality of the Expected Value Solution by

computing the Loss of Reduced Costs-based Variable Fixing (LRCVF) as the difference between the

optimal values of the stochastic problem and its reduced version, obtained by fixing a certain number

of variables taking into account the information from the reduced cost of the expected value solution

(for more details see Crainic, Maggioni, Perboli, and Rei [25] (2017)).

With the LUDS, we seek to determine whether the solution to the EV problem is upgradeable,

i.e. that it can be used as a starting point for generating a high-quality solution to the stochastic

program. To do so, we solve the stochastic program, albeit with additional constraints ensuring that

the values of the first-stage variables are at least as large as their values in the optimal solution to

the EV problem. We refer to the objective function value of the optimal solution to this restricted

stochastic program as the Expected Input Value (EIV) and compute a relative LUDS measure as

LUDS = (EIV −RP)/RP = 0%.

The result means that the EV solution is perfectly upgradable, indicating that solving the EV problem

can be a good start for solving the stochastic program. Besides, we obtained that by first solving the

EV problem, and then the LUDS-restricted stochastic program, the total solution time is reduced by

10% of what it is needed to solve the stochastic program from scratch.

Finally, we study the correlation between the variance in demand at a station and the number of

73

bikes allocated to that station in both the solution to the stochastic program and the solution to the

EV problem. We present a scatter plot of demand variance against number of allocated bikes in Figure

3.7. We observe a high correlation (0.84) in the solution to the stochastic program, suggesting that the

stochastic program allocates more bikes to stations that have a greater variability in station demand.

However, we also see a correlation of 0.64 in the solution to the EV problem. While this may seem

counter-intuititive, as the EV problem does not recognize variance, there is a high correlation between

the average and variance of demand at stations. Thus, we conclude that this correlation coefficient of

0.64 reflects the solution to the EV problem allocating bikes to stations with high average demand.

Figure 3.7: Number of allocated bikes vs demand variance.

3.5.4 Newsvendor-based heuristics

We next seek to assess the quality of the initial allocation plans prescribed by the three Newsven-

dor heuristics previously presented. Recall that they differ with respect to how the critical ratio is

calculated, and thus are labeled CR1, CR2, and CR3. We benchmark the performance of these initial

allocation plans against the plan prescribed by the solution to the stochastic program by looking at the

objective function value and the computational time (Table 3.2) and at our simulation results (Table

3.3).

First, we notice that the stochastic program chooses to allocate more bikes, which in turn leads

to higher first-stage costs with respect to the values obtained through the heuristics. However, the

second-stage costs are lower in the stochastic program solution, while the computational times are

higher than the heuristics. We also observe that the SBH3 performs quite well, since it leads to a

74

second-stage objective value gap of only 1.76% with respect to the stochastic program, obtained with

a considerable reduction in the computational time. Furthermore, we see that, as expected, the higher

number of allocated bikes leads to a higher congestion frequency. However, at the same time, the

allocation plan results in a much lower starvation frequency and less rebalancing. We note that of

the Newsvendor-based heuristics, the third method for computing the critical ratio performs the best.

However, CR3 involves more rebalancing, and has a higher frequency of starvation. We attribute that

the stochastic program outperforms the Newsvendor-based heuristics to the fact that it recognizes

the opportunity to remodel at a later point in the day, the total initial availability and the stations’

capacities.

SP SBH1 SBH2 SBH3

1st stage cost 2nd stage cost sec 1st stage cost 2nd stage cost sec 1st stage cost 2nd stage cost sec 1st stage cost 2nd stage cost sec

MON 155 568.35 66 116 594.38 0.04 113 594.38 0.06 145 574.23 0.05

TUE 155 552.62 66 116 573.88 0.04 113 573.88 0.04 145 558.71 0.04

WED 155 546.82 66 116 577.91 0.04 113 579.91 0.03 145 561.41 0.06

THU 155 500.20 66 116 523.45 0.04 113 523.45 0.04 145 508.20 0.04

FRI 155 374.66 66 116 408.22 0.04 113 408.22 0.04 145 389.29 0.05

SAT 155 138.13 66 116 138.13 0.04 113 138.13 0.04 145 138.13 0.03

SUN 155 68.87 66 116 68.87 0.04 113 68.87 0.04 145 68.87 0.06

AVERAGE 155 392.81 66 116 412.12 0.04 113 412.41 0.04 145 399.83 0.05

AVERAGE

%
- - 66 -33.62% +4.69% -1649% -37.17% +4.75% -1649% -6.90% +1.76% -1319%

Table 3.2: Objective function and computational time results comparison of the stochastic program

and the SBH’s.

75

max(xNWi , xi) SP SBH1 SBH2 SBH3

%

Congestion

%

Starvation

Miles

*

Rebalanced

Qty

Expected

Fill

Rate

Extra

Inventory

Qty

%

Congestion

%

Starvation

Miles

*

Rebalanced

Qty

Expected

Fill

Rate

Extra

Inventory

Qty

%

Congestion

%

Starvation

Miles

*

Rebalanced

Qty

Expected

Fill

Rate

Extra

Inventory

Qty

%

Congestion

%

Starvation

Miles

*

Rebalanced

Qty

Expected

Fill

Rate

Extra

Inventory

Qty

Total delivered bikes 155 116 113 145

MON 8.81% 31.30% 19.95 85.86% 149 5.56% 38.19% 50.47 86.00% 151 5.56% 38.78% 50.47 86.00% 151 7.85% 31.69% 35.31 86.24% 147

TUE 9.21% 28.74% 22.17 86.48% 149 6.53% 35.93% 48.99 85.87% 153 6.53% 36.73% 48.99 85.87% 153 8.25% 29.34% 36.42 86.68% 148

WED 7.47% 31.11% 16.85 87.55% 157 4.44% 38.83% 45.48 87.72% 163 4.44% 39.88% 45.66 87.90% 163 6.06% 32.78% 30.64 87.72% 160

THU 6.94% 27.88% 15.34 86.43% 141 4.49% 34.38% 42.43 85.93% 145 4.49% 36.27% 42.43 85.93% 145 6.12% 28.51% 29.13 86.37% 141

FRI 6.68% 25.98% 19.89 86.42% 104 3.23% 34.48% 50.88 86.70% 109 3.23% 35.63% 50.88 86.70% 109 5.76% 27.59% 33.69 87.02% 107

SAT 7.62% 21.36% 3.36 88.26% 37 0.00% 23.30% 3.36 85.78% 37 0.00% 23.30% 3.36 85.56% 37 1.90% 22.33% 3.36 88.03% 37

SUN 0.00% 20.83% 2.31 91.34% 19 0.00% 25.00% 2.31 88.50% 19 0.00% 25.00% 2.31 88.29% 19 0.00% 20.83% 2.31 90.40% 19

AVERAGE 6.68% 26.74% 14.27 85.45% 108 3.45% 32.87% 34.85 86.64% 111 3.46% 33.66% 34.87 86.61% 111 5.13% 27.58% 24.41 87.49% 108.43

Table 3.3: Simulation results comparison of the stochastic program and the SBH’s.

76

3.5.5 A comparison with the implemented system

We finish with a comparison of how the plan prescribed by the stochastic program performs relative

to what we determined was the initial allocation plan in the actual system. We derived the initial

allocation of bikes to stations from station status data by collecting the number of bikes at each station

at 6 a.m., for each day of the considered week. We compare the performance of the two initial allocation

plans with our simulation model. We present statistics regarding how each plan performed in Table

3.4. We see that the stochastic program allocated far fewer bikes (45% fewer), which in turn lead

to less congestion and rebalancing. However, not surprisingly, we saw an increase in the starvation

frequency.

Real system SP

Total

bikes

at 6 a.m.

%

Congestion

%

Starvation

Miles

*

Rebalanced

Qty

Expected

Fill

Rate

Extra

Inventory

Qty

Total

bikes

at 6

a.m.

%

Congestion

%

Starvation

Miles

*

Rebalanced

Qty

Expected

Fill

Rate

Extra

Inventory

Qty

Mon 272 17.24% 25.39% 40.09 90.92% 113 155 8.81% 31.30% 19.95 85.86% 149

Tue 275 14.97% 19.76% 38.19 88.58% 109 155 9.21% 28.74% 22.17 86.28% 149

Wed 281 15.76% 23.38% 24.40 91.49% 118 155 7.47% 31.11% 16.85 87.55% 157

Thu 289 13.88% 22.22% 38.76 90.92% 101 155 6.94% 27.88% 15.34 86.43% 141

Fri 285 10.14% 14.94% 22.73 91.46% 85 155 6.68% 25.98% 19.89 86.42% 104

Sat 293 4.76% 2.91% 3.36 94.03% 31 155 7.62% 21.36% 3.36 88.26% 37

Sun 288 17.39% 14.58% 2.12 92.80% 18 155 0.00% 20.83% 2.31 91.34% 19

Average 283.29 13.45% 17.58% 24.24 91.46% 82.14 155 6.68% 26.74% 14.27 85.45% 108

Table 3.4: Comparison of implemented plan and plan from stochastic program

Next, to normalize our comparison, we add a constraint to the stochastic program to ensure that

it allocates the same total number of bikes on each day as used in the real system. We present the

statistics related to that plan in Table 3.5. Here, we see that the allocation plans prescribed by the

stochastic program outperform the actual allocation on each day and in each category. We view these

results as a strong indicator of the impact the stochastic program we propose could have in practice.

3.6 Managerial insights

In this section, we present some managerial insights which can be valuable for practitioners. From

the literature and from the case study of the bikesharing system of San Francisco (see subsection 3.5.1),

one of the problems in common to all bikesharing systems is that stations are full or empty very often.

For this reason, we believe that our approach could be extended to other bikesharing systems and,

without loss of generality, the following managerial insights could be valid.

First, managers should apply a stochastic model since demand is uncertain. By applying a deter-

77

Real system SP when initial number of bikes equal to the real system

Total

bikes

at 6 a.m.

%

Congestion

%

Starvation

Miles

*

Rebalanced

Qty

Expected

Fill

Rate

Extra

Inventory

Qty

Total

bikes

at 6

a.m.

%

Congestion

%

Starvation

Miles

*

Rebalanced

Qty

Expected

Fill

Rate

Extra

Inventory

Qty

Mon 272 17.24% 25.39% 40.09 90.92% 113 272 12.07% 18.70% 28.21 91.92% 127

Tue 275 14.97% 19.76% 38.19 88.58% 109 275 11.90% 18.56% 37.73 92.09% 117

Wed 281 15.76% 23.38% 24.40 91.49% 118 281 9.70% 22.97% 24.40 93.46% 140

Thu 289 13.88% 22.22% 38.76 90.92% 101 289 9.18% 16.98% 24.43 93.64% 114

Fri 285 10.14% 14.94% 22.73 91.46% 85 285 7.83% 13.79% 20.20 93.54% 93

Sat 293 4.76% 2.91% 3.36 94.03% 31 293 7.62% 2.91% 4.16 96.90% 33

Sun 288 17.39% 14.58% 2.12 92.80% 18 288 4.35% 8.33% 2.31 97.80% 19

Average 13.45% 17.58% 24.24 91.46% 82.14 8.95% 14.61% 20.21 94.19% 91.86

Table 3.5: Comparison of implemented plan and plan from stochastic program, when allocating same

number of bikes.

ministic model, the solution is very sub-optimal, since it delivers too few bikes to too few stations,

leading to a higher frequency of starvation, more rebalancing and inventory and a lower demand

fill rate. However, practitioners could reduce the computational effort to obtain the solution of the

stochastic program by upgrading the deterministic solution. The heuristic procedure we proposed can

be valuable, especially if this problem must be solved multiple times in a day. Second, the number of

allocated bikes represents an indicator of how big the fleet size should be. According to this, managers

should carefully evaluate whether to allocate the total number of available bikes at the depot. In our

case study, only a fraction of the total availability of bikes should be delivered in order to reduce the

rebalancing and the risks of congestion and those deriving from the allocation. Third, rebalancing is

fundamental in order to adjust the allocation decision over time. As a matter of fact, this strategy

is able to introduce more flexibility to better manage a bikesharing system. Finally, managers should

carefully select the stations towards which bikes should be delivered, as each station is characterized

by different features, such as the number of requests for bikes and free docks, capacity and distance to

the closest station.

In our work, we captured all these elements and through the comparison of the allocation decisions

suggested by our stochastic program and those actually implemented, we observed that our solution

improves the allocation of bikes between stations, as it leads to lower frequencies of congestion and

starvation, lower rebalancing and a higher expected fill rate. Finally, we noticed that our stochastic

program always outperforms the Newsvendor-based heuristics. Nevertheless, we also noticed that one

of them provides a good solution, with a very reduced computational effort.

78

3.7 Conclusions and future works

In this paper, we studied the problem of determining an initial allocation of bikes to stations, as well

as the opportunity to perform re-balancing at a later point in time, in the context of a bike sharing

system. One of the challenges in determining this allocation is that there are multiple dimensions

along which the performance of such an allocation plan can be measured, with some measuring costs

incurred while operating the system and others measuring the quality of the service experienced by

users of the system. As a result, we present a two-stage stochastic program wherein the first-stage

variables determine this initial allocation of bikes, and the second-stage variables determine how bikes

are rebalanced at a point later in the day. Another challenge in this setting is determining how to

measure demand, as, like a rental system, bikes are both withdrawn and returned from individual

stations.

We performed a computational study based upon historical ridership data from the bike sharing

system of the city of San Francisco. In particular, we used this data to derive a simulation model

wherein we can estimate the performance of an initial allocation plan along multiple dimensions. With

that study, we first established that by not recognizing variability in bike station demand, the deter-

ministic problem allocated too few bikes to too few stations. However, we also established that the

time required to produce a high-quality solution to the stochastic program can be reduced by first

solving its deterministic counterpart. Through the comparison with the Newsvendor-based heuristics,

we noticed that, concerning the indicators used to evaluate the simulation, the initial allocation plan

prescribed by the stochastic program outperformed those produced by the Newsvendor-based heuris-

tics. However, through the heuristics, we are able to solve the problem with less computational effort

with respect to the stochastic program and the objective function gap is small, especially for SBH3.

We also compared the performance of the initial allocation plan prescribed by the stochastic program

with what we estimated was the initial allocation plan for a given week of historical data. We saw that

the stochastic program produced a much better initial allocation of bikes than what we estimated was

done in practice. Finally, we proposed managerial insights which could be valuable for practitioners

in order to manage a general bikesharing system.

Regarding future work, we believe the next logical step in this research is to consider a multi-stage

stochastic optimization model that recognizes that rebalancing can occur multiple times throughout

the day. This variant will be compared with the two-stage formulation provided in this paper, by means

of rolling horizons approaches (see Bertazzi and Maggioni [11] (2018)). Finally, another extension is to

model that multiple vehicles can be used to support rebalancing and the possibility that their routes

can change from one day to the next.

79

Acknowledgments

The authors thank the Transportation and Logistics Society (TSL) as this research has been sup-

ported in part by the TSL Cross Region Doctoral Grant.

80

Chapter 4

Workforce production planning

under uncertain learning rates

Authors: Rossana Cavagnini1, Mike Hewitt2 and Francesca Maggioni3

(This chapter is under evaluation in International Journal of Production Economics. Manuscript

Reference Number: IJPE-D-18-01597)

Keywords: Production planning, Stochastic programming, Stochastic learning rates, Cross-training

1University of Bergamo, Via dei Caniana, 2, Bergamo, Italy, e-mail: r.cavagnini@studenti.unibg.it
2Loyola University Chicago, Chicago, U.S.A, e-mail: mhewitt3@luc.edu
3University of Bergamo, Via dei Caniana, 2, Bergamo, Italy, e-mail: francesca.maggioni@unibg.it

81

4.1 Introduction

For a product manufacturer, meeting customer demands in a cost-effective manner requires both

capacity and efficient use of that capacity. This is particularly true when capacity is scarce, which

is often the case when products are new and production capacity is partially dictated by human

labor. Research (Jin, Hewitt, and Thomas [49] (2018), Valeva, Hewitt, Thomas, and Brown [88]

(2016)) has shown that if an organization recognizes the individual learning process, it can enhance

the development of its capacity with its production planning decisions. Specifically, an organization

can increase its overall capacity and reduce its costs with an understanding that the work that the

employees do today will increase their productivity in the future. However, these studies, like much

of the research on human learning in the context of production planning, assume that the rate of this

increase in productivity (often referred to as the learning rate) is known with certainty, which is rarely

the case in practice.

However, by examining the performance of past workers, it is possible for an organization to develop

a distribution and estimate the corresponding distribution parameters values for the learning rate of

an individual worker. As such, in this paper, we study a problem wherein an organization seeks to

assign workers to produce multiple types of products to meet known customer demands while recog-

nizing both that learning occurs and that there is uncertainty in its rate. We formulate this problem

as a two-stage stochastic program (see Birge and Louveaux [12] (2011), Kall and Wallace [50] (1994)),

wherein scheduling decisions are made in the first stage, and production quantity decisions, which

are constrained by realized learning rates, are made in the second. One of the challenges associated

with embedding recognition of human learning in a mathematical program is that learning models

are typically non-linear, including the one we consider in this paper. The computational challenge

associated with solving the resulting non-linear program is magnified by the fact that the uncertain

learning parameter affects all the possible realizations of the scenarios of our model, and, consequently,

the non-linear functions would appear in each learning rate scenario. In this work, we adopt a reformu-

lation technique (Hewitt, Chacosky, Grasman, and Thomas [44] (2015)) that enables the formulation

of our stochastic program as a mixed integer linear program that can be solved efficiently, even for

instances based on a large number of scenarios.

The solutions of our model are used to derive insights into the tactics product manufacturers should

employ to leverage the benefits of human learning without having full knowledge of the learning rates.

Specifically, we present and statistically analyze results from an extensive computational study based

on solving a large set of instances. To ensure that the insights we derive are generally true, and not an

artifact of the instances we consider, we generated the instance set in a statistically-rigorous manner,

which we will describe later in detail.

82

Fundamentally, we believe this paper makes the following contributions. First, we present a stochas-

tic program that organizations can use to effectively plan their production operations by leveraging

the benefits of human learning, even when learning rates are not known with certainty. Second, we

illustrate how the reformulation technique of Hewitt, Chacosky, Grasman, and Thomas [44] (2015),

which was presented for a deterministic model, can be used in a stochastic setting to yield a model

that can still be solved in a reasonable run-time. Third, we show the value in recognizing uncertainty

in learning rates as well as why not doing so leads to worse plans. Fourth, we present tactics an

organization can employ to leverage the benefits of human learning, even when learning rates are not

known with certainty.

The remainder of this paper is organized as follows. Section 4.2 presents a review of the literature

most closely related to this paper. Section 4.3 describes the production setting we consider in detail,

as well as the tactics we seek to assess. In Section 4.4, we present our methodology for assessing

those tactics and Section 4.5 presents the experimental setting. Section 4.6 then discusses the results.

Finally, Section 4.7 presents conclusions and ideas for future work.

4.2 Literature Review

The research we present in this paper studies two issues that have received attention in the literature

on production planning. First, we study how learning, and uncertainty in worker learning rates, should

impact worker assignment decisions. Second, we also study how learning, and uncertainty in worker

learning rates, can be mitigated by decisions related to cross-training and practice. Consequently, we

review the literature that focuses on these two issues.

4.2.1 Learning and worker assignment

While our paper considers how uncertainty in worker learning rates should influence the choice of

worker assignments, the first group of works we analyze studies the effects of uncertainty in learning

on optimal production levels. These works also study when results from deterministic settings extend

to the stochastic setting.

Specifically, in the deterministic setting, two results have been proven that have also been examined

in a stochastic setting: (1) that optimal production levels can exceed myopic production levels and

(2) recognizing that learning can reduce per-unit production costs can yield higher profit-maximizing

production levels, even when price is inversely related to production quantities. Mazzola and McCardle

[61] (1996) consider uncertainty in the relationship between cost and cumulative production. They

develop a model in which a firm supposes a prior probability distribution of the cost function, and,

83

as costs are observed over time, its prior belief is updated in a Bayesian manner. They show the

existence of the conditions under which the deterministic result (1) (i.e. that optimal production levels

exceed myopic production ones) still holds for the stochastic setting. However, they show that the

deterministic result (2) does not hold in the Bayesian setting. Stochastic learning curve models are also

considered in Mazzola and McCardle [62] (1997), who show that if the learning rate is unknown and

can take negative values, the deterministic result (1) does not necessarily hold, since the possibility of

having a negative learning rate (intended as a form of forgetting) increases the risk of getting involved

in larger production cycles in the myopic case.

Similar to our work, Nembhard and Bentefouet [69] (2012) study the choice of workers’ assignments

to tasks and prove that, under some specific conditions, the optimal schedule is a schedule with

specialized workers, even when learning rates are stochastic. However, they presume demand can be

partially met, while we require the demand to be completely met, albeit potentially via outsourcing.

Moreover, the objective of their model is to maximize output, while ours is to minimize expected costs.

One implication of these different objectives is that our model recognizes value in practicing whereas

theirs does not.

Most of the quantitative models of human learning are non-linear (see Dar-El [26] (2013), Anzanello

and Fogliatto [4] (2011) and Jaber [48] (2006) for a complete review). In order to embed these models

in mixed integer linear programs, that can be solved much more quickly than non-linear programs,

Hewitt, Chacosky, Grasman, and Thomas [44] (2015) propose a reformulation technique that models

a non-linear learning curve with binary variables and linear constraints. We adapt this reformulation

technique to a production scheduling problem where worker learning rates are stochastic.

4.2.2 Cross-training and practicing

Cross training and practicing are two different methods for fostering workforce flexibility, with

benefits that have been studied in the literature. Through cross-training, workers increase productivity

on multiple tasks, so that they can be re-assigned to different tasks to respond to changes in demand.

Through practicing, workers increase their productivity without generating inventory. We first review

the papers focusing only on cross-training and then those that also study practice.

A thorough review of the cross-training literature is presented in Qin, Nembhard, and Barnes II

[75] (2015). The cross-training literature can be partitioned into two groups: papers that consider

learning and those that do not. Belonging to the first group, Olivella, Corominas, and Pastor [70]

(2013) present a model to assign tasks to workers, which, differently from our paper, considers cross-

training targets, and, as in our work, tasks with due dates. However, they do not draw any conclusions

nor managerial insights on the type of relationship between cross-training and workers’ characteristics.

84

Differently from our paper, in which we assume that workers have no initial experience in any task,

some papers investigate how to allocate already cross-trained workers which learn. Corominas, Olivella,

and Pastor [24] (2010) present a model to allocate cross-trained workers to tasks (considering that the

experience on a task is correlated to the experience at another task) with the objective of minimizing

the completion time. Sayın and Karabatı [83] (2007) propose a model whose objective is assigning

cross-trained workers across departments in order to maximize both the department utility and the

improvement in workers’ skills. They find out that incorporating the skill improvement function in

the model leads to a more effective worker assignment, even if a loss in the department utility can

result due to a loss of efficiency. Heimerl and Kolisch [39] (2010) develop a model to minimize the

costs of performing an amount of project work in which the decision is to assign tasks to cross-trained

workers considering learning, forgetting and the company’s desired skill composition as constraints. In

this context, the whole company’s knowledge is enriched if faster learners specialize. McCreery and

Krajewski [64] (1999) and McCreery, Krajewski, Leong, and Ward [65] (2004) evaluate the performance

of different cross-training configurations and the general result is that the advantage of workforce

flexibility depends on the characteristics of the operating environment. Marentette, Johnson, and

Mills [60] (2009) propose a procedure for evaluating job pairings which could be assigned to the same

worker by comparing the cost for cross-training to the benefits of increased staffing efficiencies.

Among the literature assuming a fixed individual productivity (i.e. learning is not recognized),

Campbell [17] (1999) introduces a model to allocate cross-trained workers to a multidepartment setting.

The author shows that even if workers are little cross-trained, a company can strongly benefit from

cross utilization, and beyond a certain value, the contribution of additional cross-training decreases.

Brusco and Johns [15] (1998) evaluate different configurations with different cross-trained workers

levels in which the objective is to minimize workforce staffing costs, by minimizing the minimum

labor requirements. They prove that asymmetric cross-training structures which allow chaining of

employee skill classes across work activity categories are strongly beneficial. Slomp and Molleman

[85] (2002) analyze four different cross-training configurations through a simulation model with special

considerations for some indicators evaluating the effectiveness and efficiency of a team. Their results

show that, even if a cross-training policy performs well, a fully cross-trained workforce is not always

beneficial. In this group, another research stream addresses the problem of finding the optimal mix of

specialized versus cross-trained workers. Agnihothri, Mishra, and Simmons [2] (2003) use a simulation

model in order to establish the right number of workers which should be cross-trained and those who

have to specialize minimizing the cost for services and customer delay. Moreover, they provide different

recommendations by investigating the impact of different service parameters (such as the number of

workers, their utilization, the coefficient of variation of service time) on the optimal workforce mix (for

85

example, they find out that with a higher number of workers, cross-trained workers should decrease).

Agnihothri and Mishra [1] (2004) propose a simulation model for comparing different cross-training

configurations for a system with three task types where each worker has a primary skill and the

management can decide to cross-train workers so that secondary skills can be aquired. They draw up

insights about the number of workers which should be cross-trained, the number of secondary skills a

worker should possess and the efficiency in secondary skills.

Among the papers investigating both cross-training and practicing, Valeva, Hewitt, Thomas, and

Brown [88] (2016) develop a task assignment and production planning model (reformulated as high-

lighted in Hewitt, Chacosky, Grasman, and Thomas [44] (2015)), considering a later-term stochastic

demand. They show that, as demand uncertainty increases cross-training increases, that an increase

in inventory costs leads to an increase in practice and, that less experienced workers should practice

more.

4.3 Production setting and managerial tactics

In this section, we first describe the production setting we consider. We then review the managerial

tactics we seek to assess in this paper.

4.3.1 Production setting

We consider a company that seeks to bring multiple new products to market in a cost-effective

manner. These products differ in their selling prices and, relatedly, inventory costs. We presume that

the company has already committed to supplying these products to customers at regular periods of

time, such as a product manufacturer supplying a retail store. Specifically, we presume that at the

end of a fixed span of time (e.g. at the end of a week), the company knows how much of each product

it must supply. For each unit of demand that can not be fulfilled, the company must pay a cost. This

cost could be due to contractual obligations, purchasing the product from another supplier, or some

other measure of lost sales.

Items of different products are made in different production cells, with each item converted from

raw materials to a finished good by a single worker in each time period. The company employs

a workforce that is fixed in size and heterogenous with respect to the impact of experience on an

individual worker’s productivity. As the products are new, each individual has no prior experience at

manufacturing these items. We presume that the company knows with certainty what the steady-state

productivity rate will be for each individual on each product. These steady-state productivity rates

can differ both by individual and by product. Unlike these steady-state rates, we presume the company

86

only has estimates of probability distributions for the rate at which an individual’s experience impacts

their productivity. We also assume the company has estimates of the means and variances of those

distributions.

This company seeks to derive a production schedule over a fixed and finite planning horizon that

consists of multiple time spans (weeks) during which demand must be met. Each time span is then

divided into time periods (e.g. days) during which production is performed. To ease our discussion,

we will speak in terms of satisfying weekly demand over the course of a month via daily production

planning decisions. We presume that the company determines its production schedule for the entire

month, with the schedule indicating which cell each individual will work in on each day (see figure 4.1

for an illustration of the production setting). Once the month begins, on a daily basis the company

determines how much each individual should produce of the product it is assigned to for that day.

However, the amount each individual can actually produce depends on their productivity rate, which

in turn depends on their experience and learning rate.

Finally, the company pays two types of costs. The first is a daily inventory cost associated with

holding one item of each product for one day. The second, as mentioned above, is a cost that is incurred

for each unit of demand at the end of a week that can not be met from what the company has in

inventory. As each of these costs depend on how much has been produced, which in turn depends on

individual stochastic learning rates, they are also uncertain. Finally, we presume the company seeks

to minimize the expected total cost.

4.3.2 Managerial tactics

We next detail the managerial tactics for this production setting. First, we study whether there is

value in explicitly recognizing uncertainty in individual learning rates and quantify that value. Then,

we study how and why solving the deterministic model may yield plans of greater cost.

After that, we study how uncertainty in individual learning rates should be accounted for when

making production planning decisions. Regarding this uncertainty, we presume that the organization

knows the distribution type and its parameters, for each individual’s learning rates. To compare

different workers in terms of their distributions of learning rates, we use the notion of a target capacity

for a product (e.g. 5 products/day). We calculate for each worker the probability they will have a

productivity rate equal to or greater than that target capacity if they produce that product for a given

number of periods. We refer to this probability as a Target Capacity Probability (TCP). Similarly, for

a given workforce, we determine the average mean learning rate, and then calculate for each worker

the probability that their learning rate is less than the workforce average (and hence they learn more

quickly). We refer to this probability as the Faster Than Average Probability (FTAP).

87

Figure 4.1: Illustration of production setting

We present the following hypotheses regarding the tactics an organization should take to minimize

their expected costs. The first two hypotheses refer to the frequency with which a worker should

produce. The next two hypotheses refer to the number of different products a worker should produce.

The last two hypothesis involve which individuals should cross-train and practice, respectively. We

next present these hypotheses.

Hypothesis 1. An organization can minimize its total expected cost by assigning workers with higher

TCP to more periods of production.

Hypothesis 2. An organization can minimize its total expected cost by assigning workers with lower

FTAP to more periods of production.

Hypothesis 3. An organization can minimize its total expected cost by assigning workers with smaller

variances in learning rates to more products

Hypothesis 4. An organization can minimize its total expected cost by assigning workers with higher

TCP to more products

Hypothesis 5. An organization can minimize its total expected cost by assigning workers with greater

variances in learning rates to cross-train less

Hypothesis 6. An organization can minimize its total expected cost by assigning workers with lower

TCP to practice more

88

We will next discuss our methodology for assessing the value in recognizing uncertainty in learning

rates when developing production plans, as well as how we test these hypotheses.

4.4 Methodology

Our methodology begins by solving a two-stage stochastic problem. After doing so, and obtaining

the resulting optimal solutions, we fit linear regression models to derive relationships between statis-

tics calculated from instance parameter values and statistics calculated from variable values in those

solutions. Thus, in this section, we first present the stochastic programming model we solve. We next

discuss the statistics we calculate and then the linear regression models we use to derive relationships

between these two sets of statistics.

4.4.1 A two-stage stochastic programming model

We consider a multi-product production setting, with a heterogenous workforce of fixed size. As

such, we denote the set of workers by I = {1, . . . , I} and the set of products by J = {1, . . . , J}. Recall

that we consider a planning horizon that consists of multiple time spans, wherein at the end of each

time span demand should be met. As such, we denote the set of periods in the planning horizon by

T = {1, . . . , T}, which is broken up into time spans of length γ. We then denote the first period of

the time horizon by t0 and the subset of periods representing when demand is to be met by T ′. As

an example, T , can consist of the days in a month, whereas γ consists of the number of days in a

week when the company undergoes production, and T ′ consists of the end of each week in the month.

Specifically, in period t ∈ T ′ the company has agreed to satisfy dtj units of demand for product j ∈ J .

However, while not all demand of product j ∈ J must be met by internal production, each unit of

demand that is not met incurs a cost, which we denote by Cj . Relatedly, for each product j ∈ J , the

company incurs a per-unit, per-period inventory cost, which we denote by hj .

Our problem presumes that the company determines a production schedule, and then determines

the amount to be produced of each product in each day. However, as individual production rates

depend on both individual’s experience level and learning rate, which is uncertain, these production

amounts are random decision variables. As such, we model our problem as occurring in two stages,

wherein the production schedule (who works on each product in each period) is determined in the first

stage, and the production quantities, which are limited by individual’s production rates are determined

in the second stage.

As such, we let the binary variable xtij indicate whether worker i ∈ I is assigned to product j ∈ J

in period t ∈ T . We model the impact of worker i′s experience level on productivity in product j in

89

Figure 4.2: Illustration of the sequence of decisions and events

period τ (the current period) with the following exponential learning curve:

rτij(

τ∑
t=1

xtij) = Iij +Kij [1− e
−

∑τ
t=1 x

t
ij

Lij]. (4.1)

This function measures experience in terms of the number of periods during which individual i has

produced product j. The function has three parameters: (1) Iij , which indicates i′s initial experience

at product j, (2) Lij , which indicates the rate at which i learns how to produce product j, and (3)

Kij which indicates i’s steady-state productivity rate at product j. We presume uncertainty in the

parameters Lij , which we model with a finite set of scenarios S = {1, . . . , S}.

Specifically, we associate to each scenario s ∈ S a probability p(s), wherein p(s) ≥ 0 ∀s ∈ S and∑
s∈S p(s) = 1. We then let Lsij denote the learning rate of individual i at product j in scenario s ∈ S

and thus that individual’s rate in a given period is calculated on a per-scenario basis as rτsij (
∑τ
t=1 x

t
ij) =

Iij +Kij [1− e
−

∑τ
t=1 x

t
ij

Ls
ij]. Finally, we let the continuous variable otsij denote the amount the individual

can produce of product j in period t in scenario s ∈ S. Moreover, the inventory level of product j ∈ J

in period t ∈ T in scenario s ∈ S is represented by the continuous variable btsj . When demand for

a product is greater than the amount in inventory, we let the continuous variable Btsj represent the

number of items of product j ∈ J , in period t ∈ T ′, in scenario s ∈ S that can not be provided. Figure

4.2 summarizes the sequence of decisions and events.

With these parameters and variables, we formulate the following mixed integer two-stage stochastic

program with fixed recourse (see Birge and Louveaux [12] and Kall and Wallace [50]):

vSP := min
∑
s∈S

p(s){
∑
j∈J

hj
∑
t∈T

btsj +
∑
j∈J

Cj
∑
t∈T ′

Btsj } (4.2)

90

subject to ∑
i∈I

xtij ≤ 1 j ∈ J , t ∈ T (4.3)

∑
j∈J

xtij ≤ 1 i ∈ I, t ∈ T (4.4)

bt0sj =
∑
i∈I

ot0sij j ∈ J , s ∈ S (4.5)

btsj =
∑
i∈I

otsij + b
(t−1)s
j j ∈ J , t ∈ {T \ T ′ \ t0}, s ∈ S (4.6)

btsj =
∑
i∈I

otsij + b
(t−1)s
j +Btsj − dtsj j ∈ J , t ∈ T ′, s ∈ S (4.7)

b
(t−1)s
j +Btsj ≥ dtj j ∈ J , t ∈ T ′, s ∈ S (4.8)

otsij ≤ rtsijxtij i ∈ I, j ∈ J , t ∈ T , s ∈ S (4.9)

rτsij (

τ∑
t=1

xtij) = Iij +Kij [1− e
−

∑τ
t=1 x

t
ij

Ls
ij] i ∈ I, j ∈ J , t ∈ T , s ∈ S (4.10)

xtij ∈ {0, 1} i ∈ I, j ∈ J , t ∈ T (4.11)

otsij ∈ <+ i ∈ I, j ∈ J , t ∈ T , s ∈ S (4.12)

rtsij ∈ <+ i ∈ I, j ∈ J , t ∈ T , s ∈ S (4.13)

btsj ∈ <+ j ∈ J , t ∈ T , s ∈ S (4.14)

Btsj ∈ <+ j ∈ J , t ∈ T ′, s ∈ S. (4.15)

The objective function (4.2) calculates the expected cost associated with a set of production scheduling

decisions. Constraints (4.3) and (4.4) enforce that each product in each period can be produced by at

most one worker and that each worker in each period can produce at most one product. Constraints

(4.5) fix the inventory level at the end of the first day of the month to be equal to the output produced

in that day (since we assume that the initial inventory level is equal zero). Similarly, constraints (4.6)

guarantee that, for periods different from the initial one and from the initial day of the week, the

inventory level at the end of each day is equal to the sum of the total output of that period and the

inventory level coming from the previous day. Relatedly, constraints (4.7) assure that, for the first day

of each week, the inventory level is equal to what is produced in that period plus the quantity coming

from the previous week (from production and outsourcing), after the demand satisfaction. Constraints

(4.8) determine the amount of demand that is not met from inventory. Constraints (4.9) bound the

amount an individual produces of a product in a period by their production rate, which is a function of

their experience. We note that these constraints allow “practicing”, meaning a worker can be assigned

to a product without producing. Constraints (4.10) calculate each worker’s productivity rate at each

91

product in each period as a function of their prior experience. Finally, constraints (4.11) to (4.15)

define the variables and their domains.

This model, as presented, is non-linear (see constraints (4.9) and (4.10)). However, as the produc-

tivity rate function has a finite and discrete domain (see Hewitt, Chacosky, Grasman, and Thomas

[44] (2015)), we can adapt their technique for representing such a function with binary variables and

linear constraints, transforming model (4.2)-(4.15) into a mixed integer program. Details regarding

the reformulation can be found in Appendix III.a.

4.4.2 Production planning indicators

In this section, we discuss seven different indicators we calculate and analyze in order to determine

how uncertainty in individual learning rates should impact production planning decisions. We run

regression models to determine relationships between statistics calculated from instance parameter

values and statistics calculated from optimal solutions of our linearized model (4.2)-(4.8), (III.a.1)-

(III.a.6), (4.11)-(4.15).

Indicators based on instance parameter values We presume the organization has a belief regarding the

distribution of individual i′s learning rate, along with estimates of its mean, µi, and variance, σ2
i . With

these, we also calculate for each worker two indicators: the Faster Than Average Probability (FTAPi)

and the Target Capacity Probability (TCPi).

In order to compute the FTAPi, we first need to calculate the average estimated workforce learning

rate, µ̄ =
∑
i∈I

µi
|I| . Then, for each individual i, we set:

FTAPi = p(Li ≤ µ̄) i ∈ I, (4.16)

i.e. the probability p that individual’s learning rate Li is no greater than the average µ (and hence

the individual learns at least as fast as the average worker).

For the TCPi, we use a target capacity that is half of the individual’s steady-state productivity

rate, i.e. Ki/2. Then, for each worker i, we calculate the probability that their productivity is at least

as great as Ki/2, when they produce a product each day of the first week. Specifically, given the

distribution for i′s learning rate, we set TCPi equal to:

TCPi = p(r5
i (5) ≥ Ki/2) i ∈ I, (4.17)

where 5 refers to the first five days of the week.

Indicators based on optimal solution values We presume that we have solved an instance of the stochas-

tic programming model to (near-)optimality and have access to the resulting solution xt∗ij . Having done

so, we calculate two indicators.

92

The first indicator, nai, measures the number of periods in which individual i is assigned to poten-

tially produce a product and is given by:

nai =
∑
t∈T

∑
j∈J

xt∗ij i ∈ I. (4.18)

The second indicator, npi, is the number of different products, j, that individual i produces and it

is given by:

npi =
∑

j∈J :∃t∈T :xt∗ij=1

1 i ∈ I. (4.19)

From the perspective of measuring cross-training, npi, is incomplete, as it does not consider the

number of times an individual produces items of a product. Thus, we also calculate the Coefficient-

of-variation-type measure proposed by Valeva, Hewitt, Thomas, and Brown [88], which they refer to

as the Cross-training Index (CTI). Specifically:

CTIi =
SDi

Ei
, i ∈ I, (4.20)

where SDi is the standard deviation and Ei is the average of the number of periods worker i is

assigned to a product. We note that larger values of CTIi indicate greater specialization (an individual

produces just a few products, but each many times), while smaller values indicate more cross-training

(an individual produces many products, but each just a few times).

Similarly, we compute for each worker a practicing index, PIi, which reflects the percentage of

periods during which i is assigned to practice instead of production and it is calculated as:

PIi =

∑
j∈J :

∑
s∈S o

ts∗
ij =0∧

∑
s∈S

∑
t′∈T :t′>t o

ts∗
ij >0

∑
t∈T x

t∗
ij∑

j∈J
∑
t∈T x

t∗
ij

i ∈ I. (4.21)

Finally, as product sales prices (and hence the costs in our model) can vary, we also measure the

average cost of the products produced by a worker. To do so, we calculate the average cost of the

products produced by worker i by the following cost index:

CIi =

∑
j∈J :

∑
t x
t∗
ij>0(hj + Cj)∑

j∈J :
∑
t x
t∗
ij>0 x

t∗
ij

i ∈ I. (4.22)

4.4.3 Linear regression models

We test the hypotheses presented in Section (4.3.2) with linear regression models (Stock and Watson

[87] (2007)). For each instance, the set of Indipendent variables is composed of:

1. µ = [µ1, . . . , µI]: vector of the means of the distribution of workers’ learning rates,

2. σ2 = [σ2
1 , . . . , σ

2
I]: vector of the variances of the distribution ofs workers’ learning rates,

93

3. FTAP = [FTAP1, . . . , FTAPI]: vector of the probabilities that worker i learns faster than the

average worker,

4. TCP = [TCP1, . . . , TCPI]: vector of the probabilities worker i reaches half his/her steady state

productivity when producing a product for a week,

5. CI = [CI1, . . . , CII]: vector of the average costs of items produced by worker i (this indicator is

included only for testing hypotheses concerning the CTIi and the PIi).

We then seek to determine coefficients for the following linear models that will yield the best fit to

the statistics derived from instance parameter values and optimal solutions to our stochastic program.

We note that when fitting these equations, we only consider workers that were used at least once (i.e.∑
j∈J

∑
t∈T x

t∗
ij ≥ 1). The first equation will help us test both Hypothesis 1 and 2:

αnaµ µ+ αnaσ2σ2 + αnaFTAPFTAP + αnaTCPTCP + βna = na. (4.23)

The next equation will be used to test both Hypotheses 3 and 4:

αnpµ µ+ αnpσ2σ
2 + αnpFTAPFTAP + αnpTCPTCP + βnp = np. (4.24)

The next equation will be used to test Hypothesis 5:

αCTIµ µ+ αCTIσ2 σ2 + αCTIFTAPFTAP + αCTITCPTCP + αCTICI CI + βCTI = CTI. (4.25)

Finally, the next equation will be used to test Hypothesis 6:

αPIµ µ+ αPIσ2 σ2 + αPIFTAPFTAP + αPITCPTCP + αPICICI + βPI = PI. (4.26)

Before fitting these equations to data and analyzing the statistical significance of the coefficients

to test our hypotheses, we normalize the Indipendent variables values as suggested in Gelman [36]

(2008). Specifically, each Indipendent variable value has been mean centered and divided by two

standard deviation. As CTI and PI can be computed only for assigned workers, for the last two

regressions, the normalization was done based only on the values for assigned workers.

4.5 Experimental setting

In this section, we describe how the instances for our problem are generated. Subsection 4.5.1 de-

scribes the different parameter values related to the production setting, while Subsection 4.5.2 presents

how uncertainty in worker learning rates is represented. Finally, Subsection 4.5.3 explains how to de-

termine the number of instances to consider.

94

We note that all computational experiments were run on a computer with 8 GB of RAM and a

2.70 GHz CPU. All software was implemented in Python 3.6.1 (Python Software Foundation [74]) with

Gurobi 7.5.1 (Gurobi [38]) to its default optimality tolerance. Regression equations were fitted with

the Python package statsmodels Statsmodels-developers [86].

4.5.1 Instance parameter values

Since we want to draw insights on how workers’ characteristics influence the assignment decisions,

we consider instances where there are more workers than products and more periods than workers

(| J |<| I |<| T |). Specifically, in our experiments we consider a working month (| T |=20 days), six

workers (| I |= 6) and three products (| J |= 3). We have γ = 5 (days), and T ′ = {5, 10, 15, 20}.

We assume that each product j has a different cost-of-goods-sold (COGSj): COGS1 = 100,

COGS2 = 300, COGS3 = 500. These values of COGS are used to compute inventory and unmet

demand costs. Specifically, annual inventory costs are assumed to be equal to the 24% of COGS (see

Mazzola, Neebe, and Rump [63] (1998)). As we assume a year consisting of 240 working days and

we are interested in obtaining daily inventory costs, we apply the formula
0.24COGSj

240 , thus obtaining

h1 = 0.1, h2 = 0.3, h3 = 0.5. Regarding the cost of unmet demand, we consider two different values

for each product, one that is 110% of COGS and one that is 125% of COGS. Thus, we first consider

outsoucing costs C1 = 110, C2 = 330, C3 = 550 and, then, C1 = 125, C2 = 375, C3 = 625.

Regarding product demands dtj , as we presume COGS vary by product, to limit the number of

changing parameter values in our instances, we presume that each product has the same demand, d,

in each week. Formally, we presume that dtj = dt
′

j = d,∀j ∈ J ,∀t, t′ ∈ T ′ and dtj = dtj′ = d,∀j, j′ ∈

J ,∀t ∈ T ′ . We randomly draw two demand values (d1 and d2) from the discrete interval [1,500],

yielding two groups of instances, wherein instances in different group have different demands, but

instances in the same group do not. However, instances in the same group do differ in the parameters

of individual worker learning curves.

Regarding the parameters values of individual worker learning curves, as we focus on when a

company is making new products, we set each worker’s initial experience on all products to zero (i.e.

Iij = 0, i ∈ I, j ∈ J). We also presume that each worker has the same steady-state productivity rate

for all products. In addition, to focus on the rate at which individuals learn, we set the steady-state rate

for all individuals to the same value. Specifically, we set Kij = 4d,∀i ∈ I, j ∈ J . Regarding individual

learning rates, we presume that all worker learning rates follow a truncated normal distribution, but

that these distributions differ in their parameter values. As a baseline, we consider the distribution

parameter values given in Table 4.1 for each worker.

95

Figure 4.3: Learning rate distributions

Worker µi σi

1 10 1

2 10 6

3 15 3

4 15 6

5 20 5

6 20 10

Table 4.1: Parameter values

Furthermore, we assume that the learning rates across workers are not correlated and, consequently,

they are indipendently drawn.

Then, to assess the impact of variance in learning rates, we consider three different standard

deviations levels for each worker, σi, 1.25σi, and 1.5σi,∀i ∈ I, where σi refers to worker i standard

deviation in Table 4.1. We summarize the different instance factors and their levels in Table 4.2. With

these three factors, and their associated levels, we have twelve different combinations of factor levels

(see figure 4.4).

Figure 4.4: Different factor levels combinations

Factor Levels

Outsourcing cost 110%, 125% of COGS

Product demand Two values drawn from [100, 500]

Learning rate standard deviation 1σ, 1.25σ, 1.5σ

Table 4.2: Instance factors

96

4.5.2 Size of the scenario tree

Our analysis in the next section is based on solving instances of a stochastic program wherein

statistical distributions are represented with scenarios. As such, it is important that we construct

a set of instances so that we can be confident, statistically-speaking, that our findings are generally

true, and not an artifact of the instances used. Thus, we undertook the following formal procedures

to determine both how many scenarios to include in an instance and how many instances to generate.

To ensure that we have the appropriate number of scenarios in an instance, we performed an in-

sample and out-of-sample stability analysis using the procedure presented in Kaut and Wallace [51]

(2007). Both types of analysis seek to determine the number of scenarios that are needed to obtain a

stable optimal objective function value. For the in-sample analysis, we solved the stochastic program

for each of the twelve combinations of factor levels and six scenario trees of increasing size. Thus, this

analysis is based on solving 72 instances of the stochastic program, and we report the average of the

twelve objective function values for a given number of scenarios in Table 4.3. Even if the objective

function value looks very stable, we consider the scenario tree composed of 500 scenarios the benchmark

for our experiments. Furthermore, we conclude from these results that 100 scenarios may be sufficient

for the stochastic program to yield an objective function value that is close to the value one could

achieve if the stochastic program considered the full distribution, and not a set of scenarios.

| S |=10 | S |=50 | S |=100 | S |=200 | S |=300 | S |=500

Average obj.

func. value

(over 12 instances)

373.02 373.72 373.61 373.67 373.59 373.68

Table 4.3: In-sample analysis results

Out-of-sample stability analysis gives another perspective on the question of how many scenarios to

generate, as it attempts to measure how a solution produced when representing a distribution by a

scenario tree of a smaller size will perform in the “real world”, and the full distribution is experienced.

To perform this analysis, we generated a benchmark set of 500 scenarios to serve as a proxy for the

full distribution. We then took the solutions produced by solving the previously discussed 72 instances

of the stochastic program and evaluated them with respect to these 500 scenarios. We report the

average increase in objective function value, by number of scenarios, in Table 4.4. We again see that

scenario trees of size 100 yields a fairly stable objective function value. Finally, considering that

solving our stochastic program with 100 scenarios required 77.60 CPU seconds, on average, while

solving the stochastic program with 500 scenarios required 1232.32 CPU seconds, on average, the

97

regression analysis in section 4.6.2 is based on instances with 100 scenarios.

| S |=10 | S |=50 | S |=100 | S |=200 | S |=300 | S |=500

Average obj.

func. gap

(over 12 instances)

0.089 % 0.019% 0.007% 0.015% 0.013% 0.00%

Table 4.4: Out-of-sample analysis results

4.5.3 Number of instances

In this subsection, we present the method used to determine the number of instances to be consid-

ered for each combination of factor levels. As we intend to analyze coefficients from a linear regression

model to derive managerial insights (see subsection 4.4.3), we determine the sample size required to be

statistically confident that a correlation coefficient is different from zero. Specifically, we compute the

sample size N through the formula (Hulley, Cummings, Browner, Grady, and Newman [46] (2013)):

N = [
Zα + Zβ

C
]2 + 3, (4.27)

where N is the total sample size (i.e. the number of instances which have to be generated for each

combination), Zα is the standard normal deviate for type I error rate, Zβ is the standard normal

deviate for type II error rate and C = 0.5 ln[(1+ρ)
(1−ρ)], where ρ is the expected correlation coefficient.

We substitute the parameter values α = .05, β = .05, ρ = .7 in the formula and we obtain that we

should create 20 instances for each factor level combination (see figure 4.4). In summary, for each of

the twelve combinations of factor levels we generate 20 instances by sampling different scenario trees

of the same size (| S |= 100) from the distributions (see figure 4.3 and table 4.1) discussed above.

Thus, much of our analysis is based on a set of 240 instances.

4.6 Results and analysis

In this section, we first assess the value in recognizing uncertainty in worker learning rates when devel-

oping production plans. We then report results related to fitting the regression equations presented in

Section 4.4.3. We finally discuss how those results relate to the hypotheses presented in Section 4.3.2

regarding how uncertainty in learning should be recognized.

98

4.6.1 Value in modeling uncertain learning rates

We next assess the value in explicitly modeling uncertainty in worker learning rates. To do so, we

consider instances for each of the 12 combinations of factor levels and based on the benchmark scenario

tree with 500 scenarios discussed above. We then calculate averages of the following metrics:

1. Relative Expected Value of Perfect Information (%EVPI) (Birge and Louveaux [12] (2011)),

2. Relative Value of the Stochastic Solution (%VSS) (Birge and Louveaux [12] (2011)),

3. Relative Loss of Using the Skeleton Solution (%LUSS) (Maggioni and Wallace [56] (2012)),

4. Relative Loss of Upgrading the Deterministic Solution (%LUDS) (Maggioni and Wallace [56]

(2012)).

To compute the %EVPI, we compare the objective function value of the solution to the stochastic

program, vSP , with the expected objective function value, vWS , of the problem where we assume we

have a full knowledge of workers’ learning rates already in the first stage (Wait and See (WS) problem).

The %EVPI is then defined as the relative gap between these objective function values, that is:

%EV PI =
vWS − vSP

vSP
. (4.28)

The average %EVPI over the 12 combinations of factor levels is -0.28%, suggesting that the poten-

tial savings associated with postponing workers assignment decisions until their production rates are

revealed are limited.

To compute the %VSS, we solve the Expected Value (EV) problem, where workers’ learning rates

correspond to their mean values. Then, the stochastic program is solved with first-stage decision

variables fixed to their values obtained in the solution of the EV problem. The expectation of the

objective function value vEEV , of this problem is referred to as the Expected Result of using the EV

solution (EEV). The %VSS is then the relative gap, computed as follows:

%V SS =
vEEV − vSP

vSP
. (4.29)

The average %VSS over the 12 combinations of factor levels is 2.78%, suggesting that the savings

associated with solving the stochastic program instead of the deterministic one are valuable.

We next analyze to what extent we can derive information from the EV solution to obtain a high

quality solution of the SP. The %LUSS metric estimates the degree by which a solution to the EV

problem prescribes a subset of assignment choices that correspond to those in the solution to the

stochastic program. To calculate this metric, we solve the Expected Skeleton Solution Value (ESSV)

problem, which is the stochastic program wherein a worker cannot work on a product in a period if the

99

solution to the EV problem does not allow him/her to do so. Denoting the objective function value of

this stochastic program as vESSV , we calculate the %LUSS as:

%LUSS =
vESSV − vSP

vSP
. (4.30)

The average %LUSS over the 12 combinations of factor levels is 2.70%, suggesting that the main reason

of a bad deterministic solution is due to the wrong schedule of workers’ assignments.

Relatedly, the %LUDS metric estimates the degree by which a solution to the EV problem is

upgradeable in a stochastic environment. To calculate this metric, we solve the Expected Input Value

(EIV) problem, which is the stochastic program wherein each worker must be assigned to a task in at

least as many periods as prescribed by the EV solution. Denoting the objective function value of this

stochastic program as vEIV , we calculate the %LUDS as:

%LUDS =
vEIV − vSP

vSP
. (4.31)

The average LUDS over the 12 combinations of factor levels is 1.60%, suggesting that the deterministic

solution can be upgraded only for a subset of assignments decisions.

Fundamentally, the first stage of the stochastic program determines which products and which

period a worker should work on. Thus, we continue our analysis in order to determine whether the

solution to the EV assigns workers to the wrong products, to the wrong periods, or both. Regarding

products, we solve a variant of the stochastic program wherein a worker is assigned to the same

products he/she is assigned to in the solution to the EV, leaving the stochastic program to determine

when a worker performs those products. We calculate a relative gap in objective function values like

those above and see a degradation of only 0.13%. Conversely, we also solved a variant of the stochastic

program wherein a worker is constrained to only work in the same periods he/she is assigned to in the

solution to the EV, leaving the stochastic program to determine which products a worker performs in

each of those periods. Here, the relative gap in objective function values was 1.00%. We conclude from

these relative gaps that the solution to the EV problem often assigns workers to the right products,

but not necessarily in the right periods.

Figure 4.5 displays the assignment schedules for the previous experiments for one instance. Com-

paring figures 4.5a and 4.5b, we notice that the two assignments schedules are completely different and

that in the deterministic solution one additional worker is required. Furthermore, looking at figures

4.5b and 4.5c, the plans are identical, meaning that the stochastic solution starting from the deter-

ministic one does not change any assignment variables. Moreover, referring to figures 4.5a and 4.5d,

we notice that the deterministic solution is not upgreadable, as there are multiple assignments in the

deterministic solution which are null in the SP one and viceversa. The comparison between figures

100

4.5b and 4.5d also shows that, in the EIV solution, worker 2 spends more periods on task 3. We also

notice that in figure 4.5e, only periods to which a worker is assigned to change, not the tasks, while in

figure 4.5f, if a worker is not assigned in a period in the deterministic solution, it is neither assigned to

that period in the ESSV with fixed periods solution. Finally, it is interesting to observe that by fixing

the tasks and/or the periods suggested by the deterministic solution, the assignment plan admits a

limited level of cross-training. As a matter of fact, in both plans, only worker 1 cross-trains, which is

a very similar situation to the one suggested by the SP solution.

Finally, we turn our attention to how solutions to the stochastic and deterministic problems differ

with respect to the timings of scheduling and production decisions. Specifically, in Figure 4.6a, we

illustrate for solutions to the stochastic and deterministic problems, averages of the first day within

each week during which some worker is scheduled to potentially produce. We see that, on average,

the stochastic program schedules potential production later in the week than the deterministic model.

In addition, the first period is later in each succeeding week. Recalling that some of these scheduled

production assignments may in fact be to practice, we hypothesize that by considering the full dis-

tributions of learning rates (through scenarios), the stochastic program has a better estimate of the

impact of practice than the deterministic model and thus schedules less. In Figure 4.6b, we report

similar averages, only of the first period when production begins. We recall that production decisions

are made in the second stage and, thus, they depend on scenarios. Thus, we use the solution to the

EEV problem, wherein production decisions are made for each scenario based upon the scheduling

decisions from the deterministic problem. We see that production occurs earlier given the schedule

prescribed by the deterministic model, which in turn leads to higher inventory costs.

(a) Average first scheduled period (b) Average first production period

Figure 4.6: Comparing scheduling and production decisions

101

(a) RP solution (b) EEV solution

(c) ESSV solution (d) EIV solution

(e) ESSV fixed task solution (f) ESSV fixed period solution

Figure 4.5: Stochastic solution analysis for an instance

102

4.6.2 Regression results for hypotheses testing

We turn our attention to characterizing how uncertainty in learning should impact decisions related

to worker assignment, cross-training, and practicing. In order to test the hypotheses described in

subsection (4.3.2), we first report in Table 4.5 the results of fitting the regression equations presented

in Section 4.4.3 to indicators (see subsection 4.4.2) derived from the 240 instances of the stochastic

program with 100 scenarios, as well as near-optimal solutions to those stochastic programs. Detailed

results can be found in Appendix III.b.

Dep. β µ σ2 FTAP TCP CI

var. r2 α
(·)
β p-value α(·)

µ p-value α
(·)
σ2

p-value α
(·)
FTAP p-value α

(·)
TCP p-value α

(·)
CI p-value

na (eq.(4.23)) 0.627 6.1597 0.000 -6.0808 0.000 -0.9677 0.000 -12.9385 0.000 14.3039 0.000 N/A N/A

np (eq.(4.24)) 0.579 0.6931 0.000 -0.1340 0.025 -0.3255 0.000 -0.5788 0.000 1.2190 0.000 N/A N/A

CTI (eq.(4.25)) 0.278 1.5345 0.000 0.0616 0.212 0.1653 0.000 0.0202 0.695 0.0799 0.311 -0.0013 0.000

PI (eq.(4.26)) 0.282 0.4912 0.000 -0.0266 0.274 0.0303 0.043 -0.0012 0.964 -0.1431 0.000 0.0008 0.000

Table 4.5: Summary regression results

From table 4.5, we note that the first two regression equations (see equations (4.23) and (4.24))

have reasonably high r2 values, suggesting the linear models fit well to the data. In addition, all the

p-values for the coefficients in these fitted regression models are less than 5%, suggesting we can derive

insights from those coefficients that we can be confident in, statistically-speaking. While the r2 values

indicate that the second two equations (see equations (4.25) and (4.26)) do not fit the data as well,

they are high enough that the coefficients can still be analyzed to yield insights.

Recall that we normalized the values of the statistics in the data sets to which these equations

were fitted so that we may directly compare these coefficients (see Gelman [36] (2008)). We first

note that for the first two regression equations, the coefficients associated with statistics derived

from the distributions of worker learning rates (FTAP, TCP) are larger in absolute value than those

associated with the parameter values of those distributions. We view this as validation that there is

more predictive power in statistics that represent the entire distribution than the values of individual

parameters. We next examine these coefficients in the context of the previously presented hypotheses

to derive managerial insights.

4.6.3 Which types of workers should produce more often?

Hypotheses 1 and 2 (see subsection (4.3.2)) relate to identifying which types of workers should

produce in more periods. The first hypothesizes that workers who are more likely to reach a target

capacity (i.e. have a higher TCP) should work more periods while the second hypothesizes that

workers that are less likely to be faster than average learners (i.e. have a lower FTAP) should work

103

Figure 4.7: Coefficients for na regression.

more periods. We assess the validity of these hypotheses by examining the first regression equation,

wherein the dependent variable is nai. We illustrate in Figure 4.7 the coefficients associated with all

four independent variables (µ, σ2, FTAP, TCP), as they all have a p-value that is less than 5%, and

thus we can be statistically confident that all four have predictive power regarding which types of

workers should work more periods.

Recalling that the independent variable values were normalized to be on the same scale, we see

that the FTAP and TCP are the leading indicators regarding which workers should work the most

periods. The coefficient, αnaTCP is largest in absolute value, and positive, suggesting that workers that

are more likely to reach their target capacity should work the most, verifying our hpothesis 1. The

next largest coefficient in absolute value is αnaFTAP . However, this coefficient is negative, suggesting

that workers with lower FTAP, meaning they are less likely to learn faster than the average member

of the workforce, should work more periods, verifying our hypothesis 2. Put another way, this suggests

that those who are likely to be slower than average learners should work more. While the other two

independent variables (µ, σ2) also have p-values less than 5%, their coefficients are much smaller (in

absolute value), and thus we view the FTAP and TCP as the leading indicators regarding which

workers should work the most periods.

4.6.4 Which types of workers should produce more products?

The next two hypotheses relate not to which types of workers should work on more products.

Hypothesis 3 posits that workers for whom the organization is more confident in their estimate of

their learning rate (i.e. σ is smaller) should work on more products. Hypothesis 4 also relates the

TCP to the number of products a worker should make. We assess the validity of these hypotheses by

examining regression equation (4.24), wherein the dependent variable is np. We illustrate in Figure 4.8

104

Figure 4.8: Coefficients for np regression.

the coefficients associated with all four independent variables, as they all have a p-value that is less

than 5%. We again see that the coefficient associated with TCP , αnpTCP , is largest in absolute value,

and positive, suggesting that workers that are more likely to reach their target capacity should work on

more products. This verifies our hypothesis 4. Next in absolute value is the coefficient associated with

FTAP , αnpFTAP , which is negative, suggesting that workers who are likely to be slower than average

learners should work on more products. Finally, the coefficient associated with σ2, (αnpσ2) is third-largest

in absolute value. It is also negative, suggesting that the smaller the variance in the distribution of a

worker’s learning rate, the more products he/she should be assigned to produce. While we view this as

verifying our hypothesis 3, comparing the coefficients associated with TCP and σ2 in absolute value,

we see the TCP indicator is the leading one of which workers should work on more products.

4.6.5 Which types of workers should cross-train and which should practice?

Hypothesis 5 relates to identifying which types of workers should cross-train more, whereas hy-

pothesis 6 posits which types of workers should practice more. We assess hypothesis 5 with regression

equation (4.25), which has CTI as the dependent variable and hypothesis 6 with equation (4.26), which

has PIi as the dependent variable. We illustrate the coefficients with p-value that is less than 5% for

each equation in Figure 4.9. Recall that the higher the value of CTI, the less a worker cross-trains.

For both dependent variables, we see that while we can have statistical confidence that the cost

index coefficients, αCTICI , αPICI are not zero, they are very small in magnitude. Hypothesis 5 posits that

workers for whom the organization has less confidence regarding their learning rate (i.e. the variance of

their distribution is larger) should cross-train less. Observing that αCTIσ2 is positive and has a p-value of

0.000 in the regression equation with CTI as the dependent variable, we conclude that this hypothesis

is verified. This also corroborates our validation of hypothesis 4, where we saw that workers with

105

Figure 4.9: Coefficients for CTI, PI regressions with p-value < .05

smaller variances should work on more products. Finally, hypothesis 6 theorizes that workers with

lower TCP should practice more. Observing that the αPITCP is negative and has a p-value of 0.000 in

the regression equation with PI as the dependent variable, we conclude that this hypothesis is verified

as well, which is not surprising given that we have already observed that those with high TCP should

produce more often.

4.6.6 Tactics for accommodating uncertainty in worker learning rates

In this section, we summarize the previous results and analysis in order to present tactics that an

organization can use to accommodate uncertainty in worker learning rates when deriving production

plans. We first conclude that an organization should recognize that there can be uncertainty in worker

learning rates, as doing so can reduce costs. Regarding how to recognize uncertainty when assigning

work, an organization should prioritize workers based on a measure that captures their estimations

of the distributions of worker learning rates, such as the TCP , instead of individual distribution

parameter values. Relatedly, an organization should prioritize the hiring of workers that have a high

probability of quickly reaching a target capacity. Finally, confidence regarding the estimation of worker

learning rates should impact cross-training decisions. Specifically, the organization should prioritize

cross-training workers for whom they have a strong belief that the estimated learning rate is the actual.

4.7 Conclusions and future works

In this paper, we considered a product manufacturer that makes multiple products and has complete

information regarding customer demand timings and quantities for those products. In addition to

106

recognizing that human learning occurs, and thus worker productivity as a function of experience can

be predicted with a learning curve, the organization also recognizes that they do not have complete

information regarding the parameters of that curve. Specifically, they do not know with certainty

the rates at which workers learn, and hence their productivity. Thus, while demands are known with

certainty, supply is not, and this manufacturer wants to derive a production plan that will minimize

expected cost while meeting those demands. While the learning curve we consider in this paper is non-

linear, we adapted a reformulation technique from the literature to formulate a stochastic programming

model of this production planning problem as a mixed integer linear program, and we show that it

can be solved quickly with today’s solvers.

We used this stochastic programming model as the basis of an extensive computational study into

whether and how uncertainty in worker learning rates should be recognized in production planning.

To ensure confidence, statistically-speaking, in the insighs derived from this computational study, we

based it on a set of instances generated with established techniques from the literature. We first

observed that a manufacturer can reduce their costs by explicitly recognizing uncertainty in worker

learning rates. To capture that uncertainty with a single measure by which workers can be ranked, we

presented statistics based on the distributions of worker learning rates. We saw in our computational

study that these statistics have strong predictive power regarding which types of workers should work

more and on more products. We also derived insights from this computational study into the role that

uncertainty in learning should play in cross-training decisions.

Regarding future works, the clear next extension is to model uncertainty in demands, particularly

quantities. Doing so would enable study of the interplay between uncertainty in human learning

(supply) and demand. In this case, an additional effort consisting in analyzing the reduced costs of the

out-of-basis variables in the deterministic solution (see Crainic, Maggioni, Perboli, and Rei [25] (2017)

for details) would be valuable in order to decrease the computational complexity. Another possible

extension is to consider that an individual’s learning rate can be more precisely estimated through

testing, instead of considering means and variances of learning rate distributions. Consequently, we

could include the choice of whether and which workers should be tested reducing the variance of

the learning rate distribution. Finally, future works could include a multistage stochastic program

formulation for a sequential workforce assignment decision problem, wherein productivities (and hence

learning rates) are observed in time, and schedules consequently updated.

107

Chapter 5

Optimization driven monotonic

bounds for two-stage stochastic

integer programs

Authors: Francesca Maggioni1, Rossana Cavagnini2

Keywords: Two-stage stochastic integer programming, Bounds, Refinement chain

1University of Bergamo, Via dei Caniana, 2, Bergamo, Italy, e-mail: francesca.maggioni@unibg.it
2University of Bergamo, Via dei Caniana, 2, Bergamo, Italy, e-mail: r.cavagnini@studenti.unibg.it

108

5.1 Introduction

The aim of this chapter is to propose an approach which allows to obtain an optimized chain of

lower bounds for a two-stage stochastic program by solving subproblems based on scenario grouping.

In Ryan, Ahmed, Dey, and Rajan [82] (2016), the authors propose a model which allows to build the

optimal scenario grouping given a maximum group cardinality. In Maggioni and Pflug [55] (2016), the

authors propose monotonic chains of lower bounds to the optimal stochastic program based on the

concavity of the probability mapping typical of stochastic programs, including those of the expectation

type. However, the refinement chains of lower bounds are obtained choosing groups of scenarios of a

given cardinality randomly, not allowing to guarantee that the chosen grouping provides the best lower

bound.

In this chapter, we provide an optimized monotonic chain of lower bounds, by combining the

properties of the probability mapping of stochastic programs presented in Maggioni and Pflug [55]

(2016) with the methodology presented in Ryan, Ahmed, Dey, and Rajan [82] (2016). Consequently,

we are able to construct a sequence of scenario groupings such that the estimated improvement with

respect to the solution of single scenario problems is maximized. For this reason, we propose a mixed

integer linear program to build monotonic chains of lower bounds, which allows to group scenarios

disjointly. Through our computational results, we compare the lower bounds obtained through our

approach with the ones obtained through the methodologies proposed by Maggioni and Pflug [55]

(2016) and Ryan, Ahmed, Dey, and Rajan [82] (2016).

The chapter is organized as follows. Section (5.2) includes the preliminaries to our work and the

mixed integer program for scenario grouping. Section (5.3) presents the computational results. Finally,

in Section (5.4) some conclusions are reported.

5.2 Scenario grouping in refinement levels

In this section, we first present the notation and the preliminaries to our work and then, we

formulate a mixed integer program to build scenarios groupings in order to obtain the optimized

monotonic chain of lower bounds.

5.2.1 Notation and Preliminaries

We consider the following two-stage stochastic programming problem:

min
x
{EΠ[f(x, ξ)] : x ∈ X}, (5.1)

109

where x represents the solution vector in the feasible region X . The random vector ξ is defined on a

probability space with support Ξ and the expectation EΠ is taken with respect to the probability Π,

while f represents the objective function. Moreover, we suppose that Ξ is finite and it is represented

by a set of K = {1, . . . ,K} scenarios. The problem can be then re-stated as:

z∗ = min
x
{
∑
k∈K

πkfk(x) : x ∈ X}, (5.2)

where πk and fk are the probability and the objective function, respectively, associated with scenario

k.

Following the approach presented in Ryan, Ahmed, Dey, and Rajan [82] (2016), we re-write (5.2)

making the nonanticipativity constraints
∑
k∈KAkxk explicit:

z∗ = min
x1,...,xK

{
∑
k∈K

πkfk(xk) : xk ∈ X ∀k ∈ K,
∑
k∈K

Akxk = 0}, (5.3)

where the non-anticipativity constraints force the variables xk to be the same across scenarios. By

dualizing the nonanticipativity constraints with multipliers λ, we write the following nonanticipative

relaxation:

z∗(λ) =
∑
k∈K

πkz
∗
k(λ) where z∗k(λ) = min

x
{fk(x) + λTAkx : x ∈ X} ∀k ∈ K. (5.4)

By doing so, we obtain z∗(λ) which is a lower bound on z∗, and the dual problem of maximizing

z∗(λ) with respect to λ returns the greatest lower bound.

Maggioni and Pflug [55] (2016) present two methods for building refinement chains. The first one

consists in building disjoint scenario groups, while the second one consists in building scenario groups

by keeping one or several scenarios fixed across all groups. For both cases, they show that by using

the concavity of the probability mapping typical of the stochastic programs with expectation, a chain

of lower bounds can be obtained.

Since we are interested in building a chain of lower bounds, we need to define the set of chain levels

by P = {1, . . . , P}. Furthermore, for each chain level p ∈ P, we can build lower bounds, by considering

a set of groups Mp = {mp
1, . . . ,m

p
Mp}.

110

The refinement chain can be represented as:

MP : {mP
1 } = K (5.5)

...

Mp : {mp
1,m

p
2, . . . ,m

p
Mp}

...

M2 : {m2
1,m

2
2, . . . ,m

2
M2}

M1 : {m1
1,m

1
2, . . . ,m

1
M1} = {{k1}, {k2}, . . . , {kK}}

where each row is a collection of groups of the set of scenarios K with the property that their union

covers the whole space K =
⋃Mp

l=1m
p
l for all p and that each group mp

l is the union of sets from the

next more refined collection,

mp
l =

⋃
m

(p−1)
s ⊆mpl

m
(p−1)
s .

Figure 5.1 illustrates one of the possible refinement chains in the case of disjoint groups.

For details on the probability definition of each group we refer to Maggioni and Pflug [55] (2016).

Without loss of generality, from this point, we will denote a group in a refinement level simply by

m ∈ Mp. Furthermore, we represent the set of scenarios in each group of each refinement level by

Kp,m. For the disjoint case, at each refinement level p, the set of scenarios K is partitioned into Mp

groups (Kp,1, . . . ,Kp,Mp

) such that:⋃
m∈Mp Kp,m = K, ∀p ∈ P and Kp,m ∩ Kp,n = ∅,∀m,n ∈Mp,∀p ∈ P.

Thanks to this construction (see Maggioni and Pflug [55] (2016)), it is possible to show that the

following chain of lower bounds to the optimal solution is:

z0∗ ≤ z1∗ ≤ · · · ≤ zp∗ ≤ · · · ≤ zP∗ = z∗, (5.6)

where z0∗ corresponds to the wait-and-see solution, while zP∗ corresponds to the optimal stochastic

solution.

However, there is no guarantee that this is the best chain of lower bounds for z∗, that is the

one with the lowest gap to the optimal solution. As a matter of fact, alternative groupings (see for

example, figures 5.2, 5.3, and 5.4) than the one presented in figure 5.1 could lead to better chains of

lower bounds.

111

Figure 5.1: A refinement chain with disjoint groups

Figure 5.2: An alternative refinement chain with disjoint groups (1)

112

Figure 5.3: An alternative refinement chain with disjoint groups (2)

Figure 5.4: An alternative refinement chain with disjoint groups (3)

For the generic p ∈ P level in (5.6), the nonanticipative relaxation as in (5.4) is:

zp∗(λ) =
∑

m∈Mp

πmzpm∗(λ) ∀p ∈ P, (5.7)

where zp,m∗(λ) = minx{
∑
k∈Kp,m(fk(x) + λTAkx) : x ∈ X}, ∀m ∈Mp,∀p ∈ P.

Notice that the matrices A1, . . . , Ak are such that
∑
k∈Kpm Akxk = 0 if and only if x1 = · · · = xK .

Consequently,
∑
m∈Mp(

∑
k∈Kp,m Ak)xm = 0 if and only if x1 = · · · = xM

p

. As a result, we have that

zp∗(λ) ≥ z∗(λ) ∀p ∈ P \ {0},

and we would like to construct a refinement level p such that the bound improvement is large.

To compute the bound improvement, we first need to compute the values zpm(λ) for all m ∈ Mp

and, in order to reduce the number of groupings to be examinated, we can use candidate solutions.

113

These candidate solutions can be represented by the set of scenario optimal solutions or can be gener-

ated by using any heuristic.

By adapting the computation presented in Ryan, Ahmed, Dey, and Rajan [82] (2016), we have

that:

0 ≤ zp∗(λ)− z∗(λ) ≤
∑
m∈Mp θp,m ∀p ∈ P,

where:

θp,m = minx∈S{
∑
k∈Kp,m(fk(x) + λTAkx− z∗k(λ))} ∀p ∈ P,m ∈Mp.

Hence, θp,m is an optimistic prediction of the bound improvement by grouping scenarios.

5.2.2 MIP formulation for scenario grouping

In this section, we propose a mixed integer program whose objective is to maximize the estimated

improvement (with respect to the wait-and-see solution) which we obtain by grouping scenarios. In-

stead of the approach of Ryan, Ahmed, Dey, and Rajan [82] (2016), in which they create partitions, by

optimizing the scenario grouping refinement levels one by one and by imposing a maximum size to the

cardinality of each group, our approach aims to build an optimal refinement chain of lower bounds at

once. This would imply that at some levels of the chain, the improvement is not necessarily the best

one. However, we have the guarantee that the overall chain is built such that we obtain the maximum

overall estimated improvement considering the construction of the refinement levels. Furthermore, we

constrain each group to have a given dimension. On the other hand, our approach differs from the one

in Maggioni and Pflug [55] (2016), since in their approach, they build scenario groups in a sequential

way, not allowing to guarantee that the chosen grouping provides the best lower bound.

Optimization of refinement chains with disjoint groups

In this section, we first introduce the notation for our problem and secondly, we formulate the

scenario grouping problem.

We recall that the set of scenarios is defined by K = {1, . . . ,K}, (k ∈ K), the set of refinement

levels by P = {1, . . . , P}, (p ∈ P), the set of groups in each refinement level p by Mp = {1, . . . ,Mp},

(m ∈Mp) and the set of scenario optimal solutions by S, (x ∈ S). Note that in each refinement level,

the following condition K
Mp = Z,∀p ∈ P must be satisfied, that is, the number of scenarios in each

group for each partition must be an integer number. We introduce the parameter wks to represent the

potential improvement which is computed as the difference between the value of the objective function

of the problem where we fix the first-stage variables to be equal to a scenario solution and the solution

obtained by solving the problem on that scenario (without fixing any variable). The formula is:

wks = fk(x)− zk ∀k ∈ K,∀x ∈ S.

114

Furthermore, we introduce the binary variable ypmk to indicate whether scenario k belongs to group m

in refinement level p and the binary variable vpmij to indicate whether scenarios i and j belong to the

same group m in refinement level p. Finally, the estimated improvement due to group m in refinement

level p is represented by the continuous variable θpm. The adopted notation is summarized as follows:

• Sets:

– K: set of scenarios, k ∈ K;

– P: set of refinement levels, p ∈ P;

– Mp: set of groups in each refinement level p, m ∈Mp;

– S: set of optimal solutions, x ∈ S.

• Variables:

– ypmk : 0-1 variable indicating whether we place scenario k into group m in refinement level

p;

– vpmij : 0-1 variable indicating whether we place scenarios i and j in the same group m in

refinement level p;

– θpm: continuous variable representing estimated improvement due to group m in refinement

level p.

• Parameters:

– wks: potential improvement values for each couple (k, s), k ∈ K, x ∈ S.

Given a finite set of solutions S, values wks, and a scenario group size K
Mp for each refinement

level p ∈ P, a mixed integer programming formulation for the scenario disjoint grouping problem is as

follows:

V (S,P,Mp) = max
θ,y

∑
p∈P

∑
m∈Mp

θpm (5.8)

s.t.

θpm ≤
∑
k∈K

wksy
pm
k ∀x ∈ S,∀m ∈Mp,∀p ∈ P (5.9)

∑
m∈Mp

ypmk = 1 ∀k ∈ K,∀p ∈ P (5.10)

∑
k∈K

ypmk =
K

Mp
∀p ∈ P,∀m ∈Mp (5.11)

vpmij ≥ (ypmi + ypmj)− 1 ∀i ∈ K,∀j ∈ K : j 6= i,∀p ∈ P,∀m ∈Mp (5.12)

115

2vpmij ≤ y
pm
i + ypmj ∀i ∈ K,∀j ∈ K : j 6= i,∀p ∈ P,∀m ∈Mp (5.13)∑

m∈Mp

vpmij ≥
∑

m′∈Mp−1

v
(p−1),m′

ij ∀i ∈ K,∀j ∈ K : j 6= i,∀p ∈ P : p > 1 (5.14)

ypmk ∈ {0, 1} ∀k ∈ K, ∀m ∈Mp, ∀p ∈ P (5.15)

vpmij ∈ {0, 1} ∀m ∈Mp, ∀i, j ∈ K, ∀p ∈ P (5.16)

θpm ∈ R ∀m ∈Mp, ∀p ∈ P. (5.17)

The objective function (5.8) maximizes the estimated improvement over all groups and refinement

levels. Constraints (5.9) define the improvement associated to a given solution to be the minimum of

affine functions and the improvement is considered only if scenario k belongs to that group m in that

refinement level p. Constraints (5.10) impose each scenario to belong exactly to one group in each

refinement level, while constraints (5.11) assure that the number of scenarios in every group is given

by the number of scenarios divided by the number of groups in that refinement level. Furthermore,

constraints (5.12) and (5.13) together establish that if both scenarios belong to the same group, vpmij

is equal 1, otherwise equal 0 in each refinement level. Note that equivalently, we can think of two

scenarios belonging to the same group as nodes linked by the same arc. Constraints (5.14) guarantee

that if in the previous refinement level, scenarios i and j are in the same group, they are in the same

group also in this refinement level. Finally, constraints (5.15)-(5.17) are variable definition constraints.

5.3 Computational Results

In this section, we present the computational results obtained by applying our methodology.

We first present the results obtained by applying our approach to an instance of the two-stage opti-

mization integer model for the Bike Sharing Allocation and Rebalancing Problem (Cavagnini, Bertazzi,

Maggioni, and Hewitt [19] (2018), Chapter 3). Then, we report the results obtained by considering one

instance of the Stochastic Server Location Problem (SSLP), available at the SIPLIB (Ahmed, Garcia,

Kong, Ntaimo, Parija, Qiu, and Sen [3] (2015)). For both cases, we compare the results obtained by

our method, with two alternative approaches. The first one, which we call “Maggioni and Pflug [55]

(2016)” refers to the way of grouping scenarios sequentially. The second one, which we call “Ryan,

Ahmed, Dey, and Rajan [82] (2016)” refers to the way of grouping scenarios indipendently in each re-

finement level, but, differently from their approach, we require that each group must have a predefined

number of scenarios K
Mp .

All computational experiments were run on a 64-bit machine with 8 GB of RAM and an Intel Core

i7-7500 CPU 2.90 GHz processor.

116

(a) 16 scenarios (b) 100 scenarios

(c) 140 scenarios

Figure 5.5: Scenario objective function values for the Bikesharing Allocation and Rebalancing Problem

for an increasing number of scenarios.

5.3.1 Two-stage stochastic optimization integer model for the Bike sharing

allocation and rebalancing problem

In this subsection, we test our approach on the two-stage stochastic optimization model for the

Bike sharing allocation and rebalancing problem, by generating different number of scenarios (16, 100,

140). The complete description and formulation of this problem can be found in Chapter 3.

In order to assess if, for this case study, there is a large gap between the wait-and-see problem and

the recourse problem, in figure 5.5, we draw the optimal objective function values obtained for each

scenario and for every considered instance. We can see that the scenarios show very different objective

function optimal values and, consequently, going from one refinement level to the next one, we expect

to obtain a large improvement in the lower bounds.

After building scenario groups through our methodology (model (5.8)-(5.17)), we solve the Bike-

sharing Allocation and Rebalancing Problem on these groups, thus obtaining the chains of lower bounds

presented in tables (5.1), (5.2) and (5.3), respectively in cases with 16, 100, 140 scenarios. We recall

that, for all cases, we compare the lower bounds z∗p obtained by our model (5.8)-(5.17), with the lower

117

bounds z∗pMP (from Maggioni and Pflug [55] (2016)) and the lower bounds z∗pRA (from Ryan, Ahmed,

Dey, and Rajan [82] (2016)), with the following formulae:
z∗pMP−z

∗p

z∗p and
z∗pRA−z

∗p

z∗p , respectively.

Across all instances, and across all three grouping approaches (model (5.8)-(5.17), Maggioni and

Pflug [55] (2016) and Ryan, Ahmed, Dey, and Rajan [82] (2016)), we can see that the lower bounds

are always monotonically increasing.

Concerning the case with 16 scenarios (see table (5.1)), we considered three refinement levels

(wait-and-see and complete recourse problem excluded). By comparing our approach with the one of

Maggioni and Pflug [55] (2016), we can see that through our method, we always obtain better lower

bounds. Furthermore, we notice that even if the estimated improvement given by the approach of

Ryan, Ahmed, Dey, and Rajan [82] (2016) is higher than the one of model (5.8)-(5.17), our bounds

are overall better, since they are closer to the solution of the full recourse problem.

For the case with 100 scenarios (see table (5.2)), we considered two refinement levels (wait-and-see

and complete recourse problem excluded). Also in this case, we notice that our lower bounds are

always better than the ones given by the approach of Maggioni and Pflug [55] (2016). However, even

if the estimated improvement of model (5.8)-(5.17) and of the approach of Ryan, Ahmed, Dey, and

Rajan [82] (2016) are the same, for the refinement level characterized by four groups made up of 25

scenarios each, Ryan, Ahmed, Dey, and Rajan [82] (2016) approach overperforms the one of model

(5.8)-(5.17). Instead, through model (5.8)-(5.17), the best higher lower bound (the one associated to

the refinement level composed of 2 groups of 50 scenarios each) is obtained.

Finally, for the case with 140 scenarios (see table (5.3)), we considered two refinement levels (wait-

and-see and complete recourse problem excluded). Again, we notice that our lower bounds are always

better than the ones given by the approach of Maggioni and Pflug [55] (2016). However, even if the

estimated improvement of model (5.8)-(5.17) and of the approach of Ryan, Ahmed, Dey, and Rajan

[82] (2016) are the same, for the refinement level characterized by four groups made up of 35 scenarios

each, our model (5.8)-(5.17) returns the best lower bound, while the Ryan, Ahmed, Dey, and Rajan [82]

(2016) returns the best lower bound in the refinement level with 2 groups composed by 70 scenarios.

118

Model

(5.8) - (5.17)

Maggioni and Pflug

(2016)

Ryan et al

(2016)

CPU s/

subproblem
Comparison

p Mp K/Mp Obj

value

% gap

wrt z*

Estimated

improvement

Obj

value

% gap

wrt z*

Obj

value

% gap

wrt z*

Estimated

improvement

Maggioni

and Pflug

(2016)

vs

Model

(5.8) - (5.17)

Ryan et

al.

(2016)

vs

Model

(5.8)-(5.17)

0 (zk) 16 1 672.12 8.25% - 672.12 8.25% 672.12 8.25% - 0.04 - -

1 8 2 692.88 5.00% 730.54 691.07 5.28% 690.82 5.32% 768.05 0.05 -0.26% -0.30%

2 4 4 712.10 2.17% 1189.36 706.77 2.94% 711.66 2.23% 1189.36 0.09 -0.75% -0.06%

3 2 8 721.26 1.15% 1279.49 716.99 1.47% 713.74 1.93% 1279.49 0.14 -0.59% -1.04%

4 (z∗) 1 16 727.54 - - 727.54 - 727.54 - - 0.39 - -

Table 5.1: Comparison of lower bounds found through model (5.8)-(5.17), Maggioni and Pflug [55] (2016) and Ryan, Ahmed, Dey, and Rajan

[82] (2016) for the Bikesharing problem with 16 scenarios.

119

Model

(5.8) - (5.17)

Maggioni and Pflug

(2016)

Ryan et al

(2016)

CPU s/

subproblem
Comparison

p Mp K/Mp
Obj

value

% gap

wrt z*

Estimated

improvement

Obj

value

% gap

wrt z*

Obj

value

% gap

wrt z*

Estimated

improvement

Maggioni

and Pflug

(2016)

vs

Model

(5.8) - (5.17)

Ryan et

al.

(2016)

vs

Model

(5.8)-(5.17)

0 (zk) 100 1 769.46 13.65% - 769.46 13.65% 769.46 13.65% - 0.04 - -

1 4 25 864.98 1.10% 11095.25 858.18 1.90% 865.95 0.99% 11095.25 0.46 -0.79% 0.11%

2 2 50 870.04 0.51% 11095.25 869.76 0.54% 869.70 0.55% 11095.25 1.01 -0.03% -0.04%

3 (z∗) 1 100 874.49 - - 874.49 - 874.49 - - 2.44 - -

Table 5.2: Comparison of lower bounds found through model (5.8)-(5.17), Maggioni and Pflug [55] (2016) and Ryan, Ahmed, Dey, and Rajan

[82] (2016) for the Bikesharing problem with 100 scenarios.120

Model

(5.8) - (5.17)

Maggioni and Pflug

(2016)

Ryan et al

(2016)

CPU s/

subproblem
Comparison

p Mp K/Mp
Obj

value

% gap

wrt z*

Estimated

improvement

Obj

value

% gap

wrt z*

Obj

value

% gap

wrt z*

Estimated

improvement

Maggioni

and Pflug

(2016)

vs

Model

(5.8) - (5.17)

Ryan et

al.

(2016)

vs

Model

(5.8)-(5.17)

0 (zk) 140 1 752.32 12.27% - 752.32 12.27% 752.32 12.27% - 0.04 - -

1 4 35 840.91 0.44% 14376.87 837.15 0.89% 839.78 0.57% 14376.87 0.66 -0.45% -0.13%

2 2 70 843.36 0.15% 14376.87 842.38 0.26% 843.75 0.10% 14376.87 1.45 -0.12% +0.05%

3 (z∗) 1 140 844.60 - - 844.60 - 844.60 - - 3.56 - -

Table 5.3: Comparison of lower bounds found through model (5.8)-(5.17), Maggioni and Pflug [55] (2016) and Ryan, Ahmed, Dey, and Rajan

[82] (2016) for the Bikesharing problem with 140 scenarios.121

5.3.2 SSLP 10 50 50

In this subsection, we test our approach by considering an instance of the Stochastic Server Location

Problem (available at the SIPLIB (Ahmed, Garcia, Kong, Ntaimo, Parija, Qiu, and Sen [3] (2015))),

for the case with 10 first stage variables, 50 second-stage variables per scenario and 50 scenarios.

As for the problem analyzed in the previous subsection, we first represent the objective function

values for each scenario (figure 5.6). From the graph, we notice that the objective function values vary

from scenario to scenario, and, consequently, we expect to obtain better and better lower bounds going

from one refinement level to the next one.

Figure 5.6: Scenario objective function values for the SSLP 10 50 50

After obtaining scenario groups by applying our methodology (model (5.8)-(5.17)), we solve the

SSLP on these groups, thus obtaining the chain of lower bounds displayed in table (5.4). Also in this

case, we compare the lower bounds z∗pMP (from Maggioni and Pflug [55] (2016)) and the lower bounds

z∗pRA (from Ryan, Ahmed, Dey, and Rajan [82] (2016)), with the following formulae:
z∗pMP−z

∗p

z∗p and

z∗pRA−z
∗p

z∗p , respectively. We specify that the optimal value z∗ of this instance of the SSLP has been

taken from Ryan, Ahmed, Dey, and Rajan [82] (2016), as with our machine we were not able to get the

optimal solution after one hour. The reader may refer to Ryan, Ahmed, Dey, and Rajan [82] (2016)

for the summary statistics for this problem.

For this instance, we considered two refinement levels (wait-and-see and complete recourse problem

excluded). We notice that the lower bounds obtained by model (5.8)-(5.17) are always better than

the ones computed according to Maggioni and Pflug [55] (2016), showing the validity of our approach.

Furthermore, in this case, our lower bounds are equal to the ones obtained by optimizing the groups

construction separately for each refinement level as done in Ryan, Ahmed, Dey, and Rajan [82] (2016)

and, thus, by solving two optimization problems, instead of one (model (5.8)-(5.17)).

122

Model

(5.8) - (5.17)

Maggioni and Pflug

(2016)

Ryan et al.

(2016)

CPU s

subproblem
Comparisons

p Mp K/Mp
Obj

value

% gap

wrt z*

Estimated

improvement

Obj

value

% gap

wrt z*
Obj value

% gap

wrt z*

Estimated

improvement

Maggioni

and Pflug

(2016)

vs

Model

(5.8) - (5.17)

Ryan et

al.

(2016)

vs

Model

(5.8)-(5.17)

0 (zk) 50 1 -378.92 3.92% - -378.92 3.92% -378.92 3.92% - 0.19 - -

1 10 5 -364.64 0.00% 714 -366.46 0.50% -364.64 0.00% 714 2.80 0.50% 0.00%

2 5 10 -364.64 0.00% 714 -364.86 0.06% -364.64 0.00% 714 5.19 0.06% 0.00%

3 (z∗) 1 50 -364.64 - - -364.64 - -364.64 - - * - -
∗ the reader can refer to Ryan, Ahmed, Dey, and Rajan [82] (2016) for these details, as with our machine we were not able to solve the problem to optimality within 3600 seconds.

Table 5.4: Comparison of lower bounds for the SSLP 10 50 50, found through model (5.8)-(5.17), Maggioni and Pflug [55] (2016) and Ryan,

Ahmed, Dey, and Rajan [82] (2016).123

5.4 Conclusions

In this chapter, we have proposed a mixed integer linear program in order to obtain an optimized

chain of lower bounds for two-stage stochastic programs by solving subproblems based on scenario

groupings. Differently from the approaches proposed in the literature (see Ryan, Ahmed, Dey, and

Rajan [82] (2016) and Maggioni and Pflug [55] (2016)), we build disjoint scenario groups with the

objective of maximizing the estimated improvement obtained by solving the stochastic program on

scenario subgroups with respect to the wait-and-see solution. Through the computational experiments,

we showed that our methodology always improves the chain of lower bounds built according to the

approach proposed by Maggioni and Pflug [55] (2016). Compared to the approach of Ryan, Ahmed,

Dey, and Rajan [82] (2016), we provided a monotonic chain of lower bounds, instead of a single lower

bound, and, in some cases, our methodology outperforms their approach.

Given that the computational complexity of the grouping model (5.8)-(5.17) grows both with the

number of scenarios and with the number of groups, as future developments, we aim at investigating

other methods to overcome the computational difficulties encountered in this work.

124

Appendix

I Chapter 2

I.a Model linearization

In this section, we present the linearization of Problem P1. The model is now:

Problem P1L

min
∑
t∈T ′

∑
n∈N t

πn
[∑
i∈I

(fix
n
i + Fiv

n
i)

]
+

+
∑
t∈T ′′

∑
n∈N t

πn
[∑
i∈I

(gib
n
i +Gir

n
i) +

∑
i∈I

hiI
n+
i +

+
∑
i∈I

∑
j∈I:i6=j

(tijy
n+
ij + TijV

n
ij) +

∑
j∈I

pjI
n−
j

] (I.a.1)

s.t. (2.4), (2.5), (2.6), (2.8)-(2.14), and the following additional constraints:

Ini = I
a(n)+
i + x

a(n)
i + bni − dni +

∑
j∈I:i 6=j

(ynji − ynij) i ∈ I, n ∈ N t, t ∈ T ′′ (I.a.2)

I
a(n)+
i + x

a(n)
i + bni +

∑
j∈I:j 6=i

ynji ≤ Qi i ∈ I, n ∈ N t, t ∈ T ′′ (I.a.3)

∑
j∈I:j 6=i

ynij ≤ γni i ∈ I, n ∈ N t, t ∈ T ′′ (I.a.4)

γni ≥ (I
a(n)+
i + x

a(n)
i − dni) i ∈ I, n ∈ N t, t ∈ T ′′ (I.a.5)

γni ≤ (I
a(n)+
i + x

a(n)
i − dni)lni i ∈ I, n ∈ N t, t ∈ T ′′ (I.a.6)

γni ≤ (I
a(n)+
i + x

a(n)
i − dni) + dni (1− lni) i ∈ I, n ∈ N t, t ∈ T ′′ (I.a.7)

In+
i ≥ Ini i ∈ I, n ∈ N t, t ∈ T ′′ (I.a.8)

In+
i ≤ Ini +M(1− zni) i ∈ I, n ∈ N t, t ∈ T ′′ (I.a.9)

In+
i ≥ 0 integer i ∈ I, n ∈ N t, t ∈ T ′′ (I.a.10)

125

In+
i ≤ 0 +Mzni i ∈ I, n ∈ N t, t ∈ T ′′ (I.a.11)

In−i ≥ −Ini i ∈ I, n ∈ N t, t ∈ T ′′ (I.a.12)

In−i ≤ −Ini +Mzni i ∈ I, n ∈ N t, t ∈ T ′′ (I.a.13)

In−i ≥ 0 integer i ∈ I, n ∈ N t, t ∈ T ′′ (I.a.14)

In−i ≤ 0 +M(1− zni) i ∈ I, n ∈ N t, t ∈ T ′′ (I.a.15)

γni ≥ integer i ∈ I, n ∈ N t, t ∈ T ′′ (I.a.16)

lni ∈ {0, 1} i ∈ I, n ∈ N t, t ∈ T ′′ (I.a.17)

zni ∈ {0, 1} i ∈ I, n ∈ N t, t ∈ T ′′ (I.a.18)

where M = max{Qi,maxn∈N tdni }.

126

II Chapter 3

II.a Model linearization

In this section, we present the linearization of the model presented in section 3.4. First, we need

to modify the objective function (3.1) as follows:

min
∑
i∈I

fixi +
∑
s∈S

prs[
∑

i∈I\{I}

(ti,i+1y
s
i,i+1 +

ci
Qi
Bs+i + ciE

s+
i + piI

s−
i)]. (II.a.1)

Then, we need to linearize the expressions for determining Is+i and Is−i . We introduce the binary

variable zsi such that:

zsi =

 1 if Isi ≥ 0

0 otherwise

and we substitute constraints (3.10) and (3.11) with:

Is+i ≥ Isi i ∈ I \ {I}, s ∈ S (II.a.2)

Is+i ≤ Isi + max
s∈S

(dsi)(1− zsi) i ∈ I \ {I}, s ∈ S (II.a.3)

Is+i ≥ 0 integer i ∈ I \ {I}, s ∈ S (II.a.4)

Is+i ≤Mzsi i ∈ I \ {I}, s ∈ S (II.a.5)

Is−i ≥ −Isi i ∈ I \ {I}, s ∈ S (II.a.6)

Is−i ≤ −Isi +Mzsi i ∈ I \ {I}, s ∈ S (II.a.7)

Is−i ≥ 0 integer i ∈ I \ {I}, s ∈ S (II.a.8)

Is−i ≤ max
s∈S

(dsi)(1− zsi) i ∈ I \ {I}, s ∈ S (II.a.9)

The same linearization technique is applied for Es+i , and Bs+i . In particular, we introduce the

binary variables esi and rsi , such that:

esi =

 1 if Esi ≥ 0

0 otherwise

rsi =

 1 if Bsi ≥ 0

0 otherwise

and we substitute constraints (3.13) and (3.15) with the following:

Bs+i ≥ B
s
i i ∈ I \ {I}, s ∈ S (II.a.10)

Bs+i ≤ B
s
i +M(1− rsi) i ∈ I \ {I}, s ∈ S (II.a.11)

127

Bs+i ≤Mrsi i ∈ I \ {I}, s ∈ S (II.a.12)

Bs+i ≥ 0 integer i ∈ I \ {I}, s ∈ S (II.a.13)

Bs−i ≥ −B
s
i i ∈ I \ {I}, s ∈ S (II.a.14)

Bs−i ≤ −B
s
i +Mrsi i ∈ I \ {I}, s ∈ S (II.a.15)

Bs−i ≤M(1− rsi) i ∈ I \ {I}, s ∈ S (II.a.16)

Bs−i ≥ 0 integer i ∈ I \ {I}, s ∈ S (II.a.17)

Es+i ≥ E
s
i i ∈ I \ {I}, s ∈ S (II.a.18)

Es+i ≤ E
s
i +M(1− esi) i ∈ I \ {I}, s ∈ S (II.a.19)

Es+i ≤Mesi i ∈ I \ {I}, s ∈ S (II.a.20)

Es+i ≥ 0 integer i ∈ I \ {I}, s ∈ S (II.a.21)

Es−i ≥ −Esi i ∈ I \ {I}, s ∈ S (II.a.22)

Es−i ≤ −Esi +Mesi i ∈ I \ {I}, s ∈ S (II.a.23)

Es−i ≤M(1− esi) i ∈ I \ {I}, s ∈ S (II.a.24)

Es−i ≥ 0 integer i ∈ I \ {I}, s ∈ S (II.a.25)

Finally, we introduce the variable definition constraints:

zsi ∈ {0, 1} i ∈ I \ {I}, s ∈ S (II.a.26)

rsi ∈ {0, 1} i ∈ I \ {I}, s ∈ S (II.a.27)

esi ∈ {0, 1} i ∈ I \ {I}, s ∈ S (II.a.28)

II.b Determining the initial bike requirement for each station

To ensure each station has a sufficient number of bikes to satisfy rental requests early in the day,

before any bikes are returned to that station, we determine an initial bike requirement for each station.

We consider five methods for estimating the number of withdrawn bikes before a return occurs, and test

their relative performance with our simulation. All are based on calculating statistics from historical

ridership data over the time period from 6 am until 11:59 am. These methods are based on one of

the following statistics for each station: (1) Average bike-interarrival time for bikes returned to that

station, (2) The average trip time for bikes returned to that station, (3) The average time until the

first return to that station, and, (4) The total number of bikes withdrawn from that station between

6 am and 11:59 am. The methods are as follows:

128

• Method 1: We estimate the initial requirement as the average number of withdrawn bikes between

6 a.m. and 6 a.m., plus the average bike inter-arrival time.

• Method 2: We estimate the initial requirement as the average number of withdrawn bikes between

6 a.m. and 6 a.m., plus thie average trip time.

• Method 3: We estimate the initial requirement as this total number of withdrawn bikes divided

by the average bike inter-arrival time.

• Method 4: We estimate the initial requirement as this total number of withdrawn bikes divided

by the average trip time.

• Method 5: We estimate the initial requirement as the total number of withdrawn bikes between

6 a.m. and 6 a.m., plus the average time until first return.

To assess each method, we first solve the stochastic program, while requiring that the number of

bikes initially allocated to each station is at least as great as the number suggested by that method.

We then run our simulation, with those initial allocations, and compute the frequency of congestion

(starvation) relative to the number of bikes returned (withdrawn). We report these relative frequencies

in Table II.1. There, we see that methods 3 and 5 perform the best with respect to starvation, with 5

performing slightly better with respect to congestion. We also see that fewer bikes are allocated with

method 5. Thus, we conclude that method 5 is the best method, and used it for the remainder of our

computational study.

Method 1 Method 2 Method 3 Method 4 Method 5

% Congestion % Starvation % Congestion % Starvation % Congestion % Starvation % Congestion % Starvation % Congestion % Starvation

Mon 8.43% 33.07% 8.43% 33.07% 9.00% 29.53% 8.43% 32.68% 8.81% 31.30%

Tue 8.64% 30.94% 8.64% 31.14% 9.41% 28.74% 8.64% 30.54% 9.21% 28.74%

Wed 7.07% 32.57% 7.07% 32.57% 7.07% 30.48% 7.07% 32.57% 7.27% 31.11%

Thu 6.94% 30.19% 6.94% 30.19% 7.14% 28.30% 6.94% 30.19% 6.94% 27.88%

Fri 6.68% 28.97% 6.68% 28.97% 6.91% 25.29% 6.68% 28.97% 6.68% 25.98%

Sat 7.62% 32.04% 7.62% 33.01% 7.62% 17.48% 7.62% 30.10% 7.62% 21.36%

Sun 0.00% 29.17% 0.00% 31.25% 0.00% 20.83% 0.00% 31.25% 0.00% 20.83%

Average 6.48% 30.99% 6.48% 31.46% 6.74% 25.81% 6.48% 30.90% 6.65% 26.74%

Initial

requirement
55 36 103 57 89

Total

delivery
147 146 160 148 154

Table II.1: Congestion and starvation relative frequencies by method of determining initial bike re-

quirement

II.c The Sequence based Heuristic (SBH)

In this section, we present the SBH algorithm in detail (see Algorithm (2)).

129

Lines 1-17 represent the situation in which the sum of the maximum quantity between the one

suggested by the newsvendor approach and the initial requirements is less than the initial availability

at the depot; in this case, if the quantity to be delivered to a station is less or equal than the station

capacity, we consider xi to be equal to the amount suggested by the newsvendor approach or the initial

requirement (lines 3-4). Otherwise, we fix xi equal to the station capacity and the balance quantity

is delivered to a station that occurs earlier in the route and has space left for additional bikes (lines

6-17). On the other hand, lines 18-45 describe the situation in which the sum of the maximum quantity

between the one suggested by the newsvendor approach and the initial requirements is greater than the

initial availability at the depot; firstly, the initial requirements quantities are assigned to stations (lines

19-21); then, if the quantity suggested by the newsvendor approach is greater than the initial required

quantity, the minimum between the quantity suggested by the newsvendor approach and the initial

availability at the depot is delivered, starting from the first visited stations (lines 22-25); moreover, if

the capacity is sufficient, the delivered quantity is equal to that amount (lines 26-28); otherwise, the

balance is delivered to the most preceeding station with left capacity (lines 30-43).

130

Algorithm 2: Sequence-based heuristic (SBH)

Input: the first-stage decision variables xNWi , i ∈ I \ {I} established through the newsvendor approach, Qi, Ii0, xi;

Output: xi, i ∈ I \ {I} to use for the second-stage program;

1 if
∑
i∈Imax(xNWi , xi) ≤ II0 then

2 for i ∈ I do

3 if max(xNWi , xi) ≤ Qi − Ii0 then

4 xi = max(xNWi , xi)

5 else

6 xi = Qi − Ii0
7 balancei = max(xNWi , xi)− xi
8 l = 1

9 while balancei > 0 and i− l > 0 do

10 if Qi−l − xi−l − Ii−l,0 > 0 then

11 originalxi−l = xi−l

12 xi−l+ = min(Qi−l − xi−l − Ii−l,0, balancei)

13 increasei−l = xi−l − originalxi−l
14 balancei = balancei − increasei−l
15 l+ = 1

16 else

17 l+ = 1

18 else

19 for i ∈ I do

20 xduei = xi

21 II0 = II0 − xduei

22 while II0 > 0 do

23 for i ∈ I do

24 if xNWi − xduei > 0 then

25 xMi = min(II0, x
NW
i − xduei)

26 if xMi ≤ Qi − x
due
i then

27 xi = xMi + xduei

28 II0 = II0 − xMi
29 else

30 xi = xduei + (Qi − xduei)

31 II0 = II0 − (Qi − xduei)

32 balancei = xMi − (Qi − xduei)

33 l = 1

34 while balancei > 0 and i− l > 0 do

35 if Qi−l − xi−l − Ii−l,0 > 0 then

36 originalxi−l = xi−l

37 xi−l+ = min(Qi−l − xi−l − Ii−l,0, balancei)

38 increasei−l = xi−l − originalxi−l
39 balancei = balancei − increasei−l
40 II0 = II0 − increasei−l
41 l+ = 1

42 else

43 l+ = 1

44 else

45 xi = xduei

131

III Chapter 4

III.a Reformulation

Since the model described in section (4.4.1) is non-linear and the productivity rate function has a

finite and discrete domain, we adapt the reformulation technique presented by Hewitt, Chacosky, Gras-

man, and Thomas [44] (2015) to our case. Due to the stochasticity presence, our reformulated model

will have a higher dimension, since now we have an enumeration for each couple worker-production

cell, for each period and for each scenario. To clarify this point, the following algorithm can be helpful.

Algorithm 3: Enumeration

1 for s = 1, . . . , S do

2 for i = 1, . . . , I do

3 for j = 1, . . . , J do

4 for t = 1, . . . , T do

5 rttsij = Iij +Kij [1− e
−t
Ls
ij]

6 for k = 0, . . . , t do

7 rktsij = Iij +Kij [1− e
−k
Ls
ij]

8 end

9 end

10 end

11 end

12 end

We indicate by rktsij the enumeration of the productivity rate for each scenario, for each period and

for each couple worker-production cell, while rttsij represents the maximum productivity rate in each

period for each couple worker-production cell in each scenario, corresponding to the highest achievable

productivity in the case in which we associate that worker to that production cell in every period up

to the considered period. We apply the reformulation to Å, by introducing the binary variables zktij

to indicate if the productivity rate rk is associated to worker i at task j in period t. Moreover, we

substitute constraint sets (4.9) and (4.10) with the following and we call the reformulated problem

Problem AL:

otsij ≤ rttsij xtij i ∈ I, j ∈ J , t ∈ T , s ∈ S (III.a.1)

otsij ≤ rtsij i ∈ I, j ∈ J , t ∈ T , s ∈ S (III.a.2)

132

rtsij =

t∑
k=0

rktsij z
kt
ij i ∈ I, j ∈ J , t ∈ T , s ∈ S (III.a.3)

t∑
k=0

kzktij ≤
t∑

k=1

xkij i ∈ I, j ∈ J , t ∈ T (III.a.4)

t∑
k=0

zktij = xtij i ∈ I, j ∈ J , t ∈ T (III.a.5)

zktij ∈ {0, 1} i ∈ I, j ∈ J , t ∈ T , k ∈ T : k ≤ t. (III.a.6)

Constraints (III.a.1) linearize constraints (4.9), taking into consideration the maximum achievable

productivity rate for worker i at production cell j in period t and scenario s. Constraints (III.a.2)

represent an upper bound on the output of worker i at production cell j in each period and scenario.

Constraints (III.a.3) and (III.a.4) guarantee that the productivity rate of a worker in period t coincides

with the number of times that the worker has performed the task in the periods up to and including t.

Finally, constraints (III.a.5) make sure that each individual is assigned exactly one rate in each period

and constraints (III.a.6) impose that variable z is binary.

133

III.b Detailed regression results

Dep. Variable: na R-squared: 0.627

Model: OLS Adj. R-squared: 0.626

Method: Least Squares F-statistic: 602.5

Date: Fri, 18 May 2018 Prob (F-statistic): 3.33e-305

Time: 10:58:07 Log-Likelihood: -3895.2

No. Observations: 1440 AIC: 7800.

Df Residuals: 1435 BIC: 7827.

Df Model: 4

coef std err t P>|t| [0.025 0.975]

β 6.1597 0.096 64.485 0.000 5.972 6.347

µ -6.0808 0.485 -12.534 0.000 -7.032 -5.129

σ2 -0.9677 0.245 -3.958 0.000 -1.447 -0.488

FTAP -12.9385 0.626 -20.677 0.000 -14.166 -11.711

TCP 14.3039 0.743 19.261 0.000 12.847 15.761

Omnibus: 39.787 Durbin-Watson: 2.266

Prob(Omnibus): 0.000 Jarque-Bera (JB): 55.536

Skew: 0.289 Prob(JB): 8.72e-13

Kurtosis: 3.769 Cond. No. 9.65

Table III.1: Detailed linear regression results for na

134

Dep. Variable: np R-squared: 0.579

Model: OLS Adj. R-squared: 0.578

Method: Least Squares F-statistic: 493.6

Date: Fri, 18 May 2018 Prob (F-statistic): 9.43e-268

Time: 10:58:04 Log-Likelihood: -880.36

No. Observations: 1440 AIC: 1771.

Df Residuals: 1435 BIC: 1797.

Df Model: 4

coef std err t P>|t| [0.025 0.975]

β 0.6931 0.012 58.874 0.000 0.670 0.716

µ -0.1340 0.060 -2.242 0.025 -0.251 -0.017

σ2 -0.3255 0.030 -10.803 0.000 -0.385 -0.266

FTAP -0.5788 0.077 -7.506 0.000 -0.730 -0.428

TCP 1.2190 0.092 13.319 0.000 1.039 1.398

Omnibus: 133.259 Durbin-Watson: 2.051

Prob(Omnibus): 0.000 Jarque-Bera (JB): 169.487

Skew: 0.816 Prob(JB): 1.57e-37

Kurtosis: 3.404 Cond. No. 9.65

Table III.2: Detailed linear regression results for np

135

Dep. Variable: CTI R-squared: 0.278

Model: OLS Adj. R-squared: 0.274

Method: Least Squares F-statistic: 62.31

Date: Sat, 19 May 2018 Prob (F-statistic): 5.49e-55

Time: 07:45:52 Log-Likelihood: 18.220

No. Observations: 814 AIC: -24.44

Df Residuals: 808 BIC: 3.771

Df Model: 5

coef std err t P>|t| [0.025 0.975]

β 1.5345 0.021 74.795 0.000 1.494 1.575

µ 0.0616 0.049 1.250 0.212 -0.035 0.158

σ2 0.1653 0.030 5.443 0.000 0.106 0.225

FTAP 0.0202 0.051 0.392 0.695 -0.081 0.121

TCP 0.0799 0.079 1.013 0.311 -0.075 0.235

CI -0.0013 9.57e-05 -13.252 0.000 -0.001 -0.001

Omnibus: 62.870 Durbin-Watson: 1.838

Prob(Omnibus): 0.000 Jarque-Bera (JB): 75.127

Skew: -0.733 Prob(JB): 4.86e-17

Kurtosis: 2.743 Cond. No. 2.30e+03

Table III.3: Detailed linear regression results for CTI

136

Dep. Variable: PI R-squared: 0.282

Model: OLS Adj. R-squared: 0.278

Method: Least Squares F-statistic: 63.48

Date: Sat, 19 May 2018 Prob (F-statistic): 6.82e-56

Time: 07:46:36 Log-Likelihood: 594.22

No. Observations: 814 AIC: -1176.

Df Residuals: 808 BIC: -1148.

Df Model: 5

coef std err t P>|t| [0.025 0.975]

β 0.4912 0.010 48.578 0.000 0.471 0.511

µ -0.0266 0.024 -1.096 0.274 -0.074 0.021

σ2 0.0303 0.015 2.027 0.043 0.001 0.060

FTAP -0.0012 0.025 -0.045 0.964 -0.051 0.049

TCP -0.1431 0.039 -3.681 0.000 -0.219 -0.067

CI 0.0008 4.71e-05 16.155 0.000 0.001 0.001

Omnibus: 327.982 Durbin-Watson: 2.006

Prob(Omnibus): 0.000 Jarque-Bera (JB): 2708.615

Skew: -1.604 Prob(JB): 0.00

Kurtosis: 11.341 Cond. No. 2.30e+03

Table III.4: Detailed linear regression results for PI

137

Bibliography

[1] Saligrama R Agnihothri and Ajay K Mishra. Cross-training decisions in field services with three

job types and server–job mismatch. Decision Sciences, 35(2):239–257, 2004.

[2] SR Agnihothri, AK Mishra, and DE Simmons. Workforce cross-training decisions in field service

systems with two job types. Journal of the Operational Research Society, 54(4):410–418, 2003.

[3] Shabbir Ahmed, R Garcia, N Kong, L Ntaimo, G Parija, F Qiu, and S Sen. Siplib: A stochastic

integer programming test problem library. See http://www2. isye. gatech. edu/˜ sahmed/siplib,

2015.

[4] Michel Jose Anzanello and Flavio Sanson Fogliatto. Learning curve models and applications:

Literature review and research directions. International Journal of Industrial Ergonomics, 41(5):

573–583, 2011.

[5] Sven Axsäter. Evaluation of unidirectional lateral transshipments and substitutions in inventory

systems. European Journal of Operational Research, 149(2):438–447, 2003.

[6] Sven Axsäter. A new decision rule for lateral transshipments in inventory systems. Management

Science, 49(9):1168–1179, 2003.

[7] Sudipto Banerjee. On geodetic distance computations in spatial modeling. Biometrics, 61(2):

617–625, 2005.

[8] Mike Benchimol, Pascal Benchimol, Benôıt Chappert, Arnaud De La Taille, Fabien Laroche,

Frédéric Meunier, and Ludovic Robinet. Balancing the stations of a self service “bike hire”

system. RAIRO-Operations Research, 45(1):37–61, 2011.

[9] Gerardo Berbeglia, Jean-François Cordeau, Irina Gribkovskaia, and Gilbert Laporte. Static pickup

and delivery problems: a classification scheme and survey. Top, 15(1):1–31, 2007.

138

[10] Luca Bertazzi and Francesca Maggioni. Solution approaches for the stochastic capacitated trav-

eling salesmen location problem with recourse. Journal of Optimization Theory and Applications,

166(1):321–342, 2015.

[11] Luca Bertazzi and Francesca Maggioni. A stochastic multi-stage fixed charge transportation

problem: Worst-case analysis of the rolling horizon approach. European Journal of Operational

Research, 267(2):555–569, 2018.

[12] John R Birge and Francois Louveaux. Introduction to stochastic programming. Springer Science

& Business Media, 2011.

[13] Jan Brinkmann, Marlin W Ulmer, and Dirk C Mattfeld. Short-term strategies for stochastic

inventory routing in bike sharing systems. Transportation Research Procedia, 10:364–373, 2015.

[14] Jan Brinkmann, Marlin W Ulmer, and Dirk C Mattfeld. Inventory routing for bike sharing

systems. Transportation Research Procedia, 19:316–327, 2016.

[15] Michael J Brusco and Tony R Johns. Staffing a multiskilled workforce with varying levels of

productivity: An analysis of cross-training policies. Decision Sciences, 29(2):499–515, 1998.

[16] Gérard Cachon and Christian Terwiesch. Matching supply with demand: An introduction to

operations management. Irwin Professional Pub, 2009.

[17] Gerard M Campbell. Cross-utilization of workers whose capabilities differ. Management Science,

45(5):722–732, 1999.

[18] Rossana Cavagnini, Luca Bertazzi, and Francesca Maggioni. A two-stage stochastic model for

distribution logistics with transshipment and backordering: stochastic vs deterministic solutions.

International Conference on Optimization and Decision Science, ODS 2018, AIRO Springer Se-

ries, 2018.

[19] Rossana Cavagnini, Luca Bertazzi, Francesca Maggioni, and Mike Hewitt. A two-stage stochas-

tic optimization model for the bike sharing allocation and rebalancing problem. Submitted for

evaluation in Omega, 2018.

[20] Suresh Chand, Vernon Ning Hsu, and Suresh Sethi. Forecast, solution, and rolling horizons in

operations management problems: A classified bibliography. Manufacturing & Service Operations

Management, 4(1):25–43, 2002.

[21] Pao-Long Chang and Chin-Tsai Lin. On the effect of centralization on expected costs in a multi-

location newsboy problem. Journal of the Operational Research Society, 42(11):1025–1030, 1991.

139

[22] Daniel Chemla, Frédéric Meunier, and Roberto Wolfler Calvo. Bike sharing systems: Solving the

static rebalancing problem. Discrete Optimization, 10(2):120–146, 2013.

[23] Huan Neng Chiu and Hau Lieng Huang. A multi-echelon integrated jit inventory model using the

time buffer and emergency borrowing policies to deal with random delivery lead times. Interna-

tional journal of production research, 41(13):2911–2931, 2003.

[24] Albert Corominas, Jordi Olivella, and Rafael Pastor. A model for the assignment of a set of tasks

when work performance depends on experience of all tasks involved. International Journal of

Production Economics, 126(2):335–340, 2010.

[25] Teodor G Crainic, Francesca Maggioni, Guido Perboli, and Walter Rei. Reduced cost-based

variable fixing in two-stage stochastic programming. Annals of Operations Research, pages 1–37,

2017.

[26] Ezey M Dar-El. Human learning: From learning curves to learning organizations, volume 29.

Springer Science & Business Media, 2013.

[27] Sharon Datner, Tal Raviv, Michal Tzur, and Daniel Chemla. Setting inventory levels in a bike

sharing network. Transportation Science, 2017.

[28] Mauro Dell’Amico, Eleni Hadjicostantinou, Manuel Iori, and Stefano Novellani. The bike sharing

rebalancing problem: Mathematical formulations and benchmark instances. Omega, 45:7–19,

2014.

[29] Mauro Dell’Amico, Manuel Iori, Stefano Novellani, Thomas Stützle, et al. A destroy and repair

algorithm for the bike sharing rebalancing problem. Computers & Operations Research, 71:149–

162, 2016.

[30] Gary D Eppen. Noteeffects of centralization on expected costs in a multi-location newsboy prob-

lem. Management science, 25(5):498–501, 1979.

[31] Güneş Erdoğan, Gilbert Laporte, and Roberto Wolfler Calvo. The static bicycle relocation prob-

lem with demand intervals. European Journal of Operational Research, 238(2):451–457, 2014.

[32] Alan L Erera, Martin Savelsbergh, and Emrah Uyar. Fixed routes with backup vehicles for

stochastic vehicle routing problems with time constraints. Networks, 54(4):270–283, 2009.

[33] Wei Fan. Optimizing strategic allocation of vehicles for one-way car-sharing systems under demand

uncertainty. Journal of the Transportation Research Forum, 53:7–20, 2014.

140

[34] Xuehao Feng, Ilkyeong Moon, and Kwangyeol Ryu. Warehouse capacity sharing via transship-

ment for an integrated two-echelon supply chain. Transportation Research Part E: Logistics and

Transportation Review, 104:17–35, 2017.

[35] Iris A Forma, Tal Raviv, and Michal Tzur. A 3-step math heuristic for the static repositioning

problem in bike-sharing systems. Transportation research part B: methodological, 71:230–247,

2015.

[36] Andrew Gelman. Scaling regression inputs by dividing by two standard deviations. Statistics in

medicine, 27(15):2865–2873, 2008.

[37] Supriyo Ghosh, Pradeep Varakantham, Yossiri Adulyasak, and Patrick Jaillet. Dynamic reposi-

tioning to reduce lost demand in bike sharing systems. Journal of Artificial Intelligence Research,

58:387–430, 2017.

[38] Gurobi. Gurobi optimization. URL www.gurobi.com.

[39] Christian Heimerl and Rainer Kolisch. Work assignment to and qualification of multi-skilled

human resources under knowledge depreciation and company skill level targets. International

Journal of Production Research, 48(13):3759–3781, 2010.

[40] Yale T Herer and Ayelet Rashit. Lateral stock transshipments in a two-location inventory system

with fixed and joint replenishment costs. Naval Research Logistics (NRL), 46(5):525–547, 1999.

[41] Yale T Herer and Michal Tzur. The dynamic transshipment problem. Naval Research Logistics

(NRL), 48(5):386–408, 2001.

[42] Yale T Herer and Michal Tzur. Optimal and heuristic algorithms for the multi-location dynamic

transshipment problem with fixed transshipment costs. IIE Transactions, 35(5):419–432, 2003.

[43] Yale T Herer, Michal Tzur, and Enver Yücesan. The multilocation transshipment problem. IIE

transactions, 38(3):185–200, 2006.

[44] Mike Hewitt, Austin Chacosky, Scott E Grasman, and Barrett W Thomas. Integer programming

techniques for solving non-linear workforce planning models with learning. European Journal of

Operational Research, 242(3):942–950, 2015.

[45] Sin C Ho and WY Szeto. Solving a static repositioning problem in bike-sharing systems using

iterated tabu search. Transportation Research Part E: Logistics and Transportation Review, 69:

180–198, 2014.

141

[46] Stephen B Hulley, Steven R Cummings, Warren S Browner, Deborah G Grady, and Thomas B

Newman. Designing clinical research. Lippincott Williams & Wilkins, 2013.

[47] International Trade Administration, 2017.

[48] Mohamad Y Jaber. Learning and forgetting models and their applications. Handbook of industrial

and systems engineering, pages 30–1, 2006.

[49] Huan Jin, Mike Hewitt, and Barrett W Thomas. Workforce grouping and assignment with

learning-by-doing and knowledge transfer. International Journal of Production Research, pages

1–15, 2018.

[50] Peter Kall and Stein W Wallace. Stochastic Programming. Springer, 1994.

[51] Michal Kaut and Stein W Wallace. Evaluation of scenario-generation methods for stochastic

programming. Pacific Journal of Optimization, 3(2):257–271, 2007.

[52] Alan J King and Stein W Wallace. Modeling with stochastic programming. Springer Science &

Business Media, 2012.

[53] Andreas Klose. Single-sink fixed-charge transportation: Applications and exact solution algo-

rithms. Working Papers, Department of Mathematical Sciences, University of Aarhus, 2006(5),

2006.

[54] Chung-Cheng Lu. Robust multi-period fleet allocation models for bike-sharing systems. Networks

and Spatial Economics, 16(1):61–82, 2016.

[55] Francesca Maggioni and Georg Ch Pflug. Bounds and approximations for multistage stochastic

programs. SIAM Journal on Optimization, 26(1):831–855, 2016.

[56] Francesca Maggioni and Stein W Wallace. Analyzing the quality of the expected value solution

in stochastic programming. Annals of Operations Research, 200(1):37–54, 2012.

[57] Francesca Maggioni, Michal Kaut, and Luca Bertazzi. Stochastic optimization models for a single-

sink transportation problem. Computational Management Science, 6(2):251–267, 2009.

[58] Francesca Maggioni, Elisabetta Allevi, and Marida Bertocchi. Monotonic bounds in multistage

mixed-integer stochastic programming. Computational Management Science, 13(3):423–457, Jul

2016.

[59] Francesca Maggioni, Florian A Potra, and Marida Bertocchi. A scenario-based framework for sup-

ply planning under uncertainty: stochastic programming versus robust optimization approaches.

Computational Management Science, 14(1):5–44, 2017.

142

[60] Kenneth A Marentette, Alan W Johnson, and Lisa Mills. A measure of cross-training benefit

versus job skill specialization. Computers & Industrial Engineering, 57(3):937–940, 2009.

[61] Joseph B Mazzola and Kevin F McCardle. A bayesian approach to managing learning-curve

uncertainty. Management Science, 42(5):680–692, 1996.

[62] Joseph B Mazzola and Kevin F McCardle. The stochastic learning curve: Optimal production in

the presence of learning-curve uncertainty. Operations Research, 45(3):440–450, 1997.

[63] Joseph B Mazzola, Alan W Neebe, and Christopher M Rump. Multiproduct production planning

in the presence of work-force learning. European Journal of Operational Research, 106(2):336–356,

1998.

[64] John K McCreery and Lee J Krajewski. Improving performance using workforce flexibility in an

assembly environment with learning and forgetting effects. International Journal of Production

Research, 37(9):2031–2058, 1999.

[65] John K McCreery, Lee J Krajewski, G Keong Leong, and Peter T Ward. Performance implications

of assembly work teams. Journal of Operations Management, 22(4):387–412, 2004.

[66] Stefan Minner and Edward A Silver. Evaluation of two simple extreme transshipment strategies.

International Journal of Production Economics, 93:1–11, 2005.

[67] Stefan Minner, Edward A Silver, and David J Robb. An improved heuristic for deciding on

emergency transshipments. European Journal of Operational Research, 148(2):384–400, 2003.

[68] Seyed MJ Mirzapour Al-e hashem, Yacine Rekik, and Ebrahim Mohammadi Hoseinhajlou. A

hybrid l-shaped method to solve a bi-objective stochastic transshipment-enabled inventory routing

problem. International Journal of Production Economics, 2017.

[69] David A Nembhard and Frank Bentefouet. Parallel system scheduling with general worker learning

and forgetting. International Journal of Production Economics, 139(2):533–542, 2012.

[70] Jordi Olivella, Albert Corominas, and Rafael Pastor. Task assignment considering cross-training

goals and due dates. International Journal of Production Research, 51(3):952–962, 2013.

[71] Fredrik Olsson. An inventory model with unidirectional lateral transshipments. European Journal

of Operational Research, 200(3):725–732, 2010.

[72] Deniz Özdemir, Enver Yücesan, and Yale T Herer. Multi-location transshipment problem with

capacitated transportation. European Journal of Operational Research, 175(1):602–621, 2006.

143

[73] Colin Paterson, Gudrun Kiesmüller, Ruud Teunter, and Kevin Glazebrook. Inventory models

with lateral transshipments: A review. European Journal of Operational Research, 210(2):125–

136, 2011.

[74] Python Software Foundation. Python. URL www.python.org.

[75] Ruwen Qin, David A Nembhard, and Walter L Barnes II. Workforce flexibility in operations

management. Surveys in Operations Research and Management Science, 20(1):19–33, 2015.

[76] Tal Raviv and Ofer Kolka. Optimal inventory management of a bike-sharing station. IIE Trans-

actions, 45(10):1077–1093, 2013.

[77] Tal Raviv, Michal Tzur, and Iris A Forma. Static repositioning in a bike-sharing system: models

and solution approaches. EURO Journal on Transportation and Logistics, 2(3):187–229, 2013.

[78] Robert Regue and Will Recker. Proactive vehicle routing with inferred demand to solve the

bikesharing rebalancing problem. Transportation Research Part E: Logistics and Transportation

Review, 72:192–209, 2014.

[79] Roberto Roberti, Enrico Bartolini, and Aristide Mingozzi. The fixed charge transportation prob-

lem: An exact algorithm based on a new integer programming formulation. Management Science,

61(6):1275–1291, 2014.

[80] Lawrence W Robinson. Optimal and approximate policies in multiperiod, multilocation inventory

models with transshipments. Operations research, 38(2):278–295, 1990.

[81] Beate Rottkemper, Kathrin Fischer, and Alexander Blecken. A transshipment model for distri-

bution and inventory relocation under uncertainty in humanitarian operations. Socio-Economic

Planning Sciences, 46(1):98–109, 2012.

[82] Kevin Ryan, Shabbir Ahmed, Santanu S Dey, and Deepak Rajan. Optimization

driven scenario grouping. Available at Optimization-Online http://www. optimization-online.

org/DB FILE/2016/03/5366. pdf, 2016.

[83] Serpil Sayın and Selçuk Karabatı. Assigning cross-trained workers to departments: A two-stage

optimization model to maximize utility and skill improvement. European Journal of Operational

Research, 176(3):1643–1658, 2007.

[84] Qingning Shen, Feng Chu, and Haoxun Chen. A lagrangian relaxation approach for a multi-mode

inventory routing problem with transshipment in crude oil transportation. Computers & Chemical

Engineering, 35(10):2113–2123, 2011.

144

[85] Jannes Slomp and Eric Molleman. Cross-training policies and team performance. International

Journal of Production Research, 40(5):1193–1219, 2002.

[86] Statsmodels-developers. Statsmodels statistics in python. URL www.statsmodels.org.

[87] James H Stock and Mark W Watson. Introduction to Econometrics. Pearson, 2007.

[88] Silviya Valeva, Mike Hewitt, Barrett W Thomas, and Kenneth G Brown. Balancing flexibility and

inventory in workforce planning with learning. International Journal of Production Economics,

2016.

[89] ACC van Wijk, IJBF Adan, and GJ van Houtum. Optimal lateral transshipment policies for a

two location inventory problem with multiple demand classes. European Journal of Operational

Research, 2018.

[90] Stein W Wallace and William T Ziemba. Applications of Stochastic Programming. SIAM, 2005.

[91] Kwan Eng Wee and Maqbool Dada. Optimal policies for transshipping inventory in a retail

network. Management science, 51(10):1519–1533, 2005.

[92] World Economic Forum. https://www.weforum.org/agenda/2016/02/the-global-bike-sharing-

boom-why-cities-love-cycling-schemes, 2016.

[93] Enver Yücesan et al. Stochastic optimization for transshipment problems with positive replenish-

ment lead times. International Journal of Production Economics, 135(1):61–72, 2012.

145

