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Abstract

Human activity is overloading the atmosphere with carbon dioxide and other green-
house gas emissions, which trap heat and drive up the planet temperature, resulting
in a negative impact on our health, environment, and climate. Governments are con-
sidering actions to curb climate change that will significantly change both electricity
and gas markets. This thesis detects these issues and proposes models and methods
to analyze how electricity and gas markets can contribute to the achievement of the
decarbonization targets. Among the actions carried out to reduce carbon emissions,
renewable energy penetration is the most effective one. However, the integration of
wind and solar power plants in electric energy systems is extremely challenging be-
cause of the uncertainty and variability that characterize their electricity production.
To accommodate the stochasticity of the renewable energy production, power systems
need to be more flexible. This flexibility is provided by backup capacity in the form of
reserves, which are provided by dispatchable units such as thermal plants, or batteries
and storage devices, which represent an environmentally friendly solution.

Considering this framework, in the first part of this thesis, two expansion planning
models to efficiently integrate renewable power plants, storage units, and electric ve-
hicles in electric energy systems are proposed. We first want to detect which are the
investment choices that have to be taken by a Market Operator to deeply decarbonize
electric power system. To this aim, we propose a two-stage stochastic programming
model to determine the optimal mix of generation and transmission capacity to build,
taking into account both technical constraints and climate-related considerations. The
model uses a mix of ac and high-voltage dc transmission lines, conventional and re-
newable generation, and energy-storage units to meet these objectives. Short- and
long-term uncertainties are modeled using operating conditions and scenarios, respec-
tively. Secondly, we take the view of a Distribution System Operator and we propose
a stochastic adaptive robust optimization approach for the expansion of a small size
electricity system problem. This involves the construction of candidate renewable gen-
erating units, storage units, and charging stations for electric vehicles. In this case,
long-term uncertainty is modeled using confidence bounds, while short-term uncer-



xii Abstract

tainty is represented through a number of operating conditions.
Gas-fired power plants represent the energy choice that can help to achieve a secure,

competitive, and decarbonized power systems since they can significantly contribute to
emission reduction by replacing high carbon fuels in electricity generation. In addition,
these units are the ideal partner for variable renewable energy, providing back up to
wind and solar. In the last years, Europe has taken the lead in the decarbonization
policies and has imposed a strict carbon reduction target that has to be achieved by
2050. For all these reasons, in the second part of the thesis, we focus our attention
on the European gas market and we detect two important issues that can affect its
stability. The first one regards the re-negotiation of the long-term gas contracts invoked
by European mid-streamers and the second one concerns the security of external supply.
The need of re-negotiation arises from the fact that, in Europe, gas is sold according
to two main methods: oil-indexed long-term contract and hub pricing. The fall of
the European gas demand combined with the increase of the US shale gas exports
and the rise of liquefied natural gas availability on international markets have led to a
reduction of the European gas hub prices. Since oil-indexed long-term contracts have
failed to promptly adjust their positions, European gas mid-streamers asked for a re-
negotiation of their existing contracts to obtain new contracts linked to hub spot prices.
In this thesis, we tackle this problem by estimating the dependence risk and the optimal
resource allocation of the underlying assets of a gas long-term contract through pair-
vine copulas and portfolio optimization methods, using different risk measures. We
also investigate the risk of external supply because Europe mainly relies on imports
from economically or politically unstable countries to cover it gas demand since the
local production is very limited. The analysis of the external supply risk is focused
on the Italian gas market whose demand is covered by 90% by imports from foreign
countries. An optimization problem that describes the equilibrium state of a gas supply
chain, where producers, mid-streamers, and final consumers exchange natural gas and
liquefied natural gas both with long-term contracts and on spot markets is developed
for this purpose.



Chapter 1

Introduction

Energy is the milestone of modern society and its supply has a direct impact
on the economic and social development of nations. Indeed, there is a very
powerful link between economic growth and energy consumption. An optimal

energy supply improves the quality of our lives, works and activities. In general,
energy resources have not been in places where high consumption has developed, which
implied the construction of reliable networks to transport it and stimulated cooperation
between parties for energy supply. As a result energy management has now become
a form of international political power. This thesis analyzes both the electricity and
gas markets investigating their transformation needed to the meet carbon emission
reduction goals adopted by 195 Countries in Paris in 2015, after the International
Climate Conference.
In this chapter, we provide an introduction to the thesis work. First, we present an
overview of the electricity market, which includes a description of the restructuring
process of the electricity sector and of the structure of the electric power system, an
explanation of the functioning of the principal electricity markets and a review of
the most relevant market agents. Second, we present an overview of the gas market,
providing a summary of the deregulation process, a description of the structure of the
gas supply chain and its participants, and an explanation of the functioning of the
principal gas markets. Third, we present an overview of the decarbonization process
and we analyze the role played by electricity and gas in the achievement of a low-
carbon economy; we also describe all the technologies used in the models developed in
this thesis. Fourth, a general overview of the methodologies used in this dissertation
is provided. Finally, we provide the thesis objectives and organization.
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1.1 Electricity Market

1.1.1 History

The electricity market is the place where transactions involving electricity are con-
ducted. Historically, because of its special characteristics, electricity has been regarded
to be a public service. This approach justified, in the early days, a vertical integrated
monopolistic structure of this sector.

In these “traditionally” regulated structures, a public institution or a single regulated
company was in charge of the complete organization of the electricity supply chain,
represented by generation, transmission, distribution and consumption of electric en-
ergy. Under this scheme, the relations between different electric utilities were generally
characterized by voluntary cooperation in a number of areas, such as joint management
of operating reserve capacity, exchange for emergency reasons and third-party use of
grids for current transmission and distribution under terms negotiated by the parties
concerned (see Gomez-Exposito et al. (2018)).

However, the lack of competitions often generated disparities in the cost of electricity
between regions and caused technological stagnation besides influencing market trans-
parency. For these reasons, in the 80’s several regions started their restructuring process
toward liberalization (see Sioshansi and Pfaffenberger (2006)). Chile is recognized as
a pioneer in this process because in 1982 separated the basic activities involved in the
provision of electric power. Anyway, Fischer et al. (2000) argue that the Chilean system
has involved less restructuring, less competition and more regulation than first meets
the eyes since, for many years, a single holding company owned the largest generating
company, the primary distribution company in the Santiago region and the primary
transmission company serving the largest region of the country. Similar reforms where
not introduced anywhere else until 1990, when the electricity industry was much more
radically transformed in England and Wales which create the first electricity pool.
Shortly thereafter, it was the turn of Argentina and Norway (1991) followed by many
countries of Latin America and in Europe, as well as many States of the Northern
America. In all these deregulation processes, the underlying idea was always the same:
unbundling generation, transmission and retailing activities.

1.1.2 Electric Power System Structure

The structure of the electricity sector can be divided into four main components: pro-
duction, transmission (high voltage network), distribution (low voltage network),
and consumption (see Gomez-Exposito et al. (2018); Von Meier (2006)).
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Production centers generates electricity at voltage of several kilovolts ranging tipi-
cally from 6 kV to 33 kV. These values allow finding a good compromise between
conductor size and insulation. In fact, the first one depends on current level, while
insulation depends on the voltage level of the device. The power is then immediately
transformed to voltage of hundred of kilovolts (from 132 kV to 700 kV) to optimize
long-distance transmission reducing the line losses. The transmission grid intercon-
nects all the major production and consumption centers forming a very dense network
which ensures high reliability also in the case of failure of few lines. Electric substa-
tions represent communication nodes and can lower or increase the voltage. Moreover
they are also centers where system measurement, protection, interruption and dispatch
equipment are sited. Distribution networks are composed of low voltage transmission
lines, which bring electric power to consumers adapted to their needs (from 20.000 V to
220 V). The configuration of these grids is usually radial. Consumers connect to the
voltage level that best suits their power needs, i.e. highly energy-intensive industries
connect directly to the high voltage grid while small consumers are connected to the
low voltage grid. For a similar principle, generating stations with a very small output
can feed their electric power directly into the distribution network. Figure 1.1 provides
a scheme of the electric power system structure.

Figure 1.1: Electric Power System structure
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1.1.3 Market organization

Generators, consumers and retailers can trade electricity on two main trading arenas:
a Pool for short-term transactions and a Futures market for medium-term or long-
term transactions (see Conejo et al. (2010)). To ensure the security of system operation
and energy delivery the Ancillary Services markets are also needed. Capacity
market is instead needed to provide sufficient reliable future capacity. A more detailed
description of these mechanisms is provided below.

• Pool
The pool includes the day-ahead market, intraday market (not in the USA) and
the balancing market. Most of the energy is traded on the day-ahead market
which covers the 24 hour horizon before the real time operation. The intra-
day market generally operates after the closure of the day-ahead market and is
cleared closer to delivery day. Because the forecasts on renewable sources pro-
duction become more accurate when approaching to the real time operation,
non-dispatchable units, mainly represented by solar and wind power plants (see
Section 1.1.4), tend to rely more on the intraday market which have proven to be
critical in accommodating large amounts of stochastic production (see Herrero
et al. (2018)). The balancing markets are used to correct the real-time disparities
that may arise between generation and demand due to equipment failures, load
deviations or intermittent nature of some sources (e.g. wind or solar production).
In the day-ahead market producers submit offers to the pool with their associated
minimum selling price. At the same time, the retailers and consumers submit
bids and their maximum buying price. The Market Operator collects purchase
bid and sale offers and clears the day-ahead market using an appropriate market
clearing procedure.
The day-ahead market is cleared once a day, one day in advance and on an hourly
basis. This procedure results in market clearing prices as well as production and
consumption schedules. If the transmission grid is not considered in the market
clearing procedure, then the resulting price is the same for all consumers and
producers. Otherwise, if transmission network is taken into account, a location
marginal price (LMP) is associated with each node of the power system. These
prices may differ from each other due to line losses and/or congestions.
The intraday market are either based on several successive auctions or on con-
tinuous trading mechanisms.
The balancing market provides energy to cover both generation excess and deficit,
settling deviations from the previous schedules.
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• Futures market
In this market the energy is traded for delivery on a specified future date that
range from one week or several years in advance. In order to do this, the partici-
pants buy or sell derivative products.1 Thus, future markets are useful if the price
of electricity is highly uncertain in the pool. This is the case of the electricity pool
prices, which show high volatility, high percentage of outliers and other sources of
uncertainty. Within this framework the future market represent a tool to hedge
against the risk for both producers and consumers. On the future market, is it
possible to subscribe different types of derivative products which includes, among
the others, bilateral contracts and options (see Conejo et al. (2010)).
A bilateral contract is an agreement between two parties to exchange electric
power under a set of specified conditions such as MW amount, time of delivery,
duration, and price. Bilateral contracts can take the form of futures or forward
contracts according to the market where they are traded (see El Khatib and
Galiana (2007)). The former are generally traded in an exchange, and can be
traded continuously up until their time of delivery. In contrast, forward contracts
are typically negotiated in a Over The Counter (OTC) market directly between
the load and generator with the terms of the contract remaining fixed until the
time of delivery.
An option is an agreement for having the choice of delivering or consuming a
specified amount of electricity in a future time period. In order to subscribe
such agreement it is required to pay a premium, regardless of the eventual future
deliver or consumption of energy.

• Ancillary services markets
The ancillary services markets provide all the services necessary for the operation
of a transmission and distribution system. This markets are operated to guar-
antee reserve procurement and congestion management. The Network Codes2

adopted in the European electricity market divide the ancillary services managed
by the Transmission System Operator into frequency ancillary services, which deal
with the balancing of the system and non-frequency ancillary services, which in-
clude voltage control and black-start capability. All these services are explained
in the following:

– Frequency containment reserves (FCR) includes operating reserves necessary
1A derivative is a financial security with a value that is reliant upon or derived from an underlying

asset or group of assets. The derivative itself is a contract between two or more parties based upon
the asset or assets. Its price is determined by fluctuations in the underlying asset. Hull and Basu
(2016)

2See: https://www.entsoe.eu/network_codes/

https://www.entsoe.eu/network_codes/
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for constant containment of frequency deviations (fluctuations) from nom-
inal value in order to constantly maintain the power balance in the whole
synchronously interconnected system. This category typically includes oper-
ating reserves with the activation time up to 30 seconds. Operating reserves
of this category are usually activated automatically and locally.

– Frequency restoration reserves (FRR) indicate active power reserves avail-
able to restore system frequency to the nominal frequency and to restore
power balance to the scheduled value. This category includes operating re-
serves with an activation time typically between 30 seconds up to 15 minutes
(depending on the specific requirements of the synchronous area). FRR re-
place FCR if the frequency deviation lasts longer than 30 seconds. FRR can
be distinguished between reserves with automatic activation (aFRR) and
reserves with manual activation (mFRR).

– Replacement reserves (RR) indicate the active power reserves available to
restore or support the required level of frequency restoration reserve (FRR)
to be prepared for additional system imbalances, including generation re-
serves. This category includes operating reserves with activation time from
15 minutes (in Continental Europe) up to hours.

– Voltage is controlled to operate the network within the voltage ranges and to
maintain voltage stability. Voltage requirements are critical to secure plan-
ning and operation of a power system within a synchronous area. Reactive
power helps the power grid maintain voltage levels. The reactive power can
be defined as the difference in the phase between the voltage and current,
or what additional voltage would be needed to restore the system to being
in phase. Reactive power and real power (the power we actually consume)
are substitutes in production. Markets Operators usually require generator
to produce to reactive power when requested, with any foregone real power
consumption compensated based on opportunity cost.

– Black start is the capability of a power plant to start itself independent of
the power grid. Some power plants have on-site generators that can be used
to start the main turbine generator spinning. Others actually take electricity
from the power grid for this purpose. Power plants that provide black start
capability agree to keep an on-site generator or other grid-independent power
source ready to operate. In the case of a large blackout, these power plants
will start themselves up using their on-site generation, and feed power into
the grid so that other plants can start up and restore electricity service.
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• Capacity market
The capacity market provides payments to power plants as an economic incen-
tive to commit to being able to produce electricity at some point in the future,
in addition to day-ahead/real-time energy and ancillary services. Capacity pay-
ments are designed to ensure that consumers continue to benefit from reliable
electricity supplies at an affordable price. These payments can be received by
existing power plants who promise to stay operational in the future, or by new
power plants that commit to be finished with construction and operational by a
certain date. Since capacity payments are received by generators regardless of
whether the power plant actually produces any electricity, they represent a very
attractive profit especially when market prices in the day-ahead and real-time
energy markets are low.

1.1.4 Partecipants

The main agents participating in a restructured electricity market are introduced below
(see Conejo et al. (2010); Shahidehpour et al. (2003)). They can be divided into non-
institutional and institutional market agents. Among the non-institutional market
agents we find:

• Producers
These agents own generation facilities that produce electricity or interact on be-
half of plant owners with the markets. They are also called generating companies
(GENCOs). Besides producing electricity they are also in charge of investments,
operation, and maintenance of their generation facilities with the objective of
maximizing their profits. It is possible to distinguish two different types of gen-
erating units owned by producers: dispatchable and non-dispatchable ones. Dis-
patchable units, mainly represented by conventional power plants such as coal
and gas-fired units, provides reserves and regulatory capacity in addition to par-
ticipating to the day-ahead and intraday markets. Non-dispatchable units are
wind and solar power plants that, which due to their uncertain and intermittent
production cannot actively participate to the ancillary services markets.

• Consumers
They are the end-users of the electricity. In general, large consumers can directly
buy energy from the electricity markets, while small consumers mainly purchase
electricity from the retailers. Their aim is to minimize their procurement costs
or maximize the utility that they obtain from consuming electricity.
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• Retailers
They are intermediaries who trade energy between producers and consumers.
They buy electricity in the pool or in the futures markets and make profit by
selling it to the consumers.

Institutional markets agents include:

• Market Operator (MO)/Power Exchange (PX)
It is the entity responsible for the economic management of the electricity market.
It enforces the market rules and clears the markets, providing the final prices and
the traded quantities.

• Transmission System Operator (TSO)
It is the entity in charge of maintenance and expansion of the transmission in-
frastructures used to transport the electric energy. It provides grid access to the
electricity market players, according to non-discriminatory and transparent rules.
Generally it also manages the reserve procurement and the balancing market.

• Independent System Operator (ISO)
It is the entity in charge of both the economical and technical management of
the whole power system.

• Market Regulator/National Regulatory Authority
It is the entity that oversees the electricity market, ensuring its competitive and
adequate functioning.

In non-restructured or traditionally regulated markets, as in some parts of the USA like
Southeast, Southwest (except California) and Northwest, vertically integrated utilities
are still responsible for the entire flow of the electricity to consumers.3 In other USA
markets such as the PJM interconnection, the ISO-New England or the Californian
CAISO, there is only a single entity, the ISO, who is in charge of both technical control
and economic management of the system, while the transmission network is still owned
by the vertically-integrated company. In Europe the economic management and the
technical control of the power system are separated and managed by PXs and TSOs,
respectively. For instance, considering the Italian electricity market GME (Gestore dei
Mercati Energetici) acts as PX and Terna as TSO who is also in charge of managing
the ancillary services markets (Mercato del Servizio di Dispacciamento). ARERA (Au-
torità di Regolazione per Energia Reti e Ambiente) is instead the Market Regulator
(see GME (2009)).

3See: https://www.epa.gov/greenpower/us-electricity-grid-markets

https://www.epa.gov/greenpower/us-electricity-grid-markets
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1.1.5 Networks

In this thesis, we consider both transmission and distribution networks. As mentioned
in Section 1.1.1, the main difference concerns the voltage, which is high in the first
one while medium/low in the latter. Transmission lines can transport more electricity
for longer distances with respect to distribution lines, which are shorter and transport
electricity locally.

They present also a different topology. Transmission lines have usually a so-called
“Network” configuration: in a network, any two points are usually connected by more
than one path, meaning that some lines form loops within the system. This system
is designed so that power can be injected at various locations and power can flow in
different directions along the major transmission lines (bi-direction). This feature is
important because since there are multiple paths for power to flow, if one transmission
line is lost for any reason, all the load can still be served.
Distribution lines have usually radial configuration which means that lines branch out
sequentially and power flows strictly in one direction. This property is crucial in the
context of circuit protection, i.e. the interruption of circuits or isolation of sections in
the event of a problem or fault. Circuit breakers can be located to isolate immediately
upstream of the problem, interrupting service to all downstream components. Radial
systems present also an economic advantage: smaller conductor sizes can be used to-
ward the ends of the feeders, as the remaining load connected downstream diminishes
(see Von Meier (2006)). Anyway, in the last few years Distributed Generation (DG)
is being introduced on distribution networks. DG is a small-scale set of technologies
(mostly renewable) dedicated to produce electricity close to final user. DG allows
power loss reduction, distribution costs saving, CO2 reduction and a decrease in the
electricity prices. However, it adds production uncertainty and requires bidirectional
flows and consequently new protection schemes (see Ackermann et al. (2001)).

Some differences also arise from a physical point of view. Transmission ac lines are
based on a three phase supply system, i.e. three wires, mainly for an economic reason:
these lines use fewer wires than common sense might suggest, and less conductor ca-
pacity than would be required to transmit an equivalent amount of power using only
a single phase of ac. Distribution lines can be either three phases, in case of medium
voltage or larger properties, or single phase for residential customers (see Von Meier
(2006)).

Despite the fact that the transmission system is mostly ac, sometimes it is beneficial
to use dc transmission. In this case, the power has to be converted both at the begin-
ning and the tail end of the dc line through relatively costly solid-state devices called
thyristors. Dc lines are used for very long distances: the technical reason is that dc
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eliminates the problem of a stability limit which poses a power transmission constraint
on long lines with a significant inductance. Because its effect depends on ac frequency,
inductance is irrelevant for dc, and therefore only the thermal limit (determined by
the resistance of the line) applies. Moreover, above a certain line length which varies
according to multiple conditions, dc lines become also more economically convenient
that ac line. Besides transmitting bulk power over long distances, another application
for dc lines in modern power systems is to provide an intertie between two ac systems
that are not synchronous, so that power can be shared between these systems. In this
thesis, we include both high voltage ac and dc transmission lines. The latter become
particularly useful for connecting, also trough undersea cables, large off-shore wind
or solar facilities sometimes meant to represent long distance power exchanges among
different States or countries.

In Europe, the TSO is responsible for building, maintaining and operating the trans-
mission lines. Most of the European Member States have a unique TSO, which owns
most of the transmission grid, but there are some exceptions. For instance, Germany
has currently four different TSOs. In addition, from December 2008, the 43 different
European TSOs from 36 European Countries signed in Prague a declaration of intent
to create the ENTSO-E, i.e. European Network of Transmission System Operators
for Electricity that is a supranational entity created to support the implementation of
the EU energy and climate policy and to promote closer cooperation across Europe’s
TSOs. To this aim, the ENTSO-E has introduced, with guidance from the Agency
for the Cooperation of Energy Regulators (ACER), the Network Codes for electricity,
setting the rules for integrating renewable energy sources (RES) into the power system
and creating a single and coordinated European electricity market.4 In the USA, it is
instead possible to find different Regional Transmission Operators (RTOs).

The distribution network is managed by several Distribution System Operators (DSOs),
although in some cases, one of more DSOs own the majority of the distribution net-
work. DSOs receive the bulk energy from the transmission grid and distribute it to the
consumers in different locations. As for the transmission network, in Europe it exist
also a European Distribution System Operators’ Association (EDSO) for Smart Grids,
which comprises 36 leading European DSOs. The goal is to promote smart grids to
achieve the EU’s ambitious energy and climate objectives to 2020 and beyond.5

4See: https://www.entsoe.eu/network_codes/
5See: https://www.edsoforsmartgrids.eu/

https://www.entsoe.eu/network_codes/
https://www.edsoforsmartgrids.eu/
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1.2 Gas Market

1.2.1 History

The natural gas industry involves activities like gas exploration and production, trans-
portation, and delivery. All these activities require large investments and highly specific
assets that once are constructed at some locations cannot be removed. Moreover, all
the parties involved in these activities are interdependent. Such a complex structure ex-
hibited scale economies, meaning that over a range of output, the per unit cost of their
outputs declines as output increases. A single vertically integrated firm would have the
lowest cost of production making the natural gas industry as a natural monopoly, as
for the electric power industry. Due to its structure, the natural gas sector have been
initially publicly owned or economically regulated by governments both in Europe and
in the USA. This control has been introduced to prevent such vertically integrated
firms to exercise market power to raise prices artificially (see Jess (1997)).

However, economic growth and technological improvements have reduced the impor-
tance of scale economies, lowered the cost of collecting large amounts of capital, and
changed the perceptions about the potential for economic efficiency. Natural gas in-
dustry also faced a number of gas shortages and price irregularities among the different
states into the 70’s. As a consequence, in parallel to the electricity markets, the natural
gas sector started in the 80’s a restructuring process toward deregulation.
In the USA, the first step of deregulation was taken in 1978, through the legislation of
the Natural Gas Policy Act (NGPA) which abolished some natural gas price ceilings.
From that time on, it started a slow restructuring process culminating in the 1992 with
the FERC Order 636, which introduced mandatory unbundling services in natural gas
pipelines and other measures, establishing wholesale competition in the natural gas
sector (see Lee (2004)).
In Europe, the deregulation process started in the early 90’s. The European Commis-
sion issued in 1998 the Directive 90/30/EC concerning common rules for the internal
market in natural gas. It was the first of three consecutive gas Directives imposing
increasingly explicit and stringent rules to allow the development of gas markets and
hubs (see Correljé (2016)). Directive 2009/73/EC, also know as Third Package,6 unified
the different national approaches, enhancing the EU-wide cooperation also through the
European Network of Transmission System Operators for Gas (ENTSO-G), founded on
January the first 2009, to achieve frictionless cross-border gas trade among European
members. Moreover, to maintain a fully functioning and interconnected internal energy

6See: https://ec.europa.eu/energy/en/topics/markets-and-consumers/
market-legislation

https://ec.europa.eu/energy/en/topics/markets-and-consumers/market-legislation
https://ec.europa.eu/energy/en/topics/markets-and-consumers/market-legislation
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market, ENTSO-G, supported by the Agency for the Cooperation of Energy Regula-
tors (ACER), propose a set of legally binding rules, known as gas Network Codes (see
Karan and Kazdağli (2011)).

1.2.2 Gas Industry structure

The natural gas industry consists of three main segments: up-stream, mid-stream, and
down-stream (see Correljé (2016)).

In the up-stream segment the exploration and the production of gas takes place. Now-
days, natural gas exploration typically begins with geologists examining the surface
structure of the earth, and determining areas where it is geologically likely that gas
deposits, usually coinciding with oil deposit, might exist. Then, basic seismology is
used to run additional tests. As the Earth’s crust is composed of different layers, each
with its own properties, energy in the form of seismic waves, traveling underground,
interacts differently with each of these layers helping to locate underground fossil fuel
formations. It is also possible to use magnetometers to measure small differences in
the magnetic field and gravimeters, which measure the difference in the gravitational
field. Anyway, the best way to gain a full understanding of subsurface geology and to
discover the potential natural gas deposits in a given area is to drill an exploratory
well. Since this option is expensive and time consuming, it is performed only when
there is an high probability to find petroleum/gas formations.
Once gas is located, it is extracted with different procedures according to the com-
position of the rocks where it is trapped. If the deposit is found in permeable rocks,
trapped below impermeable rock, gas can be extracted by drilling down through the
impermeable rock into the permeable rock. In the case where gas and oil are trapped
in the spaces within impermeable shale rock these has to be fractured to get the gas
out with a process known as hydraulic fracturing, commonly called fracking (see Tissot
and Welte (2012)). The fluid used to create micro-fractures in the shale is a mixture
of water, sand, and additives pumped at high pressure (see Vengosh et al. (2013)).
Once extracted the gas and oil are separated in the refineries, by distillation into frac-
tions with different boiling points which are then further processed. Natural gas, as we
use it, is almost entirely methane. However, when we find natural gas underground, it
comes associated with a variety of other trace compounds and gases, as well as oil and
water, which must be removed.

The mid-stream segment involves the transport of the gas to the local distribution
grids and the large-scale industrial users and power plants. On a continental scale,
generally, the gas is transported via high pressure transmission pipelines. Overseas the
gas is transported in tankers as Liquefied Natural Gas (LNG).
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A transmission pipeline is made of several components that ensure the efficiency and
reliability of the system. Transmission pipes are made of strong carbon steel material
and can measure from 12 to 120 centimeters in diameter, depending on their function.
To ensure that the natural gas flowing through the pipeline remains pressurized, pe-
riodical compression is required along the pipe. This is accomplished by compressor
stations, usually placed at 60 to 160 km intervals along the pipeline. Metering stations
are also present along the pipe, measuring the gas flow. A great number of valves is
present inside the pipe: they work like gateways and if open gas flows freely, otherwise
they can be used to stop gas flow along a certain section of the pipe. Finally, central-
ized control stations collects data from the pipeline components to maintain safety and
provide quick response in case of malfunctions, leaks, or any other unusual activity.
LNG is obtained by cooling down natural gas to −160◦ Celsius. This process, although
expensive is useful for transportation because LNG volume is 600 times less than that
of gaseous natural gas. Liquefaction has the advantage of removing oxygen, carbon
dioxide, sulfur, and water from the natural gas, resulting in LNG that is almost pure
methane. It is transported by specialized tanker with insulated walls, and is kept in
liquid form by auto-refrigeration. Before usage, it needs to be vaporized to gaseous
form through a process call regasification. Boil-off losses usually occur during trans-
portation and storage (see Dobrota et al. (2013); Hasan et al. (2009)), in addition to
the ones associated with liquefaction and regasification phases.
Transportation of natural gas is closely linked to its storage: if not immediately re-
quired, it can be put into storage facilities for later usage. Since the consumption of
natural gas is seasonal, it is usually stored during summer when the request is lower
and then withdrawn in winter to meet the higher demand. Gas is usually stored un-
derground in large reservoir that can be: depleted gas reservoir, aquifers, or salt caves.
Natural gas is injected into these formations, that have been previously reconditioned
to create a sort of storage vessel, building up pressure as more natural gas is added.
The higher the pressure in the storage facility, the more readily gas may be extracted.
Once the pressure drops to below that of the wellhead, there is no pressure differential
left to push the natural gas out of the storage facility. This means that, in any under-
ground storage facility, there is a certain amount of gas that may never be extracted.
This is known as physically unrecoverable gas and it is permanently embedded in the
formation. In addition to underground storage, gas can also be stored as LNG in ap-
propriates tanks.

In the down-stream segment the local distribution grids deliver the gas to consumers.
The distribution process is similar to the transportation one, but involves moving
smaller volumes of gas at much lower pressures over shorter distances to a great num-
ber of individual users. Smaller-diameter pipes are used to transport natural gas to
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individual consumers from the so-called “citygates”, which are the delivery points where
the natural gas is transferred from a transmission pipeline. Distributions pipes are usu-
ally made of highly advanced plastic, because of the need for flexibility, versatility and
the ease of replacement.

1.2.3 Market Organization

To obtain supplies of natural gas, energy companies, storage operators, traders, and
other market participants involved in all or in parts of the gas chain use the wholesale
markets. This is composed by two different trading arenas: the Spot market for
short-term transaction and the Futures market for medium or long-term transac-
tions. Outside of the wholesale markets, Long-Term Contracts on OTC markets are
largely diffused.

Wholesale gas trading points are usually located at physical or virtual gas hubs, where
buyers and sellers can trade in natural gas. While “citigates” are distribution points for
a city, a physical hub is a major shipping, distribution, and delivery point, which may
have significant storage capacity, connections with onshore and offshore gas pipelines,
and infrastructures to off-take or load LNG cargoes. In a physical hub, such as the
Henry Hub in the USA or Zeebrugge in Belgium, traders are required to bring the
gas there and parties are required to book the same quantity for both entry and exit
on a point-to-point transaction mode, assuming that pre-agreed gas injected into the
network at one point will be taken off at a predetermined location.
On the other side, a virtual hub is defined through a pipeline grid (interconnected
pipelines with no point of origin or end) representing the entire country or a trans-
regional zone, managed by a TSO. All the gas within the virtual hub can be traded,
irrespective of its actual physical location. Individual buyers and sellers can book
different quantities for entry and exit into the system without a predetermined des-
tination, thus increasing the trading flexibility compared to a physical hub. For this
reason, virtual hubs are generally more suitable for countries short of domestic natu-
ral gas supply and relying on various sources of supplies, including LNG imports. To
be considered mature, an hub should fulfill five main requirements: liquidity, volatil-
ity, anonymity, transparency, and traded volumes. A mature hub is able to develop
a reliable forward curve that can be used for risk management purposes. The final
stage of maturity is when the hub is sufficient liquid to trade specific traded products
such as indices pricing their physical transactions (see Heather (2015); Rademaekers
et al. (2008)). In Europe, only the National Balancing Point (NBP) in the UK and
the Dutch Title Transfer Facility (TTF) in the Netherlands can be considered mature
with enough level of liquidity. The German hubs NetConnect Germany (NCG) and
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Gaspool are closer to NBP and TTF in terms of performance transactions, while all
other hubs need to be further developed (see ACER (2015)).

• Spot Market
The spot market generally includes a day-ahead gas market, an intraday gas mar-
ket, a locational market and a regulated market for the trading of stored gas. This
is also the design applied to the Italian gas market whose details are provided in
the following.
On the day-ahead gas market, offers and bids related to the three gas-days after
that of the trading session opening are selected. Transaction takes place in accor-
dance with the continuous trading mode in which orders are executed according
to price and time entered.
On the intraday gas market, offers and bids related to the gas-day corresponding
to that of trading session opening are selected. Also here, transaction takes place
in accordance with the continuous trading mode.
On the locational market, authorized users supply the gas TSO with quantities of
gas needed to manage the physical demands within the balancing zones or devi-
ations provided between overall injections and withdrawals on the network. The
sessions of this market are held only upon request of the TSO and transactions
take place in the form of auction trading.
On the market for trading stored gas, all bids and offers of gas stored are traded
by authorized users and by the TSO. Transactions take place in the manner of
auction trading.

• Futures Market
To minimize the risks inherent to spot trades, market participants sign futures
contracts to buy and sell gas to be supplied in future months, quarters, seasons
or years, at a price negotiated on the contract date. To make trading easier,
these futures apply to standardized products, for example, the supply of 1 MWh
for each gas day during the delivery period. Futures represent the average of the
expected spot prices over a longer period, making them generally less volatile
than spot products. They are used as a basis for determining the prices paid by
end-consumers.
As in the electricity market, it is also possible to buy options, an agreement for
having the choice of delivering or consuming a specified amount of gas in a future
time period. In some markets the TSO subscribes long term options to buy/sell
flexible gas quantities for balancing purposes (see ENTSO-G (2012)).

• OTC markets
The most common bilateral contracts on OTC markets are Long-Term Natural
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Gas Contracts (LTCs), which commit producer and buyer over long durations,
usually 20-25 years and were the most commonly used supply agreements in the
gas sector, generally considered necessary to guarantee the security of supply.
Historically, LTCs have been characterized by quantity and price clauses. The
Take or Pay (TOP) quantity clause obligates the mid-streamer to take a certain
quantity of natural gas or to pay for it. The price clause makes the LTC price
linked to a bundle of oil-products (price indexation) to grant price stability to
the producers and hence reduce their risk on investments. For this reason, gas
infrastructures have been often developed taking into account the LTCs in place
(see Abada et al. (2017)).

Considering the current organization of the gas market at international level,
we can observe that LTCs dominate the Asian natural gas market, while the
United States mainly trade natural gas on spot markets. Continental Europe
is in the middle of a transition from LTCs to the spot pricing system, with a
significant fraction of its gas supply still linked to LTCs. However, in Europe
oil-indexed pricing had not reflected gas market fundamentals for some time,
making the situation untenable. Mid-streamers asked for a re-negotiation of their
contracts in order to link LTCs price to the spot gas prices. For this transition
to be successful, there is the need of reliable markets prices which allow for both
physical balancing and financial risk management on liquid trading hubs.

1.2.4 Partecipants

The main agents participating in a restructured gas supply chain are briefly introduced
below and represented in Fig. 1.2 (see Holz et al. (2013); Egging (2013)).

• Producers
Producers extract and refine natural gas and sell it to traders trying to maxi-
mize their profits. These agents usually own production facilities and they are
also in charge of new investments, besides operation and maintenance of active
production facilities.

• Traders
Traders are in charge of transporting and selling natural gas to marketers. Trans-
portation can be done via pipelines, or liquefaction, shipping and regasification
infrastructures. They rent transportation capacity from the TSO to export the
natural gas. They can also rent storage capacity from the Storage System Op-
erator (SSO) to arbitrate between seasonal price variations. Their aim is to
maximize their profit.
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• Transmission System Operators (TSO)
The TSO manages the transportation network and rents out capacity to traders.

• Storage system Operators (SSO)
The SSO manages the storage capacity and rents our capacity to traders.

• Marketers or mid-streamers
Marketers buy gas from the traders to supply all types of consumers which in-
clude residential/commercial, industries and power companies. Their aim is to
maximize their profit.

• Consumers
Consumers are the-end users of natural gas. They all buy gas from marketers.
Their aim is to minimize their procurement costs or maximize the utility that
they obtain from consuming gas.

Figure 1.2: Representation of the gas supply chain participant’s and interactions

1.3 Toward Decarbonization
Human activity is overloading the atmosphere with carbon dioxide and other green-
house gas emissions, which trap heat and drive up the planet temperature, resulting
in a negative impact on our health, environment, and climate. For these reasons, in
December 2015, 195 countries signed the “Paris Climate Agreement”, which entered
into force on November 4th, 2016. The targets of this agreement are ambitious and in-
clude a long-term goal of keeping the increase in global average temperature well below
2◦C by 2100, preferably below 1.5◦C and of undertaking rapid reductions of emissions
in accordance with the best available technologies. However, taking into account the
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actual mitigation policies, the 1.5◦C increase target has only 1% chance to be achieved
and population growth is not a major contributing factor (see Raftery et al. (2017)).
In fact, the long lifetime of CO2, the thermal inertia of oceans and others factors are
responsible for some level of natural warming, which could be enough to exceed the
Paris targets (see Mauritsen and Pincus (2017)). Consequences might be serious on dif-
ferent levels, including premature mortality from changes in air pollution attributable
to climate change (see Silva et al. (2017)).
In addition to the Paris Agreement, a number of countries and regional international
organizations have adopted carbon-reduction targets of their own.
The USA were among the first Parties to deposit their instruments of ratification, ac-
ceptance, approval or accession, allowing the Agreement to enter into force. However,
on June 1 2017 they announced their withdrawal and asked for a re-negotiation.7 In
spite of this, it is important to recall that according to the Article 28 of Paris Agree-
ment the earliest date for a Party to leave the Agreement would be November 4th,
2020, upon expiry of one year from the date of receipt by the Depositary of the noti-
fication of withdrawal (see UNFCCC (2015)). Anyway, at the actual stage, the USA
climate outlook is not favourable. The Russian Federation instead, has not yet ratified
the Paris Agreement, delaying the adoption of ambitious climate targets and policies
until at least 2019.
In the rest of the word, China joined the Paris Agreement through the so-called Na-
tionally Determined Contribution, committing to reach a CO2 emission peak by 2030.
Although under current policies, this target will most likely be achieved, it is still not
compatible with the objective of limiting global temperature increase to below 2◦C. On
the other side, India is making an important effort and adopted in April 2018 a very
ambitious plan called National Electricity Plan (NEP) to achieve the goal of a 40%
non-fossil-based power capacity by 2030 at end of this year, i.e. 12 years earlier than
targeted.
In the same line, Japan is currently developing its Basic Energy Plan and long-term
energy strategy. There is uncertainty around the future role of nuclear, coal and re-
newable energy. Coal plant construction plans remain a concern and pose a serious
risk to the government’s future mitigation efforts.
Canada adopted the Pan-Canadian Framework on Clean Growth and Climate contain-
ing proposals for economy-wide measures, including a carbon pricing plan and a plan
to phase-out traditional coal plants. Canada’s Nationally Determined Contribution
target is to reduce economy-wide GHG emissions by 30% below 2005 levels by 2030,
but it remains unclear if it will rely on carbon sinks in forests, soils, and wetlands to
achieve its target.

7See: https://www.whitehouse.gov/briefings-statements/statement-president-trump-paris-climate-accord/

https://www.whitehouse.gov/briefings-statements/statement-president-trump-paris-climate-accord/
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Finally, the European Union introduced in 2005 the European Union Emissions Trad-
ing System (EU-ETS) that is the first and largest cap-and-trade scheme applied on
international scale to limit CO2 emissions. The idea is the following: each ton of
CO2 emissions has to be covered by an allowance whose price is defined on a dedi-
cated market. The EU-ETS went through two phases and it is now into the third
one. The first phase, was a three year pilot (2005-2007) of “learning by doing” in
preparation for the second phase, covering years 2008-2012. The over allocation of
allowances that were assigned for free with a 95% and 90% proportions in first and
second phases created some distortions reducing the direct impact of the EU-ETS on
emissions. Since firms received the allowances for free they were able to generate the
so-called “windfall profits” mainly in two ways: by selling the allowances on the mar-
ket and by passing a significant part of the costs of CO2 emission allowances through
to product prices, resulting for example in higher electricity prices for consumers (see
Sijm et al. (2006)). Despite this, the first two phases were able to generate saving on
CO2 emissions. Although disentangling the impact of the EU-ETS from other factors
is complex, academic studies with both “top down”, and sector-based “bottom up”
evaluations attribute to this mechanism savings ranging from 2% to 4% of the total
capped emissions per year (see Laing et al. (2013)). The third phase, started in 2013,
substantially modifies the EU-ETS trying to overcome these drawbacks by applying a
single EU-wide emission cap in place of the previous system of national caps, by en-
larging the involved sectors and by significantly reducing the amount of grandfathered
allowances. This is also the tendency of the announced fourth phase that is currently
under discussion. The European Union has also adopted the so-called Energy Roadmap
2050, committing to reduce greenhouse gas emissions by 80%-95% relative to 1990 lev-
els by 2050. This implies a complete transformation of the energy system: improving
energy efficiency, switching to renewable energy sources which should represent at least
55% of the gross final energy consumption in 2050 (actual level is around 10%), devel-
oping efficient and economically convenient storage mechanisms, enforcing the role of
gas into the transition, developing smart technologies and alternative fuels including
electric vehicles. Planning plays a central role in this transformation since large share
of the current energy supply capacity will come to the end of their useful life in the
next years. Moreover, there is the need of improving the condition for financing in the
energy sector, decreasing the costs of capital for low-carbon investment. In this sense,
carbon pricing can provide an incentive although increasing the risk of carbon leakage.
8 A global effort is required and both electricity and gas market will face important
transformations.

8Carbon leakage refers to a hypothetical situation where companies transfer production to coun-
tries with weaker climate policies in order to lower their costs.
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1.3.1 Electricity role in a low-carbon energy economy

Electricity will have to play a role much greater than now in order to contribute to
decarbonization. According to the EU Roadmap the biggest share energy of supply
technology in 2050 should come from renewables. Renewable Energy Sources (RES)
have to be employed both on large and small scale, become more efficient and create
economies of scale. Many renewable based technologies such as Concentrated Solar
Power (CSP) or biofuels, need further development to reduce their costs, others such
as wind plants and photovoiltaic (PV) might be partially improved, for example by
increasing the size of offshore wind turbines and blades to capture more wind or to
improve the PV to harvest more solar power. Moreover, although renewable generation
present several advantages such as unlimited resource availability all over the planet,
very low production costs besides being environmentally sustainable, the operation
of a renewable dominated electricity market it is not so trivial. This is due to the
stochasticity that characterizes RES that makes uncertain the electricity production of
such a kind of power plants (see Morales et al. (2013)). This have an effect on several
floors:

• Predictability: first of all, when dealing with RES power production, forecasts
become essential for an adequate integration of renewable power generation in
electricity markets operations, since markets need be cleared in advance, while
market participants shall make decisions even before that (see Section 1.1.3).
An appropriate forecasting in a well-defined decision-making problem helps im-
proving the decisions to be made, and allows controlling the risk generated by
unforeseen events. Predictability has an impact on the cleared energy volumes
and system prices, as well as their dynamics (see Jónsson et al. (2010)). This
happens because the energy produced by RES units is commonly bid into the
markets using forecasts of the future production, especially in the day-ahead and
intraday markets. Indeed the potential need for balancing comes from the differ-
ence between day-ahead supply offers and actual generation. Consequently, it is
not the actual renewable energy generation that drives the balancing direction,
prices and quantities, but the forecasting errors instead. Moreover, since the
marginal cost of renewable energy is very low, according to the so called merit-
order principle, their production is scheduled before conventional production and
their output directly influences the market price. As a result, in periods with
high renewable power production the market price is low, while periods with low
renewable power production are characterized by higher prices.

• Variability: renewable generation is intermittent and it is nonlinear function
of the associated atmospheric variables such as solar irradiance or wind speed.
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Variability from one hour to the next, but also from one day to the other, is high
and these patterns contribute to shaping the evolution of the various variables in
day-ahead and balancing markets. Usually, variability in renewable production
is not correlated to the fluctuation of the demand and so cannot be passively
absorbed by consumers. For this reason, a high degree of variability in a power
system requires a high degree of flexibility that can be achieved in several ways.

• Flexibility need: flexibility can be achieved by operating conventional units at
production levels higher or lower than their optimum in an attempt to accom-
modate the variability of renewable generation by ramping up or down, which
sometimes implies also starting-up or shutting-down conventional units. Conse-
quently, if large variations of renewable generation have to be accommodated by
conventional generation, this may result in conventional power plants operating
in a less efficient way, thus reducing the emissions savings generated with the aim
of renewable production.
Another solution to increase flexibility is the implementation of direct and indi-
rect control initiatives.
Direct control includes initiatives aimed at granting the TSO the right to di-
rectly modulate the demand by rationing or disconnecting single or groups of
consumers. Typically, consumers involved in these strategies are protected by a
contract fixing how often they can be disconnected or rationed.
Indirect control implies the use of economic incentives so that demand for power,
rather than the supply, adapts to the stochastic and variable production. In prac-
tice, this is done by broadcasting time-varying prices to the consumers (dynamic
real-time pricing). This strategy is also know as demand response and requires
constant communication with consumer, achievable only with an upgrade of the
grid, usually associated with the notion of smart grid.
A third way to increase flexibility is by optimally managing the reserves. Indeed,
although part of the variability can be predicted, a renewable oriented power sys-
tem increases the need for backup power to cope with unpredicted fluctuations
of power production. This implies higher reserve availability which entails addi-
tional operating costs which can be minimized only by allocating and deploying
reserves in an efficient manner.
Finally, probably the best way to increase flexibility and facilitate the integra-
tion of RES is by developing large-scale storage capabilities. Storage plants allow
shifting in time the demand by storing electricity when demand is low (and so
is the price) and releasing it, during high-demand (high-price) periods. From
a practical point of view this translates into increasing the consumption during
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low-demand periods, allowing inflexible production units to maintain their power
output or reducing the ramping of conventional units, while producing energy at
high demand periods, reducing the need of reserves and the use of costly peaking
power plants.9 Even though, currently, there exist a number of energy storage
technologies that can contribute to this end, it seems that further development
in this field is still needed for massive electricity storage to become a reality in
the required magnitude (see Pickard et al. (2009)).

In the following the different types of renewable generation and storage facilities utilized
in this thesis are briefly introduced.

Wind

A wind power plant is made of several wind turbines. Each turbine is supported by a
conical steel tower which is firmly anchored to the ground. In the horizontal axis wind
turbines, which are the most common worldwide and also the ones we consider in this
thesis, the speed of the wind rotates the blades of a rotor, producing kinetic energy.
The rotor then drives a generator, contained together with other mechanical compo-
nents into the nacelle, that converts the mechanical energy into electricity (see IEA
(2016c)). Wind plants can be built either onshore or offshore with the latter requiring
both higher investment and operation costs with respect to onshore plants. Higher
investments costs depends on more expensive marine foundations, installation proce-
dures and integration in the electrical network, while higher operation cost are due to
the limited access for operations and maintenance. Anyway, offshore plants experience
also higher capacity factors10 with respect onshore plants because they can benefit from
the higher wind speed, which generally increases with distance from the shore, and less
turbulence, which allows the turbines to harvest the energy more effectively (see Bilgili
et al. (2011)). Wind turbine prices have fallen by around half from 2009 leading to
cheaper wind power globally. Moreover the global weighted average Levelized Cost
Of Electricity11 of onshore wind have dropped from USD 0.40/kWh in 1983 to USD
0.06/kWh in 2017, experiencing a 85% decline, with recent auctions in Brazil, Canada,
Germany, India, Mexico and Morocco resulting in onshore wind power LCOEs as low
as USD 0.03/kWh, making the technology one of the most competitive sources of new

9These power plant generally run only when there is a high demand, known as peak load, for
electricity. They receive a higher price for supplied power with respect to base load power plants
which produce a consistent amount of electricity to meet the minimum demand (base load).

10The capacity factor is the ratio of the actual energy produced by a turbine in a period time, to
the nameplate capacity of the turbine.

11LCOE measures lifetime costs (including both investment and operations) divided by energy
production. LCOE allows the comparison of different technologies of unequal life spans, project size,
capital costs, risk, return, and capacities.
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generation capacity (see IRENA (2018b)). For these reasons, this technology is con-
sidered mature with respect to other more recent types of renewables. Large amounts
of wind power have been integrated into power systems worldwide resulting in a total
installed capacity of 5.4 GW at the end of 2017 (see GWEC (2017)). The projection
of international agencies for future development of wind technologies estimate global
wind installations reaching 743GW (of which 31GW offshore) by 2020 and 2,900-5,806
GW in 2050 according to different scenarios assumptions (see GWEC (2016)).

Solar Photovoiltaic

A single Solar Photovoltaic device is known as a cell. Cells are connected together
in chains to form larger units known as modules or panels which boost the power
output of PV cells. Modules can be used individually, or several can be connected to
form arrays. One or more arrays is then connected to the electrical grid as part of
a complete PV system. Because of this modular structure, PV systems can be built
to meet almost any electric power need, small or large. PV modules directly convert
incident solar radiation into dc electricity, which can then be inverted to ac. PV gets
its name from the process of converting light (photons) to electricity (voltage), which
is called the PV effect. PV cells can be made of different materials: traditional solar
cells are made from silicon and are usually flat-plat. Second-generation solar cells are
called thin-film solar cells because they are made from amorphous silicon or nonsilicon
materials such as cadmium telluride and are very thin and flexible. Third-generation
solar cells are being made from a variety of new materials besides silicon, including
solar inks using conventional printing press technologies, solar dyes, and conductive
plastics. PV technology experienced a huge cost reduction in the last years with the
module costs declined by 80% between the end of 2010 and the end of 2016. As
a result also the weighted average LCOE cost experienced a 73% decrease to USD
0.10/kWh for new projects commissioned in 2017 (see IRENA (2018b)). At the end
of 2016 the worldwide installed cumulative PV capacity was 291GW. The projection
of international agencies for future development of the technology estimates the global
PV installations reaching 650 GW by 2020 and 3,155-7,122 GW by 2050 according to
different scenarios assumptions (see IRENA (2018a); IEA (2014a)).

Solar Thermal Electric Technology

Solar thermal electric technology, also known as Concentrated Solar Power with ther-
mal energy storage (TES) relies on concentrating the sun’s rays through the use of
mirrors to create high temperature heat to drive a steam turbine. In the majority
of today’s systems, the sun energy is transferred to a fluid, which in turn is passed
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through heat exchangers to run a traditional electricity steam cycle, similar to the one
used in conventional thermal power plants. Usually, a molten salt solution is the basis
for generating steam because the heat in the fluid can be stored for a period of time
into specific tanks and used later to generate electricity. According to the way used
to collect the heat and generate electricity it is possible to distinguish various CSP
configurations. These includes parabolic through collectors, solar power tower, linear
Fresnel and Dish-Stirling (see Zhang et al. (2013)). Solar power towers are currently
the focal-point system currently most deployed, and also the one adopted in this the-
sis. CSP technology is still in its infancy in terms of deployment, although the cost
have fallen between 2010 and 2017 and the estimated learning rate in the time hori-
zon 2010-2020 is around 30%. Both investments and operating costs are expected to
further decrease toward 2050. Auction results in 2016 and 2017 for projects that will
be commissioned in 2020 and beyond, signed a step-change with the weighted average
LCOE costs falling to between USD 0.06 and USD 0.10/kWh (see IRENA (2018b)). At
the end of 2016 the worldwide installed cumulative CSP capacity was 5 GW. The pro-
jection of international agencies for future development of the technology estimates the
global CSP installations reaching 12 GW by 2020 and 633-982 GW by 2050 according
to different scenarios assumptions (see IRENA (2018a); IEA (2014b)).

Storage system: Batteries

Battery energy storage technologies, with their high energy densities, maturity of tech-
nology and relative ease of use represent a valuable option for small-scale energy stor-
age. The batteries are made of stacked cells wherein chemical energy is converted to
electrical energy and viceversa. The desired battery voltage as well as current levels
are obtained by electrically connecting the cells in series and parallel. The batteries
are rated in terms of their energy and power capacities, but they present also some
other important features which differ from type to type. These are the efficiency, the
life span (stated in terms of number of cycles), the operating temperature, the depth of
discharge (batteries are generally not discharged completely), the rate of self-discharge
and the energy density (see Divya and Østergaard (2009)). Battery storage is facing a
significant development, and it is possible to distinguish many different types of bat-
teries suitable for power system operations. These include lead-acid, sodium-sulphur,
lithium-ion, nickel-cadmium, nickel-metal hybrid, and flow batteries. Lead-acid batter-
ies are the oldest and most mature technology and have been largely implemented in
power systems. The litium-ion, sodium-sulphur, nickel-cadmium and nickel-metal hy-
brid batteries seem to represent the leading technologies in high-power-density battery
applications. Of these, litium-ion possesses the greatest potential for future develop-
ment and optimization. In addition to small size and low weight the these batteries
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offer the highest energy density and a storage efficiency close to 100%, but they are cost
expensive. The flow batteries are also promising for applications which require long
duration storages due to their non-self-discharge capability, but they offer low power
density (see Nair and Garimella (2010)). In Chapter 3 we use batteries as small-scale
storage solution within a small size electric energy system with electric vehicles and
PV units.

Storage systems: Compressed Air Energy Storage

Compressed Air Energy Storage (CAES) represent a valid large-scale storage alterna-
tive for countries with limited water availability. At the time being, all the operating
large-scale CAES plants are diabatic i.e. they allow energy exchanges with their sur-
roundings. For this reason, diabatic CAES is considered a hybrid large-scale storage
technology and uses both electricity (to compress air) and natural gas. The operation
of a diabatic CAES plant can be divided into two phases. In the charging phase, that
occurs during off-peak periods, CAES systems utilizes electrical energy from the grid
to compress the air, that is stored at a high pressure and ambient temperature in a
reservoir that can be an underground cavern, or any type of environment with similar
features. The heat resultant from each compression is released in the atmosphere. In
the discharging phase, a single-cycle gas turbine generator combines compressed air
with natural gas in a combustion chamber. Combustion produces high-pressure gas,
which is then expanded through a turbine, that drives both a generator and the input
air compressor. The electricity produced is then delivered to the grid. In the last years
another type of CAES, called adiabatic have been developed, although no commercial-
scale operating systems exist today. Adiabatic CAES is an emission-free, pure storage
technology which exploit the principle of storing the heat generated in the compression
phase into dedicate thermal energy storage (TES). Then, during the discharging phase,
the heat is released into the compressed air increasing its temperature with no need
to burn gas and so avoiding CO2 emissions. Additional details for these technologies,
including investments and operation costs are given in Chapter 2.

1.3.2 Gas role in a low-carbon economy

In recent years technology advances such as horizontal drilling and hydraulic fracturing
have unlocked gas resources in unconventional reservoirs, such as tight sands, coal bed
methane, and shale rock rich in organic materials. The USA have been the forerunners
of this new exploration process which is now applied internationally. As a result, un-
conventional gas should account for nearly half of the growth in global gas production
to 2035, with China, USA and Australia as majors contributors. Consequently, gas
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resource estimates have increased sharply, and natural gas has now the potential to
shed the supply, price volatility, and energy security concerns that have surrounded
it during the last few decades (see Flavin and Kitasei (2010)). In addition to that,
natural gas is the only fossil fuel for which global demand is expected to grow, show-
ing that it fares well under different policy conditions (see IEA (2016d, 2018)). The
prospect of more abundant and economical gas supplies, together with the increasing
urgency of the climate problem, is drawing more attention to the role that natural gas
will play in the transition to a low-carbon power sector. More specifically, the role of
gas will be critical for several reasons (see Holz et al. (2013)). In the short-medium
term natural gas will substitute other fossil fuels with a relatively higher carbon con-
tent per generated energy, particularly coal. This could help reducing emissions with
existing technologies until at least 2030-2035 according to the forecasts of the EU
Roadmap 2050. This effect may be intensified by the advantages provided by gas-fired
power plants, which present lower investment costs, are rather quickly built and rela-
tively flexible. And it is thanks to this flexibility that gas-fired power plants can play
a balancing role in an increasingly intermittent electricity system, acting as backup
units. Other sectors than electricity generation, i.e. transportation and heating may
be affected as well. Moreover the development of the Carbon Capture and Sequestra-
tion mechanism (CCS), which can cover a broad range of technologies, represent an
important option to transform the production from natural gas plants in low-carbon
production and pursuing decarbonization targets. CCS is currently considered to be
technically feasible at commercial scale, with both large-scale and small-scale projects
operating all over the world (see Gibbins and Chalmers (2008)). In the following we
provide a brief description of this technology, which is also included as possible op-
tion in the long-term investment model developed in Chapter 2. Anyway, to keep its
competitiveness as fuel for electricity generation, natural gas management has to be
improved. First the gas market needs more integration, liquidity, storage capacity and
diversity of supply sources. In particular, the latter is fundamental for non-producing
countries which are constantly exposed to the risk of supply failure due to economical
and political reasons. This aspect is analyzed in Chapter 5 of this thesis. In addition,
LTCs may continue to be necessary to guarantee investments in both up-stream and
mid-stream segments, but more flexibility in the price formula is required. There is the
need of moving away from pure oil-indexation, opening to gas spot prices as possible
underlying of these long-term contract. This aspect is developed in Chapter 4 of this
thesis.
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Carbon Capture and Sequestration

Carbon Capture and Sequestration is a technology that can capture up to 90% of the
CO2 emissions produced from the use of fossil fuels in electricity generation and indus-
trial processes, preventing the carbon dioxide from entering the atmosphere. The CCS
chain consists of three parts: capturing the carbon dioxide, transporting the carbon
dioxide, and securely storing underground the carbon dioxide emissions in depleted oil
and gas fields or deep saline aquifer formations. Capture technologies separate carbon
dioxide from gases in electricity generation and may be done in at least three different
ways: pre-combustion capture, post-combustion capture and oxy-fuel combustion. A
pre-combustion system involves first converting solid, liquid or gaseous fuel into a mix-
ture of hydrogen and carbon dioxide using processes such as gasification or reforming.
The CO2 is then captured. In the post-combustion CO2 is captured from the exhaust
of a combustion process in several ways which include absorbing it in a suitable sol-
vent, using high pressure membrane filtration, with the aim of adsorption/desorption
processes or cryogenic separation. In the process of oxy-fuel combustion the oxygen
required is separated from air prior to combustion and the fuel is combusted in oxygen
diluted with recycled flue-gas rather than by air. This oxygen-rich, nigtrogen-free at-
mosphere results in final flue-gases consisting mainly of CO2 and water, so producing a
more concentrated CO2 stream for easier purification. Fossil Fuel power plants can be
built with the carbon capture technology integrated, or can be built “carbon capture
ready”, which allows the plant to have carbon capture capabilities in the future. The
cost of CCS is expected to decrease in the long-run as a result of research and devel-
opment activities, and the building of economies of scale. Anyway also in this case,
higher carbon prices are needed to push companies to invest in CCS (see Holz et al.
(2013)).

1.4 Thesis Motivations and Objectives
The issues discussed in Section 1.3 has motivated the work carried out in this thesis,
whose aim is to develop different modeling frameworks to represent the transition of
electricity and gas markets toward a low-carbon economy. The thesis is divided into
two main parts:

• In the first part, two planning models to efficiently integrate renewable and stor-
age units in electric energy systems are proposed. Among the actions carried out
to mitigate greenhouse gas emissions, increasing RES penetration is one of the
most important. Anyway, renewable generation implies dealing with production
variability and uncertainty, which represent a challenge for the power system.
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Therefore, more backup capacity is needed. Possible solutions include increasing
reserves, which are supplied by dispatchable units such as thermal plants. An
alternative is the integration of storage capacity, which provides flexibility to sys-
tem and represents an environmentally friendly solution. The objectives of this
first part include:

– Developing an accurate modeling of multi-scale uncertainties, i.e. short-term
uncertainty, able to represent daily variability of several factors including
renewable energy production, and long-term uncertainty, which pertains
to future projections. The problem is tackled by applying two different
methodologies: stochastic programming and robust optimization.

– Integrating and adequately representing daily operations of different types
of storage facilities, which help providing flexibility to the system.

– Correctly taking into account realistic network constraints by representing
the topology of the system under study. Lines capacity availability is usually
a concern because power production centers are located away from demand
centers. We seek to develop models which allow lines expansion.

These topics are investigated in Chapters 2 and 3. The specific objectives of these
two chapters include:

– To develop a two-stage stochastic programming investment model for generation-
and transmission-capacity planning decisions taking into account decar-
bonization targets to be achieved by 2050 that is the considered reference
year. Investment decisions are taken at the first stage, whereas operating
decisions are taken at the second stage.

– To represent two types of climate policies: an explicit cap on carbon emis-
sion and a carbon price. In this way our model can represent capacity
expansion under current European climate policy and policies that have
been contemplated in the United States.

– To investigate how different technologies can contribute to the decarboniza-
tion of the energy sector. This includes the use of renewable technologies,
such as wind and concentrating solar power (CSP), nuclear generation, and
fossil-fueled generation with carbon capture and sequestration (CCS) sys-
tems. To allow both ac and high-voltage dc (HVDC) transmission lines, as
well as energy-storage technologies to be built.

– To incorporate a novel representation of the operation of TES included into
CSP plants in a long-term investment model.
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– To examine the impacts of a variety of policy and technical factors on power
system decarbonization. Specifically, to study the effects of environmen-
tal policies, technology improvements, and transmission-network congestion.
We also want to examine the trade-off between the use of wind and solar
generation for decarbonization.

– To develop an Adaptive Robust Optimization model for planning invest-
ments in a Small Size Electric Energy System (SSEES).

– To model investments in PV power plants, storage units, charging stations
for Electric Vehicles (EVs), and network lines in an integrate framework;

– To study the changes in the investment decisions on the basis of the impact
of long-term uncertainty, the central planner’s revenues accruing from selling
electricity to EVs at charging stations, the degree of autonomy of SSEES
from the main grid, and the possibility of expanding the network.

– To conduct an ex-post analysis on the amount of CO2 saved with the utiliza-
tion of EVs in order to evaluate the benefits of progressive road-transport
decarbonization.

• In the second part, we analyze both the possible re-negotiation of the natural gas
LTCs in the European market, characterized by an hybrid price system where
also purchases of spot gas are allowed, and the security of supply of the Italian
gas market. Gas is the less pollutant fossil fuel and will play an important role
in the medium term, as explained in Section 1.3.2. A significant fraction of
European gas supply depends on imports from foreign countries and, in addition,
is linked to LTCs. The fall of the European natural gas demand, combined with
the increase of the oil price, favored the emergence of a gas volume bubble that
caused significant losses for most of the European mid-streamers because natural
gas prices at the hubs were considerably lower with respect to the ones they were
comminted to pay because of LTCs. This situation instilled in the downstream
part of the industry the idea of indexing contracts on gas spot prices rather than
oil-based commodities. At this light also the issue of the security of supply of
importing countries deserves attention. These topics are investigated in Chapters
4 and 5. Chapter specific objectives of this second part include:

– To study via Pair-Copula Constructions (PCC), the dependence risk struc-
ture across the underlyings of LTCs on natural gas.

– To develop an integrated framework that combines vine copula and opti-
mization techniques traditionally used in the contest of portfolio manage-
ment.
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– To address the debate over oil/spot indexation of European LTCs by defin-
ing the optimal composition of the assets traditionally used to price these
contracts.

– To develop an optimization model that describes the equilibrium state of
the natural gas supply chain where natural gas producers, mid-streamers,
and consumers can sell and buy both natural gas and LNG through LTCs
or/and on spot market.

– To study the risk of external gas supply by directly integrating new risk
indicators in our model.

– To investigate different degrees of mid-streamers’ flexibility by comparing a
situation where they fully accomplish the LTC volume requirements with a
case where they behave in a more flexible way.

1.5 Methodologies
The methodologies used in this dissertation are briefly revised below.

1.5.1 Optimization Problems

An optimization problem (OP) or mathematical programming problem consists in max-
imizing or minimizing a certain objective function subject to different restrictions, typ-
ically in the form of equality or inequality constraints. In general, an optimization
problem can be formulated as follows (see Gabriel et al. (2013)):

minimize
x

f(x)

subject to h(x) = 0
g(x) ≤ 0

where x ∈ Rn is the optimization variable vector, f(x) : Rn → R is the objective
function to be minimized, h(x) : Rn → Rme are the function for the equality constraints
and h(x) : Rn → Rmt for the inequality constraints. The set of solution meeting both
h(t) = 0 and g(x) ≤ 0 constitutes the feasible region. A solution within the feasible
region is a feasible solution, while the feasible solution minimizing the objective function
is the optimal solution.

The joint consideration of several interrelated optimization problems i where i =
1, ..., n, constitutes an equilibrium problem of the form:
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minimize
xi

f i(x1, ..., xn)

subject to hi(x1, ..., xn) = 0
gi(xi, ..., xn) ≤ 0

where the vector xi ∈ Rni includes the set of optimization variables of problem i. By
setting no = ∑n

i=1 n
i it is possible to define the objective functions and the constraints

of the problem i as follows: f i : Rno → R, hi : Rno → Rmi
e and gi : Rno → Rmi

t . The
Karush-Kuhn-Tucker (KKT) conditions are a set of complementarity conditions which
should be satisfied by the optimal solution of an optimization problem. KKT condition
are a natural way to cast these types of equilibrium problems. A complementarity
condition between a vector of non-negative variables µ ∈ Rmt and a function g(x) can
be defined as:

g(x) ≤ 0 µᵀg(x) = 0 µ ≤ 0

which can be written more compactly as

0 ≤ µ ⊥ g(x) ≤ 0

where ⊥ indicates complementarity, i.e. µᵀg(x) = 0.
In order to meaningfully formulate KKT conditions associated to an optimization or
equilibrium problem constraint qualification is required. KKT conditions can be ne-
cessary, but not sufficient conditions, i.e., solutions meeting them are not necessarily
optimal but optimal solutions need to meet them. If the objective function of the
related optimization problem is continuously differentiable and the set constituted by
the constraints is convex, the solution is guaranteed to be optimal (sufficiency condi-
tion). KKT conditions are first-order conditions, i.e., conditions that are formulated
using first derivative vectors and matrices (gradients and Jacobians). The Langrangian
function of the single optimization problem previuosly defined is:

L = f(x) + λᵀh(x) + µᵀg(x)

where f(x), h(x), g(x) are aasumed to be continuously differentiable in the feasible
region. The associated KKT conditions are

∇xf(x) + λᵀ∇xh(x) + µᵀ∇xg(x) = 0
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h(x) = 0
g(x) ≤ 0
µᵀg(x) = 0
µ ≥ 0

where λ ∈ Rme and µ ∈ Rmt are Lagrange multiplier vectors associated with equality
and inequality constraints, respectively, and ∇x denotes the gradient with respect to
the variable vector x. Note the the last three constraint can be expressed in compact
form as stated above. In this dissertation we solve an equilibrium problem defined by
jointly solving the KKT conditions of several single optimization problems each one
modeling the behavior of a specific market player within the gas market.

1.5.2 Stochastic Programming

Most decision-making problems can be adequately formulated as optimization prob-
lems. If the input data of an optimization problem are well-defined and deterministic,
its optimal solution is achieved by solving the problem. Anyway, when dealing with
decision making problems in the real word, a common issue is the lack of perfect infor-
mation. This happens in several fields, such as engineering, economics, finances, etc.
However, decisions need to be made even with lack of perfect information. This is what
motivates the use of stochastic programming models for decision making under uncer-
tainty. Indeed, uncertain input data can be described through probability functions.
In such a situation, possible solutions include substituting the uncertain input data by
their corresponding expected values, which results in a well defined and deterministic
optimization problem. However, solving such a problem may lead to a solution that,
once implemented, does not result in the best outcome. Alternatively, the probability
distribution of input data can be approximated by a collection of plausible sets of input
data with associated probabilities of occurrence. Doing so, it is possible to formulate
a stochastic optimization problem to achieve a solution that is the best in some sense
considering all possible values of the uncertain parameters.
The main drawback of stochastic programming is the size of the resulting problem,
which usually leads to computational intractability. Moreover, as stated above, it is
clear that stochastic programming relies on the knowledge of the probabilistic distri-
bution of the uncertain parameters, which are usually represented with the aim of
scenarios. Therefore adequate generation techniques are needed to achieve a good
representation, and further, efficient scenario reduction techniques to attain compu-
tational tractability without loosing important information (see Birge and Louveaux
(1997); Kall et al. (1994); Prékopa (2013)). In this dissertation, a two-stage mixed-
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integer linear stochastic programming model is proposed. A general two-stage linear
stochastic programming problem is formulated as follows:

minimize
x

cTx+ Eξ{Q(x, ξ)}

subject to Ax = b

x ≥ 0

where Q(x, ξ) is the optimal value of the second-stage problem:

minimize
y

q(ξ)Ty

subject to T (ξ)x+W (ξ)y = h(ξ)
y ≥ 0

This model can be applied to problems that deal with “here-and-now” decisions,
which have to be taken on the basis of prior existing information about future situations
without additional observations. The first-stage decisions do not depend on the scenario
that will actually occur in the future. The second-stage decisions occur after the
uncertainty realization and are the resources that can be used for each possible future
scenario. The decisions taken depend on the future realization of the scenario, for this
reason are called “wait-and-see”. In this formulation x ∈ Rn is the first-stage decision
variable vector, y ∈ Rn is the second-stage decision variable vector, and ξ(q, T,W, h)
contains the data of the second-stage problem. The “here-and-now” decision, x, is
made at the first stage, before the realization of the uncertain data ξ is known. At the
second stage, after the realization of ξ becomes available, an appropriate optimization
problem is solved. At the first stage, the cost cT, plus the expected cost of the optimal
second-stage decision, Eξ{Q(x, ξ)} are optimized. The second-stage problem can be
viewed as an optimization problem which describes a supposedly optimal behavior
when the uncertain data ξ are revealed. Matrices T and M are called technological
and recourse matrices, respectively.

1.5.3 Adaptive Robust Optimization

Robust optimization is widely used to solve optimization problems under uncertainty.
With respect to stochastic programming, it has the advantage of eliminating the need
of scenario generation, and therefore reducing potential computational intractability.
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Indeed, instead of seeking to immunize the solution in some probabilistic sense to
stochastic uncertainty, with robust optimization the decision-maker constructs a solu-
tion that is feasible for any realization of the uncertainty in a given set. The uncertain
parameters are kept within robust sets, which are easier to construct with respect to
scenarios. By considering the worst possible realization, the optimal solution is ob-
tained, although this might sometimes lead to too conservative results (see Ben-Tal
et al. (2009); Bertsimas et al. (2011)). The adaptive robust optimization formula-
tion originates from the need of adequately represent a decision sequence in which
(1) decision are made under uncertainty, (2) uncertainty realization is considered, (3)
corrective actions can be made. A general adaptive robust optimization problem is
formulates as follows:

min
x

max
u

min
y

f(x,u,y)

s.t.
hC(x,u,y) = 0
gC(x,u,y) ≤ 0
y ∈ Y

s.t.
u ∈ U

s.t.
hI(x) = 0
gI(x) ≤ 0
x ∈ X

Objective function f(x,u,y) represents the minimization of the total cost, including
investment and operating costs. The investment decision variables are gathered in
vector x, and depend on the so called expansion constraints. The entries of vector u
are variables describing the uncertain parameters and U represent the uncertainty set
which defines variability limits of uncertain parameters. Similarly, the entries of vector
y are the operating decision variables. Note that U defines the feasibility set, which
includes constraints related to the system operation and system limits. The worst case
realization of the uncertainty and the successive adaptive actions are considered in
the max −min right-hand-side problem, while the min left-hand-side problem seeks
minimum total cost.
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1.5.4 Pair-Copulas Construction

Copulas are functions that join or couple multivariate distribution functions to their
one-dimensional marginal distribution functions. Alternatively, copulas are multivari-
ate distributions functions whose one-dimensional margins are uniform on the interval
[0,1]. In a sense, every joint distribution function implicitly contains both a description
of the marginal behaviour of individual variables and a description of their dependency
structure. Copulas provide a way of isolating the description of their dependency struc-
ture. In particular, the copula approach allows capturing the complex dependency pat-
terns of multivariate data, such as asymmetry and dependence in the extremes which
cannot be captured by multivariate normal or student-t distributions.

The following theorem (Sklar) holds (see Sklar (1959)):

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd))
f(x1, ..., xd) = c(F1(x1), ..., Fd(xd))f1(x1)...fd(xd)

where F (x1, ..., xd) and f(x1, ..., xd) are the joint distribution and density function,
respectively. Fi(xi) and fi(xi) for i = 1, ..., d are the marginal distribution and density
function, respectively. c(u1, ...ud) := ∂d

∂u1...∂ud
is the copula density function.

While there exists a multitude of bivariate copulas, the class of multivariate cop-
ulas is still quite restricted. Hence, if the dependency structures of different pairs of
variables in a multivariate problem are very different, not even the copula approach
will allow for the construction of an appropriate model. It has been proved that under
some regularity conditions a multivariate density can be expressed as a product of bi-
variate copulas, acting on several different conditional probability distributions. This
has allowed formulating an approach finalized to the probabilistic construction of mul-
tivariate distribution functions based on pair-copulas, namely pair-copula construction
(PCC). Many PCC’s are feasible and, for this reason, there exist graphical structures
to organize them. PCC allows exploiting the advantages of using copulas, providing
additional flexibility by modeling conditional pairs.

1.6 Thesis Organization

This document is structured according to the following chapters:

Chapter 1 In this chapter we first present an overview of the electricity market,
which includes a description of the restructuring process of the electricity sector
and of the structure of the electric power system, an explanation of the function-
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ing of the principal electricity markets and a review of the most relevant market
agents. Second, we describe the gas market, providing a summary of its dereg-
ulation process, a description of the structure of the gas supply chain and of its
participants, and an explanation of the functioning of the principal gas markets.
Third, we present an overview of the decarbonization process and we analyze the
role played by electricity and gas to meet low-carbon economy targets. We also
describe all the technologies used in this thesis. Fourth, a general overview of
the methodologies used in this dissertation is provided. Finally, we provide the
thesis objectives.

Chapter 2 presents a two-stage stochastic optimization model to determines the
optimal mix of generation and transmission capacity that needs to be built in
order to serve future demands at least cost, while respecting both technical and
environmental constraints. The model uses a mix of ac and high-voltage dc trans-
mission lines, conventional and renewable power plants, and energy-storage units
to meet these objectives. Short- and long-term uncertainties are modeled using
operating conditions and scenarios, respectively. A case study and a sensitivity
analysis are provided to show how the proposed model works.

Chapter 3 proposes a stochastic adaptive robust optimization approach for the
expansion planning problem of a small size electric energy system. This involves
the construction of candidate renewable generating units, network lines, storage
units, and charging stations for electric vehicles. Short- and long-term uncertain-
ties are modeled using operating conditions and confidence bounds, respectively.
A case study is used to illustrate the effectiveness of the proposed technique,
while an an ex-post decarbonization analysis is conducted to evaluate the envi-
ronmental impact of the integration of electric vehicles in the energy system.

Chapter 4 originates from the European debate concerning oil versus gas index-
ation of long-term natural gas contracts. The dependence risk and the optimal
resource allocation of the underlying assets of a gas long-term contract are esti-
mated through pair-vine copulas and portfolio optimization methods with respect
to different risk measures, respectively. Both spot gas prices traded at the hub
and oil-based commodities are considered as possible underlyings of the LTCs.
Results can provide concrete indications for practitioners in the field..

Chapter 5 analyzes the security of external supply of the Italian gas market that
mainly relies on natural gas imports to cover its internal demand. An optimiza-
tion problem, which describes the equilibrium state of a gas supply chain where
producers, mid-streamers, and final consumers exchange natural gas and LNG,
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is developed. Both long-term contracts and spot pricing systems are considered.
Mid-streamers are assumed to be exposed to the external supply risk, which is
estimated with indicators that we develop starting from those already existing
in the literature. In addition, different degrees of mid-streamers’ flexibility are
investigated by comparing a situation where mid-streamers fully satisfy the long-
term contract volume clause to a case where the fulfillment of this volume clause
is not mandatory.
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Chapter 2

A Two-Stage Stochastic
Optimization Planning Framework
to Deeply Decarbonize Electric
Power Systems

This chapter is based on the article:
Boffino L., A. J. Conejo , R. Sioshansi, G. Oggioni.
A Two-Stage Stochastic Optimization Framework for Planning Deeply Decar-
bonized Electric Power Systems
which is currently under review in Energy Economics

In 2015, 195 countries signed the Paris Agreement under the United Nations Frame-
work Convention on Climate Change. To achieve the ambitious greenhouse gas-reduction
targets therein, the electric power sector must be fundamentally transformed. To this
end, we develop in this chapter a two-stage stochastic optimization model. The pro-
posed model determines the optimal mix of generation and transmission capacity to
build to serve future demands at least cost, while respecting technical constraints and
climate-related considerations. The model uses a mix of ac and high-voltage dc trans-
mission lines, conventional and renewable generation, and energy-storage units to meet
these objectives. Short- and long-term uncertainties are modeled using operating con-
ditions and scenarios, respectively.

We demonstrate the model using a case study that is based on the Texas power system,
with 2050 as the target year of the analysis. We include explicit carbon-emissions con-
straints. Doing so allows us to examine the effect of carbon-reduction targets and deep



40 Two-Stage Stochastic Optimization Planning

decarbonization of electricity production on investment decisions. As expected, we find
that thermal-dominated power systems must transition toward having a renewable-
dominated generation mix.

The model developed in this chapter have been implemented in GAMS and solved
with CPLEX.

2.1 Introduction

As a result of concerns surrounding climate change, 195 countries signed the Paris
Agreement under the United Nations Framework Convention on Climate Change in 2015.
The agreement includes ambitious climate-related goals, which necessitate rapid and
substantive declines in carbon emissions and the carbon-intensity of human activity.
Moreover, a number of countries and regional international organizations have adopted
carbon-reduction targets of their own. For instance, the European Union has adopted
the so-called Energy Roadmap 2050, which includes targets to reduce greenhouse gas
emissions by 80%–95% relative to 1990 levels by 2050.

Electricity production represents a major source of anthropogenic carbon emis-
sions. Thus, the electric power system must play a substantive role in these reduc-
tions. Greater use of renewable energy sources, such as wind and solar, is one possible
means of decarbonizing electricity production. However, the real-time availability of
weather-dependent renewable energy sources is variable and uncertain. This gives rise
to challenges in relying on such energy sources in place of dispatchable (e.g., thermal)
generation. Spatial disaggregation of renewables and energy storage are possible means
to mitigate these issues that are caused by resource variability and uncertainty.

There are a number of works in the literature that examine decarbonization path-
ways for electric power systems and the role of renewables therein. Di Sbroiavacca et al.
(2016) show how climate-related goals and carbon reductions could be achieved in the
Argentinean electricity sector. Along the same lines, Calderón et al. (2016) examine
decarbonization of the Colombian power system. They find that absent climate policy,
CO2 emissions will increase for the foreseeable future with no stabilization. They fur-
ther show that carbon-reduction goals can be achieved with greater use of renewable
resources. Qi et al. (2016) examine how the carbon-intensity of electricity production
in China was reduced between 2005 and 2013. The aim of this analysis is to better
inform future policy designs for further decarbonization of the Chinese power system.

Although these works demonstrate that renewables can play a significant role in
decarbonizing electricity production, renewables create planning and operating chal-
lenges. As an example, Graf and Marcantonini (2017) conduct an empirical study of
the operation of the Italian power system, using historical data from between 2005
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and 2014. They show that renewables did displace thermal generation during this
period, thereby reducing emissions. However, they also find that the variability in
real-time renewable output increases cycling of thermal plants, reducing their operat-
ing efficiencies and slightly increasing their emissions rates. There is, nevertheless, a
net emissions reduction from renewables during this period, as the former effect far
outweighs the latter.

Expanding upon the findings of Graf and Marcantonini (2017), achieving deep
decarbonization of electricity production requires major changes in the generation mix.
One must go beyond simply adding more renewables to a power system. Instead, the
balance of the system must become more flexible to accommodate the variability of real-
time renewable availability. Furthermore, as discussed by Denholm et al. (2010), energy
storage is expected to have a growing role as renewables constitute a larger portion of
the generation mix. This is because energy storage provides significant flexibility in
shifting renewable generation through time, thereby managing its variability.

This work adds to this existing literature by developing a modeling methodology
to make generation- and transmission-planning decisions with decarbonization tar-
gets. Our model is formulated as a two-stage stochastic optimization problem wherein
generation- and transmission-capacity planning decisions are made in the first stage.
The second stage represents system operations during a set of representative operating
days. These operating days implicitly capture short-term/small-scale uncertainties,
such as load and renewable-supply variability. Long-term/large-scale uncertainties,
such as changes in generation-fuel prices or load growth, are captured explicitly through
scenarios that define the second stage of the stochastic optimization model.

Our model is formulated from the perspective of a central planner (e.g., an integrated-
resource planning process that is undertaken by an electric utility or a regulator). A
number of jurisdictions have restructured electricity markets in place, meaning that
this type of central-planning process does not occur. Our model is, nevertheless, of
value in such settings, as it can provide guidance on long-term planning decisions.
Moreover, our modeling methodology provides insights as to how investments should
be made in a perfectly competitive restructured market.

We focus our model development on representing two types of climate policies. One
is an explicit cap on carbon emissions while the other is a carbon price. In this way
our model can represent capacity expansion under current European climate policy and
policies that have been contemplated in the United States. Our model is also designed
to accommodate a variety of technical approaches to decarbonization. This includes
the use of renewable technologies, such as wind and concentrating solar power (CSP),
nuclear generation, and fossil-fueled generation with carbon capture and sequestration
(CCS) systems. Our model allows both ac and high-voltage dc (HVDC) transmission
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lines, as well as energy-storage technologies to be built. We allow for standalone energy
storage and integrating thermal energy storage (TES) into CSP plants.

We demonstrate our model using a case study that is based on the Texas electric
power system, using 2050 as the target planning year. Given the long planning horizon,
we can treat the system as having no generation capacity (insomuch as existing capacity
today will likely be retired by 2050) but having existing transmission capacity (as such
assets are long-lived). By changing the stringency of the decarbonization targets, we
examine how the generation and transmission mixes change. We also examine a number
of sensitivity cases, which show the impacts of changes in technology development and
transmission congestion on the decarbonization pathway of the system. Although our
results are specific to our Texas-based case study, we make a number of qualitative
observations that are likely broadly applicable. Moreover, our modeling framework is
sufficiently generic that it can be applied to determining a decarbonization pathway
for any power system.

Our work makes two primary contributions to the existing literature. First, we
propose a stochastic optimization framework that represents multi-scale uncertainties,
ac and HVDC transmission, renewable generators, and energy-storage facilities. We
also incorporate a novel representation of the operation of TES that is incorporated
into CSP plants in our model. Second, through our case study and sensitivity analyses,
we examine the impacts of a variety of policy and technical factors on power system
decarbonization. Specifically, we study the effects of environmental policies, technol-
ogy improvements, and transmission-network congestion. We also examine tradeoffs
between the use of wind and solar generation for decarbonization.

The remainder of this chapter is organized as follows. Section 2.2 details the pro-
posed planning model. Section 2.3 summarizes our case-study data, providing more
details on the technology options that are modeled in our analysis. Section 2.4 sum-
marizes our case-study results in a base case while Section 2.5 provides the results of
our sensitivity analyses. Section 2.6 concludes.

2.2 Model

Our model follows the approach that is used by Liu et al. (2018b) in representing
capacity-planning decisions. More specifically, we use a static two-stage stochastic
investment model. The first stage concerns all of the generation- and transmission-
investment decisions. The second stage captures all of the operating conditions. Long-
term/large-scale uncertainties are represented explicitly in scenarios that define the
second stage while short-term/small-scale uncertainties are represented implicitly via
different representative operating conditions.
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We proceed in this section by first providing model notation, which is then followed
by a detailed model formulation. We then further describe the technical and economic
features that are captured in the model.

2.2.1 Model Notation

Indexes

c Index of thermal generation units.
g Index of wind generation units.
k Index of CSP generation units.
l Index of existing and candidate transmission lines.
n Index of power system nodes.
o Index of operating conditions.
ref Index for reference node.
s Index of standalone energy-storage units.
t Index of time periods within an operating condition.
w Index of scenarios.
τ Index of final time period within an operating condition.

Sets

ζs(l) Sending-end node of transmission line l.
ζr(l) Receiving-end node of transmission line l.
ΩC
n Set of thermal units that are located at node n.

ΩG
n Set of wind units that are located at node n.

ΩK
n Set of CSP units that are located at node n.

ΩL+ Set of candidate transmission lines.
ΩL+
a Set of candidate ac transmission lines.

ΩS
n Set of energy-storage units that are located at node n.

We divide the transmission lines into existing and candidate lines. This is because of
our assumption that transmission-infrastructure investments are sufficiently long-lived
that transmission corridors that are existing today are still operational in the future
target year of the analysis (i.e., 2050 in our case study). We further subdivide the
transmission lines into two technology types—ac and HVDC. The reason for this divi-
sion is that power flows along the two types of lines are modeled differently. We model
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power flows along ac transmission lines using a linear approximation of Kirchhoff’s
laws. Power flows along HVDC lines are represented using a ‘pipeline assumption,’
whereby power flows can be directed along each line. This is because each HVDC line
is a radial connection between a single point in the ac network to a candidate wind or
CSP site.

We assume that there are no existing generation or energy-storage units in the
target year of the analysis. This is because such assets are too short-lived for units
that are operational today to be available in the target year. Thus, all thermal, wind,
CSP, and energy-storage units are in actuality candidate units that must be built to
be available for operational use. As we further detail below, we model two types of
energy-storage units. One are TES systems, which are directly integrated into CSP
plants and can only be used to store thermal energy that is produced by the solar
field of the respective CSP. The other are standalone energy-storage units, which can
be used to store electrical energy from any source. The index, s, corresponds to such
standalone energy-storage units.

Parameters

bk,o,t Hour-t capacity factor of CSP unit k in operating condition o [p.u.].
Bl Susceptance of transmission line l [S].
c̄k Energy-storage capacity of TES system of CSP unit k [h].
c̄s Energy-storage capacity of energy-storage unit s [h].
fg,o,t Hour-t capacity factor of wind unit g in operating condition o [p.u.].
Fmax
l Capacity of transmission line l [MW].
ICc Investment cost of thermal unit c [$/MW].
IC,max Investment budget for building thermal units [$].
IGg Investment cost of wind unit g [$/MW].
IG,max Investment budget for building wind units [$].
IKk Investment cost of CSP unit k [$/MW].
IK,max Investment budget for building CSP units [$].
ILl Investment cost of candidate transmission line l [$].
IL,max Investment budget for building candidate transmission lines [$].
ISs Investment cost of energy-storage unit s [$/MW].
IS,max Investment budget for building energy-storage units [$].
M A large fixed constant.
PD,max
n,o,w,t Hour-t load at node n in operating condition o of scenario w [MW].
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P̄C,max
c Maximum capacity of thermal unit c that can be built [MW].
P̄G,max
g Maximum capacity of wind unit g that can be built [MW].
P̄K,max
k Maximum capacity of CSP unit k that can be built [MW].
P̄ S,max
s Maximum capacity of energy-storage unit s that can be built [MW].
βk Hourly energy-retention rate of TES system in CSP unit k [p.u.].
ε̄ Carbon-emissions limit [t].
εc Carbon-emissions rate of thermal unit c [t/MWh].
εs Carbon-emissions rate of energy-storage unit c [t/MWh].
ηKk Charging efficiency of TES system in CSP unit k [p.u.].
ηSs Roundtrip efficiency of energy-storage unit s [p.u.].
κCc Production cost of thermal unit c [$/MWh].
κD Load-shedding cost [$/MWh].
κGg Production cost of wind unit g [$/MWh].
κKk Production cost of CSP unit k [$/MWh].
κK,Pk Charging cost of TES system of CSP unit k [$/MWh].
κK,Tk Discharging cost of TES system of CSP unit k [$/MWh].
κS,Ps Charging cost of energy-storage unit s [$/MWh].
κS,Ts Discharging cost of energy-storage unit s [$/MWh].
ξdc Ramp-down limit of thermal unit c [MW/h].
ξuc Ramp-up limit of thermal unit c [MW/h].
ρo Weight of operating condition o [days].
φw Probability of scenario w.
χ Carbon-emissions price [$/t].

Decision Variables

pCc,o,w,t Hour-t production level of thermal unit c in operating condition o of sce-
nario w [MW].

pC,max
c Capacity of thermal unit c that is built [MW].
pDn,o,w,t Hour-t load at node n that is shed in operating condition o of scenario w

[MW].
pGg,o,w,t Hour-t production level of wind unit g in operating condition o of scenario w

[MW].
pG,max
g Capacity of wind unit g that is built [MW].



46 Two-Stage Stochastic Optimization Planning

pKk,o,w,t Hour-t production level of CSP unit k in operating condition o of scenario w
[MW].

pK,max
k Capacity of CSP unit k that is built [MW].
pLl,o,w,t Hour-t power flow through transmission line l in operating condition o of

scenario w [MW].
pS,max
s Capacity of energy-storage unit s that is built [MW].
xLl Binary variable that equals 1 if candidate transmission line l is built and

equals 0 otherwise.
γK,Lk,o,w,t Ending hour-t state of charge (SOC) of TES system in CSP unit k in oper-

ating condition o of scenario w [MWh].
γK,Pk,o,w,t Hour-t charging rate of TES system in CSP unit k in operating condition o

of scenario w [MW].
γK,Tk,o,w,t Hour-t discharging rate of TES system in CSP unit k in operating condition o

of scenario w [MW].
γS,Ls,o,w,t Ending hour-t SOC of energy-storage unit s in operating condition o of

scenario w [MWh].
γS,Ps,o,w,t Hour-t charging rate of energy-storage unit s in operating condition o of

scenario w [MW].
γS,Ts,o,w,t Hour-t discharging rate of energy-storage unit s in operating condition o of

scenario w [MW].
θn,o,w,t Hour-t phase angle at node n in operating condition o of scenario w [rad].

2.2.2 Model Formulation

Our proposed two-stage stochastic planning model is formulated as:

min
∑
c

ICc p
C,max
c +

∑
g

IGg p
G,max
g +

∑
k

IKk p
K,max
k +

∑
l∈ΩL+

ILl x
L
l +

∑
s

ISs p
S,max
s (2.1)

+
∑
w,o,t

φwρo

{∑
c

(
κCc + χεc

)
pCc,o,w,t +

∑
n

κDpDn,o,w,t +
∑
g

κGg p
G
g,o,w,t +

∑
k

(
κKk p

K
k,o,w,t

+κK,Pk γK,Pk,o,w,t + κK,Tk γK,Tk,o,w,t

)
+
∑
s

[
κS,Ps γS,Ps,o,w,t +

(
κS,Ts + χεs

)
γS,Ts,o,w,t/η

S
s

]}
s.t. 0 ≤ pC,max

c ≤ P̄C,max
c , ∀c (2.2)

0 ≤ pG,max
g ≤ P̄G,max

g , ∀g (2.3)
0 ≤ pK,max

k ≤ P̄K,max
k , ∀k (2.4)

0 ≤ pS,max
s ≤ P̄ S,max

s , ∀s (2.5)
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xLl ∈ {0, 1}, ∀l ∈ ΩL+ (2.6)∑
c

ICc p
C,max
c ≤ IC,max (2.7)∑

g

IGg p
G,max
g ≤ IG,max (2.8)

∑
k

IKk p
K,max
k ≤ IK,max (2.9)

∑
s

ISs p
S,max
s ≤ IS,max (2.10)∑

l∈ΩL+

ILl x
L
l ≤ IL,max (2.11)

∑
w,o,t

φwρo

(∑
c

εcp
C
c,o,w,t +

∑
s

εsγ
S,T
s,o,w,t

)
≤ ε̄ (2.12)

∑
c∈ΩC

n

pCc,o,w,t +
∑
g∈ΩG

n

pGg,o,w,t +
∑
k∈ΩK

n

(
pKk,o,w,t − γ

K,P
k,o,w,t + γK,Tk,o,w,t

)
−
∑
s∈ΩS

n

(
γS,Ps,o,w,t − γS,Ts,o,w,t/ηSs

)
(2.13)

+
∑

l,ζr(l)=n
pLl,o,w,t −

∑
l,ζs(l)=n

pLl,o,w,t = PD,max
n,o,w,t − pDn,o,w,t, ∀n, o, w, t

0 ≤ pCc,o,w,t ≤ pC,max
c , ∀c, o, w, t (2.14)

− ξdc ≤ pCc,o,w,t − pCc,o,w,t−1 ≤ ξuc , ∀c, o, w, t > 1 (2.15)
0 ≤ pGg,o,w,t ≤ fg,o,tp

G,max
g , ∀g, o, w, t (2.16)

0 ≤ pKk,o,w,t + γK,Pk,o,w,t ≤ bk,o,tp
K,max
k , ∀k, o, w, t (2.17)

0 ≤ γK,Pk,o,w,t ≤ bk,o,tp
K,max
k , ∀k, o, w, t (2.18)

0 ≤ pKk,o,w,t + γK,Tk,o,w,t ≤ pK,max
k , ∀k, o, w, t (2.19)

0 ≤ γK,Tk,o,w,t ≤ pK,max
k , ∀k, o, w, t (2.20)

γK,Lk,o,w,t = βkγ
K,L
k,o,w,t−1 + ηKk γ

K,P
k,o,w,t − γ

K,T
k,o,w,t, ∀k, o, w, t (2.21)

0 ≤ γK,Lk,o,w,t ≤ c̄kp
K,max
k , ∀k, o, w, t (2.22)

0 ≤ γS,Ps,o,w,t ≤ pS,max
s , ∀s, o, w, t (2.23)

0 ≤ γS,Ts,o,w,t/η
S
s ≤ pS,max

s , ∀s, o, w, t (2.24)
γS,Ls,o,w,t = γS,Ls,o,w,t−1 + γS,Ps,o,w,t − γS,Ts,o,w,t, ∀s, o, w, t (2.25)
0 ≤ γS,Ls,o,w,t ≤ c̄sp

S,max
s , ∀s, o, w, t (2.26)

γS,Ls,o,w,τ ≥ γS,Ls,o,w,0 = 0.5pS,max
s , ∀s, o, w (2.27)

− Fmax
l ≤ pLl,o,w,t ≤ Fmax

l , ∀l 6∈ ΩL+, o, w, t (2.28)
− Fmax

l xLl ≤ pLl,o,w,t ≤ Fmax
l xLl , ∀l ∈ ΩL+, o, w, t (2.29)

pLl,o,w,t = Bl ·
(
θζs(l),o,w,t − θζr(l),o,w,t

)
, ∀l 6∈ ΩL+, o, w, t (2.30)
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−
(
1− xLl

)
M ≤ pLl,o,w,t −Bl ·

(
θζs(l),o,w,t − θζr(l),o,w,t

)
≤
(
1− xLl

)
M, ∀l ∈ ΩL+

a , o, w, t

(2.31)
− π ≤ θn,o,w,t ≤ π, ∀n, o, w, t (2.32)
θref,o,w,t = 0, ∀o, w, t (2.33)
0 ≤ pDn,o,w,t ≤ PD,max

n,o,w,t , ∀n, o, w, t. (2.34)

Objective function (2.1) consists of total investment and expected operation cost
of the power system. We assume that the investment-cost parameters, ICc , IGg , IKk ,
ILl , ISs , are annualized to make the investment and operations costs comparable to
one another. Otherwise, the costs would be skewed because the investments are long-
lived while operations may only be modeled over a short duration (e.g., for a single
representative year in our case study). The simplest way to annualize the investment
costs is to multiply the overnight cost of building each technology by:

i · (1 + i)y
(1 + i)y − 1 ,

where y is the assumed lifetime of the asset and i is the real interest rate.
Operating costs are computed under each hour of each operating condition of each

scenario. These operating costs include the costs of producing energy from the thermal,
wind, and CSP units, the cost of operating the TES that is embedded in the CSP units
and the standalone energy-storage units, and the cost of any load curtailment.

We also include operating costs that are associated with CO2 emissions (e.g., due
to a Pigouvian-tax or cap-and-trade policy). We assume two possible sources of CO2

emissions—thermal generators and standalone energy-storage units. Any fossil-fueled
thermal generator that does not have a CCS system incorporated in it will release
CO2. The standalone energy-storage technology that we focus on in our case study is
diabatic compressed-air energy storage (CAES). As discussed by Succar et al. (2006);
Greenblatt et al. (2007); Succar and Williams (2008), diabatic CAES is in actuality a
hybrid energy-storage system that combusts natural gas during the discharging cycle.
Thus, we allow for cases in which the use of the energy-storage technology can result
in CO2 emissions. We also examine, in one of our sensitivity cases in Section 2.5.4,
the viability of adiabatic CAES, which is a pure energy-storage technology, the use of
which does not entail any direct CO2 emissions.

The model has two types of constraints. Constraints (2.2)–(2.12) pertain to the
first (investment) stage while the remaining pertain to the second (operating) stage.
Constraints (2.2)–(2.5) impose capacity limits on how much thermal, wind, CSP, and
energy-storage capacity can be built at each candidate location. These constraints
may reflect land-use, resource, or other physical limitations on the deployment of these
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units. Constraints (2.6) impose the binary nature of transmission-expansion decisions,
which have this ‘lumpy’ nature. Constraints (2.7)–(2.11) impose budget constraints on
the investment decisions.

Constraint (2.12) imposes an expected carbon-emissions limit (e.g., due to a cap-
and-trade system limiting total system emissions). As such, our model captures two
common means of imposing carbon-emissions limits. One is an explicit limit, as im-
posed by constraint (2.12), while the other is a more implicit cost or tax on carbon
emissions, which is captured in objective function (2.1). In practice, policy makers
often focus on implementing one of these types of policy mechanisms as opposed to
both.

Constraints (2.13) impose nodal load balance in each operating period. Con-
straints (2.14) and (2.15) impose capacity and ramping limits, respectively, on the
operation of the thermal units. Constraints (2.16) impose capacity constraints on the
output of the wind units. The energy that is available to be produced in each operat-
ing period is represented using a capacity factor, which captures the impact of weather
conditions. The same approach is used to represent the impact of weather on energy
that is available from CSP plants.

Constraints (2.17)–(2.22) pertain to the operation of the CSP units. We model the
CSP units by adapting the methodology that is developed by Sioshansi and Denholm
(2010a,b). Constraints (2.17) restrict the total amount of energy that each CSP unit
produces and stores in its TES system to be no greater than the amount of energy
that is collected by the unit’s solar field. The energy that is collected by a CSP
plant’s solar field is thermal. As such, we apply the assumed powerblock efficiency to
convert the thermal energy into the equivalent amount of electrical energy that would
be produced by the CSP unit when the stored energy is discharged. Doing so allows
for more streamlined modeling of the CSP unit and its integrated TES system within
a planning model. Constraints (2.18) ensure that the TES system does not store more
than its power capacity allows. Constraints (2.19) limit the total production of each
CSP unit, either by using energy directly from its solar field or from its TES system, to
be no greater than the power capacity of its powerblock. Constraints (2.20) limit the
amount of energy that is discharged from the TES system based on its power capacity.
Constraints (2.21) define how the SOC of the TES system in each CSP unit evolves
from one operating period to the next. Finally, constraints (2.22) impose energy limits
on the SOC of the TES system in each CSP unit.

Constraints (2.23)–(2.26) pertain to the operation the standalone energy-storage
units. Constraints (2.23)–(2.24) impose power-capacity limits on the charging and
discharging, respectively, of energy-storage units. Constraints (2.25) define how the
SOC of each energy-storage unit changes from one operating period to the next and
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constraints (2.26) impose energy limits on the SOC. Constraints (2.27) fix the SOC of
each energy-storage unit at the beginning of each operating condition (which are taken
to be representative operating days in our case study) to 50% of its energy capacity.
It further requires that the SOC at the end of each operating condition to be above
this level. Graves et al. (1999) suggest this as a heuristic technique to ensure that a
model does not fully deplete energy storage at the end of each operating horizon. The
modeling of the standalone energy-storage units is based on the work of Drury et al.
(2011), who develop an optimization model that is tailored to CAES.

Constraints (2.28) impose power-flow limits on each existing transmission line while
constraints (2.29) do the same for candidate lines. These latter constraints also force
the power flow on a candidate transmission line that is not built to equal zero, which is
a physical requirement. Constraints (2.30) define power flows on existing transmission
lines in terms of differences in the phase angles at the two ends of the line. Con-
straints (2.31) define power flows on candidate transmission lines analogously. These
latter constraints are written in this inequality form to allow the flows on a candidate
transmission line that is not built to equal zero without forcing the phase angles at the
two ends of that line to equal one another. This is a standard approach to modeling
power flows with binary transmission-investment decisions. Conejo et al. (2016) pro-
vide further details on how these constraints are modeled. Power flows in HVDC lines
are not modeled using phase angles. Rather, because these lines are radial connec-
tions to distant candidate wind or CSP sites, their power flows can be set arbitrarily
within their bounds without impacting power flows elsewhere in the network. Con-
straints (2.32) impose limits on the phase angles and constraints (2.33) fix the phase
angles at the reference node to be zero.

Finally, constraints (2.34) limit the amount of load that is curtailed at each node
to be no greater than the nodal demand.

Our proposed capacity-expansion model is a mixed-integer linear optimization prob-
lem. Thus, it can be tractably solved using off-the-shelf commercial software tools, such
as CPLEX or Gurobi. Although we have a stochastic optimization problem, explicit
non-anticipativity constraints are not needed. This is because the investment decisions
(i.e., pC,max

c , pG,max
g , pK,max

k , pS,max
s , and xLl ) are defined so as not to depend on the

realization of the second-stage scenarios, w. The proposed model can also be used in
a rolling-horizon fashion over time, whereby future scenarios are periodically updated
(e.g., the model can be re-run every year with updated scenarios of future conditions).
Domı́nguez et al. (2015) argue that using a two-stage stochastic planning model in such
a manner can yield solutions that are similar to those that are achieved using a more
computationally costly multi-period model.
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2.3 Case-Study Data

Our case study considers the 28-node system, which is a modified version of the IEEE
24-node test system, that is shown in Figure 2.1. Generating and energy-storage units
are labeled in the figure based on how they are indexed in the model formulation (i.e., c,
g, k, and s for thermal, wind, CSP, and standalone energy-storage units, respectively).
Existing transmission lines are indicated by solid lines whereas candidate ac lines are
indicated by dashed lines. Dotted lines indicate candidate HVDC lines. Loads are
indicated by arrows. The topology of the network and other system data are adapted
from the Electric Reliability Council of Texas (ERCOT) power system. We focus our
case study on ERCOT because it a mostly electrically isolated power system (with the
exception of some limited dc tie lines to neighboring interconnects) with substantial
load and potential for the deployment of wind and CSP.

Twenty-four of the nodes represent the center of the network where the loads and
most of the candidate generating and energy-storage units are located. As such, these
nodes are connected by existing ac lines and candidate ac lines can be built to reinforce
connections within the center of the network. The remaining nodes are isolated and
can be connected to the center of the network with candidate HVDC lines. Two of
the nodes are candidate locations for offshore wind generators while the other two are
candidate locations for CSP plants.

Our case study includes 63 candidate units: 40 thermal, 11 onshore wind, two off-
shore wind, two CSP, and eight standalone energy-storage units. Additional candidate
CSP units are considered in one of the sensitivity cases that is examined in Section 2.5.3.
We consider ten different thermal generation technologies: advanced pulverized coal
units (with and without CCS), conventional natural gas-fired combined cycle (NGCC)
units, advanced NGCC units (with and without CCS), conventional and advanced nat-
ural gas-fired combustion turbines (CT), integrated gasification combined cycle (IGCC)
units (with and without CCS), and advanced nuclear units. This represents generating
technologies that, as reported by the United States Energy Information Administration
(EIA),1 are available today or that are anticipated to be commercially available by the
target year of our analysis (2050).

Table 2.1 summarizes the cost, maximum-capacity, and emissions-rate data for the
thermal units, which are obtained from the EIA. All of the technologies are assumed
to be able to ramp over their full output range, with the exception of nuclear units,
which are assumed to have no ramping capability. Instead, nuclear units are assumed
to continuously operate at their installed capacity as must-run units. The operating
costs that are reported in Table 2.1 are computed using projections of future fuel prices

1https://www.eia.gov/analysis/studies/powerplants/capitalcost/

https://www.eia.gov/analysis/studies/powerplants/capitalcost/
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Figure 2.1: 28-Node Network Diagram

that are published by IEA (2017). The maximum capacity for each technology that
is reported in Table 2.1 is the total amount that can be installed across all of the
candidate locations where that technology can be built. There are 11 candidate
locations, which are in the center of the test system, for onshore wind. Conversely,
offshore wind can only be built at two nodes that are isolated from the center of
the system. Onshore wind has investment costs that range between $1970/kW and
$2100/kW and operating costs that range between $2.00/MWh and $2.71/MWh. A
maximum of 7700 MW of wind can be built at the onshore sites (See Table 2.2). Up
to 4000 MW of offshore wind can be built. These units have higher investment costs
that range between $2900/kW and $3190/kW, which reflects the greater complexity
that installing offshore wind entails (See Table 2.3). These units also have higher
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Table 2.1: Data For Candidate Thermal Units

Investment Cost Operating Cost Maximum
Technology [$/kW] [$/MWh] Capacity [MW] εc

Advanced Pulverized Coal Without CCS 2933 25.95 3800 0.841
Advanced Pulverized Coal With CCS 5227 38.15 3800 0.112
Conventional NGCC 917 46.82 2880 0.374
Advanced NGCC Without CCS 1023 42.69 2400 0.341
Advanced NGCC With CCS 2095 52.91 2160 0.041
Conventional CT 973 81.97 1600 0.576
Advanced CT 676 70.14 2400 0.518
IGCC Without CCS 3784 26.19 3800 0.743
IGCC With CCS 6599 33.22 3000 0.097
Advanced Nuclear 5530 16.06 4800 0.000

operating costs that range between $4.85/MWh and $5.35/MWh, which reflects the
greater challenges in their operation and maintenance. One of the candidate offshore
wind units is closer to the shore, which results in its having a lower investment cost
(and a lower cost for building the associated HVDC line that connects it to the center
of the network). The other offshore wind unit is further from the shore, giving it a
higher average capacity factor and lower operating cost . Investment and operating
costs of the wind units are obtained from the EIA and the work of Krohn et al. (2009).

Table 2.2: Technical Characteristics of Onshore-Wind Units

Node Maximum Capacity [MW] Operating Cost [$/MWh] Investment Cost [$/kW]
1 700 2.71 2005
7 700 2.15 2022
13 700 2.06 1980
13 700 2.05 2010
14 700 2.10 1990
14 700 2.21 2020
16 700 2.04 2040
18 700 2.00 2100
21 700 2.04 2000
22 700 2.55 1970
23 700 2.02 1980

Up to 2000 MW total of CSP capacity can be built across the two candidate lo-
cations. We assume that the solar field of each CSP plant is scaled to maintain a
solar multiple of 2.0. A CSP plant with a solar multiple of 2.0 is sized to provide
sufficient thermal energy to operate the powerblock at its rated capacity with a direct
normal irradiance of 950 W/m2, a 5-m/s wind speed, and a 25-C ambient temperature.
We, furthermore, assume that each CSP plant has a TES system with c̄k = 4 hours
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Table 2.3: Technical Characteristics of Offshore-Wind Units

Node Maximum Capacity [MW] Operating Cost [$/MWh] Investment Cost [$/kW]
25 2000 4.85 3190
27 2000 5.35 2900

of storage capacity. This means that a fully charged TES system can be discharged
and operated at its nameplate capacity for four consecutive hours.2 Operating and
investment costs for the CSP units are obtained from version 2017.1.17 of the System
Advisor Model (SAM). Blair et al. (2014) provide a general overview and description of
this software tool. We assume power-tower CSP systems with investment costs ranging
between $3272/kW and $3599/kW and generation costs ranging between $3.80/MWh
and $4.00/MWh. The TES systems in the CSP plants are assumed to have operat-
ing costs of $0.1400/MWh in charging mode and $0.1549/MWh in discharging mode.
We assume that the TES systems have a 99% roundtrip efficiency and 0.1% hourly
thermal-energy losses, meaning that we have ηKk = 0.99 and βk = 0.999 for all k. As
with the offshore wind units, one of the candidate CSP units is assumed to be closer to
a load pocket in the system, meaning that this unit has a lower cost of being connected
to the system with HVDC lines. However, this unit has a lower average capacity factor
than the other CSP unit (see Table 2.4).

Table 2.4: Technical Characteristics of CSP Units

Maximum Generation TES-Discharging TES-Charging Investment
Node Capacity [MW] Cost [$/MWh] Cost [$/MWh] Cost [$/MWh] Cost [$/kW]
26 1000 4.00 0.1400 0.1549 3272
28 1000 3.80 0.1400 0.1549 3599

We consider CSP, as opposed to photovoltaic (PV) solar, because CSP is a rel-
atively dispatchable renewable resource owing to the low cost and high efficiency of
integrating TES into a CSP plant. Madaeni et al. (2012) show that this character-
istic of CSP gives it considerable value for grid-integration purposes. Moreover, Liu
et al. (2018b) conduct a long-term generation- and transmission-planning study of the
ERCOT system, considering wind and PV solar as renewable-energy resources. They
find that relatively little PV solar is built, by virtue of its relatively high energy cost,
which is driven by its investment cost and low capacity factor. These properties of

2In actuality, a fully charged TES system would operate very slightly below 100% of its nameplate
capacity in the fourth hour. The reason for this is that the TES system incurs very slight thermal-
energy losses from one hour to the next. Thus, the four-hour definition is based on an assumption of
no thermal-energy losses.
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CSP vis-à-vis PV solar are consistent with the solar-insolation conditions of our case
study.

We model a single standalone energy-storage technology, which is diabatic CAES.
Diabatic CAES is a hybrid energy-storage technology that uses both electricity (to
compress air) and natural gas (when stored energy is discharged). When charged, elec-
tricity is used to drive a compressor, which injects pressurized air into a reservoir. When
discharged, the compressed air is withdrawn from the reservoir and combined with nat-
ural gas in an open-cycle combustion turbine. Combustion produces high-pressure gas,
which is expanded through a turbine, that drives both an electric generator and the
air compressor. The benefit of using the compressed air in the discharging phase is
that the combustion turbine has a heat rate of approximately 4200 BTU/kWh,3 which
is half that of a conventional CT. Because diabatic CAES is a hybrid energy-storage
technology, only 0.7 MWh of stored electric energy must be used to discharge 1 MWh
of electricity. Adiabatic CAES, further details of which are given in Section 2.5.4, is
considered in one of the sensitivity cases. Adiabatic CAES is a pure energy-storage
technology, which does not entail the combustion of any fossil fuel when discharged.

Sioshansi et al. (2011) note that CAES is an attractive large-scale energy-storage
technology with long life expectancy, low investment and maintenance costs, and rea-
sonable roundtrip efficiency. Moreover, Succar and Williams (2008) find that many
areas of the world that are potentially well suited for the deployment of CAES are
also wind-rich. This includes ERCOT. This can be contrasted with the (currently)
more commonly used pumped hydroelectric storage (PHS) technology, which requires
access to water and reservoirs at different elevations. Water is scarce and the requisite
geological formations are lacking in many wind-rich areas of the world, including in
Texas.

We model eight candidate CAES units (see Table 2.5). Each CAES unit is assumed
to have a fixed c̄s = 10 hours of storage capacity. Each CAES units can be built with
up to 350 MW of power capacity. We take operating and investment costs and physical
properties of the CAES plants from the work of Das et al. (2011). We assume that the
investment costs range between $550/kW and $610/kW and that each CAES unit has
an operating cost of $0.50/MWh when charging energy. The discharging costs range
between $28.33/MWh and $28.79/MWh, which primarily reflect the cost of natural
gas. Each CAES unit is also assumed to have a carbon-emissions rate of 0.259 t/MWh
and an efficiency of ηSs = 0.7 (based on the characteristic that only 0.7 MWh of stored
energy must be used to discharge 1 MWh of electricity).

The transmission system consists of 38 existing lines, which range in capacity from

3We report this heat rate in imperial (as opposed to SI) units, as BTU/kWh is still the most
commonly used unit of generator efficiency in the United States.
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Table 2.5: Technical Characteristics of Diabatic-CAES Units

Maximum Discharging Charging Investment Carbon-Emissions
Node Capacity [MW] Cost [$/MWh] Cost [$/MWh] Cost [$/kW] Rate of Discharging [t/MWh]
1 350 28.79 0.5 571 0.259
7 350 28.71 0.5 560 0.259
13 350 28.33 0.5 599 0.259
14 350 28.47 0.5 550 0.259
16 350 28.55 0.5 605 0.259
21 350 28.66 0.5 610 0.259
22 350 28.75 0.5 589 0.259
23 350 28.41 0.5 600 0.259

200 MW to 800 MW and have an average capacity of about 440 MW. These existing
lines are all ac and connect the nodes in the center of the network (see Table 2.6).
Ten candidate ac lines, with capacities ranging between 400 MW and 800 MW, can
be added to create further links amongst the nodes in the center of the network (see
Table 2.7). There are a further 15 candidate HVDC lines, which only connect one
of the four remote nodes to one of the nodes in the center of the network (see Table
2.8) . Each of the distant nodes has multiple candidate HVDC lines with which it
can be connected to the main grid, indicating that a particular offshore-wind or CSP
project has multiple potential points of interconnection with the main network. Eight
of the HVDC lines have a 2-GW capacity while the remainder have a 1-GW capacity.
Transmission-investment costs are obtained from the work of Vaillancourt (2014).

We annualize the investment costs by assuming a 25-year depreciation period and
a 10% real interest rate. This yields an 11% cost-annualization rate.

We model different load and wind- and solar-availability conditions using scenar-
ios and operating conditions. Specifically, we represent operations in the target year
through a set of operating conditions, which are indexed by o in the model. Each
operating condition is taken to be a representative day, which is modeled at hourly
time steps (i.e., the index, t, corresponds to the 24 hours of each representative day).
We use the scenarios, which are indexed by w in the model, to capture uncertainty in
long-term demand growth between today and 2050.

To capture correlations in wind and solar availabilities and load, the operating-
condition data are all obtained using historical data from the year 2012. Historical load
data are obtained from ERCOT and scaled to obtain reference loads for the system.
These reference loads are then apportioned to the nodes (see Figure 2.1) based on the
historical distribution of loads to different zones of the ERCOT network.

Wind-speed data are obtained from the Wind Integration National Dataset (WIND)
Toolkit. Draxl et al. (2015b,a) provide details and meteorological validation of the
WIND Toolkit. Wind speeds are used to determine the real-time availability of wind
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Table 2.6: Technical Characteristics of Existing Transmission Lines

From Node To Node Reactance [p.u.] Flow Limit [MW]
1 2 0.014 450
1 3 0.211 220
1 5 0.085 510
1 23 0.087 600
2 4 0.127 220
2 6 0.192 220
3 9 0.119 400
3 24 0.084 400
4 9 0.104 220
5 10 0.088 220
6 10 0.061 200
7 8 0.061 320
8 9 0.165 220
8 10 0.165 220
9 11 0.084 320
9 12 0.084 250
10 11 0.084 230
10 12 0.084 200
11 13 0.048 400
11 14 0.042 320
12 13 0.048 400
12 23 0.097 600
14 16 0.059 600
15 16 0.071 600
15 21 0.049 600
15 21 0.049 600
15 24 0.052 310
16 17 0.026 800
16 19 0.023 600
17 18 0.014 600
17 22 0.105 600
18 21 0.026 600
18 21 0.026 600
19 20 0.040 600
19 20 0.040 600
20 23 0.022 600
20 23 0.022 600
21 22 0.068 600
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Table 2.7: Technical Characteristics of Candidate ac Transmission Lines

From Node To Node Reactance [p.u.] Flow Limit [MW] Investment Cost [$ million]
1 9 0.026 600 210
3 15 0.026 600 200
3 18 0.049 400 312
7 10 0.026 600 201
9 14 0.026 600 190
9 21 0.049 400 315
10 11 0.026 600 180
10 13 0.026 600 195
12 22 0.049 400 290
16 17 0.026 800 190

power, which is represented in the model through the capacity factors, fg,o,t. King et al.
(2014) validate the use of the WIND Toolkit for this type of simulation. We collect
wind-speed data for 33 onshore locations and for the representative southwestern Texas
offshore location. The wind-speed data are then processed using SAM, assuming the
power curve of a 2-MW Vestas V80/2000 wind turbine with an 80-m hub height to
generate hourly wind-availability data. Wind-availability profiles for the 13 candidate
wind locations are obtained by spatial averaging of the profiles from the locations in
the WIND Toolkit that are used.

Solar availabilities are simulated using SAM, based on weather data that are ob-
tained from the National Solar Radiation Database (NSRDB). Sengupta et al. (2014b,a)
provide details and validation of the NSRDB data. We only consider two candidate
CSP plants in our base case. As such, we use NSRDB data for five locations that are
in relatively close proximity to one another to simulate the solar-availability of each
CSP plant (i.e., we use NSRDB data for 10 locations total). We use SAM to simulate
the operation of a standard power-tower CSP plant with a 110-MW powerblock, a
solar multiple of 2.0, and a TES system with 100 hours of storage capacity. From this
simulation, we can determine the maximum amount of thermal energy that is captured
by the CSP plant in each hour (i.e., the 100-hour TES system ensures that no thermal
energy is curtailed in the SAM simulation due to power constraints on the operation
of the plant). We then use the assumed 41.2% average efficiency of the CSP plant’s
powerblock to convert the simulated thermal energy that is captured by the solar field
in each hour to the amount of equivalent electrical energy that would be produced by
the powerblock. We finally normalize the potential electrical output by the 110-MW
nameplate capacity of the powerblock to obtain hourly capacity factors for each CSP
plant that is simulated in SAM. We again use spatial averaging to convert these capac-
ity factors to the capacity factors for each of the two candidate CSP plants that are
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Table 2.8: Technical Characteristics of Candidate HVDC Transmission Lines

From Node To Node Flow Limit [MW] Investment Cost [$ million]
25 6 2000 684.0
25 8 2000 817.5
25 13 2000 589.5
25 22 2000 503.5
26 3 1000 503.5
26 15 1000 551.0
26 16 1000 589.0
26 17 1000 617.5
27 6 2000 532.0
27 8 2000 551.0
27 13 2000 503.5
28 1 1000 817.5
28 3 1000 684.0
28 15 1000 589.5
28 18 2000 503.5

used in our planning model. Depending on ambient whether conditions, the capacity
factor of a CSP plant can be greater than unity in some hours, indicating that the
solar field collects more thermal energy than can be utilized by the powerblock. Such
excess energy can be stored in the TES system.

Once we have a full set of load and wind- and solar-availability data for the year,
we use k-means clustering to reduce the full year into a set of representative oper-
ating days. Thus, we obtain our final set of operating conditions (i.e., the set over
which the index, o, in our model is defined) from this process. MacQueen (1967) is
a formative work that describes the k-means clustering algorithm, while Baringo and
Conejo (2013); Liu et al. (2018a) describe its use in obtaining operating conditions
that represent the load, wind, and solar patterns of the year and respect their auto-
and cross-correlations. The k-means clustering algorithm provides 15 clusters, each of
which gives one representative day for the planning model (i.e., our planning model has
15 day-long operating conditions). The load, wind, and solar data for the operating
condition that is used to represent each cluster are obtained from the day within the
cluster that is closest to the cluster centroid. We assign a weight to the representative
day (i.e., the value of ρo in the planning model) that is equal to the number of days
within its associated cluster. This clustering results in the system having a peak load
of 3.1 GW in the base scenario of the scenario tree.

We consider an additional source of long-term uncertainty, which is demand growth.
Demand growth is represented explicitly via second-stage scenarios. We assume that
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with probability 0.5 the demands are equal to the values that are obtained from the
k-means clustering. With probability 0.3 demands are assumed to grow an additional
5% relative to this baseline value and with probability 0.2 demands are 3% lower. One
reason for modeling uncertain demand growth is that it ‘forces’ the model to build
sufficient capacity to serve higher-than-expected demands. This excess capacity that
the demand-growth scenarios engender can be analogized to planning-reserve margins,
which are normally enforced as constraints in deterministic capacity-expansion mod-
els. A benefit of modeling demand-growth scenarios (as opposed to planning-reserve
margins) is that the objective function takes into account the expected cost of oper-
ating the system under higher-demand scenarios. Deterministic models that include
planning-reserve constraints do not normally internalize the cost of operating the ex-
cess capacity that is built to provide the reserves (in the event that these units are
needed to serve higher-than-expected demand). As such, the investments that are
given by deterministic planning models with planning-reserve constraints tend to be
skewed toward technologies that are overly costly to operate.

The online supplementary material includes tables that further detail our case-study
data, which are excluded here for sake of brevity. All of the cases are programmed using
version 21.1.2 of the GAMS mathematical programming language. They are solved
using the hybrid branch-and-bound and cutting-plane algorithm in version 12.5.1.0 of
the CPLEX solver on a system with Windows 10, a 2.6-GHz processor, and 8 GB of
RAM.

2.4 Base-Case Results

Figure 2.2 summarizes the mix of generation and energy-storage units that are built
under a variety of cases with different carbon-emissions limits imposed on the system.
The first case that is shown in the figure is a ‘business-as-usual’ (BAU) case, in which
constraint (2.12) is relaxed and there is no carbon-emissions limit. The remaining cases
impose constraint (2.12), with progressively more aggressive carbon-emissions limits
that are defined as reductions relative to the BAU case. The final bar in figure 2.2
is labeled ‘100% Reduction’. With our case-study data and the technologies that we
consider, complete decarbonization of the power system is extremely costly. As such,
we allow minuscule carbon emissions in the base case and in all of the sensitivity cases
that are considered in Section 2.5. In all of the cases, carbon emissions are reduced by
at least 99.7% relative to the BAU case. We, nevertheless, refer to these cases as having
100% carbon reductions. We do not impose a carbon tax in any of these cases, because
we assume that explicit carbon-emissions limits are used as the policy mechanism to
achieve decarbonization.
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Figure 2.2: Capacity Built In Business-As-Usual Case and with Different Carbon-
Emissions Reductions Relative to Business-As-Usual Case

The BAU case yields investments solely in thermal and energy-storage units. This
shows that absent any policy mechanism interalizing the social cost of carbon, thermal
generation is the lowest-cost source of energy. Among the thermal-generation technolo-
gies that are available, natural gas-fired units are favored over other generating fuels.
Most of the generating capacity in the BAU case is baseload NGCC, with some CAES
and advanced CT capacity being built to serve on-peak loads.

As the carbon-emissions limit is enforced and made more stringent, the invest-
ment mix changes in a number of ways. 25% carbon-emissions reductions are achieved
through greater investments in onshore wind. 50% and 75% carbon-emissions reduc-
tions are achieved using onshore wind and by shifting the thermal generation mix
toward having CCS. As the thermal-generation mix shifts toward using CCS, there is
still a preference for natural gas over coal as a generation fuel. These results show
that onshore wind is initially the lowest-cost source of carbon abatement. CCS is only
employed with more stringent carbon-reduction goals, once the prime onshore-wind
resources are exploited. Greater carbon-emissions reductions beyond 75% require the
use of CSP and offshore wind. This shows that the higher cost of these units, along
with the cost of the HVDC connectors that are required to deliver their generation to
load, makes these technologies quite expensive. As such, these units are only used with
highly aggressive carbon-reduction targets. The fact that offshore wind and CSP are
only built to achieve carbon-emissions reductions beyond 75% also implies that HVDC
lines are only built with these aggressive carbon-reduction goals.

Interestingly, we find that the role of CAES in providing system flexibility dimin-
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ishes as the carbon-reduction target gets more aggressive. This is because of the carbon
emissions that are associated with discharging CAES. As the carbon-emissions limit
gets tighter, CAES is replaced with CSP (which has TES incorporated in it) as the
primary source of supply-side flexibility. This diminishing use of CAES as the carbon-
emissions limit becomes more stringent results in increasing wind-curtailment rates.
Unlike onshore wind and CSP, offshore wind is only used in the most extreme case
in which carbon emissions must be fully eliminated. The ‘low priority’ for building
offshore wind stems from its relatively high cost, inflexibility (as TES cannot be in-
corporated in wind units), and it having little to no advantage over onshore wind in
terms of real-time availability. Indeed, the only major benefit to offshore is that its
availability is more stable. The distribution of hourly capacity factors of onshore wind
has more extremes compared to offshore wind.

Figure 2.2 also shows that as the carbon-emissions limit gets more stringent, the
total installed capacity increases considerably (e.g., from 3.4 GW in the BAU case to
13 GW to achieve 100% carbon-emissions reductions). This is because of the lower ca-
pacity factor of wind and solar resources compared to dispatchable thermal generation.
The 100%-carbon-reduction case results in a very small amount of NGCC with CCS
being built. These units have lower emissions rates than CAES and operate only in a
small handful of hours when CSP and wind plants are not fully able to serve the load.
These small number of hours in which the NGCC units operate give the minuscule
carbon emissions in the 100%-carbon-reduction case.

Although nuclear generation has no direct carbon emissions, nuclear capacity is not
built in any of the carbon-reduction cases that we examine. This shows that nuclear is
an uneconomic generation source in our case study, despite having no carbon footprint.
One may attribute the lack of nuclear capacity to its extremely inflexible ramping
capability that we assume. However, if it is sufficiently inexpensive, nuclear could
be built to serve off-peak loads only, even without the capability to ramp. Doing so
would result in the plant having a 100% capacity factor, as it would operate constantly.
Moreover, the availability of low-cost CAES could allow even more nuclear capacity
to be built to serve on-peak loads. Sioshansi et al. (2012) note that this use of energy
storage (i.e., to store nuclear generation overnight to serve on-peak loads) was the
major rationale for developing PHS in the United States in the 1970s. The fact that
nuclear is not built in any of the cases that we model, even for these limited uses, show
that there are substantively lower-cost energy sources, even when seeking carbon-free
electricity.

Figure 2.3 summarizes annual expected operating and investment costs of the sys-
tem with the different carbon-reduction targets. As expected, enforcing and tightening
constraint (2.12) increases overall costs. Although the BAU case is the least costly,
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it is interesting to note that the system can achieve non-trivial carbon-emissions re-
ductions with relatively small overall cost increases relative to BAU. For instance, 25%
carbon-emissions reductions can be achieved with only an 8% increase in total expected
system costs. On the other hand, complete decarbonization of the electricity sector can
be much more costly. 99% emissions reductions increase total expected system costs
by 126% (relative to BAU) while complete decarbonization increases costs by 216%.

Figure 2.3: Expected Annual Operating and Investment Costs In Business-As-Usual
Case and With Different Carbon-Emissions Reductions Relative to Business-As-Usual
Case

A question that these cost results raise is what is the optimal level of decarboniza-
tion, taking into account its costs and benefits. The United States Environmental
Protection Agency (EPA) produced estimates of the social cost of carbon in 2050, un-
der different discount rates and carbon-impact scenarios.4 We can assess the socially
optimal level of carbon reduction by relaxing constraint (2.12) and setting χ (i.e.,
the carbon-emissions price) equal to a given social-cost-of-carbon estimate in objective
function (2.1). Doing so drives the investment model to tradeoff the estimated social
cost of carbon against the direct cost of achieving carbon reductions. The EPA esti-
mates a social cost of carbon that ranges between $69/t and $212/t. These estimates
correspond to socially optimal carbon-reduction levels that range between 25% and
85% (relative to the BAU case).

4These estimates, which were produced by the EPA under the administration of President
Barack Obama, are archived and publicly available at https://19january2017snapshot.epa.gov/
climatechange/social-cost-carbon_.html.

https://19january2017snapshot.epa.gov/climatechange/social-cost-carbon_.html
https://19january2017snapshot.epa.gov/climatechange/social-cost-carbon_.html
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2.5 Sensitivity Analyses

This section presents results of four sensitivity analyses, in which we examine the im-
pacts of different case-study assumptions on the design, cost, and operation of the
power system. The first sensitivity case considers improvements in the generation,
energy-storage, and HVDC technologies. The second examines the impacts of in-
creased transmission congestion. The third examines the impacts of relaxing land-use
restrictions on building CSP plants. The fourth sensitivity case considers adiabatic
CAES as an alternative to diabatic CAES.

2.5.1 Technology Improvement

Our first sensitivity case considers three different technology improvements. The first
are efficiency and investment-cost improvements in CSP plants. Lilliestam et al. (2017)
examine the historical cost-reduction trajectory of CSP. They find that although CSP
has not enjoyed, to date, the same cost-reductions that PV solar has, it is beginning
to achieve more aggressive cost reductions. Contemporaneously, Turchi et al. (2013);
Neises and Turchi (2014) examine the use of supercritical carbon dioxide power cycles
in the power blocks of CSP plants. They find that doing so can achieve powerblock
efficiencies that are greater than 50%, as opposed to efficiencies ranging between 35%
and 45% for the subcritical Rankine cycles that are used in CSP plants today. Based
on these findings, we consider a sensitivity case in which the investment costs of CSP
plants are 25% lower than in the base case and their efficiencies (which are used to
convert the thermal energy that is gathered by the solar fields into electricity-out
capacity factors) are increased to 55%.

The second technology improvement involves offshore wind. IEA (2016b) finds that
offshore wind is costly relative to onshore wind, but that there is potential for this cost
difference to be closed. Moreover, offshore wind also suffers from the need for radial
HVDC lines to connect generating units to load pockets. Thus, we consider a sensitivity
case in which the investment costs of offshore wind plants are reduced 35% (making
their costs comparable to onshore wind) and the cost of HVDC lines are reduced an
average of 63%, relative to the base case (see Table 2.9.

The final technology improvement that we consider is a 10% investment-cost re-
duction for CAES. This reflects the impacts of learning, which can reduce investment
costs as CAES plants are developed around the world in the coming years.

Figure 2.4 summarizes the capacity of generating and energy-storage units that are
built under the technology-improvement sensitivity cases. The bars in the figure are
grouped into four sets of three, each of which corresponds to a different technology-
improvement case. The first three sets of bars correspond to one of the three technology
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Table 2.9: Investment Costs of Candidate HVDC Transmission Lines

From Node To Node Investment Cost [$ million]
25 6 304.0
25 8 437.0
25 13 209.0
25 22 123.5
26 3 123.5
26 15 171.0
26 16 209.0
26 17 237.5
27 6 152.0
27 8 171.0
27 13 123.5
28 1 437.5
28 3 304.5
28 15 209.0
28 18 123.5

improvements (e.g., CSP, offshore wind, or CAES) occurring individually. The fourth
set of three bars correspond to a case in which all three of the technology improvements
occur simultaneously. For each of the four technology-improvement cases, we examine
investment decisions under a BAU case and in cases in which carbon emissions are
limited to being 50% and 95% less than in the BAU case.5

The figure shows that in all of the technology-improvement cases that we examine,
none of the renewable technologies are cost-competitive with thermal generation in a
BAU case. This indicates that further technology improvements and cost reductions
would be needed to make the renewable technologies that we examine cost-competitive
with thermal generation in a BAU case. However, if CAES achieves the investment-cost
reductions that we examine here, there is a 15% increase in installed CAES capacity in
the BAU case. This increased CAES investment comes with the exact same reduction
in CT capacity, meaning that CAES is being used to displace this expensive peaking
capacity.

The technology-improvement cases that we examine result in some changes in the
generation mix as carbon-emissions limits are imposed. Reducing carbon emissions
by 50% in any of three individual technology-improvement sensitivity cases gives in-
vestment mixes that are similar to that in the base case. In all of these cases, there is
investment in onshore wind, which displaces thermal generation, to acheive the requisite

5The carbon-emissions limits are defined, in all of the sensitivity cases in this section, relative to
the carbon emissions in the corresponding BAU case.
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Figure 2.4: Capacity Built In Business-As-Usual Case and with Different Carbon-
Emissions Reductions Relative to Business-As-Usual Case Under Technology-
Improvement Sensitivity Analysis

carbon reductions. However, the investments are different with 50% carbon-emissions
reductions in the ‘combined’ technology-improvement sensitivity case. The combined
case sees less onshore-wind and CAES investments and greater CSP capacity com-
pared to the three individual technology-improvement sensitivity cases. This is due to
the combined impact of higher CSP efficiency and lower CSP- and HVDC-investment
costs, which make CSP an economic alternative to onshore wind. Moreover, because
CSP has integrated TES, the flexibility that this affords reduces the need for CAES.
In sum, the CSP displaces close to 200 MW of onshore wind and 500 MW of thermal
capacity, relative to the base case.

These trends continue with a 95%-emissions-reduction target. In all of the sen-
sitivity cases, except for the case in which offshore wind only achieves technology
improvements, CSP has a greater role in decarbonizing the generation mix. Compared
to the base case, the combined and CSP-only technology-improvement sensitivity cases
see nearly 1 GW less onshore-wind, 300 MW less CAES, and 600 MW more CSP in-
vestments. The fact that 1 GW of wind can be displaced by 600 MW of CSP capacity
further illustrates the flexibility benefit that the TES, which is integrated into the CSP
plants, provides. When the system relies on wind for decarbonization in the base case,
greater capacity must be built to manage the variability in real-time wind availability.
The TES systems in the CSP plants reduce the need for such oversizing, as the TES
can be used to mitigate the impacts of variable solar availability.

The sensitivity case in which offshore wind only has technology improvements re-
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sults in 1.1 GW of offshore wind being built in place of about 200 MW of CSP (relative
to the base case) to achieve 95% emissions reductions. This can be contrasted with
the base case, in which offshore wind is only built to achieve complete decarbonization,
due to its relatively high cost. Interestingly, no offshore wind is built to achieve 95%
emissions reductions in the combined technology-improvement case. This is because,
although offshore wind is economically viable in the combined technology-improvement
case, so too is CSP, which is less costly and more flexible than offshore wind.

Figure 2.5 summarizes the annual expected operating and investment costs of the
system under the four technology-improvement sensitivity cases. The figure shows that
these sensitivity cases yield mixed cost savings. For instance, the combined technology-
improvement cases reduces the cost of achieving 50% and 95% emissions reductions by
22% and 33%, respectively, relative to the base case. The case in which CSP only
has technology improvements reduces the cost of achieving these emissions reductions
by 6% and 22%. This can be contrasted with a case in which offshore wind only has
technology improvements, which only yields an 8% reduction in the cost of achieving
95% emissions reductions. This follows from the results that are summarized in Fig-
ure 2.4—the combined and CSP-only technology-improvement sensitivity cases yielded
the most notable differences in the generation mix.

Figure 2.5: Expected Annual Operating and Investment Costs In Business-As-Usual
Case and With Different Carbon-Emissions Reductions Relative to Business-As-Usual
Case Under Technology-Improvement Sensitivity Analysis
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2.5.2 Transmission Congestion

Our second sensitivity analysis considers the impacts of diminished transmission ca-
pacity, which can result from smaller-sized transmission equipment being installed and
land-use or other restrictions on building candidate lines. We consider a case in which
the transmission capacity of all existing and candidate lines is reduced by 25%. We
further assume that five of the candidate ac lines, which are close to load pockets in
the transmission network, are no longer available to be built.

Figure 2.6 shows the mix of generation and CAES units that are built in the
transmission-congestion sensitivity case with different emissions-reduction targets. Over-
all, the transmission-congestion sensitivity case results in greater transmission invest-
ments and requires more generation and CAES capacity to be built, relative to the base
case. The base case does not require new transmission builds until reducing carbon
emissions by 95%. Moreover, these transmission builds in the base case are primarily
to deliver energy from remote renewable units to loads. Conversely, the transmission-
congested sensitivity case requires transmissions builds even in the BAU case. These
transmission builds are needed simply to avoid load curtailment. The 99%-carbon-
reduction case requires more than double the transmission investment relative to the
base case.

Figure 2.6: Capacity Built In Business-As-Usual Case and with Different Carbon-
Emissions Reductions Relative to Business-As-Usual Case Under Transmission-
Congestion Sensitivity Analysis

The generation and CAES units are more dispersed throughout the transmission
network than in the base case. Dispersing the energy-production and -storage ca-
pacities across the network provides greater flexibility in having energy available in
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congested load pockets. One benefit of renewable units in this regard is that they are
fairly dispersed within the network. As such, renewable and CAES units are jointly
able to provide a great deal of congestion relief. One interesting observation regarding
the operation of the system in the transmission-constrained case is that some hours see
simultaneous charging and discharging of energy-storage units at different locations in
the network. This is inefficient, insomuch as energy is lost when it is stored. Simul-
taneous charging and discharging of energy storage is nonetheless necessary, because
load peaks and troughs occur at different times at different locations. As such, ab-
sent transmission capacity, excess energy must be stored at some nodes in the network
despite stored energy being discharged to serve load elsewhere in the network.

2.5.3 Land Use

The purpose of the land-use sensitivity case is to further explore the economic compet-
itiveness of CSP relative to onshore wind. Our base case places CSP at a competitive
disadvantage compared to onshore wind, because CSP can only be connected to the
network via radial HVDC transmission lines. As such, CSP bears an additional cost
compared to onshore wind, which can use existing transmission corridors and can, in
some cases, be co-located with load. The land-use sensitivity case explores the compet-
itiveness of CSP independent of transmission-interconnection costs, by allowing CSP
plants to be built at each node where onshore wind can be. These additional candidate
CSP plants are assumed to have the same cost and technical characteristics as the CSP
units in the base case (see Table 2.10).

We use weather data for 18 additional locations, which correspond to the nodes
where onshore wind can be built, to simulate real-time availability of the added can-
didate CSP plants. We also consider a sensitivity case, which removes the land-use
restrictions on building CSP plants and which assumes that CSP achieves the technol-
ogy improvements that are outlined in Section 2.5.1 (see Table 2.11).

Figure 2.7 summarizes the generation and energy-storage capacities that are built
with different emissions-reductions targets under the two land-use sensitivity cases.
The first set of six bars corresponds to a case in which only land-use restrictions on
the deployment of CSP are relaxed. The second set of six bars corresponds to a case in
which land-use restrictions are relaxed and the CSP-technology improvements that are
outlined in Section 2.5.1 are assumed. The first set of bars shows that even without
the cost of interconnecting with the transmission network, CSP is not cost competitive
with onshore-wind units. Indeed, the only difference in CSP investments that results
from relaxing land-use restrictions is that slightly more capacity is built to achieve 99%
emissions reductions. In fact, we find that with land-use restrictions CSP is only built
when the capacity to build onshore wind at a particular node is exhausted.
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Table 2.10: Technical Characteristics of Additional CSP Units in Land-Use Sensitivity
Case

Maximum Generation TES-Discharging TES-Charging Investment
Node Capacity [MW] Cost [$/MWh] Cost [$/MWh] Cost [$/MWh] Cost [$/kW]
1 350 3.86 0.14 0.1549 3507
7 350 3.87 0.14 0.1549 3442
13 350 3.86 0.14 0.1549 3336
13 350 3.81 0.14 0.1549 3471
14 350 3.88 0.14 0.1549 3513
14 350 3.85 0.14 0.1549 3350
16 350 3.87 0.14 0.1549 3239
18 350 3.85 0.14 0.1549 3345
21 350 3.82 0.14 0.1549 3432
22 350 3.83 0.14 0.1549 3222
23 350 3.89 0.14 0.1549 3417
26 1000 4.00 0.14 0.1549 3599
28 1000 3.80 0.14 0.1549 3272

The second set of six bars in Figure 2.7 shows that this result is reversed if land-
use restrictions are relaxed and CSP achieves technology improvements. Considerably
more CSP capacity is built under these assumptions compared to the base case (and the
land-use-only sensitivity case) to achieve carbon-emissions reductions between 25% and
95%. Interestingly, the amount of CSP capacity that is built to achieve 99% carbon-
emissions reductions is the same with and without the CSP-technology improvements.
This suggests that with 99%-carbon-emissions reductions, the CSP that is built is solely
driven by the emissions constraint and not by the economics of the technology.

The findings of this sensitivity case are consistent with current experience in the
deployment of renewable energy sources. Although CSP has a flexibility benefit relative
to wind (and PV solar) that stems from the ability to integrate low-cost TES, CSP has
seen little deployment compared to wind. This is largely because CSP is considerably
more expensive to build (even when neglecting transmission-interconnection costs).
However, our sensitivity cases in which CSP achieves technology improvements (both
the case examined here and those in Section 2.5.1) reveal that CSP has the potential
to become highly competitive with wind.

2.5.4 Adiabatic CAES

This sensitivity case considers the use of adiabatic CAES as an alternative to diabatic
CAES. Unlike diabatic CAES, adiabatic CAES is a pure energy-storage technology.
The primary difference between diabatic- and adiabatic-CAES systems is the treatment
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Table 2.11: Technical Characteristics of Additional CSP Units in Land-Use Sensitivity
Case With Technology Improvements

Maximum Generation TES-Discharging TES-Charging Investment
Node Capacity [MW] Cost [$/MWh] Cost [$/MWh] Cost [$/MWh] Cost [$/kW]
1 350 3.86 0.14 0.1549 2630
7 350 3.87 0.14 0.1549 2581
13 350 3.86 0.14 0.1549 2502
13 350 3.81 0.14 0.1549 2603
14 350 3.88 0.14 0.1549 2634
14 350 3.85 0.14 0.1549 2512
16 350 3.87 0.14 0.1549 2429
18 350 3.85 0.14 0.1549 2508
21 350 3.82 0.14 0.1549 2574
22 350 3.83 0.14 0.1549 2416
23 350 3.89 0.14 0.1549 2562
26 1000 4.00 0.14 0.1549 2699
28 1000 3.8 0.14 0.1549 2454

of the waste heat that is produced when air is compressed in the storage cycle. In a
diabatic-CAES system, the waste heat is exhausted to the atmosphere. As such, a
diabatic-CAES system must combust natural gas as a heat source when expanding
the compressed air in the discharging cycle. An adiabatic-CAES system, conversely,
stores the waste heat (often in a dedicated TES system). This stored heat is then
combined with the compressed air during the discharging cycle, alleviating the need to
use natural gas. This makes adiabatic CAES considerably less costly to operate than
diabatic CAES. Moreover, adiabatic CAES involves no direct carbon emissions, unlike
a diabatic-CAES system, which emits carbon when combusting the natural gas in the
discharging cycle. Hartmann et al. (2012); Barnes et al. (2015); Barbour et al. (2015);
Liu and Wang (2016); Sciacovelli et al. (2017) provide further details regarding the
technical properties and viability of adiabatic CAES.

The adiabatic-CAES sensitivity case assumes that this technology is available in
place of diabatic CAES. It is difficult to estimate the technical characteristics of adia-
batic CAES, because no commercial-scale systems exist today. Indeed, the DOE Global
Energy Storage Database6 lists the 500 kW Pollegio-Loderio Tunnel Demonstration
Plant in Switzerland as the only operational adiabatic CAES plant as of July, 2018.
Thus, we rely on current and future estimates of the capabilities of these plants in
modeling the adiabatic-CAES sensitivity case.

We assume that the adiabatic-CAES plants have the c̄s = 10 hours of storage
capacity and that each unit can have up to 350 MW of power capacity built. The

6https://www.energystorageexchange.org/

https://www.energystorageexchange.org/
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Figure 2.7: Capacity Built In Business-As-Usual Case and with Different Carbon-
Emissions Reductions Relative to Business-As-Usual Case Under Land-Use Sensitivity
Analysis

adiabatic-CAES units are assumed to have efficiencies of ηSs = 1.33, which means that
1.33 MWh of energy must be stored to later discharge 1 MWh of electricity. ηSs being
greater than 1 reflects the fact that adiabatic CAES is a pure energy-storage technology,
meaning that electricity is lost in the storage cycle. However, the benefit of this energy
loss is that the adiabatic-CAES units have zero carbon emissions.

We consider two sets of investment and operating costs for the adiabatic-CAES
plants. The first set, which reflect current cost estimates, assumes investment costs
ranging between $1187/kW and $1210/kW and charging and discharging costs of
$14/MWh and $17/MWh, respectively (see Table 2.12).

Table 2.12: Technical Characteristics of Adiabatic-CAES Units With High Costs

Maximum Discharging Charging Investment
Node Capacity [MW] Cost [$/MWh] Cost [$/MWh] Cost [$/kW]
1 350 14 17 1198
7 350 14 17 1187
13 350 14 17 1199
14 350 14 17 1210
16 350 14 17 1195
21 350 14 17 1205
22 350 14 17 1189
23 350 14 17 1200
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The second set, which reflect possible future cost reductions, assumes investment
costs ranging between $594/kW and $605/kW and charging and discharging costs of
$12/MWh and $13/MWh, respectively (see Table 2.13).

Table 2.13: Technical Characteristics of Adiabatic-CAES Units With Low Costs

Maximum Discharging Charging Investment
Node Capacity [MW] Cost [$/MWh] Cost [$/MWh] Cost [$/kW]
1 350 11.5 12.5 599
7 350 11.5 12.5 593
13 350 11.5 12.5 599
14 350 11.5 12.5 605
16 350 11.5 12.5 597
21 350 11.5 12.5 602
22 350 11.5 12.5 504
23 350 11.5 12.5 600

Figure 2.8 summarizes the generation and energy-storage capacities that are built
in the adiabatic-CAES sensitivity case with different emissions-reduction targets. The
first set of bars correspond to a case with high investment and operating costs for
adiabatic CAES, whereas the second set correspond to lower future cost projections.
Interestingly, we find that adiabatic CAES is a considerably less desirable energy-
storage technology compared to diabatic CAES. The base case and other sensitivity
cases result in some diabatic CAES being built, except with extremely high emissions-
reduction targets. This is because once the emissions-reduction target is sufficiently
stringent, the carbon emissions that are associated with discharging diabatic CAES
makes it use infeasible.

Adiabatic CAES relaxes the impact of the emissions-reduction constraint on the
use of CAES. However, adiabatic CAES is more costly than diabatic CAES. This cost
disadvantage overwhelms the zero-emissions benefit of adiabatic CAES, except in the
extreme case of full decarbonization. With full decarbonization, about 10 MW and
500 MW of adiabatic CAES is built with high and low costs, respectively, as opposed
to no diabatic CAES in the base case.

2.6 Discussion and Conclusions

This work presents a two-stage stochastic optimization model that can be used for
long-term power system-expansion planning. We pay particular attention to model-
ing carbon-emissions limits and decarbonization of electricity production. This can
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Figure 2.8: Capacity Built In Business-As-Usual Case and with Different Carbon-
Emissions Reductions Relative to Business-As-Usual Case Under Adiabatic-CAES Sen-
sitivity Analysis

be achieved in our model using two policy mechanisms: either via an explicit carbon-
emissions constraint or by pricing carbon (e.g., Pigouvian taxes on emissions). Our
model and case study consider three technical options for decarbonization—renewable
energy sources, nuclear generators, and fossil-fueled plants with integrated CCS sys-
tems.

Weather-dependent renewable generators raise modeling, planning, and operat-
ing challenges, because their real-time resource availability is uncertain and variable.
As such, we include energy-storage technologies in the model as a flexibility source
for mitigating these characteristics of renewables. We focus on two energy-storage
technologies—CAES and TES integrated in CSP plants—in our case study, which can
be widely deployed in high-renewable-penetration scenarios. The real-time variability
of renewable availability is captured in our model using a variety of different operating
conditions. These operating conditions capture the range of weather conditions over
the course of a year, which can give different load levels and wind and solar availabili-
ties. Large-scale uncertainties, such as long-term load growth, are captured explicitly
through second-stage scenarios in the scenario tree.

We demonstrate our model and analyze decarbonization pathways using a detailed
case study that is based on the ERCOT system. We find that absent any policy
mechanism that internalizes the societal cost of carbon, the power system will maintain
a fossil-fueled generation mix with some CAES to alleviate the need to build peaking
generation capacity. Natural gas is preferred to coal as a generation fuel, given its
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anticipated low cost and the high efficiency of NGCC units. This system design holds
regardless of potential future cost reductions in renewable and CAES technologies.

As the social cost of carbon is internalized (we do this in our case study via ex-
plicit carbon-emissions limits) the system moves away from natural gas-fired generators
toward onshore-wind capacity. Moreover, portions of the natural gas-fired fleet uses
CCS for modest carbon-emissions limits. As the carbon-emissions limits become very
stringent, fossil-fueled generation is essentially completely phased out of the system.
CAES is also phased out, because of the carbon emissions that are associated with the
combustion of natural gas in the discharging cycle. The flexibility that CAES affords
is instead provided by CSP plants, which have TES incorporated in them. Finally,
achieving complete decarbonization of the electric power system calls upon the use of
offshore wind, which tends to be more costly than onshore with only marginal relative
improvements in its capacity factor. Interestingly, nuclear is not used for decarboniza-
tion purposes, given its very high cost.

Achieving modest decarbonization targets yields relatively small expected power
system-cost increases. Indeed, we find that for the range of social costs of carbon
that were published by the EPA, reducing carbon emissions by between 25% and 85%
(relative to a BAU case) is socially optimal. One of the challenges in setting carbon
policy is that the social costs of climate change are difficult to estimate a priori. Thus,
it may prove robust against the potential for catastrophic impacts of climate change
to set decarbonization targets that are toward the upper end of this range.

Under current estimates of costs and technical characteristics, onshore wind is the
most attractive renewable-energy technology that we consider. We find, however, that
if CSP achieves its projected cost reductions and efficiency gains and if transmission-
interconnection costs are reduced, CSP can become an extremely competitive alterna-
tive to onshore wind. Moreover, the inherent flexibility of CSP alleviates the need to
build standalone energy-storage capacity. Offshore wind is generally not competitive
with onshore wind and CSP. This is because of its relatively high investment and oper-
ating costs and the need to build radial HVDC lines to connect it to load centers. For
these reasons, offshore wind is normally only built if all other renewable-energy sources
are exhausted.

Diabatic CAES is an economically feasible alternative to PHS, which is currently
the most widely deployed energy-storage technology. This is an important finding,
because many parts of the world lack either the water or geological formations that
are necessary for the deployment of PHS. CAES, on the other hand, has the potential
to be deployed in many renewable-rich regions. The major difficulty that diabatic
CAES raises is the emission of carbon that is associated with the discharging cycle.
Adiabatic CAES, which is a technology that is currently in the demonstration phase,
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holds the potential to mitigate the carbon-emissions issue of diabatic CAES. However,
our adiabatic-CAES sensitivity case reveals that with current and future projections of
technology costs, adiabatic CAES is not an economic source of supply-side flexibility.
Our findings suggest that adiabatic CAES will require further development to become
a viable alternative to diabatic CAES, except under extreme carbon-reduction targets.



Chapter 3

An adaptive robust optimization
approach for expansion planning of
a small size electric energy system
with electric vehicles and renewable
units

This chapter is based on the article:
Boffino L., L. Baringo, G. Oggioni.
An adaptive robust optimization approach for expansion planning of a small size
electric energy system with electric vehicles and renewable units
which is currently submitted to the European Journal of Operational Research

In this chapter we propose a stochastic adaptive robust optimization approach for
the expansion planning problem of a small size electricity system. This involves the
construction of candidate renewable generating units, network lines, storage units, and
charging stations for electric vehicles. The problem is formulated under the perspec-
tive of a central planner, which aims at determining the expansion plan that minimizes
both investment and operation costs, including the power exchanged with the trans-
mission system. We consider both short- and long-term uncertainties that are modeled
in different way. In particular, short-term uncertainties in the demand variability, in
the production of stochastic units, and in the price of electricity withdrawn from or
injected into the transmission system are modeled through a number of operating con-
ditions. Long-term uncertainties in the future peak demands, in the future value of
electricity exchanged with the transmission grid, and in the number of electric vehicles
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are modeled using confidence bounds. A case study, based on a four-node network,
is used to illustrate the effectiveness of the proposed technique and to analyze the
relationship between the optimal expansions decisions, the revenues from selling elec-
tricity to the electric vehicles, and the degree of independence from the transmission
system. Moreover, an ex-post decarbonization analysis is conducted to evaluate the
environmental impact of the adoption of electric vehicles.

The model developed in this chapter have been implemented in GAMS and solved
with CPLEX.

3.1 Introduction

The implementation of the Energy Roadmap 2050 (see EU Commission (2011a)) com-
mits Europe to reducing greenhouse gas (GHG) emissions to 80-95% below 1990 levels
by 2050. This target can be accomplished thanks to the full decarbonization of energy
systems, the transition towards low- and zero-emission vehicles, and investments in
efficient technologies. This is a direct consequence of the fact that the energy sector is
the main responsible of carbon emissions followed by transport sector that generates
around a quarter of the European GHG emissions. It is clear that, in the future, a
large share of the planned GHG emissions reductions should come from road transport.
However, while GHG emissions from energy and industrial sectors have been reduced
in recent decades, those from transport have significantly increased. For instance,
emissions from road transport are today around 17% above 1990 levels.

For this reason, the European Commission outlined in a White Paper issued in
2011 (see EU Commission (2011b)) a roadmap for the transport sector to achieve a
60% reduction in its GHG emissions levels compared with those of 1990 by 2050.

This White Paper shows how the transition to a more sustainable transport system
can be addressed by reducing the European dependence on oil to both lower GHG emis-
sions and improve energy security. In particular, it describes goals for a competitive
and efficient transport system, including benchmarks, such as halving the utilization of
conventionally fuelled cars in urban transport by 2030 and phasing them out entirely
in cities by 2050. More recently, the European Commission has published a guide-
line for low-emission mobility that highlights the importance of removing obstacles to
the transport electrification to move towards low and zero-emission vehicles and in-
crease the supply of low-emission alternative fuels, such as renewable electricity (see
EU Commission (2016)).

The direct consequence of the implementation of these policies put forward by
the European Commission would be a progressively increasing penetration of electric
vehicles (EVs) in the coming years. This may impose additional challenges to small
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size electric energy systems (SSEESs) that are already stressed by the uncertainty and
variability of the renewable generating units.

This work focuses on these aspects and proposes an expansion planning model for
a SSEES considering the perspective of a central planner. This operator can invest in
storage and renewable (photovoltaic or PV) units in addition to charging stations for
EVs. It can also decide to reinforce existing lines or build new ones. Storage units
are considered to compensate for the variability of the electricity production from PV
power plants; network line expansion increases system adequacy and reliability taking
into consideration the fact that electricity is required both by consumers and EVs.
Demand is located in each node of the network and is supplied either by the electricity
produced by PV plants, the storage units, or by that withdrawn from the transmission
grid (main grid in the following) with which the SSEES is connected. Note that we
also allow the SSEES to sell electricity to the main grid in the case where its electricity
production exceeds the local needs.

These storage, renewable, charging station, and line (SRC&L) investment decisions
are taken on the basis of two degrees of uncertainty: a short-term one that describes
the daily variability of the residential demand, the production of the stochastic PV
units, and the price of electricity exchanged with the main grid; and a long-term one
that regards the future peak demand, the future price of the electricity exchanged
with the main grid, and the future number of EVs. The short-term uncertainty is
modeled through a set of operating conditions. Each operating condition is taken to
be a representative day, which is modeled at hourly time steps (see Section 3.2.2).

On the other side, two methods are generally considered in the technical literature to
deal with medium- and long-term uncertainty in this type of decision-making problems.
One of them is stochastic programming (see, e.g., Birge and Louveaux (1997)) that
models uncertain parameters using a set of scenarios. The main drawback of this
approach is that its accuracy strongly depends on the knowledge of the probability
distribution of uncertain parameters and on the number of scenarios. On the one
hand, for a long-term planning problem such as the one considered in this work, it is
not straightforward to have a good forecast of probability distributions of uncertain
parameters. Moreover, increasing the number of scenarios may result in an intractable
problem. The other option used in the technical literature is robust optimization
(see Bertsimas and Sim (2004)) that ensures worst case protection within confidence
bounds.

For these reasons, we decide to model the long-term uncertainty in the aforemen-
tioned parameters using confidence bounds whose construction is generally much sim-
pler than generating scenarios.

More precisely, we apply an Adaptive Robust Optimization (ARO) framework (see
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Bertsimas and Brown (2009); Bertsimas et al. (2011)) that gives the possibility to
model decision making under recourse. This approach is in general based on a three-
level problem formulation that in the case of the expansion model considered in this
work can be summarized as follows:

• In the first level, the central planner minimizes the expansion costs considering
as variables those associated with the investments or expansion decisions.

• The second level identifies the worst uncertain realization of the (long-term)
parameters in the plausible confidence bounds (note that the variables of this
level are those modeling the uncertain parameters).

• In the third level, the market planner minimizes the operation costs taking as
given the values of the first and the second level variables.

This three-level ARO formulation has been proposed for different problems such as
energy and reserve dispatch in electricity markets (see, e.g., Zugno and Conejo (2015)),
offering strategy of a virtual power plant in the day-ahead market (see Baringo and
Baringo (2017)), generation and transmission expansion problem (see, e.g., Baringo
and Baringo (2018)) and transmission expansion problems (see, e.g., Jabr (2013); Ruiz
and Conejo (2015); Mı́nguez and Garćıa-Bertrand (2016); Zhang and Conejo (2018)).

In this context, the contributions of this work are fourfold:

1. To model investments in PV power plants, storage units, charging stations, and
network lines in an integrate framework;

2. To develop an ARO model describing investments in a SSEES where both short-
term and long-term uncertainties are considered;

3. To evaluate how investment decisions vary on the basis of the impact of long-
term uncertainty, the central planner’s revenues accruing from selling electricity
to EVs at charging stations, the degree of autonomy of SSEES from the main
grid, and the possibility of expanding the network.

4. To conduct an ex-post analysis on the amount of CO2 saved with the utilization
of EVs to evaluate whether the environment can benefit from the progressive
decarbonization of the road-transport.

The rest of the chapter is organized as follows. Section 3.2 describes the formulation
of the expansion planning problem applied to a SSEES, starting from a deterministic
approach and then transforming it into an ARO problem. Section 3.3 illustrates the
method used to solve the ARO model, while Section 3.4 describes the case study and
the considered input data. Section 3.5 is devoted to the analysis of the obtained results.
Finally, Section 3.6 concludes with some final remarks.
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3.2 Problem Formulation

In this section, we describe the formulation of the proposed SRC&L expansion model
applied to a SSEES. For the sake of clarity, we first provide a deterministic instance of
the problem that only accounts for the short-term uncertainty, while the future peak
demand, the price of the electricity interchanged with the main grid, and the number of
EVs are considered known parameters. The long-term uncertainty of these parameters
is then characterized and the problem is formulated using an ARO model.

3.2.1 Notation

We here list the indexes, the sets, the parameters, and the variables used in our models.

Indexes

c Charging stations.

o Operating conditions.

l Demands.

` Lines.

n Nodes.

r Renewable (PV) units.

s Storage units.

t Hours.

v Iterations.

Sets

r (`) /s (`) Receiving/sending-end node of the `th line.

ΨC
n Charging stations located at node n.

ΨG
n Connection to the main grid located at node n.

ΨR
n Renewable units located at node n.

ΨS
n Storage units located at node n.

ΨL+ Set of candidate lines.
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Parameters

B` Susceptance of the `th line [S].
CE
ot Cost of the power used to charge EVs in hour t of operating condition o

[$/kW].
C̃G
ot Forecast value of the price of power exchanged with the main grid in hour t

of operating condition o [$/kW].
ĈG
ot Maximum increase of the price of power exchanged with the main grid in

hour t of operating condition o [$/kW].
CLS
lot Load-shedding cost of demand l in hour t of operating condition o [$/kW].

CIC
c Annualized investment cost in charging station c [$].

CIR
r Annualized investment cost in renewable unit r [$].

CIS
s Annualized investment cost in storage unit s [$].

CIL
` Annualized investment cost in candidate line ` [$].

C
I Annualized investment budget [$].

ES
s/E

S
s Minimum/Maximum energy that can be stored in storage unit s [kWh].

G/G Minimum/Maximum power that can be exchanged with the main grid [kW].
KD
lot Demand factor of load l in hour t of operating condition o [pu].

KEV
cot EV availability factor in charging station c in hour t of operating condition

o [pu].
KR
rot Capacity factor of renewable unit r in hour t of operating condition o [pu].

ND
o Number of days grouped in operating condition o [days].

ÑEV
co Forecast number of electric vehicles in charging station c in operating con-

dition o.
N̂EV
co Maximum increase in the number of EVs in charging station c operating

condition o.
P

C
c Charging capacity of charging station c.

P̃D
l Forecast peak load of demand l [kW].
P̂D
lot Maximum increase of the peak load of demand l [kW].
PEV
co Maximum demand in charging station c in operating condition o [kW].
PEVmax
co Maximum daily demand in charging station c in operating condition o [kW].
P

L
` Capacity of line ` [kW].

P
R
r Capacity of renewable unit r [pu].

P
SC
s Charging capacity of storage unit s [kW].

P
SD
s Discharging capacity of storage unit s [kW].
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ηSC
s Charging efficiency of storage unit s [%].
ηSD
s Discharging efficiency of storage unit s [%].

Uncertain Variables

cG
ot Price of the power exchanged with the main grid in hour t of operating

condition o [$/kW].
pD
l Peak load of demand l [kW].
nEV
co Number of EV in charging station c in operating condition o.

Optimization Variables

eS
sot Energy stored in storage unit s in hour t of operating condition o [kWh].
pC
cot Charging power in charging station c in hour t of operating condition o [kW].
pG
got Power exchanged with the main grid g in hour t of operating condition o

[kW].
pL
`ot Power flow through line ` in hour t of operating condition o [kW].
pLS
lot Load shed by demand l in hour t of operating condition o [kW].
pR
rot Power from renewable unit r in hour t of operating condition o [kW].
pSC
sot Charging power of storage unit s in hour t of operating condition o [kW].
pSD
sot Discharging power of storage unit s in hour t of operating condition o [kW].
xC
c Integer variable representing the number of charging stations c that are built.
xR
r Integer variable representing the number of renewable units r that are built.
xS
s Integer variable representing the number of storage units s that are built.
xL
` Binary variable that is equal to 1 if the `th candidate line is built, 0 other-

wise.
δnot Voltage angle at node n in hour t of operating condition o [rad].

3.2.2 Planning horizon and short-term uncertainty character-
ization

The expansion problem is solved for a long-term planning horizon, e.g., 30 years. In
order to represent the uncertainty in the demand, production of PV units, price of
electricity exchanged with the main grid, and EV behavior, this planning horizon
is represented by a single target year. In turn, this target year is represented by
a set of operating conditions, each one taken to be a representative day. Each of
these representative days represents the daily variability of the consumers’ demand,
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the production of the stochastic PV units, and the price of the electricity exchanged
with the main grid on a 24 hours horizon.

To obtain the operating conditions, we use historical data and a modified version
of the K-means clustering technique proposed by Baringo and Conejo (2013). This
method groups together historical data that are similar while maintaining the infor-
mation and auto- and cross-correlation among them. In particular, each operating
condition indexed by o comprises the 24 hours of the representative day which are
indexed by t. The number of operating conditions should be selected so that the
expansion outcome does not change if such number is increased. In addition, the clus-
tering technique assigns to each operating condition a weight (ND

o ) that depends on
the number of historical data that are grouped in the cluster defining each operating
condition.

3.2.3 Deterministic model

The expansion planning considering a deterministic approach is formulated as the
following mixed-integer linear programming (MILP) model:

minΦD
∑
s

CIS
s x

S
s +

∑
r

CIR
r x

R
r +
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c x
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c +
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` x

L
` +
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subject to

xS
s ∈ Z+, ∀s, (3.1b)
xR
r ∈ Z+, ∀r, (3.1c)
xC
c ∈ Z+, ∀c, (3.1d)
xL
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`B`

(
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)
, ∀`,∀o,∀t, (3.1i)
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− P L
` ≤ pL

`ot ≤ P
L
` , ∀`,∀o, ∀t, (3.1j)

− π ≤ δnot ≤ π, ∀n,∀o, ∀t, (3.1k)
δnot = 0, n: ref.,∀o, ∀t, (3.1l)
G ≤ pG

got ≤ G, ∀g,∀o,∀t (3.1m)
0 ≤ pLS

lot ≤ P̃D
l K

D
lot ∀l,∀o,∀t, (3.1n)

0 ≤ pR
rot ≤ KR

rotP
R
r x

R
r , ∀r,∀o, ∀t, (3.1o)

esot = eso,t−1 + pSC
sotη

SC
s ∆t− pSD

sot∆t, ∀s,∀o, ∀t (3.1p)

ES
sx

S
s ≤ esot ≤ E

S
sx

S
s , ∀s,∀o,∀t, (3.1q)

0 ≤ pSC
sot ≤ P

SC
s xS

s , ∀s,∀o, ∀t, (3.1r)

0 ≤ pSD
sot ≤ P

SD
s xS

s , ∀s,∀o,∀t, (3.1s)

0 ≤ pC
cot ≤ P

C
c x

C
c , ∀c,∀o,∀t, (3.1t)

0 ≤ pC
cot ≤ ÑEV

co P
EV
co K

EV
cot , ∀c,∀o, ∀t, (3.1u)∑

t

pC
cot ≤ ÑEV

co P
EVmax
co , ∀c,∀o, (3.1v)

where set ΦD =
{
xS
s ,∀s; xR

r , ∀r; xC
c , ∀c; xL

` ,∀` ∈ ΨL+; pG
ot, ∀o, ∀t; pR

rot, ∀r, ∀o, ∀t; pSD
sot,

pSC
sot, esot, ∀s, ∀o, ∀t; pL

`ot, ∀`, ∀o, ∀t; pLS
lot, ∀l, ∀o, ∀t; pC

cot, ∀c, ∀o, ∀t; δnot, ∀n, ∀o, ∀t}
includes the optimization variables of problem (3.1).

Problem (3.1) is driven by the minimization of both investment and operating costs.
Objective function (3.1a) includes the following terms:

1. Term
∑
s
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S
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r x
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L
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investment costs in storage, renewable units, charging stations, and candidate
lines.

2. Terms
∑
t

(∑
g

C̃G
otp

G
got +

∑
l

CLS
l pLS

lot

)
, ∀o, include the costs (revenues) of the power

bought (sold) from the main grid and the load-shedding cost. No charges are
foreseen for the solar PV power production. Note that pG

got is a free variable: when
it is positive, it indicates the amount of electricity that the SSEES withdraws from
the main grid, if negative it stands for the amount of power that the SSEES sells
back to the main grid.

3. Terms
∑
t

∑
c

CE
otp

C
cot, ∀o, represent the revenues achieved by selling energy to EVs

through charging stations.

Note that terms in items 2 and 3 depend on operating conditions o and are multiplied
by factor ND

o to make investment and operating costs comparable.
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Constraints of the problem can be classified into two groups. Constraints (3.1b)-
(3.1g) are investment constraints, while (3.1h)-(3.1v) are operating constraints.

Constraints (3.1b), (3.1c), and (3.1d) are declarations of integer variables repre-
senting the investment in storage, PV, and charging units, respectively. Note that
these variables identify the number of plants that can be built. We fix, “a priori”, the
capacity of these units and the investments costs indicated in the objective function
are proportional to the capacity that the specific unit can assume. Binary variables xL

`

defined in constraints (3.1e) indicate whether the candidate line ` is built (xL
` = 1) or

not (xL
` = 0). On the other side, these binary variables are equal to 1 for existing lines

as imposed by constraints (3.1f). Constraint (3.1g) represents the investment budget.
Constraints (3.1h) impose the power balance at each node. These conditions state that
the amount of electricity exchanged with main grid in addition to the power produced
by PV installations, discharged from the storage units and adjusted by the flows with
the other nodes has to be equal to the sum of consumers’ demand corrected by possi-
ble load shedding and the electricity required by charging storage units to supply EVs.
Equations (3.1i) define the power flow through lines using a dc power flow formulation
(see Conejo and Baringo (2018)). These power flows are limited by the capacity of
lines using equations (3.1j). Constraints (3.1k) and (3.1l) bound voltage angles and fix
to zero the voltage angle at the reference node, respectively. Constraints (3.1m) limit
the power that can be exchanged with the main grid. Constraints (3.1n) and (3.1o)
limit the load shed and the production of renewable units, respectively. In particular,
the load shedding has to be lower than the consumers’ demand that is computed as the
product between the peak demand parameter P̃D

l and the load factor KD
lot computed

through the operating conditions. Conditions (3.1o) have been constructed in a sim-
ilar way. The term KR

rotP
R
r x

R
r identifies the maximum electricity production of these

stochastic units. In particular, the solar availability factor KR
rot is multiplied by PR

r x
R
r

that indicates the total capacity of the PV units installed in a node of the SSEES. This
is obtained by the product between the investment variable xR

r and the assumed “a
priori” capacity PR

r that is attributed to each PV unit. Equations (3.1p)-(3.1s) model
the working of storage units. Constraints (3.1p) define the energy evolution in storage
units. Equations (3.1q) impose bounds on the energy stored. Constraints (3.1r) and
(3.1s) limit the charging and discharging powers, respectively. The bounds of con-
straints (3.1q)-(3.1s) are obtained by multiplying the investment variables xS

s , which
express the number of storage stations to be built, by ad hoc parameters. Finally, equa-
tions (3.1t)-(3.1v) model the charging stations. Constraints (3.1t), (3.1u), and (3.1v)
impose limits on the charging power in charging stations depending on the charging
capacity, EV hourly demand, and EV daily demand, respectively. The bounds of con-
straints (3.1t) are computed as the product between the number of charging stations
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constructed xC
c and the “a priori” capacity assigned to each charging unit identified

by the parameter PC
c . Constraints (3.1u), and (3.1v) impose limits on the charging

power in charging stations depending on the EV hourly demand, and EV daily demand,
respectively.

Long-term uncertainty characterization: uncertainty set

In the deterministic problem (3.1), the peak demand, the number of EVs, and the
price of the power exchanged with the main grid are assumed to be known at the
time of making the expansion decisions. However, when these decisions are made, this
information is not known by the expansion planner. Therefore, it is also necessary to
represent the long-term uncertainty in the decision making problem in order to obtain
informed expansion decisions.

For the problem considered, uncertainty in the peak demand, the price of the power
exchanged with the main grid, and the number of EVs is modeled by decision variables
that take values within known confidence bounds:

cG
ot ∈ {C̃G

ot − Ĉot, C̃G
ot + ĈG

ot}, ∀o,∀t, (3.2a)
pD
l = {P̃D

l − P̂D
l , P̃

D
l + P̂D

l }, ∀l, (3.2b)
nEV
co = {ÑEV

co − N̂EV
co , Ñ

EV
co + N̂EV

co }, ∀c,∀o. (3.2c)

In the proposed ARO model, we identify the worst-case uncertainty realization
given the expansion decisions, i.e., that uncertainty realization that maximizes the op-
eration cost. For the uncertainty set considered in this work, this worst-case realization
corresponds to a vertex of the polyhedron representing the uncertainty set (see Jiang
et al. (2014)). Thus, it is possible to use the following equivalent binary-variable-based
set:

Ω = {cG
ot = C̃G

ot + uGĈG
ot, ∀o, ∀t, (3.3a)

pD
l = P̃D

l + uD
l P̂

D
l , ∀l, (3.3b)

nEV
co = ÑEV

co − uEV
c N̂EV

co , ∀c,∀o, (3.3c)
uG ≤ ΛG, (3.3d)∑
l

uD
l ≤ ΛD, (3.3e)

∑
c

uEV
c ≤ ΛEV, (3.3f)

uG ∈ {0, 1}, (3.3g)
uD
l ∈ {0, 1}, ∀l, (3.3h)
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uEV
c ∈ {0, 1}, ∀c}. (3.3i)

Constraints (3.3a), (3.3b), and (3.3c) expressed the price of the power bought from
the main grid, the peak demand, and the number of EVs in terms of the forecast
and fluctuation levels of the corresponding uncertain variables, respectively. Note that
from the point of view of the central planner, the worst possible long-term outcomes
are represented by an increase in the cost of the power bought from the main grid
(3.3a), a raise of the peak demand (3.3b), together with a decrease in the number of
the EVs in the network (3.3c). While the interpretation of the first two constraints is
trivial, constraint (3.3c) deserves an explanation: according to our assumptions, the
central planner is in charge of building charging stations in the system and receives a
compensation when these charging stations are used. Therefore, a long-term decrease
in the number of EVs implies in turn a lower EVs’ electricity demand, which trans-
lates into a reduction of the central planner’s potential revenues. Constraints (3.3d),
(3.3e), and (3.3f) allow controlling the robustness in the solution through the so-called
uncertainty budgets ΛG, ΛD, and ΛEV. If these uncertainty budgets are equal to 0,
it means that the corresponding uncertain variable is equal to its forecast value, i.e.,
we disregard uncertainty. As we increase the value of these uncertainty budgets, we
allow the corresponding uncertain variables to deviate from its forecast value, i.e., we
consider a comparatively more robust solution. Finally, constraints (3.3g), (3.3h), and
(3.3i) define binary variables.

3.2.4 Stochastic Adaptive Robust Optimization Model

The proposed ARO model is formulated as a trilevel programming problem. The
first level determines the expansion decisions minimizing both the expansion and the
operation costs. Given these expansion decisions, the second level identifies the worst-
case realization of peak demands, number of EVs, and the price of the electricity
exchanged with the main grid that maximize the operation costs. Finally, the third
level models the operation of the SSEES minimizing the operation cost for given first-
and second-level decisions. The proposed trilevel programming problem is formulated
as follows:

minΦL1

∑
s

CIS
s x

S
s +

∑
r

CIR
r x

R
r +

∑
c

CIC
c x

C
c +

∑
`∈ΨL+

CIL
` x

L
`

+ maxΦL2∈Ω minΦL3
ot ∈Ξ(·)∑

o

ND
o

[∑
t

(∑
g

cG
otp

G
got +

∑
l

CLS
l pLS

lot −
∑
c

CE
otp

C
cot

)]
(3.4a)
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subject to

Constraints (3.1b)− (3.1g). (3.4b)

Problem (3.4) involves three nested optimization problems:

1. The first level associated with the expansion decisions, i.e., variables in set ΦL1 =
{xS

s , ∀s; xR
r , ∀r; xC

c , ∀c; xL
` ,∀` ∈ ΨL+

n }.

2. The second level related to the worst-case realization of the value of the electricity
exchanged with the main grid, the peak demand, the number of EVs, i.e., variables
in set ΦL2 = {cG

ot, ∀o, ∀t; pD
l , ∀l; nEV

co , ∀c, ∀o}.

3. The third level modeling the reaction of the SSEES against first- and second-level
decisions, i.e., variables in set ΦL3

ot = {eS
sot, ∀s; pC

cot, ∀c; pG
got; pLS

lot, ∀l; pL
`ot, ∀`; pR

rot,
∀r; pSC

sot, ∀s; pSD
sot, ∀s; δnot, ∀n}, ∀o, ∀t.

Problem (3.4) is driven by the minimization of the worst-case expansion and opera-
tion costs (3.4a) subject to the expansion constraints (3.4b) described in Section 3.2.3.
In problem (3.4), Ω and Ξ are the uncertainty and the feasibility sets, respectively.
Uncertainty set Ω is described in Section 3.2.3, while set Ξ identifies the feasible space
of the third-level optimization variables as explained in Section 3.2.4.

Definition of the Feasibility Sets

Given first- and second-level decision variables, set Ξ models the feasible space of third-
level optimization variables:
Ξ
(
xS
s , ∀s;xR

r ,∀r;xC
c ,∀c;xL

` ,∀` ∈ ΨL+; cG
ot,∀o, ∀t; pD

lot,∀l,∀o, ∀t;nEV
co ,∀c,∀o

)
= {ΦL3

ot :

∑
g∈ΨG

n

pG
got +

∑
r∈ΨR

n

pR
rot +

∑
s∈ΨS

n

pSD
sotη

SD −
∑

`|s(`)=n
pL
`ot +

∑
`|r(`)=n

pL
`ot

=
∑
l∈ΨL

n

(
kD
otp

D
lot − pLS

lot

)
+
∑
s∈ΨS

n

pSC
sot +

∑
c∈ΨC

n

pC
cot : λnot, ∀n,∀o,∀t, (3.5a)

pL
`ot = xL

`B`

(
δs(`)ot − δr(`)ot

)
: ϕL

`ot, ∀`,∀o,∀t, (3.5b)

− P L
` ≤ pL

`ot ≤ P
L
` : µL

`ot
, µL

`ot, ∀`,∀o,∀t, (3.5c)
− π ≤ δnot ≤ π : µA

not
, µA

not, ∀n,∀o, ∀t, (3.5d)
δnot = 0 : ξnot, n: ref.,∀o,∀t, (3.5e)
G ≤ pG

got ≤ G : µ
got
, µgot ∀g,∀o, ∀t (3.5f)

0 ≤ pLS
lot ≤ pD

l k
D
lot : µD

lot
, µD

lot, ∀l,∀o, ∀t, (3.5g)

0 ≤ pR
rot ≤ KR

rotP
R
r x

R
r : µR

rot
, µR

rot, ∀r,∀o, ∀t, (3.5h)
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esot = eso,t−1 + pSC
sotη

SC
s ∆t− pSD

sot∆t : ϕEsot, ∀s,∀o,∀t, (3.5i)

ES
sx

S
s ≤ esot ≤ E

S
sx

S
s : µE

sot
, µE

sot, ∀s,∀o, ∀t, (3.5j)

0 ≤ pSC
sot ≤ P

SC
s xS

s : µSC
sot
, µSC

sot, ∀s,∀o, ∀t, (3.5k)

0 ≤ pSD
sot ≤ P

SD
s xS

s : µSD
sot
, µSD

sot, ∀s,∀o, ∀t, (3.5l)

0 ≤ pC
cot ≤ xC

c P
C
c : µC

cot
, µC

cot, ∀c, ∀o, ∀t, (3.5m)
0 ≤ pC

cot ≤ nEV
co P

EV
co K

EV
cot : µEV

cot
, µEV

cot , ∀c,∀o, ∀t, (3.5n)∑
t

pC
cot ≤ nEV

co P
EVmax
co : ϕEVco , ∀c,∀o (3.5o)

}.
Note that the feasibility set Ξ is parameterized in terms of first- and second-level

decision variables. Constraints (3.5a)-(3.5n) are identical to constraints (3.1h)-(3.1v).
Finally, observe that the dual variables are provided following a colon.

3.3 Solution Procedure
The ARO problem (3.4) is solved using a column-and-constraint generation algorithm
(see Zeng and Zhao (2013)) which is based on the iterative solution of a master problem
and a subproblem. Figure 3.1 summarizes the master and the subproblem that are
described in details in the following sections.

3.3.1 Master problem

The master problem at iteration υ is provided below:
minΦM

∑
s

CIS
s x

S
s +

∑
r

CIR
r x

R
r +

∑
c

CIC
c x

C
c +

∑
`∈ΨL+

CIL
` x

L
` + θ (3.6a)

subject to

Constraints (3.1b)− (3.1g) (3.6b)

θ ≥
∑
o

ND
o

[∑
t

(
c

G(υ′)
ot

∑
g

pG
gotυ′ +

∑
l

CLS
l pLS

lotυ′ −
∑
c

CE
otp

C
cotυ′

)]
,

∀υ′ ≤ υ, (3.6c)∑
g∈ΨG

n

pG
gotυ′ +

∑
r∈ΨR

n

pR
rotυ′ +

∑
s∈ΨS

n

pSD
sotυ′η

SD
s −

∑
`|s(`)=n

pL
`otυ′ +

∑
`|r(`)=n

pL
`otυ′

=
∑
l∈ΨL

n

(
KD
lotp

D(υ′)
l − pLS

lotυ′

)
+
∑
s∈ΨS

n

pSC
sotυ′ +

∑
c∈ΨC

n

pC
cotυ′ ,
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Figure 3.1: Iterative solution approach of the ARO problem

∀n,∀o,∀t,∀υ′ ≤ υ, (3.6d)

pL
`otυ′ = xL

`B`

(
δs(`)otυ′ − δr(`)otυ′

)
, ∀`, ∀o,∀t,∀υ′ ≤ υ, (3.6e)

− P L
` ≤ pL

`otυ′ ≤ P
L
` , ∀`, ∀o, ∀t,∀υ′ ≤ υ, (3.6f)

− π ≤ δnotυ′ ≤ π, ∀n,∀o, ∀t,∀υ′ ≤ υ, (3.6g)
δnotυ′ = 0, n: ref.,∀o, ∀t,∀υ′ ≤ υ, (3.6h)
G ≤ pG

gotυ′ ≤ G, ∀g,∀o, ∀t, ∀υ′ ≤ υ, (3.6i)

0 ≤ pLS
lotυ′ ≤ KD

lotP
D(υ′)
l , ∀l,∀o,∀t, ∀υ′ ≤ υ (3.6j)

0 ≤ pR
rotυ′ ≤ KR

rotP
R
r x

R
r , ∀r,∀o, ∀t,∀υ′ ≤ υ, (3.6k)

esotυ′ = eso,t−1,υ′ + pSC
sotυ′η

SC
s ∆t− pSD

sotυ′∆t, ∀s,∀o,∀t, ∀υ′ ≤ υ, (3.6l)

ES
sx

S
s ≤ esotυ′ ≤ E

S
sx

S
s , ∀s,∀o,∀t,∀υ′ ≤ υ, (3.6m)

0 ≤ pSC
sotυ′ ≤ P

SC
s xS

s , ∀s,∀o,∀t,∀υ′ ≤ υ, (3.6n)

0 ≤ pSD
sotυ′ ≤ P

SD
s xS

s , ∀s,∀o, ∀t,∀υ′ ≤ υ, (3.6o)
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0 ≤ pC
cotυ′ ≤ xC

c P
C
c , ∀c,∀o, ∀t, ∀υ′ ≤ υ, (3.6p)

0 ≤ pC
cotυ′ ≤ nEV(υ′)

co PEV
co K

EV
cot , ∀c,∀o, ∀t,∀υ′ ≤ υ, (3.6q)∑

t

pC
cotυ′ ≤ nEV(υ′)

co PEVmax
co , ∀c,∀o,∀υ′ ≤ υ. (3.6r)

where variables in set ΦM = {ΦL1; θ; eS
sotυ′ , ∀o, ∀t, ∀s, ∀υ′ ≤ υ; pC

cotυ′ , ∀c, ∀o, ∀t,
∀υ′ ≤ υ; pG

gotυ′ , ∀g, ∀o, ∀t, ∀υ′ ≤ υ; pLS
lotυ′ , ∀l, ∀o, ∀t, ∀υ′ ≤ υ; pL

`otυ′ , ∀`, ∀o, ∀t, ∀υ′ ≤ υ;
pR
rotυ′ , ∀r, ∀o, ∀t, ∀υ′ ≤ υ; pSC

sotυ′ , ∀s, ∀o, ∀t, ∀υ′ ≤ υ; pSD
sotυ′ , ∀s, ∀o, ∀t, ∀υ′ ≤ υ; δnotυ′ ,

∀n, ∀o, ∀t, ∀υ′ ≤ υ} are the optimization variables of master problem (3.6).
Master problem (3.6) is a relaxed version of the trilevel problem (3.4) in which

auxiliary variable θ iteratively approximates the worst-case value of the second-level
objective function. Therefore, the size of master problem (3.6) increases with the
number of iterations. Finally, note that parameters with superscript (υ′) refer to the
optimal values of variables yielded by the subproblem at iteration υ′.

3.3.2 Subproblem

At each iteration υ, master problem (3.6) provides the expansion decisions. Given these
decisions, the subproblem formulated below determines the worst-case uncertainty re-
alization:

maxΦL2∈Ω minΦL3
ot ∈Ξ(·)

∑
o

ND
o

[∑
t

(∑
g

C
G
otp

G
got +

∑
l

CLS
l pLS

lot −
∑
c

CE
otp

C
cot

)]
(3.7a)

Subproblem (3.7) is a bilevel model whose lower-level problem is continuous and
linear on its decisions variables. Thus, the lower-level problem can be replaced by
its dual constraints. Moreover, using the strong duality equality, we can replace the
objective function of the subproblem by the dual lower-level objective function (see
Bertsimas and Sim (2003)). As a result, the subproblem is finally formulated as the
following single-level problem:

maxΦL2,ΦL3
ot

∑
o

∑
t

λnot ∑
l∈ΨL

n

KD
lotp

D
l −

∑
`

P
L
` (µL

`ot
+ µL

`ot)−
∑
n

π(µA
not

+ µA
not)

∑
g

GµG
got
−
∑
g

GµG
got −

∑
l

KD
lotp

D
l µ

D
lot −

∑
r

KR
rotP

R
r x

R(υ)
r µR

rot

−
∑
s

E
S
sx

S(υ)
s µE

sot +
∑
s

ES
sx

S(υ)
s µE

sot
−
∑
s

P
SC
s xS(υ)

s µSC
sot



3.3 Solution Procedure 93

−
∑
s

P
SD
s xS(υ)

s µSD
sot −

∑
c

P
C
c x

C(υ)
c µC

cot −
∑
c

nEV
co P

EV
co K

EV
cot µ

EV
cot


−
∑
c

nEV
co P

EVmax
co ϕEV

co

 (3.8a)

subject to

Constraints (3.3) (3.8b)
ND
o c

G
ot = λn(g)ot − µG

got + µG
got
, ∀g,∀o, ∀t, (3.8c)

ND
o C

LS
l = λn(l)ot − µD

lot + µD
lot
, ∀l,∀o, ∀t, (3.8d)

−ND
o C

E
ot = −λn(c)ot + µC

cot
− µC

cot + µEV
cot
− µEV

cot − ϕEV
co , ∀c,∀o,∀t, (3.8e)

− λs(`)ot + λr(`)ot + ϕL
`ot + µL

`ot
− µL

`ot = 0, ∀`,∀o,∀t, (3.8f)
λn(r)ot + µR

rot
− µR

rot = 0, ∀r,∀o,∀t, (3.8g)
λn(s)otη

SD
s + ϕE

sot∆t+ µSD
sot
− µSD

sot = 0, ∀s,∀o,∀t, (3.8h)
− λn(s)ot − ϕE

sotη
SC∆t+ µSC

sot
− µSC

sot = 0, ∀s,∀o, ∀t, (3.8i)
ϕE
sot − ϕE

so,t−1 + µE
sot
− µE

sot = 0, ∀s,∀o,∀t (3.8j)

−
∑

`|s(`)=n
x

L(υ)
` B`ϕ

L
`ot +

∑
`|r(`)=n

x
L(υ)
` B`ϕ

L
`ot + µA

not
− µA

not = 0, ∀o, ∀t, ∀n \ n : ref.,

(3.8k)

−
∑

`|s(`)=n
x

L(υ)
` B`ϕ

L
`ot +

∑
`|r(`)=n

x
L(υ)
` B`ϕ

L
`ot + µA

not
− µA

not + ξnot = 0, ∀o, ∀t, n : ref.,

(3.8l)
µL
`ot
, µL

`ot ≥ 0, ∀`,∀o,∀t (3.8m)
µA
not
, µA

not ≥ 0, ∀n,∀o,∀t, (3.8n)
µG
got
, µG

got ≥ 0, ∀g,∀o,∀t, (3.8o)

µD
lot
, µD

lot ≥ 0, ∀l,∀o,∀t, (3.8p)
µR
rot
, µR

rot ≥ 0, ∀r,∀o, ∀t, (3.8q)
µE
sot
, µE

sot ≥ 0, ∀s,∀o,∀t, (3.8r)
µSC
sot
, µSC

sot ≥ 0, ∀s,∀o,∀t, (3.8s)
µSD
sot
, µSD

sot ≥ 0, ∀s,∀o,∀t, (3.8t)
µC
cot
, µC

cot ≥ 0, ∀c, ∀o, ∀t, (3.8u)
µEV
cot
, µEV

cot ≥ 0, ∀c,∀o,∀t, (3.8v)
ϕEV
co ≥ 0, ∀c,∀o. (3.8w)
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3.3.3 Algorithm

Given the master problem (3.6) and subproblem (3.7), the column-and-constraint gen-
eration algorithm works as follows:

1. Initialize the iteration counter (υ ← 0), select the convergence tolerance (ε), and
set the lower bound (LB) and upper bound (UB) to −∞ and +∞, respectively.

2. Solve master problem (3.6).

3. Update the lower bound using equation (3.9) below:

LB = zM∗ (3.9)

where zM∗ is the optimal value of the objective function (3.6a).

4. Set xS(υ)
s = xS∗

s , ∀s; xR(υ)
r = xR∗

r , ∀r; xC(υ)
c = xC∗

c , ∀c; and x
L(υ)
` = xL∗

` , ∀`, where
xC∗
c , ∀c; xR∗

r , ∀r; xS∗
s , ∀s; and xL∗

` , ∀`, denote the optimal values of these variables
yielded by the solution of the master problem (3.6) in Step 2.

5. Solve subproblem (3.8).

6. Update the upper bound using equation (3.10) below:

UB = min{UB,
∑
s

CIS
s x

S(υ)
s +

∑
r

CIR
r xR(υ)

r +
∑
c

CIC
c xC(υ)

c +
∑

`∈ΨL+

CIL
` x

L(υ)
` + zS∗}

(3.10)
where zS∗ is the optimal value of the objective function (3.8a).

7. If UB − LB < ε, the algorithm stops. The optimal expansion decisions are xR∗
r ,

∀r; xS∗
s , ∀s; xC∗

c , ∀c; and xL∗
` , ∀`. Otherwise, go to step 8.

8. Update the iteration counter υ ← υ + 1.

9. Set pD(υ)
l = pD

l , ∀l; cG(υ)
ot = cG∗

ot , ∀o, ∀t; and nEV(υ)
co = nEV∗

co , ∀c, ∀o, where pD
l , ∀l;

cG∗
ot , ∀o, ∀t; and nEV∗

co , denote the optimal values of these variables yielded by the
solution of the subproblem (3.8) in Step 5.

10. Go to step 2.

3.4 Case Study
The proposed ARO model is analyzed using the four-node test system depicted in
Figure 3.2. In this SSEES, residential demand load is located in all nodes and can be
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served using electricity produced by the PV and storage units, or by purchasing it from
the main grid with which node 1 is connected. Charging stations, PV and storage units
can be built either at node 2 or at node 3. The “a priori” assumed capacity of storage,
PV, and charging units are reported in Table 3.1. We assume that a candidate charging
stations have a capacity of 3.3 kW, while 10 kW is the capacity of each candidate PV
unit. Batteries are assumed to have charging and discharging capacity equal to 10 kW
and can store energy up to 10 hours. The charging and discharging efficiencies are
set equal to 0.9. The investment costs for PV units, charging stations, and battery
are taken from Fu et al. (2017); Pandžić et al. (2015); Smith and Castellano (2015)
respectively. These investment costs are reported in Table 3.1 and are proportioned
with the “a priori” capacities assumed for each candidate installation.

Note that investment costs reported in Table 3.1 have to be annualized to make
them comparable with operations costs. In our analysis, we apply a 10% rate for the
annualization of these investment costs. Finally, we consider that it is possible to build
up to 10000 storage units, 10000 PV plants and 10000 charging stations.

Figure 3.2: Four-bus system

Candidate units Capacity [kW] Investment Cost [$]
Storage unit 10 7000
PV plant 10 21400
Charging station 3.3 3000

Table 3.1: Data for candidate units.

Following Sun et al. (2015), we consider EVs with a 0.33 kWh/mi energy rating,
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a 24 kWh battery capacity, and a maximum charging rate equal to 3.3 kW. All EVs
can charge immediately after the arrival, i.e. we do not assume any smart charging
strategy. The possible departure and arrival locations of EVs are “home” (identified
by node 3) and “work” (corresponding to node 2), where these can be charged by
connecting to the dedicated stations. To characterize EV travel behavior, the 2009
National Household Travel Survey (NHTS) for the Texas State is used.1

In particular, we assume that the typical behavior of EV drivers is approximately
similar to combustion vehicles. Looking at the complete data set, it is possible to
notice that the vehicle path changes according to the day of the week; for this reason
we separate these data into two categories: weekend and working days. By combining
data for “departure”, “arrival”, and “time of the trip” of the single vehicle, we obtain
data for parking time in both the locations considered, i.e. “work” and “home”. We
estimate the percentage of battery discharging during the trip by considering the “miles
run” data. We assume that vehicles are always charged when parked until the battery
is full or they leave for another location. In this way, we obtain the EV electricity
demand for each vehicle during a 24 hour horizon. We group the data in order to
obtain four hourly different EVs demand profiles, i.e. “work” and “home” during week
days and weekend. We then divide each profile by the the respective EV peak demand
to obtain the factor KEV

cot . Moreover, we construct the parameter PEVmax
cot that limits

the daily EV demand considering that the battery has to stop charging when full.
Historical load data are obtained from the Electric Reliability Council of Texas

(ERCOT)2 and scaled to obtain reference loads for the system. These reference loads
are then apportioned to the nodes based on the historical distribution of loads of the
North Central Zone of Texas, which is the area with the highest demand. The con-
sidered average peak load values P̃D

l for the system are 380 kW for node 1, 420 kW
for node 2, 750 kW for node 3, and 480 kW for node 4. To determine the price of the
power exchanged with the main grid, we use historical day-ahead electricity prices for
the ERCOT North Central load zone. Solar data are obtained from version 2017.1.17 of
the System Advisor Model (SAM),3 based on weather data from the National Solar Ra-
diation Database (NSRDB).4 To maintain the correlation between solar and load data,
PV power production data refers to the North Central Zone of Texas. More specifically,
PV power production data are obtained as average production of 12 different locations
within the considered zone. This allows us to obtain a power production which is not
influenced by extremely favorable/disadvantageous solar conditions pertaining specific
plants. Finally, in order to maintain correlation among electricity prices, loads and

1Data available at https://nhts.ornl.gov/
2Data available at www.ercot.com
3Data available at https://sam.nrel.gov/
4Data available at https://rredc.nrel.gov/solar/old_data/nsrdb/

https://nhts.ornl.gov/
www.ercot.com
https://sam.nrel.gov/
https://rredc.nrel.gov/solar/old_data/nsrdb/
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solar production, all these data pertain to the same year, i.e., 2015. All these data are
used to compute the operating conditions used to estimate the short-term uncertainty.

We consider a total of 10 operating conditions, that are further subdivided to
represent working days and weekends. As explained above, each operating condition
has a weight assigned during the clustering procedure. The total weight of the subset
of operating conditions pertaining working days is equal to the number of working
days in a year, i.e. 261. On the other side, the total weight of the operating conditions
related to weekends is 104, namely the global number of Saturdays and Sundays in a
year. This differentiation is introduced to deal with the different time of travel and
arrival/departure profiles of the EVs during working days and weekends.

To model the long-term uncertainty, we assume that the price of the electricity
exchanged with the main grid and the peak demand can increase respectively up to
25% and 50% in the long term with respect to their expected values, respectively. The
possibility of a 25% reduction in the number of EV is instead assumed in the long run.
Since loads are located in all nodes, the demand uncertainty budget ΛD can range from
0 to 4. For the same principle, since there is only one connection to the main grid,
the grid uncertainty budget ΛG can range from 0 to 1 and, because there are only two
possible locations for charging stations, the EV uncertainty budget ΛEV can range from
0 to 2.

In addition to the already existing lines 1-4, the candidate lines 5-8 can be built.
In particular, lines 6 and 7 are reinforcement lines, while lines 5 and 8 establish new
connections between the nodes. Line data are reported in Table 3.2.

Line From Node To Node Reactance [p.u.] Flow Limit [kW] Investment Cost [$]
1 1 2 0.097 1000 −
2 1 3 0.097 1000 −
3 2 4 0.097 1000 −
4 3 4 0.097 1000 −
5 1 4 0.097 550 10500
6 1 3 0.097 550 8000
7 1 2 0.097 550 8000
8 2 3 0.097 550 10500

Table 3.2: Flow limits and investments costs for candidate lines of the SSES network

Parameter CE
ot, which identifies the revenues that the central planner gets from

selling electricity to EVs, is assumed to be twice (unless otherwise specified) the forecast
price of the power exchanged with the main grid C̃G

ot. The latter ranges from a minimum
of 13$/kWh to a maximum of 203$/kWh according to the operating condition and hour
of the day. Note that, in most of the analyzed cases illustrated in the following section,
the central planner withdraws electricity from the grid. Finally, load shedding cost is
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set equal to 1000 $/kWh.

3.5 Results
This section describes the results of our analysis. As indicated above, we evaluate
how investment decisions change depending on the considered long-term uncertainty,
the central planner’s revenues accruing from selling electricity to EVs, the degree of
independency of the SSEES from the main grid, and the possibility of expanding the
network. Finally, we provide an ex-post estimation of the amount of CO2 emissions
saved thanks to the penetration of renewable energy and EVs.

Note that analysis of each impact listed above entails some modifications of the
general ARO model presented in Section 3.2 as explained in the following.

3.5.1 Impact of the long-term uncertainty

In this case, we investigate how the investment choices change when setting different
values of uncertainty budgets that regulate the worst possible realizations of some long-
term parameters. This evaluation is conducted considering the following assumptions:

• No limits on the power exchanged with the main grid is imposed, namely con-
straint (3.5f) is relaxed.
• No line expansion is allowed so that the network only accounts for already existing

lines 1-4. We denote this four-line network as “4L”.

In addition, taking as reference the above assumptions, we run two sets of simulations:

1. The capacity limits of the existing lines in the “4L” network are those indicated
in Table 3.2. We indicate this case as “4L.F.C.”, namely “four-line network, full
line capacity”.

2. We reduce the capacity of the existing lines of the “4L” network by 20% as com-
pared to the values reported in Table 3.2. We indicate this case as “4L.80%F.C.”,
namely “four-line network, 80% of the full line capacity”.

We start our analysis by setting ΛG, ΛL, or ΛEV equal to zero, meaning that long-
term uncertainty in the peak demand, the value of the electricity exchanged with the
main grid, and the number of EVs is not considered and that the model reduces to the
deterministic form described in Section 3.2.3. Note that this directly descends from
the construction of uncertainty set Ω defined by constraints (3.3a)-(3.3i). Table 3.3
reports the results for the deterministic case.
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Deterministic
# Charging

stations
Solar

Capacity (kW)
Storage

Capacity (kW)
Total

Cost ($)
4L.F.C. 4L.80%F.C. 4L.F.C. 4L.80%F.C. 4L.F.C. 4L.80%F.C. 4L.F.C. 4L.80%F.C.

ΛG, ΛL, ΛEV = 0 91 85 0 0 0 70 221,520 228,026

Table 3.3: Results for the deterministic case

Simulations for case “4L.F.C” show that there is no network congestion. However,
congestion appears in the implementation of the “4L.80%F.C.” scenario. This is a
common trend underlying results in Sections 3.5.1-3.5.3. In the “4L.F.C.” case, PV
and storage units are not built since the consumers’ and EVs’ demand can be directly
satisfied by the electricity withdrawn from the main grid. The central planner only
invests in charging stations because they represent a source of revenues. The situation
changes under the “4L.80%F.C.” case. The appearance of congestion limits the access
to the main grid and therefore the system needs the construction of 70 kW of storage
capacity to accommodate the short-term uncertainty. Investments in charging stations
remain even though the number of charging stations built is reduced with respect to
the “4L.F.C.” case. This is due to the fact that the load shedding cost term CLS

l in the
objective function (3.4a) gives priority to the consumers, i.e., the electricity drained
from the main grid is firstly used to satisfy residential demand because there is a
penalty in case of unserved demand, then the excess is sold to the EV owners. As
expected, congestion increases the total costs of the SSEES, implying a reduction of
its efficiency. Note that in both cases, electricity is only withdrawn from the main grid
and it is not sold back.

# Charging
stations

Solar
Capacity (kW)

Storage
Capacity (kW)

Total
Cost ($)

ΛG 4L.F.C. 4L.80%F.C. 4L.F.C. 4L.80%F.C. 4L.F.C. 4L.80%F.C. 4L.F.C. 4L.80%F.C.
0 64 61 0 770 330 460 318,325 453,454
1 59 28 0 770 330 460 403,243 526,463

Table 3.4: Impact of the long-term uncertainty of the value of the electricity from the
main grid on investment decisions

As soon as the values the uncertainty budget ΛG, ΛL, or ΛEV differ from zero,
long-term uncertainties are considered. Table 3.4 illustrates the changes in the optimal
expansion decisions for different values of the uncertainty budget ΛG. For this analysis,
we fix ΛL = 2 and ΛEV = 1, meaning that the peak load can increase in up to the two
nodes which represent the worst possible outcomes for the system, and the number
of EVs can decrease in one location.When ΛG = 0, we assume that the value of the
electricity exchanged with the main grid does not deviate from its average in the long-
run, i.e. we measure the effect of the uncertainty in the peak demand and EVs only.
The obtained results differ from those reported in Table 3.3. In particular, the number
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of charging stations reduces, the storage units are built even in absence of congestion to
compensate the increased demand and PV plants are installed when congestion appears
to maintain the system balance. This situation is exacerbated when ΛG = 1, i.e., when
we assume that the price of the electricity exchanged with the main grid can increase
in the long run. This leads to a further drop of investments in charging stations due
to the reduction of the revenues generated from selling electricity. Thus, total costs
increase compared to the deterministic case.

The optimal expansion decisions for different values of the uncertainty budget ΛL

are reported in Table 3.5. In this case, we set ΛG = 1 and ΛEV = 1. We notice that the
uncertainty in the peak demand has a major impact on the expansion decisions. In the
“4L.F.C.” configuration, when ΛL = 0, storage capacity is not required. Anyway, the
total cost is higher with respect to the deterministic case because of the nonzero values
of the other two uncertainty budgets. Setting ΛL = 1 indicates that an increase of
the peak demand at node 3, the node with highest peak demand, is the worst possible
realization of the uncertain variable. A 170 kW storage capacity is required, while
there is a decrease in the amount of charging stations built. The total cost increases
by 21.5% with respect to the ΛL = 0 “4L.F.C.” simulation. By setting ΛL = 2, loads
at nodes 3 and 4 result to be the worst possible demand realizations for the system.
In this case, 330 kW of storage capacity are built. Further increasing the uncertainty
in the peak demand by setting ΛL = 3 and ΛL = 4 stimulates investment also in PV
(50 kW), and increases the investments in storage units, especially when the system is
congested. This has an impact on the total costs, which become 60% higher than the
ΛL = 0 “4L.F.C.” case.

As already observed, the congestion leads to higher total costs and to the installa-
tion of storage and solar capacity with lower level of uncertainty with respect to the
non congested case. Interestingly in the congested case, when ΛL = 3 and ΛL = 4, the
system starts both purchasing and selling electricity to the main grid and installing a
considerable amount of solar capacity to counteract congestion. Note that the propor-
tion of the power sold to the main grid comes from the PV units, but it remains lower
than the amount that is withdrawn. However, this partially helps to abate the total
cost of the system.

Table 3.6 reports the results for different values of the uncertainty budget ΛEV.
We fix ΛG = 1 and ΛL = 2 in this case. As it can be noticed, the variation of ΛEV

has a limited impact on the total cost, which however remains higher than in the
deterministic case. The trend of investment decisions is similar to that observed in
Table 3.4.
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# Charging
stations

Solar
Capacity (kW)

Storage
Capacity (kW)

Total
Cost ($)

ΛL 4L.F.C. 4L.80%F.C. 4L.F.C. 4L.80%F.C. 4L.F.C. 4L.80%F.C. 4L.F.C. 4L.80%F.C.
0 63 60 0 0 0 70 296,632 300,760
1 60 56 0 360 170 330 360,256 421,514
2 59 28 0 770 330 460 403,243 526,463
3 58 80 50 9630 390 510 446,411 2,194,878
4 58 80 50 9630 390 510 474,884 2,223,352

Table 3.5: Impact of the long-term uncertainty of peak demand on investment decisions

# Charging
stations

Solar
Capacity (kW)

Storage
Capacity (kW)

Total
Cost ($)

ΛEV 4L.F.C. 4L.80%F.C. 4L.F.C. 4L.80%F.C. 4L.F.C. 4L.80%F.C. 4L.F.C. 4L.80%F.C.
0 77 35 0 770 330 460 402,007 525,863
1 59 28 0 770 330 460 403,243 526,463
2 58 28 0 770 330 460 403,261 526,463

Table 3.6: Impact of the long-term uncertainty of the number of EVs on investment
decisions

3.5.2 Impact of the revenues associated with EVs

In this section, we evaluate how the central planner’s investment choices change de-
pending on the revenues that it gets from supplying electricity to EVs through charging
stations. We take into consideration the following assumptions:

• No limits on the power exchange with the main grid is imposed, namely constraint
(3.5f) is relaxed.
• No line expansion is allowed so that the network only accounts for already existing

lines 1-4.
• We take as reference the “4L.F.C.” case.
• Uncertainty budgets are fixed to ΛG = 1, ΛL = 2, and ΛEV = 1.

In general, charging stations are built only if they represent a profit for the central
planner, i.e., when the difference between the revenues that it obtains from selling
electricity to EV owners through charging stations and the electricity provision costs is
high enough to cover part or all investment costs in charging stations. We recall that
the electricity provided to the charging stations derives either from the main grid, the
PV units, or the storage units. Since the solar power is assumed to be freely generated,
it becomes crucial the margin between the price applied to the electricity sold to the
EVs’ owners CE

ot and the forecast price of the power exchanged with the main grid C̃G
ot.

For this reason, we conduct a sensitivity analysis on the values assumed by parameter
CE
ot compared to C̃G

ot. The range of values is reported in Table 3.7.
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Values of CE
ot # Charging Solar Storage Total

Stations Capacity (kW) Capacity (kW) Cost ($)
CE
ot = 1.5C̃G

ot 0 0 330 408,474
CE
ot = 1.8C̃G

ot 17 0 330 407,375
CE
ot = 2C̃G

ot 59 0 330 403,243
CE
ot = 2.5C̃G

ot 71 0 340 387,038
CE
ot = 3C̃G

ot 73 0 370 369,482
CE
ot = 5C̃G

ot 104 0 420 292,490
CE
ot = 6.5C̃G

ot 115 10 440 231,679

Table 3.7: Impact of the revenues associated with EVs on investment decisions

When the value of CE
ot 50% higher than that of C̃G

ot there is no installation of charging
stations, which start to be built when this gap is equal to 80%, i.e CE

ot=1.8 C̃G
ot. From

this point on, there is a progressive increasing trend in investments in charging units
as far as CE

ot doubles the value of C̃G
ot. The relation between these two parameters also

affects the investments in storage units whose total capacity amounts to 330 kW till
the proportion is equal to 2, i.e. CE

ot=2 C̃G
ot and then starts increasing for higher ratios.

Moreover, the raise of the revenues from EVs implies a reduction of the total costs. It is
remarkable the case CE

ot=6.5 C̃G
ot, where the revenues are so consistent that it becomes

convenient investing in a PV plant to provide additional power to charging stations.

3.5.3 Impact of the degree of dependency of SSEES from the
main grid

This section is devoted to the analysis of the impact that the dependency of the SSEES
from the main grid has on the expansion decisions. The illustrated results are based
on these assumptions:

• No line expansion is allowed so that the network only accounts for already existing
lines 1-4.
• We take as reference the “4L.F.C.” case.
• Uncertainty budgets are fixed to ΛG = 1, ΛL = 2, and ΛEV = 1.

In order to detect the level of SSEES dependence on the main grid, we first run the
ARO model considering the conditions listed above and assuming that constraint (3.5f)
is relaxed. From this, we obtain that the maximum power purchased from the main
grid is 2250 kW. We take 2250 kW as reference and then we re-run the ARO model
by making constraint (3.5f) active and attributing different values to upper and lower
bound G and G, respectively. In particular, since in almost all the previous simulations
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the system is only importing power from the main grid, here we are interested in
addressing how expansion decisions change when the maximum amount of electricity
drainable from the main grid reduces. For this reason, we assume that parameter G can
take the values of 2000 kW, 1800 kW, 1600 kW, 1400 kW, corresponding to a reduction
of 11%, 20%, 29%, and 38% of the reference amount withdrawn, respectively, and we
fix the lower bound G, i.e. the minimum hourly amount of electricity that can sold to
the grid, to -2000 kW in all the following simulations.

G # Charging Solar Storage Total
Stations Capacity (kW) Capacity (kW) Cost ($)

No limits 59 0 330 403,243
2000 kW 58 0 520 411,538
1800 kW 36 530 530 490,368
1600 kW 20 1,230 710 606,605
1400 kW 135 32,760 870 41,557,144

Table 3.8: Impact of the limits of the power purchased from main grid on investment
decisions

The results of this analysis are reported in Table 3.8, where row “No limits” reports
the expansion decisions taken by the central planner when it can freely withdraw
electricity from the main grid. The general trend, observed when the supply from the
main grid is set equal either to 2000 kW, 1800 kW or 1600 kW, is that central planner
prefers to invest more in PV and storage units, while reducing the number of charging
stations built. This is a direct consequence of forced limited access to the main grid:
additional PV plants are needed to cover the SSEES’ power demand and storage units
are built to mitigate solar production variability. In this way, the system is more
autonomous but its management becomes more expensive leading to an increase of
the total costs. In all these cases, withdrawal and purchase of electricity represent
the net position that the central planner has with respect to the main grid. On the
other side, we have a turnaround when parameter G is set equal to 1400 kW. This
limitation pushes the system to exchange power with the grid generating a negative
overall balance, i.e., the system is selling more power to the grid than what is buying.
From a practical point of view this is translated into an explosion of investments in PV
and storage units, as well as in charging stations. This effect is in line with the value
of the binary variable uG associated with uncertainty budget ΛG, which results to be
equal to zero only in this specific case. Note that, by fixing ΛG = 1, we allow uG = 1,
i.e. a long-term increase in the price of electricity exchanged with the main grid. This
always represents the worst case scenario for the system, which is mainly draining
power from the main grid. On the other side, if the system is overall selling power
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to the grid the worst case scenario is represented by the electricity prices remaining
constant, i.e., non increasing, in the long run, therefore uG = 0.

3.5.4 Impact of network expansion

The results presented in the above sections are obtained by assuming that the central
planner can expand the network, therefore we consider an 8-line SSEES (“8L”) with 4
existing and 4 candidate lines. The other considered assumptions are as follows:

• No limits on the power exchange with the main grid is imposed, namely constraint
(3.5f) is relaxed.
• The revenues associated with EVs are set both at CE

ot = 2C̃G
ot and at CE

ot = 3C̃G
ot.

• Uncertainty budgets:

– ΛG = 1, ΛL = 2, and ΛEV = 1 that identify intermediate SSEES conditions.

– ΛG = 1, ΛL = 4, and ΛEV = 2 that describe a more extreme situation for
the SSEES.

In addition to the above assumptions, we run two sets of simulations:

1. The capacity limits of the existing and candidate lines in the “8L” network are
those indicated in Table 3.2. We indicate this case as “8L.F.C.”, namely “eight-
line network, full line capacity”.

2. We assume that the capacity of the candidate lines are as those reported in Table
3.2, but those of the existing lines are reduced by 20%. We indicate this case as
“8L.80%F.C.”, namely “eight-line network, 80% of the existing line full capacity”.

Candidate lines constructed
ΛG = 1, ΛL = 2, ΛEV = 1 ΛG = 1 ΛL = 4 ΛEV = 2
8L.F.C. 8L.80%F.C. 8L.F.C. 8L.80%F.C.

CE
ot = 2C̃G

ot No new lines Lines 5 and 6 Line 7 Lines 5, 6, and 7
CE
ot = 3C̃G

ot Line 7 Lines 5 and 6 Line 7 Lines 5, 6, and 7

Table 3.9: Line expansion in the different simulations

Results are summarized in Tables 3.9-3.11. We first concentrate our attention on
the column “ΛG = 1, ΛL = 2, ΛEV = 1” of Table 3.9, which shows the network line
expansion decisions taken by the central planner under the considered assumptions.
There are no investments in candidate lines when the “8L.F.C.” case is considered and
the condition CE

ot = 2C̃G
ot applies. This means that the central planner still operates
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Uncertainty
Budget

# Charging
stations

Solar
Capacity (kW)

Storage
Capacity (kW)

Total
Cost ($)

ΛG = 1, ΛL = 2, ΛEV = 1 8L.F.C. 8L.80%F.C. 8L.F.C. 8L.80%F.C. 8L.F.C. 8L.80%F.C. 8L.F.C. 8L.80%F.C.
CE
ot = 2C̃G

ot 59 60 0 0 330 60 403,243 411,171
CE
ot = 3C̃G

ot 75 80 0 0 170 60 366,554 375,923

Table 3.10: Impact of network expansion with ΛG = 1, ΛL = 2, ΛEV = 1

with a four-node network and, in fact, the corresponding results reported in Table
3.10 are analogous to those of the related “4L.F.C.” scenario where only storage units
and charging stations are realized (compare Table 3.10 with Table 3.5). The situation
changes if the“8L.F.C.” case is combined with the CE

ot = 3C̃G
ot scenario. In this situa-

tion, the central planner adopts a strategy that allows it to increase its revenues and,
therefore, to reduce its total costs. Since the revenues from selling electricity to the
EVs is twice than the value of the electricity exchanged with the main grid, it aims at
exploiting this opportunity by expanding the network and building line 7 (see Table
3.9) that connects node 1, the node linked with the main grid, with node 2, where
charging stations can be installed (see Figure 3.2). This leads to a reinforcement of the
already existing line 1. As a result, it has the possibility to withdrawn more energy
from the main grid and increase the amount of power provided to EVs. This trend is
also confirmed by the other expansion decisions highlighted in Table 3.10 where one
can observe a significant raise of the charging stations built and a contraction of the
total costs due to the revenues accruing from EVs in comparison with the “8L.F.C.”
case associated with and CE

ot = 2C̃G
ot scenario. Moreover, since the access to the main

grid is facilitated by the additional line, storage units become less useful and therefore
the central planner reduces its investments in these facilities. Note that the network ex-
pansion improves the SSEES efficiency since, comparing the outcome of the “8L.F.C.”
case, combined with the CE

ot = 3C̃G
ot scenario, with the results of the similar “4L.F.C.”

case reported in Table 3.7, we observe an important reduction of the system total costs.
When considering the “8L.80%F.C.” and “ΛG = 1, ΛL = 2, ΛEV = 1” assumptions,

the situation changes. Recall that under the “4L.80%F.C.” scenarios, the four-line
network is congested since the distribution capacity is reduced. Allowing for network
expansion in “8L.80%F.C.”, congestion is relieved thanks to the investments in new
lines 5 and 6 both when CE

ot is 100% and 200% higher than C̃G
ot (see Table 3.9). Line 5

links the main grid with node 4, where consumers’ demand is located; line 6 reinforces
line 2, connecting the main grid with node 3, where there are both consumers and
EVs’ electricity demands. Moreover, the strategy adopted by the central planner in
terms of investments in charging stations and PV plants is similar to that applied in
the corresponding “8L.F.C.” cases. A different policy is considered for the charging
stations which are much lower than in “8L.F.C.” case scenarios and are not affected by
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the different revenues deriving from the EVs. This derives from the fact that, since two
more lines are built, the SSEES becomes more stable and it is more convenient to with-
draw energy from the main grid, when needed, instead of activating storage systems.
Indeed, the reduced capacity of the four existing lines represents a disadvantage for the
SSEES compared to “8L.F.C.” cases, since the central planner is forced to build two
candidate lines. This is also reflected in terms of total costs that in the “8L.80%F.C.”
scenarios are a bit higher than in the corresponding “8L.F.C.” conditions.

Uncertainty
Budget

# Charging
stations

Solar
Capacity (kW)

Storage
Capacity (kW)

Total
Cost ($)

ΛG = 1, ΛL = 4, ΛEV = 2 8L.F.C. 8L.80%F.C 8L.F.C. 8L.80%F.C. 8L.F.C. 8L.80%F.C. 8L.F.C. 8L.80%F.C.
CE
ot = 2C̃G

ot 59 61 0 0 240 0 467,600 475,345
CE
ot = 3C̃G

ot 69 71 0 0 240 0 434,427 438,898

Table 3.11: Impact of network expansion with ΛG = 1, ΛL = 4, ΛEV = 2

We now look at the column “ΛG = 1, ΛL = 4, ΛEV = 2” of Table 3.9, namely at
the network expansion decisions when the maximum values of the uncertainty budgets
are considered. The situation outlined by these extreme long-run uncertainty puts
the system under pressure and the four-existing lines alone do not suffice to satisfy
the SSEES’ needs in any case. When the “8L.F.C.” is considered, the central planner
decides to support already existing line 1 by building line 7. The network expansion
assumes an increasingly important role in the “8L.80%F.C.” cases when the capacity
of the existing lines is reduced. The combination of higher long-term uncertainty and
limited network capacity forces the central planner to construct lines 5, 6, and 7,
namely, two additional lines as for the corresponding cases with “ΛG = 1, ΛL = 2,
ΛEV = 1” are no longer enough to support the system. These decisions on the grid
expansion are complementary with the investment strategies in charging stations and
storage units reported in Table 3.11 for the different cases. Due to the significant
level of uncertainty in the number of EVs, there is a consequent drop on the number
of charging stations constructed compared to related scenarios in Table 3.10. The
overall framework makes the system less efficient with respect to the situation with
intermediate uncertainty values (compare Tables 3.10 and 3.11), causing an increase of
the total costs.

Finally, note that there are no investments in PV units. This holds in all considered
cases and this means that it is less expensive to invest in the network and make it
adequate to the system requirements instead of building new PV plants.

3.5.5 An ex-post decarbonization analysis

We now analyze whether the adoption of EVs can be environmentally advantageous
and can contribute to the achievement of the decarbonization targets imposed by the
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European Commission. The penetration of EVs leads to a trade-off: on one side, these
are introduced to replace pollutant conventionally fuelled cars. However, on the other
side, a progressive integration of EVs would imply an increase of electricity demand. In
this case, the main issue is to understand which sources are used for power generation.
If EVs are charged using renewable energy only, this would significantly contribute to
mitigate CO2 emissions; otherwise the emissions saved by the replacement of conven-
tionally fuelled cars with EVs are partially or, in the worst case, totally compensated
by those emitted when producing the electricity that EVs need. Translating this for
our case, the increase of electricity demand due to the penetration of EVs is covered
by importing more power from the main grid, or alternatively by installing PV within
the SSEES. On the contrary, a system without EVs is importing less power from the
main grid, but is emitting CO2 by using fuel vehicles.

For this decarbonization analysis, we consider the following assumptions:

• No limits on the power exchanged with the main grid is imposed, i.e., constraint
(3.5f) is relaxed.
• The revenues associated with EVs are set at CE

ot = 2C̃G
ot.

• All the main cases related to network configuration are analyzed: “4L.F.C.”,
“4L.80%F.C”, “8L.F.C.”, and “8L.80%F.C”. In all these cases, charging stations
are built.
• Uncertainty budgets are fixed to ΛG = 1, ΛL = 2, and ΛEV = 1.

To detect the possible decarbonization achieved with the integration of EVs, we com-
pare two situations: the first corresponds to the formulation discussed in the work
where EVs circulate and are charged; in the second, we assume that the charged EVs
are replaced by diesel fuelled vehicles. In the following, we denote these two situations
as “EVs” and “NO EVs”, respectively. We then compute the emissions generated by
these two SSEES configurations: in the first one, CO2 only derives from electricity
production; in the second, carbon emissions are a “negative” output of both power
generation and car utilization. We start from the amount of CO2 emitted by electricity
production. Solar energy generated by PV units is carbon free. However, emissions
could be generated by the electricity withdrawn from the main grid that is used to sup-
ply EVs’ and consumers’ demand. As explained in Section 3.4, our input data mainly
refer to Texas. For this reason, we looked for the fuel mix used to generate electricity
in that area of the US. According to the Alternative Fuel Data Center,5 approximately
45% of the electricity production in Texas is generated with natural gas, 29% from
coal and the rest from CO2 free sources, including nuclear power. Taking as reference
this fuel mix, we assign to the electricity taken from main grid an emission factor of

5See https://www.afdc.energy.gov/vehicles/electric_emissions.php

https://www.afdc.energy.gov/vehicles/electric_emissions.php
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0.466 Ton CO2/MWh that is computed as a weighted average of the emission factors
associated with the fuels used to produce electricity and their corresponding proportion
in the Texan power generation.
To compute the carbon emissions of diesel vehicles, we assume that:

• diesel vehicles replace charging EVs, i.e., the number of cars circulating in the
system remains the one resulting from our analysis;
• diesel vehicles replicate exactly the travel path of the EVs;
• a 8.5 km/liter consumption is assumed for diesel vehicles;
• the CO2 emission rate associated with diesel vehicles is equal to 2.6391 kg CO2/liter

of fuel.6
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Figure 3.3: Annual ton CO2 emission in the considered cases

Figure 3.3 shows the annual amount of CO2 generated in the considered cases. For
each market configurations, we compare the CO2 emissions generated by the whole
system in presence and in absence of EVs. Under the “EVs” situation, we consider
the emissions generated by the total amount of electricity that supply the SSEES’
demand, including the power consumed by EVs and local consumers. In the “NO EVs”
situation, we consider the emissions that derive from the electricity required by local
consumers only and CO2 emitted by the diesel fuelled cars. The electricity needed by
local consumers is the same in the two situations; what makes the difference is the power
used to supply charging stations that is not accounted for in the “NO EVs” situation.
Note that, as also indicated in Section 3.5.4, configurations “4L.F.C.” and “8L.F.C.”

6See https://carbonpositivelife.com/co2-per-litre-diesel/

https://carbonpositivelife.com/co2-per-litre-diesel/
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give the same results in terms of expansion choices and total costs and therefore have
identical CO2 emission levels.

From Figure 3.3, we observe that, in all cases, the adoption of EVs allows sav-
ing a significant amount of CO2 compared to the corresponding “NO EVs” situation,
notwithstanding the fact that their utilization implies a larger electricity consump-
tion level. These emission cuts are 17%, 11%, and 18% in the “4L.F.C.”& “8L.F.C.”,
“4L.8’0%F.C.”, and “8L.80&F.C.” scenarios, respectively. This means that the integra-
tion of EVs, supported by a parallel penetration of renewable-based power plants and
an adequate network development, significantly contribute to climate change mitiga-
tion and to the decarbonization targets. Note that, in our analysis, the lowest emission
save is achieved in the “4L.8’0%F.C.” case, when network is congested and its expansion
is not allowed. This is because the congestion reduces the power that is imported from
the main grid. Under this framework, PV units are built only to supply residential
demand and the number of charging stations installed and, therefore, the electricity
used to supply EVs is lower than in the other cases. In this way, the CO2 reduction is
comparatively smaller.

3.6 Conclusions

Considering the adaptive robust optimization approach for the expansion planning of
a SSEES carried out in this work, the general conclusions below are in order:

1. Transforming the energy system switching to renewable energy sources and devel-
oping alternative fuels are two great opportunities to reach the decarbonization
targets of the European Energy Roadmap 2050. The proposed approach consid-
ers, in an integrated framework, what is needed to achieve the European decar-
bonization targets, namely, the planning of a electric energy system with renew-
able energy sources generation, storage units, network expansion, and charging
stations for EVs.

2. Different sources of long-term and short-term uncertainties highly influence gen-
eration and network expansion decisions. The proposed approach allows an ac-
curate modeling of these uncertainties.

3. The proposed three-level formulation can be reformulated into a two-level one by
merging the second-level problem and the dual of the third-level problem. The
resulting problem can be solved efficiently via a column-and-constraint generation
algorithm.
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Regarding the case study analyzed in this work, we enumerate the following con-
clusions:

1. The expansion decisions are highly conditioned by the uncertainty budgets: the
investment in generation and storage capacity generally increases as we increase
the value of the demand uncertainty budget, while the investment in charging
stations decreases as we increase the value of the grid uncertainty budget ΛG.

2. Increasing the central planner’s revenues from selling electricity to the EVs implies
a raise of the number of charging stations built. If these revenues are high enough,
they also justify investments in additional storage and PV units, which help
satisfying a higher portion of EVs electricity demand.

3. Limiting the power that can be withdrawn from the main grid increases the
investments in generation and storage capacity. Above a certain threshold, the
system starts selling electricity to the main grid to partially abate total costs.

4. Reducing network capacity creates a congestion that is overcome, whether pos-
sible, by expanding the network. Network expansion is also influenced by the
values of the uncertainty budgets and by the revenues from selling electricity to
the EVs. According to these combinations, building storage units might be better
than investing in a prospective line.

5. Adopting EVs increases the electricity demand, which at the time being is still
partially satisfied by conventional and pollutant fuels, such as natural gas and
coal. Anyway, the adoption of EVs allows important CO2 savings if compared
with an analogous situation with lower electricity demand and diesel vehicles.



Chapter 4

Analysis of long-term natural gas
contracts with vine copulas in
optimization portfolio problems

This chapter is based on the article:
Allevi E., L. Boffino L., M. E. De Giuli, G. Oggioni.
Analysis of long-term natural gas contracts with vine copulas in optimization
portfolio problems
which has been published on Annals of Operations Research,
DOI: 10.1007/s10479-018-2932-x. ISSN: 1572-9338

In this chapter we investigate the dependence risk and the optimal resource allo-
cation of the underlying assets of a gas long-term contract (LTC) through pair-vine
copulas and portfolio optimization methods with respect to different risk measures. In
Europe gas is sold according to two main methods: long-term contract and hub pric-
ing. Europe is moving towards a mix of long term and spot markets, but the eventual
outcome is still unknown. The fall of the European gas demand combined with the
increase of the US shale gas exports and the rise of Liquefied Natural Gas availability
on international markets have led to a reduction of the European gas hub prices. On
the other side, oil-indexed LTCs failed to promptly adjust their positions, implying
significant losses for European gas mid-streamers that asked for a re-negotiation of
their existing contracts and obtained new contracts linked also to hub spot prices. The
debate over the necessity of the oil-indexed pricing is still on-going. The supporters of
the gas-indexation state that nowadays the European gas industry is mature enough
to adopt hub-based pricing system. With the aim of analyzing this situation and de-
termining whether oil-indexation can still be convenient for the European gas market,
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we consider both spot gas prices traded at the hub and oil-based commodities as pos-
sible underlyings of the LTCs. Our results show that European LTCs will most likely
remain indexed to oil-based commodities, even though a partial dependence on spot
hub prices is conceded.

The model developed in this chapter have been implemented and solved in R.

4.1 Introduction

Natural gas can be sold either through long-term contracts (LTCs) or at spot price
at market hubs. LTCs have been historically introduced to allow for risk sharing
between gas producers and mid-streamers, which respectively face price and volume
risks. These contracts have been traditionally concluded over long periods (typically 20
years or more) and are characterized by quantity and price clauses. The Take or Pay
(TOP) quantity clause obligates the buyer to take a certain quantity of natural gas or
to pay for it. The Price Indexation (PI) clause relates the price at which gas is bought
to some index on the market that has been traditionally represented by the price of
crude and oil-products. The price clause provides producers with some price stability
and reduction of revenue volatility, which are indispensable for ensuring investments in
new infrastructures which are very expensive. Moreover, the quantity and price clauses
also allow for hedging the mid-streamers’ volume risk (see Abada et al. (2017)).

The hub pricing approach was firstly introduced in the nineties in the US and in
the UK and it is now developing in Europe. In this system, natural gas is traded, every
day, on a spot market that determines prices and volume on the short term. Interna-
tional natural gas market is organized in different ways depending on the considered
areas. North America is essentially organized on the basis of Henry Hub spot market.
The price on this market is currently very low, at about 3$/MBtu,1 because of the
development of unconventional (shale) gas. The Henry Hub is the best-known of all
natural gas trading points. It is both a physical distribution hub for pipeline gas and
a pricing point, since it is the basis of spot market trading and of futures trading on
the New York Mercantile Exchange (NYMEX).

On the other side, Asia is mainly supplied by Liquefied Natural Gas (LNG) that is
traded through expensive LTCs. The Asian LNG long-term contracts has been set on
the basis of the average of Japanese customs-cleared crude oil price that is the Japan
Crude Cocktail (JCC). After the Fukushima disaster, Japan has significantly increased
its imports of LNG, mainly supplied by Australia, Malaysia and Qatar through LTCs
(see GIIGNL (2018)).

1See http://www.eia.gov/dnav/ng/hist/rngwhhdd.htm

http://www.eia.gov/dnav/ng/hist/rngwhhdd.htm
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Spot deals exist, but they are bilateral as, up to now, there is no hub in Asia in
contrast with America and Europe. Some experts advocate a move from the current
system of LTCs to hub-pricing system (e.g IEA (2013)). Singapore has proposed itself
as a possible gas hub for Asia as well as Tokyo and Shanghai (see Xunpeng (2016)).

Except for the UK, Europe is still dominated by LTCs, though spot markets are
growing and are expected to develop further. In the UK, gas is largely traded at
the National Balancing Point (NBP) spot market. NBP is in operation since the late
1990s and is the longest-established spot-traded natural gas market in Europe. It
is characterized by high liquidity2 and the resulting spot price is widely used as an
indicator for European wholesale gas market. In continental Europe, Zeebrugge (ZEE)
and the Title Transfer Facility (TTF), respectively located in Belgium and in the
Netherlands, are the two dominant spot market places and many others are emerging
(see Melling (2010)).

The coexistence of LTCs and hub-pricing systems on the European market implies
that the natural gas is traded at two different prices on the same market. Depending
on the conditions, spot price can be higher or lower than long-term contractual gas,
leading to possibly difficult situations for companies loaded with high TOP gas price
against the low spot prices. This is what happened in the last years in Europe, where
the combined effects of the increase of the US shale gas exports, the reduction of
European gas demand due to the economic crisis, and the increased availability of
uncommitted LNG from Qatar led to a new supply/demand balance that was reflected
into low gas prices at the European hubs. On the other side, oil-indexed LTCs failed
to promptly adjust their positions implying significant losses for European gas mid-
streamers what were committed by the TOP clause to buy quantities of gas higher
than those required at higher prices. As a consequence, European mid-streamers have
re-negotiationed the LTCs to make them more flexible and closer to spot gas prices.
These re-negotiations have resulted into a decline of oil-indexation and hub-linked
pricing has rapidly become the basis for an increasing number of transactions in the
UK and in the Northern Western Europe (see Franza (2014); Yafimava (2014)). As
indicated by Chyong (2015), leading gas suppliers, such as Statoil, GasTerra, Sonatrach
and Gazprom, have been forced to modify their LTC prices and volumes in Europe.
However, these gas suppliers have assumed different attitudes: Gazprom and Sonatrach
has defended oil indexation and has offered retroactive discounts on existing contracts
by introducing either limited degree of spot indexation or reduced minimum TOP
provisions. On the other side, GasTerra and Statoil have behaved in a more flexible
way, by conceding more spot indexation in their contracts. Notwithstanding this, oil is

2The liquidity of a gas hub can be defined as the ratio between the total volume of trade on the
hub and the volume of gas consumed in the area served by the hub.
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still accounting for the 95% of price formation within the Continental Europe against
the 30% of price formation in the UK (see Theisen (2014)). This shows that oil-indexed
contract prices still exercise a strong influence over gas prices in Europe. The reliability
of prices set on spot markets is one of the main reasons used by the opponents of the
spot indexation for LTCs (see Frisch (2010)). Liquidity, transparency, and the ability
to attract a significant number of market players are necessary for a hub to become
a price maker (see Heather (2012)). For the time being, the NBP and TTF are the
only two hubs in Europe with sufficient liquidity (see Heather and Petrovich (2017)).
However, some experts advocate a move from the current system of long-term contracts
to hub pricing (see Stern and Rogers (2014)). Even though their arguments make sense,
these are not supported by numerical analysis.

From these evidences, it turns out that the role of the European spot gas markets
and their impacts on LTCs are becoming extremely challenging issues. This work sheds
some light on the LTCs re-negotiation, taking into account the mid-streamers’ requests.
An integrated framework that combines vine copula and optimization techniques tra-
ditionally used in the contest of portfolio management. The adopted methodology is
well studied in the literature and it is considered mature enough for this task. This
allows us to obtain reliable results that can provide usable information and could be
easily reproducible by gas market players and practitioners. Our analysis is struc-
tured as follows: we estimate, via Pair-Copula Constructions (PCC), the dependence
risk structure across the underlyings of LTCs on natural gas. In order to reflect the
above mentioned European hybrid pricing system, based on the symbiotic coexistence
of oil-indexed contracts and gas-indexed hub prices, we consider the prices of oil-based
products and natural gas traded at the hub as component of the gas pricing formula.
(see Section 4.3 for more details). We then combine vine copula models and classical
portfolio optimization methods to construct the optimal underlying portfolio, applying
different performance measures. Copula models represent a suitable tool to this scope.
In particular, copula is a function that combines marginal distributions to form multi-
variate distributions. The application of copulas is very popular in several fields, like
finance, insurance, financial economics and econometrics (see e.g. Durante and Sempi
(2015); Genest and Bourdeau-Brien (2009); Krzemienowski and Szymczyk (2016); Li
and You (2014); Saida and Prigent (2018); Tran et al. (2017)). Nowadays, the model-
ing of stochastic dependence via copulas has led to an increasing attention also in the
commodity market (see e.g. Accioly and Aiube (2008); Aloui et al. (2013); Bassetti
et al. (2018); Grégoire et al. (2008); Jäschke (2014); Lu et al. (2014); Reboredo (2011);
Wen et al. (2012)).

While there is a wide range of possible alternative copula functions for the bivariate
case, in the multivariate setting the use of families different from normal and student-t
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is rather scarce, due to computational and theoretical limitations (see e.g. Joe (1997);
Nelsen (1999)). For this reason, in order to represent a multivariate copula with suitable
sets of bivariate copulas, Joe (1996) introduced the PCC approach, later discussed in
detail by Aas et al. (2009); Bedford and Cooke (2001, 2002); Kurowicka and Cooke
(2006). A collection of potentially different bivariate copulas is used to construct
the joint distribution of interest via PCCs, allowing to represent different types and
strengths of dependence in an easy way. PCCs constitute a flexible and very appealing
tool for financial analysis, (see Brechmann and Czado (2013); Dalla Valle et al. (2016);
Dißmann et al. (2013)). The vine copula models considered for the analysis of the
portfolio’s dependence risk overcome the restrictive and deterministic features of the
bivariate copulas and traditional measures of correlation, due to their suitability in
capturing the non-normality, tail dependence and volatility clustering of assets returns.
Recently Hernandez (2014) show how the vine copula approach can be appropriately
used to investigate the dependence structure among the different components of energy
portfolio as well as to derive implications for portfolio risk management. In this work,
we investigate via PCC, the dependence risk structure across the underlying assets
of LTCs on natural gas. We define the optimal portfolio composition under different
performance measures.

To the best of our knowledge the optimal composition of the assets, commonly used
to price the gas LTCs, has not been investigated using the aforementioned approach.
In doing this, we consider both the traditional oil-based commodities and spot gas
prices to address the debate over oil/spot indexation related to the re-negotiation of
European LTCs. Our results confirm the effectiveness of the hybrid pricing system
currently existing in the continent, but indicates that oil should still play an important
role in the definition of the price of the LTCs.
The remainder of this work is organized as follows: Section 4.2 briefly presents the PCC
and the vine copulas; Section 4.3 provides the data analysis and introduces the pair
vine copula that we use in our study; Section 4.4 overviews the optimization portfolio
problems that we solve to estimate the risk of the optimal portfolio of the underlying
assets of LTCs, and illustrates the results of our analysis. Finally, concluding remarks
are given in Section 4.5.

4.2 PCC approach and vine copulas

PCC is a multivariate copula constructed by using only bivariate copula or pair-copulas
as building blocks. All copulas involved in the decomposition may be selected freely
among the wide range of bivariate copula family that are capable of modeling joint
distribution with different characteristics. Hence, PCC allows high flexibility in repre-
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senting complex structures of dependence among multivariate data. It is based on the
decomposition of a d-dimensional joint density function f(x1, . . . , xd) of the random
vector X = (X1, . . . Xd), as a product of conditional densities:

f(x1, . . . , xd) = fd(xd)× fd−1|d (xd−1 |xd )× · · · × f1|2···d (x1 |x2 · · · , xd) . (4.1)

Each term in (4.1) can be decomposed using Sklar theorem (see Sklar (1959)) to express
the conditional density for a generic element xj conditioned on the d-dimensional vector
v as in (4.2):

fxj |v (xj |v) = cxj ,vl|v−l
(Fxj |v−l

(xj |v−l ), Fvl|v−l
(vl |v−l )× fxj |v−l

(xj |v−l ), (4.2)

where vl is an arbitrary component of v, v−l denotes the (d − 1) dimensional vector
without vl, cxj ,vl

|v−l (·, ·) is the conditional pair copula density and Fxj |v−l
(· |·) is the

conditional distribution of xj given v−l. More precisely, for every j, Joe (1996) proves
that:

Fxj |v (xj |v) =
∂Cxj ,vl

|v−l
(Fxj |v−l

(xj |v−l ), Fvl|v−l
(vl |v−l ) |θ )

∂Fvl|v−l
(vl |v−l )

, (4.3)

where the bivariate copula function is specified by Cxj ,vl
|v−l

, with parameters θ. In
working with copula models a function h(x, v,Θ) can be defined in order to represent
the conditional distribution function when x and v are uniform, i.e. f(x) = f(v) = 1,
F (x) = x and F (v) = v. The h-function can be calculated as follows:

h(x, v,Θ) = F (x|v) = ∂Cx,v(x, v,Θ)
∂v

, (4.4)

where the second parameter of h(x, v,Θ) always corresponds to the conditioning vari-
able and Θ denotes the set of parameters for the copula of the joint distribution function
of x and v. For high-dimensional distributions the number of possible pair-copulas con-
structions is manifold. In order to organize them, Bedford and Cooke (2001, 2002) have
introduced a graphical model denoted regular vines that depict multivariate copulas
built up using a cascade of bivariate copulas (or pair-copulas). This allows to under-
stand which conditional specifications are used to describe the joint distribution. A
regular vine V (d) on d variables is a nested set of trees Ti where i = 1, ..., d − 1 . In
particular the first tree has d nodes and d − 1 edges that represents the pair-copula
densities between the nodes. While, the j trees have d + 1 − j nodes deriving from
the edges of tree j − 1 and d − j edges that are the conditional pair-copula densities.
Moreover the proximity condition states that if the nodes of tree j + 1 are connected
by an edge, than the corresponding edges in tree j share a common node. According to
Kurowicka and Cooke (2006) the joint of a random vector X = (X1, . . . Xd) following
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an R-vine distribution can be written as:

f(x1, . . . , xd) =
[

d∏
k=1

fk(xk)
]
·

[
d−1∏
i=1

∏
e∈Ei

cj(e),k(e)|D(e)(F (xj(e)|xD(e)), F (xk(e)|xD(e)))
]
. (4.5)

with node set N := {N1, . . . , Nd−1} and edge set E := {E1, . . . , Ed−1}. Each parameter
e = j(e), k(e)|D(e) is an edge, while cj(e),k(e)|D(e) represents a bivariate conditional
density copula. j(e) and k(e) are the conditioned nodes and D(e) is the conditioning
set. The union {j(e), k(e), D(e)} is called constraint set. The right term of equation
(4.5) which involves d(d − 1)/2 bivariate copula densities, is called an R-vine copula.
Special classes of R-vines are Canonical vines (C-vines) and Drawable vines (D-vines).
A C-vine is a regular vine where each tree Ti has a unique node that is connected
to d − i edges; while a D-vine is a regular vine where each node is connected to no
more than two other nodes. Each tree in a C-vine is a star with one unique node
that connects to all other nodes, whereas a D-vine is represented by line trees. In a
C-vine, at the first root node at level 1 of the nested set of trees, the key variable
presents the highest correlation value in regard to the other variables and governs the
dependence structure among the others. Intuitively, we use a C-vine to describe a
scenario where one variable dominates the others, whereas in the D-vines we do not
assume the existence of a particular node dominating the dependencies.
More precisely, the joint density function f(x1, · · · , xn) of a C-vine of dimension d

takes the following form:

f(x1, . . . , xd) =

=
d∏

k=1
fk(xk) ·

d−1∏
i=1

d−i∏
j=1

ci,i+j|1,...,i−1(F (xi|x1, . . . , xi−1), F (xi+j |x1, . . . , xi−1)|θi,i+j|1,...,i−1). (4.6)

In a similar way, the joint density function of a D-vine is given by:

f(x1, . . . , xd) =

=
d∏

k=1
fk(xk)·

d−1∏
i=1

d−i∏
j=1

cj,j+i|j+1,...,j+i−1(F (xj |xj+1, . . . , xj+i−1), F (xj+i|xj+1, . . . , xj+i−1)|θj,j+i|j+1,...,j+i−1).

(4.7)

Differently from C-vines and D-vine the joint density function of the R-vine can
vary significantly according to the statistical feature of the multivariate distribution
being modeled. For this reason, Morales-Napoles (2010); Dißmann et al. (2013) pro-
posed an efficient method for storing the indices of the pair-copula. It relies on the
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specification of a lower triangular matrix M = (mi,j|i, j = 1, ..., d) ∈ {0, ..., d}dxd, whose
diagonal entries mi,i are the nodes 1, ..., d of the first tree. Each row from the bottom
up represents a tree. The conditioned sets of a node are determined by a diagonal
entry and the corresponding column entry of the row under consideration, while the
the column entries below this row provides the conditioning set. Corresponding copula
types can also be stored in matrices similar to M (see Section 4.3.2 for more details).

4.3 Data and dependence structure

4.3.1 Data analysis

With the aim of analyzing the re-negotiation of the European LTCs, we consider both
the oil-based commodities traditionally used to determine the LTCs price and the main
spot gas prices traded at the hub.

In particular the historical daily prices of the following assets have been taken
into account: Crude Ice Brent DTD, Gasoil NWECIF, Jet Fuel NWECIF, Naphtha
NWECIF, Lsfo 1% NWECIF, Gas NBP 1stMonth, Gas HenryHub 1stMonth. The label
“NWE” stands for the reference market “North West Europe”, while “CIF” indicates
the “Cost, Insurance and Freight” that are the costs included in the prices. For the
sake of simplicity, in the rest of the work, we denote the seven time series as follows:
“Brent”, “Gasoil”, “JetF”, “Naphtha”, “Lsfo”, “Gas NBP” and “Gas HenryHub”.

We analyze the period from the 4th of January 2012 to the 24th of July 2014 for a
total of 647 observations. The first five time series, referred to oil and its by-products,
are spot prices. The last two series, respectively referred to the natural gas traded at
the NBP and Henry Hub spot markets, are the first month future prices that can be
considered as good proxy of the gas spot prices. Data are provided by Datastream
Thomson Reuters and all the numerical computations are run in R 3.3.2.

For each historical daily price time series, we construct the log returns and we
report their basic statistics in Table 4.1. There is evidence of negative skewness and
significant excess kurtosis.

Fig 4.1 shows the log returns, the 30-days horizon rolling standard deviation on log
returns, and the volatility associated with the Gas NBP time series. In particular, figure
4.1b shows the volatility clustering, namely “large changes tend to be followed by large
changes, of either sign, and small changes tend to be followed by small changes”, as
observed by Mandelbrot (1963) (for the other series, see Fig. 4.A.1-4.A.6 in Appendix
4.5).

The volatility clustering is confirmed also by the sample autocorrelation function
(ACF) of the squared mean adjusted log returns (see left hand side of Fig. 4.2 for the
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Table 4.1: Basic statistics of log return time series referred to the period January 4,
2012 - July 24, 2014

Mean Max Min Std. Dev Skewness Kurtosis
Brent -0.01% 6.57% -5.67% 1.26% -0.068 2.063
Gasoil -0.01% 5.08% -3.11% 1.06% 0.049 1.077
JetF -0.01% 5.05% -3.98% 1.03% 0.075 1.599
Naphtha 0.00% 5.27% -7.72% 1.30% -0.440 3.654
Lsfo -0.02% 3.54% -6.80% 1.13% -0.758 4.551
Gas NBP -0.04% 9.10% -7.69% 1.59% 0.294 3.620
Gas HenryHub 0.04% 13.27% -11.93% 2.78% 0.290 2.342

GAS NBP series and Fig. 4.A.7-4.A.8 in Appendix 4.5 for other series).
In addition, we observe that all log return series are stationary with respect to the

ADF (Dickey and Fuller (1981)) and the PP tests (Phillips and Perron (1988)). The
series are also stationary compared to the KPSS test (Kwiatkowski et al. (1992)) with
the exception of the Gas NBP log return series. The KPSS is negligible for the latter
since only the ACF plot of the differentiated series shows the presence of unit root.

Table 4.2: Unit root test results for the considered series

P-Value Brent Gasoil JetF Naphtha Lsfo Gas NBP Gas HenryHub
ADF < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
PP < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
KPSS > 0.1 > 0.1 > 0.1 > 0.1 > 0.1 0.013 > 0.1

For modeling the volatility of the series, we test several GARCH models and, for
each one, we select the best model according to the significance of parameters, the
log-likelihood value and the information criteria. In the case of extreme market events,
dummy variables associated with these events have been used to model volatility spikes.
Every series is filtered using a TGARCH model with a skewed-t distribution for in-
novations that allows to capture the asymmetry in volatility (i.e. the leverage effect).
ARMA models have been used to compensate for autocorrelation, modeling the condi-
tional mean where needed. Table 4.3 reports the results of the ARMA-GARCH fitting
procedure. The application of the Ljung-Box test on both standardized residuals stan-
dardized squared residuals shows the absence of series correlation and the ARCH-LM
test (see Fisher and O. Gallagher (2012)) confirms the adequacy of the ARCH pro-
cesses. The ACF and the Partial ACF (PACF) of both the log return series and the
corresponding residuals are reported in Fig 4.3-4.4 for the GAS NBP series and Fig.
4.A.9-4.A.12 in Appendix 4.5 for other series. This indicates that there is no evidence
of autocorrelation at any lag.
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Figure 4.1: Log returns (a), 30-days horizon rolling standard deviation on log returns
(b), and volatility (c) associated with the Gas NBP time series

The reduction of the volatility after fitting the ARMA-GARCH models is confirmed
by the ACF of the squared mean adjusted residuals reported in the right hand side of
Fig. 4.2 for the GAS NBP series and Fig. 4.A.7-4.A.8 in Appendix 4.5 for other series.

4.3.2 Pair-Copula Constructions

Using the probability integral transformation on the standardized residuals we obtain
copula u-data. In order to avoid the misspecification of the margins that may lead
to the bias of the copula parameter estimates, we perform the Berkowitz test on the
u-data. The outcome of this test does not indicate evidence against the uniform (0,1).

Table 4.4 reports the pair-wise Kendall’s τ correlation between the series. This allow
us to construct the vine copula models using the maximum spanning tree algorithm
proposed by Czado et al. (2012). We can note that if the strength of dependence is
rather small, a good start of a bivariate data analysis is an independent test based
on Kendall’s τ correlation measure (see Genest and Favre (2007)). In the following,
we estimate and analyze three different vine structures, namely C-vine, D-vine, R-
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Figure 4.2: ACF of the squared mean adjusted log return series and ACF of the squared
mean adjusted residuals of Gas NBP log return series.

vine together with the multivariate Student’s t and the multivariate Gaussian copulas.
Note that the multivariate Gaussian and multivariate Student’s t copulas are both
simplified PCCs and can be represented as an R-vine copula. In particular, the former
is an R-vine with Gaussian pair-copulas, where the parameters are determined by
the associated partial correlation; whereas the multivariate Student’s t copula can be
represented through an R-vine with bivariate t-copulas as building blocks under specific
assumptions on the parameters (see Czado et al. (2009)). The R packages by Hofert
et al. (2017); Schepsmeier et al. (2018) have been used for the analysis conducted in
this section.

We first apply the C-vine copula model to account for the dependence structure.
The application of the Kendall’s τ independence test, with a confidence level of 5%,
underlines the independence of the pair Gasoil-Gas HenryHub series as shown in the
first C-vine tree of Figure 2. Akaike Information Criterion (AIC) and Bayesian Infor-
mation Criterion (BIC) tests are used to select copulas. First, all available copulas are
fitted with Maximum Likelihood Estimation (MLE). Then, the criteria are computed
for all available copula families and the family with the minimum value is chosen.

The parameters of the PCC can be evaluated using any multivariate copula estima-
tor such as the maximum pseudo likelihood (MPL) estimator or the inference function
for margins (IFM). However the computational effort increases exponentially with the
dimension. Therefore the sequential method proposed by Aas et al. (2009), is used
to estimate the parameters level by level. The selected copulas in the first tree are
estimated using the MLE method. To calculate the observations (i.e conditional dis-
tributions functions) of the second C-vine tree we use the h-functions (see (4.4) in
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Figure 4.3: ACF and PACF of Gas NBP log return series

Table 4.3: p-values of ARMA GARCH models. The corresponding statistics are re-
ported in parentheses. WLB=Weighted Ljung-Box Test, WALM= Weighted Arch LM
Test. S.R= Standardized Residuals. S.S.R= Standardized Squared Residuals

Series Brent Gasoil JetF Naphtha Lsfo Gas NBP Gas HenryHub
GARCH Model TGARCH(1,2) TGARCH(1,1) TGARCH(2,0) TGARCH(1,2) TGARCH(1,2) TGARCH(1,1) TGARCH(1,1)
ARMA Model ARFIMA(1,0,1) ARFIMA(0,0,0) ARFIMA (0,0,0) ARFIMA(9,0,0) ARFIMA(14,0,0) ARFIMA(17,0,0) ARFIMA(13,0,0)

WLB Test

Lag[1] 0,9995 0,9401 0,7433 0.9692 0.8531 0.8179 0.7959

on S.R.

(4.364e-07) (0.005655) (0.1073) (0.001495) (0.03427) (0.05303) (0.0669)

Lag[2*(p+q)+(p+q)-1] 1 0.9908 0.9089 1 1 1 1
(1.093) (0.008741) (0.1175) (6.642716) (10.24734) (18.76113) (7.8402)

Lag[4*(p+q)+(p+q)-1] 0.6123 0.83 0.533 0.9993 0,9974 0.7594 1
(4.330) (1.1283) (2.3745) (12.9167) (24.0307) (39.0382) (16.8326)

WLB Test

Lag[1] 0.2416 0.5683 0.8934 0.8808 0.6537 0.2902 0.3185

on S.S.R.

(1.371) (0.3256) (0.01796) (0.02248) (0.2013) (1.119) (0.995)

Lag[2*(p+q)+(p+q)-1] 0.1808 0.9592 0.9904 0.6261 0.286 0.5591 0.225
(6.604) (0.4904) (0.22823) (3.32382) (5.5291) (2.257) (4.245)

Lag[4*(p+q)+(p+q)-1] 0.2619 0.9871 0.8128 0.4987 0.3085 0.7089 0.3887
(9.213) (0.9792) (2.66476) (7.05544) (8.7125) (3.298) (5.285)

WALM Tests

ARCH Lag[4] 0.1355 0.8308 0.7293 0.3062 0.1477 0.1866 0.5247
(2.228) (0.04564) (0.1198) (1.047) (2.096) (1.745) (0.4047)

ARCH Lag[6] 0.3469 0.9045 0.9347 0.5359 0.1811 0.5012 0.8632
(2.750) (0.42836) (0.3207) (1.802) (4.078) (1.868) (0.5685)

ARCH Lag[8] 0.4318 0.9521 0.856 0.6851 0.2384 0.7118 0.9105
(3.637) (0.73775) (1.3236) (2.279) (5.100) (2.026) (1.0185)

Section 4.2). This procedure is iterated tree by tree. After having fitted all the trees, a
joint MLE is provided in order to improve the estimation. This procedure requires the
observations to be independent over time, in fact the PCC has been fitted on the stan-
dardized residuals obtained by filtering the original series with the ARMA-TGARCH
models previously described.

In a straightforward way, we can represent the C-vine copula density factorization
using the specification matrix M , while the T matrix is the copula type matrix where
each row corresponds to a specific tree and each number denotes the type of pair-copula
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Figure 4.4: ACF and PACF of Gas NBP residuals

Table 4.4: Kendall’s τ correlation between u-data

Brent.u Gasoil.u JetF.u Naphtha.u Lsfo.u Gas NBP.u Gas HenryHub.u
Brent.u 1.0000 0.6037 0.6002 0.3143 0.2750 0.0851 0.0213
Gasoil.u 0.6037 1.0000 0.7805 0.2887 0.2608 0.0847 0.0341
JetF.u 0.6002 0.7805 1.0000 0.2797 0.2524 0.0863 0.0408
Naphtha.u 0.3143 0.2887 0.2797 1.0000 0.2976 0.1004 -0.0428
Lsfo.u 0.2750 0.2608 0.2524 0.2976 1.0000 0.0990 -0.0025
Gas NBP.u 0.0851 0.0847 0.0863 0.1004 0.0990 1.0000 0.0111
Gas HenryHub.u 0.0213 0.0341 0.0408 -0.0428 -0.0025 0.0111 1.0000

family.3

M =



7
6 6
5 5 5
4 4 4 4
3 3 3 3 3
2 2 2 2 2 2
1 1 1 1 1 1 1



3Copula family type: 0 = Independence copula; 1 = Gaussian copula; 2 = Student-t copula (t-
copula); 3 = Clayton copula; 5 = Frank copula; 13 = rotated Clayton copula (180 degrees); 14 =
rotated Gumbel copula (180 degrees); 16= Rotated Joe copula (180 degrees);
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Figure 4.5: First tree of the C-vine with a 5% confidence level. The letters reported
between the root nodes indicate the type of the bivariate copulas used to model the
dependence, while the numbers refer to the corresponding Kendall’s τ correlation.

T =



0
0 5
5 5 2
0 0 1 1
0 0 13 2 2
0 3 1 14 2 2


We recall that Gaussian and Student-t copulas accounts for a symmetric tail de-

pendence. In particular, Gaussian copula is designed to model the dependence in the
center of the joint distributions, while the Student-t copula is both lower and upper-tail
dependent. Student-t copula allows for joint extreme events either in both bivariate
tails or none of them. Moreover, Frank copula models the dependence in the centre
of distribution, i.e. strong dependence in non-extreme scenarios. With respect to the
bivariate Gaussian, Frank copula can account for the non linearity in the center of the
joint distribution, while the first one only focuses on linear dependence relationship.
Finally, Clayton copula is only lower-tail dependent and is characterized by the asym-
metric correlation. Together with the 180◦ rotated Joe and Gumbel is adequate to
model greater dependence in the negative tail. The 180◦ rotated Clayton is suitable to
model dependence in the positive tail.

The D-vine structure is reported in Fig. 4.6. The results of the independence test
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based on the Kendall’s τ correlation measure with a 5% confidence level points out
the independence of the pair Gas NPB-Gas HenryHub as shown in the first tree of the
D-vine structure in figure 3. In the following the specification matrix M and copula
type matrix T are reported for the D-vine structure.

Figure 4.6: First tree of the D-vine with a 5% confidence level. The letters reported
between the root nodes indicate the type of the bivariate copulas used to model the
dependence, while the numbers refer to the corresponding Kendall’s τ correlation.

M =



7
1 6
2 1 5
3 2 1 4
4 3 2 1 3
5 4 3 2 1 2
6 5 4 3 2 1 1



T =



3
0 5
0 0 1
0 0 2 0
0 0 5 5 2
0 1 2 1 2 2


The R-vine structure is reported in Fig. 4.7 and the respective specification matrix

M and copula type matrix T are as follows.
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Figure 4.7: First tree of the R-vine with a 5% confidence level. The letters reported
between the root nodes indicate the type of the bivariate copulas used to model the
dependence, while the numbers refer to the corresponding Kendall’s τ correlation.

M =



7
6 1
5 6 2
1 5 6 3
2 4 5 6 5
3 3 4 5 6 4
4 2 3 4 4 6 6



T =



0
0 0
0 0 0
0 1 0 0
1 1 16 2 0
1 2 1 2 2 0


The multivariate Gaussian copula is often used for modeling multivariate data, assum-
ing linear dependence structure and no tail dependencies. The multivariate Student’s
t copula also assumes linear dependence, but accounts for tail dependence with the
restriction of same tail heaviness within the distribution. We fit different multivariate
Student’s t copula by fixing 5, 10, 15 and 20 degrees of freedom (df). T-copulas families
with 10, 15, and 20 df are not rejected at a 5% significance level. In the following, we
consider the statistics of the 10 df Student’s t copula whose p-value resulting from the
multiplier goodness-of-fit (gof) test is equal to 28%.



4.3 Data and dependence structure 127

Log-likelihood, AIC and BIC are statistics commonly used in the literature to com-
pare different copula structures and determine their relative ranking (see, e.g., Schep-
smeier (2016); Schepsmeier and Czado (2016)). The value of the log-likelihood of the
estimated copula models is a gof measure, while AIC and BIC criteria are other com-
parison measures that take into account model complexity. The computation of these
statistics for our models allows us to establish a preference for vine structures with
respect to multivariate Gaussian and Student’s t copulas (see Table 4.5). In particular
among the vines, C-vine has the highest AIC, while R-vine is preferred in terms of
BIC due to its lower number of parameters.

Table 4.5: Log-likelihood, AIC and BIC for the estimated copula models

C-vine D-vine R-vine Student’s t Gaussian
Log-likelihood 1336 1321 1328 1218 1158
AIC -2632 -2607 -2626 -2394 -2300
BIC -2547 -2531 -2563 -2300 -2265

The comparison of the three T matrices of the considered vine structures provides
additional information on tail dependence. More specifically, about 5-30% of the se-
lected pair-copulas have either lower or upper tail dependence, i.e Clayton, Gumbel
and Joe, while 20-25% have both upper and lower tail dependence modeled with a
Student’s t copula. Furthermore, tail dependence is non-negligible since the tail de-
pendence coefficient calculated from the estimated pair-copula is on average greater
than 0.2.
In conclusion, vine-copula structures are preferred according to the results of Table
4.5. Moreover, thanks to their flexibility, vine-copula structures can account for asym-
metric estimated tail dependence. For all these reasons, we exclude the multivariate
Gaussian and Student’s t copulas from further analysis. As an additional step, we
run the ECP and ECP2 gof tests on the three selected vine structures. These are
non-parametric tests based on the Cramer-von Mises (CvM) and Kolmogorov-Smirnov
(KS) test statistics (see Schepsmeier (2016) for more details on the tests).

The resulting p-values are reported in Table 4.6. None of the structures can be
rejected at a 5% significance level, i.e all of them fit the data quite well. As suggested by
Gaupp et al. (2017), future developments of improved goodness-of-fit tests are needed
to help distinguishing between alternative structuring approaches. We also perform
the likelihood ratio tests by Vuong (1989) and Clarke (2007) to select the structure
that better accounts for the dependence among the assets. The results for each possible
couple of vine structures are reported in Table 4.7 and Table 4.8, respectively. These
show that, in almost all cases, no decision among the models is possible, i.e the null
hypothesis that both models are statistically equivalent cannot be rejected. The only



128 Analysis of LTCs with vine copulas

Table 4.6: Goodness-of-fit test on C-vine, D-vine and R-vine with bootstrap repetition
rate x = 200.

ECP (CvM) ECP (KS) ECP2 (CvM) ECP2 (KS)

D-vine p=0.49 p=0.93 p=1 p=0.94
ts=1.43 ts=0.61 ts=0.01 ts=0.61

C-vine p=0.42 p=0.78 p=1 p=0.84
ts=1.47 ts=0.68 ts=0.01 ts=0.68

R-vine p=0.33 p=0.38 p=1 p=0.97
ts=1.53 ts=4.91 ts=0.01 ts=0.50

Table 4.7: Vuong test results at level α = 5%

Statistic Statistic Statistic p-value p-value p-value
Akaike Schwarz Akaike Schwarz

D-vine VS C-vine 1.121 1.637 2.791 0.262 0.201 0.005
R-vine VS C-vine -1.094 -0.413 1.107 0.273 0.679 0.267
R-vine VS D-vine -1.641 -1.416 -0.911 0.100 0.156 0.361

exception is represented by the result of the Clark test where the R-vine is preferred
to the C-vine.

4.4 The optimal composition of long-term natural
gas contract

4.4.1 Optimization portfolio problems

In the following, we summarize the optimization portfolio problems that we solve to
compute the optimal weights of each underlying asset of a LTC under the minimum
portfolio risk. We consider five well-known risk measures that are represented by Vari-
ance, Mean Absolute Deviation (MAD), MiniMax, Conditional Value-at-Risk (CVaR),
and Conditional Drawdown at Risk (CDaR). We simulate the portfolio returns based on
the dependence structures specified in the C-vine, D-vine and R-vine models described
above and estimate the risk of the seven-dimensional long-term natural gas contract.

Table 4.8: Clark test results

Statistic Statistic Statistic p-value p-value p-value
Akaike Schwarz Akaike Schwarz

D-vine VS C-vine 306 311 320 0.181 0.345 0.813
R-vine VS C-vine 293 302 329 0.018 0.098 0.694
R-vine VS D-vine 312 317 338 0.387 0.637 0.270
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We assume to have M assets (m = 1, ...,M) and T time periods (t = 1, ..., T ). Recall
that, in our analysis, the assets are represented by the seven time series indicated in
Section 4.3.1. More precisely, we denote with wm the weights associated with each
asset m of the portfolio; rt,m the return of each asset m in time period t; µm the av-
erage return of asset m that is µm = 1

T

∑T
t=1 rt,m and µp the portfolio target return.

The mean variance (EV) nonlinear optimization problem (see Markowitz (1952)) is the
following:

min
w

1
T

T∑
t=1

(
M∑
m=1

wm(rt,m − µm)
)2

(4.8a)

s.t. (4.8b)
M∑
m=1

wmµm = µp (4.8c)

M∑
m=1

wm = 1 (4.8d)

wm ≥ 0 ∀j = 1, · · · ,M. (4.8e)

This optimization problem aims at minimizing portfolio variance (4.8a) under the port-
folio target return (4.8c), assuming that the sum of the asset weights has to be equal
to one (4.8d) and the non-negativity of weights wm (4.8e).

We then consider the portfolio optimization model that is based on the MAD risk
measure (see Konno et al. (1993)):

min
w

1
T

T∑
t=1

∣∣∣∣∣
M∑
m=1

(rt,m − µm)wm
∣∣∣∣∣ (4.9a)

s.t. (4.9b)
M∑
m=1

wmµm = µp (4.9c)

M∑
m=1

wm = 1 (4.9d)

wm ≥ 0 ∀m = 1, · · · ,M. (4.9e)

Problem (4.9a)-(4.9e) can be transformed in the following linear optimization prob-
lem:

minw,y
1
T

T∑
t=1

yt (4.10a)
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s.t. (4.10b)∣∣∣∣∣
M∑
m=1

(rt,m − µm)wm
∣∣∣∣∣ ≤ yt (4.10c)

M∑
m=1

wmµm = µp (4.10d)

M∑
m=1

wm = 1 (4.10e)

wm ≥ 0 ∀m = 1, · · · ,M. (4.10f)

The MiniMax model proposed by Young (1998) aims at maximizing the minimum
return Lp, namely minimizing the maximum loss, defined as:

Lp = min
t

(
M∑
m=1

wmrt,m

)
∀t = 1, .., T.

On the basis of this assumption, the model is formulated as follows:

max
Lp,w

Lp (4.11a)

s.t. (4.11b)
M∑
m=1

wmrt,m − Lp ≥ 0 ∀t = 1, .., T (4.11c)

M∑
m=1

wmµm = µp (4.11d)

M∑
m=1

wm = 1 (4.11e)

wm ≥ 0 ∀m = 1, · · · ,M. (4.11f)

Following Rockafellar and Uryasev (2000), the portfolio optimization problem with
respect to the CVaR measure can defined as follows:

min
w,d,v

1
(1− α)T

T∑
t=1

dt + v (4.12a)

s.t. (4.12b)
M∑
m=1

wmrt,m + v ≥ −dt ∀t = 1, .., T (4.12c)

M∑
m=1

wmµm = µp (4.12d)
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M∑
m=1

wm = 1 (4.12e)

wm ≥ 0 ∀m = 1, · · · ,M (4.12f)
dt ≥ 0 ∀t = 1, · · · , T. (4.12g)

where v represents the VaR, (1− α) is the coverage rate and dt is the deviation value
below the VaR.

Following Chekhlov et al. (2005), the CDaR optimization problem is as follows:

min
w,u,v,z

1
(1− α)T

T∑
t=1

zt + v (4.13a)

s.t. (4.13b)
M∑
m=1

wmrt,m + ut − ut−1 ≥ 0, u0 = 0 ∀t = 1, .., T (4.13c)

zt − ut + v ≥ 0 ∀t = 1, .., T (4.13d)
M∑
m=1

wmµm = µp (4.13e)

M∑
m=1

wm = 1 · · · ,M (4.13f)

wm ≥ 0 ∀m = 1, · · · ,M (4.13g)
zt ≥ 0 ∀t = 1, · · · , T (4.13h)
ut ≥ 0 ∀t = 1, · · · , T (4.13i)

(4.13j)

where z is an auxiliary vector of variables of the conditional drawdowns, u is the
auxiliary vector of variables used to model the cumulative returns and v represents the
Drawdown Risk at the quantile (1− α).

4.4.2 Results

In our analysis we combine pair-vine copula models and portfolio optimization meth-
ods to define the optimal allocation of the underlying assets of a LTC. The integration
of the PCC into the portfolio optimization allows to capture the complete multivari-
ate dependence risk structure across the considered assets. As mentioned in Section
4.3.2, the PCC exploits the relationship between the pair-copula family and the corre-
sponding Kendall’s τ to compute the correlations coefficients among the assets. This
methodology does not constraint the returns to be normal, but it captures the asymme-
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try and nonlinear dependence among the commodities. For each of five risk measures
(EV, MAD, MiniMax, CVaR, and CDaR) we minimize the portfolio risk by fixing the
same target return µp for the three structures. Tables 4.9, 4.10 and 4.11 report the
optimal assets allocation for C-vine, D-vine and R-vine structures, respectively. These
weights can be interpreted as the proportions to attribute to the different underlyings
of LTC, according to the minimum risk optimal portfolio.

Table 4.9: Optimal weights for long-term natural gas portfolio C-vine

EV MAD MiniMax CVaR CDaR
Brent 0.13 0.14 0.26 0.13 0.38
Gasoil 0.06 0.06
JetF 0.11 0.17 0.07 0.17 0.62
Naphtha 0.17 0.16 0.12 0.18
Lsfo 0.31 0.31 0.27 0.30
Gas NBP 0.12 0.13 0.18 0.13
Gas HenryHub 0.09 0.09 0.04 0.09
Min Risk 0.01% 0.03% 0.12% 0.07% 5.32%

Table 4.10: Optimal weights for long-term natural gas portfolio D-vine

EV MAD MiniMax CVaR CDaR
Brent 0.16 0.17 0.26 0.17 0.14
Gasoil 0.06
JetF 0.11 0.17 0.18
Naphtha 0.16 0.16 0.16 0.19
Lsfo 0.29 0.28 0.58 0.28 0.41
Gas NBP 0.13 0.14 0.16 0.13 0.19
Gas HenryHub 0.09 0.08 0.09 0.07
Min Risk 0.01% 0.03% 0.14% 0.07% 3.67%

The analysis of the optimal asset allocation shows that, in general, there is a con-
vergence in the weight of the same asset within the same risk measure among the three
structures. This is in line with the findings of Section 4.3.2, where it is shown that all
the three structures are appropriate for modeling the considered series.
The combination of vine copula models with optimization methods leads to optimal
portfolios with total risk close to zero.

By focusing on each risk measure, we analyze the optimal asset allocation in the
three structures. We first observe that the optimal asset allocation in the three vine
copula models is very similar when applying the EV, MAD, and CVaR risk measures
(compare Tables 4.9-4.11). In addition, these three risk measures lead to optimal
portfolios with equal risk when analyzing the same risk measure. There is also a
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Table 4.11: Optimal weights for long-term natural gas portfolio R-vine

EV MAD MiniMax CVaR CDaR
Brent 0.16 0.16 0.03 0.17 0.27
Gasoil 0.06 0.59
JetF 0.12 0.19 0.31 0.17
Naphtha 0.14 0.14 0.24 0.14
Lsfo 0.31 0.29 0.26 0.29
Gas NBP 0.13 0.13 0.04 0.14 0.01
Gas HenryHub 0.09 0.09 0.11 0.09 0.14
Min Risk 0.01% 0.03% 0.13% 0.07% 4.59%

similar portfolio composition when comparing the aforementioned three risk measures
within the same vine structure. Starting from the EV, the resulting portfolio is the one
with the minimum risk. All assets are considered with Lsfo constituting approximately
30% of the portfolio, followed by Naphtha, Brent and Gas NBP. Gasoil plays instead
a marginal role. This is registered in all the three vine copula models considered. A
similar composition results by applying MAD and CVaR risk measures to the three
structures. Lsfo is still the asset with the highest weight followed by Jetf, Naphtha and
Brent; Gasoil is not included among the optimal underlyings.

The application of MiniMax and CDaR risk measures generates divergences in the
components of the optimal portfolio compared to what obtained with the EV, MAD,
and CVaR risk measures. A similar behavior for these risk measures is also observed
in Bekiros et al. (2015).

We recall that MiniMax considers the maximum loss in the portfolio, while CDaR
takes into account a number of draw down events in the historical return distribution.
Both measures are sensible to large losses occurring with low probability, which may
differ in the simulated distributions of the three structures. The MiniMax portfolio
includes Lsfo, Brent and Gas NBP with different weights in the three structures. In
the CDaR portfolio, Brent is the only common underlying among the three structures
that show also a significance difference in the total risk. Table 4.12 quantifies the
impact of oil-based commodities and spot gases within the optimal portfolios using
the information provided by Tables 4.9-4.11. In particular, the values denoted as “Oil-
based commodities” are determined by summing up the optimal weights assigned to
Brent, Gasoil, JetF, Naphtha, and Lsfo, while the terms “Spot Gases” results from the
sum of the optimal weights of Gas NBP and Gas HenryHub.

It is worth noting that, when the EV, MAD and CVaR measures are applied, there
is a perfect convergence in the composition of the optimal portfolios resulting from the
three structures: 78% is constituted by oil-based commodities and the remaining 22%
is represented by gas traded on spot markets. On the contrary, the MiniMax and CDaR
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Table 4.12: Oil and gas composition of the optimal portfolios

Copula Asset EV MAD MiniMax CVaR CDaR

C-vine Oil-based commodities 0.78 0.78 0.78 0.78 1.00
Spot Gases 0.22 0.22 0.22 0.22 0.00

D-vine Oil-based commodities 0.78 0.78 0.84 0.78 0.74
Spot Gases 0.22 0.22 0.16 0.22 0.26

R-vine Oil-based commodities 0.78 0.78 0.85 0.78 0.85
Spot Gases 0.22 0.22 0.15 0.22 0.15

risk measures lead to optimal portfolios that differ in the three vine copula models,
even though the oil-based underlyings still cover the larger share. This confirms the
results discussed above.

A synthesis of the portfolio optimization indicates that oil-based commodities, such
as Lsfo, Brent, Jetf, and Naphtha, appear to be fundamental picks in our asset alloca-
tion, together with the Gas NBP. This is an evidence of the important role still played
by the oil-indexation in the LTCs. The influence of oil-based commodities in gas con-
tracts is measured and included in our analysis through the pair-copulas. However, the
choice of Gas NBP and Gas HenryHub gases, that together, on average, account for
more that 20% of the optimal portfolio, reflects the fact that the re-negotiation policy
advocated by mid-streamers in Europe is possible (see Franza (2014)).

4.5 Conclusions

This analysis takes inspiration from the current situation of the European natural gas
market where both long-term contracts and hub spot price systems are applied. The
fall of the European gas demand combined with the increase of the US shale gas exports
and the rise of LNG availability on international markets have led to a reduction of
the gas-hub prices in Europe. On the other side, oil-indexed LTCs failed to promptly
adjust their positions implying significant losses for European gas mid-streamers that
asked for a re-negotiation of their existing contracts and obtained new contracts linked
also to hub spot prices. The debate over the necessity of the oil-indexed pricing is still
on-going and the main issue is that in the early days of the European gas industry this
was the only option to mitigate the risk of launching such a highly capital expensive
industry. The supporters of the gas-indexation state that nowadays the gas industry
is mature enough and for this reason hub-based pricing reflects the true supply and
demand dynamics in natural gas market. This work investigates the risk dependence
and the optimal resource allocation of the underlying assets of a LTC through pair-
vine copulas and portfolio optimization methods with respect to five risk measures (EV,
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MAD, MiniMax, CVaR, and CDaR). In order to address the above mentioned debate
both spot gas and oil commodities are included as underlyings. The usage of the PCC
allows modeling the conditional dependence structure, overcoming the drawbacks of
the mean-variance Markowitz optimization, including normally distributed returns and
linear correlation among the assets of the same portfolio. The results of our simulations
suggest that the weight allocation across portfolios obtained by implementing different
vine structures, in almost all cases, converge within the same risk measure. A general
finding is that oil commodities still cover the largest share of the optimal portfolios,
but spot gas are also included. This suggests that European LTCs will most likely
remain indexed to oil-based commodities. In other words, both spot gas and oil-based
commodities can be included among the underlyings of long-term gas contract, but the
latter will still exercise a major impact. This is a crucial point because increasing the
share of spot gas in LTCs would artificially make long-term prices closer to hub price
levels. From an economic perspective, this can leave room to a spiral mechanism of
downward price adjustment to hub prices that are, in turns, influenced by long-term
contract prices.
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4.A Additional Figures
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Figure 4.A.1: Log returns (a), 30-days horizon rolling standard deviation on log returns
(b), and volatility (c) associated with the Brent series
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Gasoil

Time    (a)

0 100 200 300 400 500 600

−
0.

02
0.

02

Time    (b)

0 100 200 300 400 500 600

0.
00

6
0.

01
2

Time    (c)

0 100 200 300 400 500 600

0.
00

00
0.

00
15

Figure 4.A.2: Log returns (a), 30-days horizon rolling standard deviation on log returns
(b), and volatility (c) associated with the Gasoil series.
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JetF
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Figure 4.A.3: Log returns (a), 30-days horizon rolling standard deviation on log returns
(b), and volatility (c) associated with the JetF series.
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Naphtha
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Figure 4.A.4: Log returns (a), 30-days horizon rolling standard deviation on log returns
(b), and volatility (c) associated with the Naphtha series.
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Lsfo
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Figure 4.A.5: Log returns (a), 30-days horizon rolling standard deviation on log returns
(b), and volatility (c) associated with the Lsfo series.
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Gas HenryHub
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Figure 4.A.6: Log returns (a), 30-days horizon rolling standard deviation on log returns
(b), and volatility (c) associated with the Gas HenryHub series.
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Figure 21: ACF of the squared mean adjusted log return series and ACF of the squared mean adjusted residuals of
Brent (a), Gasoil (b), and JetF (c) log return series
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Figure 4.A.7: ACF of the squared mean adjusted log return series and ACF of the
squared mean adjusted residuals of Brent (a), Gasoil (b), and JetF (c) log return
series.
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Figure 22: ACF of the squared mean adjusted log return series and ACF of the squared mean adjusted residuals of
Naptha (a), Lsfo (b), and Gas HenryHub (c) log return series
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Figure 4.A.8: ACF of the squared mean adjusted log return series and ACF of the
squared mean adjusted residuals of Naphtha (a), Lsfo (b), and Gas HenryHub (c) log
return series.
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Figure 17: ACF and PACF of Brent (a), Gasoil (b), and JetF (c) log return series

34

       Brent

Gasoil

    JetF

(a)

(b)

(c)

Figure 4.A.9: ACF and PACF of Brent (a), Gasoil (b), and JetF (c) log return series
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Figure 18: ACF and PACF of Naptha (a), Lsfo (b), and Gas HenryHub (c) log return series
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Figure 4.A.10: ACF and PACF of Naphtha (a), Lsfo (b), and Gas HenryHub (c) log
return series.
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Figure 19: ACF and PACF of Brent (a), Gasoil (b), and JetF (c) residuals
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Figure 4.A.11: ACF and PACF of Brent (a), Gasoil (b), and JetF (c) residuals.
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Figure 20: ACF and PACF of Naptha (a), Lsfo (b), and Gas HenryHub (c) residuals
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Figure 4.A.12: ACF and PACF of Naphtha (a), Lsfo (b), and Gas HenryHub (c)
residuals.



Chapter 5

Evaluating the impacts of the
external supply risk in a natural
gas supply chain: the case of the
Italian market

This chapter is based on the article:
Allevi E., L. Boffino L., M. E. De Giuli, G. Oggioni.
Evaluating the impacts of the external supply risk in a natural gas supply chain:
the case of the Italian market
which has been published on the Journal of Global Optimization,
vol. 70, pp. 347-384. ISSN: 1573-2916.

A large part of the European natural gas imports originates from unstable regions
exposed to the risk of supply failure due to economical and political reasons. This has
increased the concerns on the security of supply in the European natural gas market.

In this chapter, we analyze the security of external supply of the Italian gas market
that mainly relies on natural gas imports to cover its internal demand. To this aim, we
develop an optimization problem that describes the equilibrium state of a gas supply
chain where producers, mid-streamers, and final consumers exchange natural gas and
Liquefied Natural Gas. Both long-term contracts (LTCs) and spot pricing systems are
considered. Mid-streamers are assumed to be exposed to the external supply risk, which
is estimated with indicators that we develop starting from those already existing in the
literature. In addition, we investigate different degrees of mid-streamers’ flexibility
by comparing a situation where mid-streamers fully satisfy the LTC volume clause
(“No FLEX” assumption) to a case where the fulfillment of this volume clause is not
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compulsory (“FLEX” assumption).
Our analysis shows that, in the “No FLEX” case, mid-streamers do not significantly

change their supplying choices even when the external supply risk is considered. Un-
der this assumption, they face significant profit losses that, instead, disappear in the
“FLEX” case when mid-streamers are more flexible and can modify their supply mix.
However, the “FLEX” strategy limits the gas availability in the supply chain leading
to a curtailment of the social welfare.

The model developed in this chapter have been implemented in GAMS and solved
with PATH.

5.1 Introduction

Natural gas covers a significant quota of the energy mix of many of the European
countries with a share of 24% in the Total Primary Energy Supply (see Holz et al.
(2014)). Many of the European natural gas imports originate from unstable regions and
suppliers exposed to the risk of supply failure due to political and economical instability.
The political instabilities of Northern Mediterranean area and the disturbances between
the European-Russian relationship in the last years have increased the concerns on
security of supply in the European natural gas market. Italy is one of the three largest
gas consumers in Europe after Germany and the United Kingdom,1 but it mainly relies
on natural gas imports to cover its internal demand since its national production is
very low. In particular, the 90.6% of the Italian gas demand in 2015 was satisfied
with imports from Russia, Algeria, Libya, the Netherlands, Qatar, and Norway (see
AEEGSI (2016)).

Considering this framework, in this work we aim at analyzing the security of the
external natural gas and Liquefied Natural Gas (LNG) supply (imports) of the Italian
gas market. For this reason, we develop an optimization model that describes the equi-
librium state of the natural gas supply chain where natural gas producers (suppliers),
mid-streamers, and consumers can sell and buy both natural gas and LNG through
long-term contracts (LTCs) or/and on spot market. Mid-streamers take on the role
of intermediates in this supply chain network: on one side they exchange natural gas
and LNG with supplying countries; on the other side they sell gas to final consumers.
Since they are in charge of selecting the origin of natural gas and LNG imports, we
assume that mid-streamers are the agent group exposed to the external supply risk as-
sociated with the imports from foreign countries. In other words, mid-streamers define
the amount of gas and LNG to be imported not only on the basis of the relative pro-

1See Eurostat at http://ec.europa.eu/eurostat/statistics-explained/index.php/
Natural_gas_consumption_statistics

http://ec.europa.eu/eurostat/statistics-explained/index.php/Natural_gas_consumption_statistics
http://ec.europa.eu/eurostat/statistics-explained/index.php/Natural_gas_consumption_statistics
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duction and transportation costs, but also taking into account the external supply risk
related to the countries from which the gas originates. This risk is evaluated through
indicators that we develop starting from those already existing in the literature (see
Section 5.3.2 for a literature review on these indicators). These risk indicators are then
inserted in the optimization problem as a weight assigned to the Italian natural gas
and LNG imports operated by mid-streamers.

Several works in the literature studies different aspects of the natural gas market.
For instance, Egging and Gabriel (2006) develop a mixed complementarity model for
the European natural gas market where producers can behave either in a perfectly
competitive or in a Cournot strategic way, while the other players in storage and
transmission services operate in perfect competition only. This model investigates
the impacts of producers’ market power and the importance of pipeline and storage
capacity. Egging et al. (2008) propose a detailed complementarity model for defining
the equilibrium of the European natural gas market under a set of scenarios, including
the disruption of Ukrainian pipelines, the disruption of Algerian supplies, and the
increased transportation costs. Market players are represented by producers, pipeline
and storage operators, marketers, liquefiers and regasifiers, LNG tankers, and final
consumers. Egging et al. (2010) present an extensive model of the global natural
gas market that allows for the description of the flows and endogenous investment
decisions in infrastructures and the evaluation of the market power in the pipeline and
LNG markets. Holz et al. (2016) analyze the infrastructure needs of the European
natural gas market to adequate it to the decarbonization targets of the European
energy system. Their results show that the current import infrastructures and intra-
European transit capacity are sufficient to accommodate future import needs under
the scenarios of increasing and decreasing consumption. The authors conclude that
the supply security would benefit from relaxing the political and technical constraints
on investments. Egging and Holz (2016) develop a stochastic global gas market model
to study the infrastructure investments and the trade in an imperfect market structure
taking into account the possible disruption of the Russian gas transit via Ukraine from
2020; the variation of the electricity intensity generation in the OECD countries after
2025; the availability of the US shale gas after 2030.

All these papers analyze the possible supply disruption with a set of scenarios,
operating a sensitivity analysis. In our work, we depart from this approach and we
study the risk of external supply by directly integrating new risk indicators in our
model. Our goal is to detect whether this risk affects the import choices of mid-
streamers that can change not only their supplying country mix but also the type of
gas purchased (i.e. they can favor gas to LNG or viceversa) and the payment method
(i.e. LTCs vs. spot). To the best of our knowledge, it is the first time that such an
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approach is considered and this represents one of the contributions of our work.
A second contribution of this is work is represented by the investigation of two

different degrees of mid-streamers’ flexibility. In particular, we compare a situation
where the mid-streamers fully accomplish the LTC volume requirements with a case
where the mid-streamers behave in a more flexible way and they are not obliged to
purchase all the quantity of gas and LNG contracted with LTCs. We assume that this
flexibility regards both the gas and the LNG bought through LTCs, with and without
external supply risk. This analysis aims at describing the current configuration of the
European gas market where the co-existence of LTCs and hub-pricing systems implies
that the natural gas is traded at two different prices on the same market. Depending
on the conditions, spot price can be higher or lower than long-term contractual gas,
implying possibly difficult situations for companies loaded with high price TOP gas
against the low spot prices. This is what happened in the last years, where an excess
of gas availability on the market has been reflected into prices at the European hubs
lower than those fixed in the LTCs. As a reaction, mid-streamers have asked for an
increase of the LTCs flexibility (see Sections 5.2 and 3.5 for more details).

For our analysis, we consider a single optimization problem that is then transformed
in complementarity form through the corresponding Karush-Kuhn-Tucker conditions
(see Facchinei and Pang (2007); Gabriel et al. (2013); Nagurney (1999)). Complementarity-
based models facilitate the formulation of equilibrium problems that describe the in-
teractions of several agents whose choices are subject to technical and economic con-
straints, as it happens in our model.

The remainder of the chapter is organized as follows. Section 5.2 illustrates the
natural gas supply chain that we consider in our analysis and we provide some insights
related to mid-streamers’ behaviour in the European gas market. Section 5.3 describes
the new external supply risk indicators that we construct and the optimization models
that we develop. The case study is presented in Section 5.4, while Section 5.5 presents
the results of our analysis. Section 5.6 concludes with the final remarks.

5.2 The natural gas market

In this work, we aim at analyzing the interactions of the main players of a natural gas
supply chain taking into account the external supply risk. The considered players are
N supplying countries (producers), M mid-streamers, and S consumers. The latest
two agents’ groups are both located in the destination country that, in our case, is
represented Italy (see 5.1).

We assume that gas can be sold/purchased either through long-term contracts
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Figure 5.1: Natural gas supply chain

(LTCs) or on spot markets (hub pricing). This assumption aims at representing the
current situation of the European gas market where LTCs and the hub pricing systems
co-exist, even though it is still dominated by long-term contracts. The LTCs have
been traditionally concluded over long periods (typically 20 years or more) and are
characterized by quantity and price clauses that have been historically introduced to
allow for risk sharing between gas producers and mid-streamers that respectively face
price and volume risks (Abada et al. (2017)). The Take or Pay (TOP) quantity clause
obligates the buyer to take a certain quantity of natural gas or to pay for it. The Price
Indexation clause relates the price at which gas is bought to some index on the market
that has been traditionally represented by the price of crude and oil-products. The hub
pricing approach developed in the nineties in the US and UK and is now developing
in Europe. In this system, natural gas is traded, every day, on a spot market that
determines prices and volume on the short term. International natural gas market
is organized in different ways depending on the considered areas. North America is
essentially organized on the basis of Henry Hub spot market; Asia is mainly supplied
through long-term contracts; Europe is still dominated by long-term contracts, even
though spot markets are growing and are expected to develop further. The main ex-
ception in Europe is represented by the UK where gas is largely traded at the National
Balancing Point (NBP) spot market. In continental Europe, Zeebrugge (ZEE) and the
Title Transfer Facility (TTF), respectively located in Belgium and in the Netherlands,
are the two dominant spot market places and many others are emerging such as the
Punto di Scambio Virtuale (PSV) in Italy (see Melling (2010)).

The co-existence of two pricing systems in Europe implies that the natural gas is
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traded at two different prices on the same market, causing possibly difficult situations
for companies (mid-streamers) that are charged with high LTC prices against the low
spot prices. This is what happened in the last years, where the combined effects of
the increase of the US shale gas exports, the reduction of European gas demand due
to the economic crisis, and the increased availability of uncommitted LNG from Qatar
led to an excess of gas availability on the market that was reflected into low gas prices
at the European hubs. On the other side, oil-indexed long-term gas contracts failed
to promptly adjust their positions implying significant losses for European gas mid-
streamers that were stuck with their LTCs and could only dump the excess of gas on
the spot market. As a consequence of this short-term but dramatic issue, European
mid-streamers have asked for a re-negotiation of their long-term gas contracts to make
them more flexible and closer to spot gas prices. These re-negotiations have resulted
into a decline of oil-indexation and hub-linked pricing has rapidly become the basis for
an increasing number of transactions in the European gas market. In addition, with
regard to newly signed contracts for pipeline sales to Europe, there is a clear trend
towards shorter commitments (see Franza (2014)).

In addition to the external supply risk, this work aims at analyzing this structural
problem of the gas industry by focusing on the short term and considering different de-
grees of flexibility of mid-streamers’ behaviour. In particular, we compare the following
two cases:

• No flexibility: In this case, we assume that the mid-streamer has to comply
with all the LTCs that it already has. This corresponds to the situation where
the mid-streamer has to buy at least the amount of natural gas and LNG already
contracted. Under this assumption, they are also allowed to conclude new LTCs.

• Flexibility: This case aims at representing the current situation of the European
gas market where LTCs and the hub pricing systems co-exist. In particular, we
assume that the mid-streamer has the possibility to decide whether or not buying
gas or LNG via LTCs. In other words, the mid-streamers is allowed to not respect
the TOP clause for a short period (as the time framework that we consider).

As depicted in Fig. 5.1, in our model, we assume that supply countries produce
gas and LNG that they directly sell to mid-streamer with LTCs or on the spot market.
On the other side, mid-streamers can decide to buy gas and/or LNG from supplying
countries through LTCs. They can also operate on the spot market by either buying
and selling gas. On the other side, we assume that mid-streamers can only buy LNG
on spot because according to GIIGNL (2018), Italy does not re-export the imported
LNG. Mid-streamers are also in charge of managing the storage site in the destination
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country. Finally, we consider three groups of consumers represented by industry, power
generation, and residential/commercial.

5.3 Modeling the gas supply chain with external
supply risk

In this section, we develop the optimization model used to describe the gas supply
chain with producing countries, mid-streamers operating, and consumers located in
the destination country. We consider a time span of one year, sub-divided into two
time segments corresponding to a low-demand and high-demand periods. We start
from the notation used in the mathematical formulation, we then describe the external
supply risk indicators, and finally we present the optimization model.

5.3.1 Notation

Indices

• N : number of countries producing and supplying natural gas (produc-
ers/supplying countries), n = 1, ..., N ;

• M : number of mid-streamers located in the destination country, m =
1, ...,M . In our model, we assume one destination country;

• F : number of natural gas entry points located in the destination country,
f = 1, ..., F ;

• S: number of consumption sectors in the destination country (industry,
power generation, and residential/commercial) s = 1, ..., S;

• T : number of time periods, t = 1, ..., T . More precisely, we consider T = 2,
where t = 1 is low-demand period and t = 2 is high-demand period.

Parameters:

• θt: duration in days of time periods t;

• X̄n: gas production capacity of producer n;

• ḠP n: capacity of gas pipeline connecting producing country n with the
destination market where mid-streamers are located;

• L̄n: liquefaction capacity of producer n;

• R̄m: regasification capacity of mid-streamer m;
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• Īm: injection limit of storage site managed by mid-streamer m;

• W̄m: withdrawal limit of storage site managed by mid-streamer m;

• WGm: working gas volume available at storage site managed by mid-streamer
m;

• αn: rate of liquefaction loss faced by producer n;

• βm: rate of regasification loss faced by mid-streamer m;

• stcLNGnm : transportation costs of LNG through ship from the producing coun-
try n to the destination market where mid-streamers m are located;

• ptcGnm: transportation costs of gas through pipelines from the producing
country n to the destination market where mid-streamers m are located;

• ptcSpotGn : pipeline transportation costs of gas sold on spot faced by the pro-
ducing country n;

• dcms: gas distribution costs through pipelines faced by mid-streamer m to
supply consumer s;

• τnm: (minimum) annual amount of gas that producer n supplies to mid-
streamer m through long-term contracts;

• ξnm: (minimum) annual amount of LNG that producer n supplies to mid-
streamer m through long-term contracts;

• Υft: limit of the pipeline entry point f in the destination country in time
period t;

• Γfn: limit of the pipeline entry point f that receives gas from producing
country n in time period t.

Variables

• XG
nt: total amount of natural gas produced by supplying country n in one

day of time period t (mcm/d).

• xGnmt: amount of natural gas supplied by producer n through long-term
contracts (LTCs) to mid-streamer m in one day of time period t (mcm/d).

• XLNG
nt : total amount of natural gas transformed in LNG by supplying coun-

try n in one day of time period t (mcm/d).

• xLNGnmt : amount of LNG supplied by producer n through long-term contracts
(LTCs) to mid-streamer m in one day of time period t (mcm/d).

• xSpotGnt : amount of natural gas sold by producer n on spot market in one day
of time period t (mcm/d).
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• xSpotLNGnmt : amount of LNG sold by producer n to mid-streamer m on spot
basis in one day of time period t (mcm/d).

• Y LNG
mt : total amount of natural gas re-gasified by mid-streamer m in one

day of time period t (mcm/d).

• yLNGnmt : amount of LNG purchased by mid-streamer m through LTC from
producer n in one day of time period t (mcm/d).

• ySpotGmt : amount of natural gas purchased by mid-streamer m on spot market
in one day of time period t (mcm/d).

• ySpotLNGnmt : amount of LNG purchased by mid-streamer m from producer n
on spot basis in one day of time period t (mcm/d).

• qSpotGmt : amount of natural gas sold by mid-streamer m on spot market in
one day of time period t (mcm/d).

• zmst: nonnegative amount of natural gas that mid-streamer m sells to con-
sumer sector s in one day of time period t in Bcm.

• imt: nonnegative amount of natural gas injected by mid-streamer m in the
storage site in one day of time period t = 1 in Bcm.

• wmt: nonnegative amount of natural gas withdrawn by mid-streamer m from
the storage site in one day of time period t = 2 in Bcm.

• dst: nonnegative amount of natural gas demanded by consumer s in one day
of time period t in Bcm.

• Pst(dst): Inverse demand function of consumer s in one day of time period
t in Bcm. This function can be stated as Pst(dst) = ast − bst · dst where
ast is the intercept of consumers’ (affine) demand functions in time period
t (e/Bcm) and bst is the slope of consumers’ (affine) demand functions in
time period t (e/Bcm2).

All these variables are assumed to be nonnegative. As already indicated, we con-
sider a time span of one year subdivided into low-demand and high-demand periods
with a duration in days θt, respectively. For each of these two periods, we consider a
representative day and, therefore, variables and parameters have to be weighted by the
duration θt in order to get annual values. Finally, we do not list here the dual variables
associated with the constraints appearing in our model formulation. These are directly
indicated next to the constraints to which they refer.



158 Impacts of the external supply risk in a natural gas supply chain

5.3.2 External supply risk indicators

Energy security is defined as the availability of a regular supply of energy at an af-
fordable price (see IEA/OECD (2001)). Security of gas supply in energy systems has
always been an important issue due to the high dependence on energy. This is par-
ticularly true for Europe where about one quarter of all the energy used is natural
gas, and many European countries import nearly all their supplies, as it happens for
Italy. Supply disruptions caused by infrastructure failure or political disputes are real
phenomena. As an example, we recall the the severe shortfall of gas in Western Europe
due to Russia’s decision to suspend gas deliveries to Ukraine in January 2009. A way to
deal with energy security is a process of managing the associated risk. For this reason,
in our analysis, we concentrate on short-term indices to assess the risk associated with
external energy supply and possible insecurity of supply. The Herfindahl-Hirschman
Index (HHI), the Shannon-Wiener Index (SWI), and the variations of it, such as the
Shannon-Wiener-Neumann indeces (SWNIs) are amongst the most commonly used
aggregate indicators for energy security applied to evaluate the diversification of the
market (see Neumann (2004)).

The HHI is adopted as a measure of market concentration, namely the total number
of companies operating. In a similar way, the diversity of energy suppliers is given by
the sum of the squares of each supplier market share qn:

HHI =
N∑
n=1

q2
n (5.1)

where qn represents the share of imports from a particular country n into the coun-
try considered. Thus, the higher the value of the index, the more concentrated the
market is; the maximum value of the index is achieved when there is only one supplier.
Consequently, the HHI is only used to investigate markets with a lack of diversity of
suppliers, or to give greater weight to the larger suppliers (see e.g. Blyth and Lefevre
(2004); Cohen et al. (2011); Grubb et al. (2006); Gupta (2008); Kruyt et al. (2009);
Frondel and Schmidt (2008)).

The Shannon-Wiener concentration Index is an alternative approach to measure
the diversity of energy suppliers. This index is computed as follows:

SWI = −
N∑
n=1

qn ln qn (5.2)

where qn is the supplier’s market share as in the HHI. The higher the value of the
index, the more diverse the market is. Moreover, differently from the HHI, it puts
more weights on the impact of smaller suppliers (see Kruyt et al. (2009), footnote 13,
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for more details on the mathematical properties of the SWI).
However, the security of external energy supply may be affected by the political

situation in the exporting country. Starting from the SWI, Neumann (2004) takes
this into account by using a measure of the political stability of the supplier n that
we denote with rn. In particular, Neumann (2004) proposes two additional indicators
SWNI1 and SWNI2 that are defined as follows:

SWNI1 = −
N∑
n=1

(rnqn ln qn), (5.3)

and:
SWNI2 = −

N∑
n=1

(rnqn ln qn)(1 + gn), (5.4)

where rn identifies the political risk rating associated with the supplying country n and
gn in the SWNI2 represents the indigenous production of the resource in the supplying
country n.

On the other side, Quemada et al. (2012) propose the Geopolitical Energy Security
(GES) indicator that is computed as:

GES =
F∑
f=1


 N∑
n=1

rnq
2
nf

 · e
1
Pf

 · Cf
TPES

(5.5)

where the index f represents the fuel type, and the ratio Cf
TPES denotes the share of total

consumption of fuel f in the Total Primary Energy Supply (TPES). The GES indicator
combines a country exposure measure of market concentration q2

nf , similarly to the HHI,
with the market liquidity, involving as a key role the exponential function e1/Pf where
Pf represents the ratio between the offer of the resource f and its consumption. The
GES indicator is an expansion of the ESIprice index that does not consider the market
liquidity, i.e. the exponential function (see IEA (2007)).

Le Coq and Paltseva (2009) develops the Risky External Energy Supply (REES)
for each destination country a that is defined as follows:

REESfa =
 N∑
n=1

(
NPIfna
NPIfa

)2

F f
narndna

 ·NIDf
a · SF f

a (5.6)

where NPIfna is the net positive imports of fuel f from supplying country n to the
destination country a, NPIfa is the sum of the net positive imports over all suppliers of
country a, F f

na is the fungibility of fuels f imported from n to a, rn is the political risk
index of the supplier country, dna is a measure of a distance between countries n and a,
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NIDf
a is the net import dependency of country a for fuel f and SF f

a is a share of fuel f
in country a (see Le Coq and Paltseva (2009)).2 The REES is the most comprenhesive
among the indicators here illustrated, since it accounts for the diversification of the
energy sources f , the political risk rn, the distance between supplying and destination
country dna, and the fungibility F f

na of imported fuels, in addition to the diversification
of suppliers and the energy dependence. Note that the distance dna represents a proxy
for the risk involved in the transportation phase. On the other side, the market liquidity
is a feature of the GES indicator.

Our analysis aims at measuring the effects of the external supply risk on the nat-
ural gas and LNG exchanges between producing and supplying countries n and mid-
streamers m all operating in same destination country. In this framework, we assume
that mid-streamer selects the supply countries from which importing natural gas and
LNG on the basis of external supply risk of these producing countries. Our idea is
to consider the external supply risk as an additional cost that the mid-streamers face
when buy both natural gas LNG from the different supplying countries. This cost is
indeed proportional to the amount of gas bought and therefore, in our model formu-
lation, we weight each exchange of natural gas and LNG between the producers and
the mid-streamers by the associated external supply risk that varies according to the
considered supplying country. We are therefore interested in evaluating a risk per each
type of natural gas imported and per each supplying country. The indicators presented
above aggregated all this information that we, instead, need in a disaggregated form.

For this reason, we consider the HHI, the SWNI2, the GES, and the REES presented
above and we modify them in order to make them suitable for our scope. In this way,
we develop new indicators that are all denoted as “Π”. For their construction, we
account for two fuels, natural gas (G) and LNG (f = G,LNG considering the GES
and the REES indicators) and one destination country (this means that, using the
REES notation, a = 1). This latter assumption implies that mid-streamers face an
identical external supply risk when importing the same type of gas from the same
country.

The new indicators that we introduce are:

1.
ΠHHI,G
nm = (qGnm)2 and ΠHHI,LNG

nm = (qLNGnm )2, (5.7)

These are a transformation of the HHI where qGnm and qLNGnm represents the share
of imports of mid-streamer m from a particular country n respectively for natural
gas and LNG. For the reasons explained above, we do not consider the sum over
all supplying countries.

2Note that all the other indicators presented above are computed per each destination country
even though not explicitly indicated.
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2.
ΠSWNI2,G
nm = −(rnqGnm ln qGnm)(1 + gn), (5.8)

ΠSWNI2,LNG
nm = −(rnqLNGnm ln qLNGnm )(1 + gn), (5.9)

These are similar to the SWNI2, but, as in the ΠHHI, G
nm and ΠHHI, LNG

nm , are
computed taking into account the share of natural gas and LNG that country
n supplies to mid-streamer m, without considering the sum over all supplying
countries. The other terms rn and gn are as in the SWNI2 indicator.

3.

ΠGES,G
nm =

(rn(qGnm)2
)
· e

1
PG

 · CG
TPES

, (5.10)

ΠGES,LNG
nm =

(rn(qLNGnm )2
)
· e

1
PLNG

 · CLNGTPES
, (5.11)

These result from the modification of the GES indicator, where we consider the
share of natural gas and LNG imported by the mid-streamer m from country n,
without operating the sum overall supplying countries. In addition, we maintain
separate the two fuels supplied. The other terms are as in the GES indicator.

4.
ΠREES,G
nm = πGnm · rn · dnm · FG

nm, (5.12)

ΠREES,LNG
nm = πLNGnm · rn · dnm · FLNG

nm (5.13)

where, as in the REES indicator, rn is the measure of political risk, dnm is a factor
that accounts for the distance between the capitals of the producing country and
the location of mid-streamers, FG

nm and FLNG
nm are the fungibility respectively of

natural gas and LNG, and πGnm and πLNGnm are the shares of natural gas and LNG
that mid-streamer m in the destination country imports from supplying country
n. These shares are computed as indicated below:
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πGnm =
(

q̃Gnm∑N
n=1 q̃

G
nm

)2

πLNGnm =
(

q̃LNGnm∑N
n=1 q̃

LNG
nm

)2

where q̃Gnm and q̃LNGnm are parameters defining the net gas and LNG imports of
mid-streamer m from the supplying country n.

Table 5.1 summarizes the indicators already existing in the literature, which we
have present above, and the new indicators that we introduce starting from them.

Table 5.1: Summary of the new indicators proposed

Indicators existing in the literature New indicators proposed

HHI ΠHHI,G
nm ΠHHI,LNG

nm

SWNI2 ΠSW NI2,G
nm ΠSW NI2,LNG

nm

GES ΠGES,G
nm ΠGES,LNG

nm

REES ΠREES,G
nm ΠREES,LNG

nm

Finally, note that in Section 5.3.4, we generally refer to these new indicators with
the symbols ΠG

nm and ΠLNG
nm . In Section 5.5, we show the effects of the application of

all these indicators that we have constructed.

5.3.3 Model assumptions

In this section, we illustrate the main assumptions that characterize our model formu-
lation.

• Producing/supplying countries. In the considered gas supply chain, sup-
plying countries produce natural gas and/or LNG and can decide to sell them
directly to mid-streamers with LTCs or on the spot market. We assume that
gas is extracted from sites directly owned by producers. The extraction process
is supposed to be lossless. Therefore, the amount of gas extracted corresponds
to the one produced. As indicated in the nomenclature, the variables xGnmt and
xLNGnmt identify the amount of natural gas xGnmt and LNG xLNGnmt that the production
country n sells to mid-streamer m in the low- and in the high-demand periods,
respectively. We assume that these quantities as well as their relative prices de-
pend on time to account for possible renegotiation or updates of the contract
price in short term (see Franza (2014)). The quantity of natural gas sold on
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the spot market xSpotGnt depends on the production country n and on the time
period t only. This assumption reflects the fact that the producer participates to
the spot market by submitting bids but without knowing who will be the buyer.
Finally, the quantity of LNG sold on spot basis xSpotLNGnmt refers to uncommitted
ships that are already arrived in the destination country and can be traded in
the short term between the supplying country n and the mid-streamer m.

• Destination country. It is assumed that there is just one destination country
that corresponds to Italy (see Section 5.4).

• Mid-streamers. We assume that all mid-streamers operate in the considered
destination country and are located in one citygate. As already indicated, mid-
streamers can decide to either enter in gas/LNG LTCs with supply countries
or exchange gas/buy LNG on the corresponding spot markets. They select the
supply countries from which importing natural gas and LNG on the basis of their
external supply risks. As final step, they sell gas to the consumption sectors that
we classify into power generation, industrial sector, and residential/commercial.
In addition, we assume that mid-streamers operate the storage sites and can take
advantage of seasonal arbitrage by buying and injecting gas into storage in the
low-demand season (summer) and then selling it to consumers in the high-demand
season (winter). Parallel to the modeling of the producers’ variables, we assume
that the variables yGnmt and yLNGnmt respectively identify the amount of natural
gas yGnmt and LNG yLNGnmt that the mid-streamer m buy from producing country
n with LTCs in the two time periods. We further assume that mid-streamer
can both buy and sell natural gas on the spot market. These mid-streamer’s
actions are identified by the variables ySpotGmt and qSpotGmt , respectively. Note that
these variables depend on the mid-streamer m on the time period t only. This
assumption reflects the fact that the mid-streamer participates with bids/offers
to the spot market without knowing who will be the counterparts. Finally, the
quantity of LNG purchased on spot basis ySpotLNGnmt refers to uncommitted ships
that can be traded in the short term between the n supplying and them importing
countries. As already explained, we do not model the mid-streamer’s opportunity
to re-sell the LNG acquired on the spot basis.

• Consumers. We assume that the gas demands of three consumer groups (indus-
try, power generation, and residential/commercial) are endogenously determined
through inverse demand functions. The variable dst denotes the quantity of nat-
ural gas required by consumer s in time t.
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• Time framework and LTCs. We consider a time framework of one year. Since
LTCs have a duration of 20-25 years, we take a different approach to study the
aforementioned “no flexibility” and the “flexibility” cases. In particular, in the
case of “no flexibility”, we assume that, in the considered year, mid-streamers
have to respect all the LTCs that they have already stipulated, but they can also
decide to sign new LTCs. On the contrary, in the “flexibility” case, mid-streamers
can ask for a re-negotiation of the existing contracts and therefore are not obliged
to buy all the quantity of gas or LNG defined by the existing contracts.

• Gas/LNG volumes and prices and degrees of mid-streamers’ flexibility.
All gas/LNG volumes and prices are endogenously determined in the model. The
volumes are defined through the supplying countries and mid-streamers’ variables
indicated above, while the LTCs and the spot prices correspond to the values of
the dual variables associated with the relative gas and LNG balance constraints.
Note that we impose some limits on the gas and LNG volumes contracted with
LTCs. These limits vary according to the flexibility assumptions considered for
mid-streamers. More precisely, we take as reference the annual volumes of gas
and LNG that mid-streamers have contracted with already existing LTCs (these
annual volumes are input data) and in the “no flexibility” case we assume that
these amounts establish lower bounds on the total quantities of gas and LNG that
mid-streamers have to buy with LTCs in the year. This reflects the idea that
mid-streamers have to respect all the LTCs that they have already stipulated,
but they can also decide to sign new LTCs in the considered year. In contrast,
to respect the re-negotiation assumption that characterizes the “flexibility” case,
the amounts of already stipulated gas and LNG LTCs are used as upper bounds
on the volumes of gas and LNG that mid-streamers can purchase.

• Pipeline and tanker transportation limits. For sake of simplicity, we as-
sume that the tanker used to transfer LNG have no capacity limits. A similar
assumption has been adopted for the gas pipelines. Pipeline gas and LNG trans-
portation costs are included as exogenous charges in the model. Moreover, we
assume that in the destination country there are some entry points for pipeline
gas. Each of this entry point has a specific location in the destination country
and collects the gas coming from a subset of supplying countries. We use the in-
cidence matrix Γfn to define the link between supplying country and entry point.
These entry points are characterized by a limited capacity that we model though
a constraint.

• External supply risk. The external supply risk is considered as an externality
that we internalize in our optimization problem. In general, the insecurity of
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supply could intervene at the time the prices are negotiated. As explained above,
LTCs and spot prices for both gas and LNG are endogenously determined in
our model. However, we assume that only gas and LNG traded with LTCs are
exposed to the external supply risk. This is due to the fact that spot LNG refers
to gas that is already landed in the destination country and therefore it is not
risky. Similarly, the spot gas is freely traded on a short notice at the hub and
therefore we suppose the external supply risk does not apply to its exchange.
The inclusion of the risk indicators in our model is conducted as follows: we first
construct and compute the values of the indicators presented in Section 5.3.2 on
the basis of the ex-ante structure external supply of the considered destination
country (Italy). We then use these indicators to weight the quantities of gas yGnmt
and LNG yLNGnmt that appear in the respective LTC balance constraints (see model
formulation in Section 5.3.4). We introduce the external supply risk indicators
in the balances of the gas and LNG LTCs because these constraints not only
represent the agreement between supplying countries and mid-streamers on the
exchanged volumes but also are those that affect the prices of these LTCs. In this
way, we can evaluate whether the external supply risk can modify the gas/LNG
contract prices and volumes.

5.3.4 Optimization model for a natural gas supply chain with
external supply risk

Finding the equilibrium state of the described natural gas chain with endogenous final
consumers’ demand consists in solving a social welfare optimization problem subject
to some technical constraints. We first describe the cost functions that are included in
our model formulation.

Supplying countries gain from selling gas but they face some costs in the gas pro-
duction process. Let Cnt denote the production costs incurred by producer n. This is
a continuous and convex function that depends on the total quantity of natural gas
XG
nt that supplying country n extracts in time period t. In particular, one has:

Cnt = Cnt
(
XG
nt

)
∀n, ∀t (5.14)

It could happen that a part of the produced gas is then sold as LNG by some of
the supplying countries n. These countries face additional liquefaction costs that are
denoted with the function LCnt. This function is assumed to be continuous and convex
and depends on the total amount of LNG XLNG

nt that country n supplies in time period
t:
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LCnt = LCnt
(
XLNG
nt

)
∀n, ∀t (5.15)

On the other side, mid-streamers who import LNG in the destination (importing)
country face the related regasification costs. These costs are represented by a continu-
ous and convex function, denoted as RCmt, that depends on the total quantity of LNG
Y LNG
mt that mid-streamer m regasifies in time period t. In particular, one has:

RCmt = RCmt
(
Y LNG
mt

)
∀m, ∀t (5.16)

In our gas supply chain, we further assume that mid-streamers manage the storage
systems. They withdraw gas in the high-demand period t = 2 at zero cost,3 while the
gas injection is operated in the low-demand period t = 1 with a cost that we denote
with Im1. This is assumed to be a continuous and convex function that depends on the
quantity of natural gas im1 that mid-streamer m injects in the storage site in t = 1. In
particular, one has:

Im1 = Im1 (im1) ∀m (5.17)

In the following, we first describe the optimization model for the “no flexibility”
case (Section 5.3.4) and we then illustrate the modifications that are introduced for
modeling the “flexibility” assumption (Section 5.3.4).

“No flexibility” case

Finding the equilibrium state of the described natural gas chain with endogenous final
consumers’ demand consists in solving the social welfare optimization problem (5.18)-
(5.38) presented below. The objective function (5.18) corresponds to the (annual)
social welfare that is given by the difference between the final consumers’ willingness
to pay

∫ dst
0 Pst(ξ)dξ and all the costs respectively faced by supplying countries and mid-

streamers. In particular, supplying countries pay the production, the LNG liquefaction,
the pipeline and the cargo transportation costs; on the other side mid-streamers bear
the regasification, the storage injection, and the distribution charges. The objective
function (5.18) is subject to several constraints as detailed in the following.

Max
S∑
s=1

T∑
t=1

θt

∫ dst

0
Pst(ξ)dξ −

N∑
n=1

T∑
t=1

θt ·
[
Cnt

(
XG
nt

)
+ LCnt

(
XLNG
nt

)]
(5.18)

−
N∑
n=1

T∑
t=1

θt ·
[
M∑
m=1

ptcGnm · xGnmt +
M∑
m=1

stcLNGnm · xLNGnmt

]
+

3This assumption is taken from Egging et al. (2008).
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−
N∑
n=1

T∑
t=1

θt ·
[
ptcSpotGn · xSpotGnt +

M∑
m=1

stcLNGnm · xSpotLNGnmt

]
+

−
M∑
m=1

T∑
t=1

θt ·
[
RCmt

(
Y LNG
mt

)]
−

M∑
m=1

θ1 · Im1(im1)−
S∑
s=1

T∑
t=1

θt · [dcms · zmst]

subject to

X̄n −XG
nt ≥ 0 ∀n,∀t (γnt) (5.19)

XG
nt −

(
M∑
m=1

xGnmt + xSpotGnt +XLNG
nt

)
= 0 ∀n,∀t (γnt) (5.20)

(1− αn) ·XLNG
nt −

(
M∑
m=1

xLNGnmt +
M∑
m=1

xSpotLNGnmt

)
= 0 ∀n,∀t (δnt) (5.21)

L̄n − (1− αn) ·XLNG
nt ≥ 0 ∀n,∀t (δnt) (5.22)

R̄m − (1− βm) · Y LNG
mt ≥ 0 ∀m,∀t (ηmt) (5.23)

(1− βm) · Y LNG
mt −

(
N∑
n=1

yLNGnmt +
N∑
n=1

ySpotLNGnmt

)
= 0 ∀m,∀t (ηmt) (5.24)

N∑
n=1

yGnmt +
N∑
n=1

yLNGnmt + ySpotGmt +
N∑
n=1

ySpotLNGnmt +

− imt ≥
S∑
s=1

zmst + qSpotGmt ∀m, t = 1 (λmt) (5.25)

N∑
n=1

yGnmt +
N∑
n=1

yLNGnmt + ySpotGmt +
N∑
n=1

ySpotLNGnmt +

+ wmt ≥
S∑
s=1

zmst + qSpotGmt ∀m, t = 2 (λmt) (5.26)

im1 · θ1 − wm2 · θ2 ≥ 0 ∀m (µm) (5.27)
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Īm − im1 ≥ 0 ∀m (νm) (5.28)
W̄m − wm2 ≥ 0 ∀m (σm) (5.29)
WGm − θ2 · wm2 ≥ 0 ∀m (φm) (5.30)

∑
t

θt · yGnmt − τnm ≥ 0 ∀n,∀m (ψGmn) (5.31)

∑
t

θt · yLNGnmt − ξnm ≥ 0 ∀n,∀m (ψLNGmn ) (5.32)

Υft −
(

N∑
n=1

M∑
m=1

Γfn · yGnmt +
N∑
n=1

Γfn · xSpotGnt

)
≥ 0 ∀f, ∀t (κft) (5.33)

xGnmt − ΠG
nm · yGnmt = 0 ∀n,∀m,∀t (pGnmt) (5.34)

xLNGmnt − ΠLNG
nm · yLNGmnt = 0 ∀n,∀m,∀t (pLNGmnt ) (5.35)

N∑
n=1

xSpotGnt + qSpotGmt −
M∑
m=1

ySpotGmt = 0 ∀t (pSpotGt ) (5.36)

xSpotLNGnmt − ySpotLNGnmt = 0 ∀n,∀m,∀t (pSpotLNGnmt ) (5.37)

∑
m

zmst − dst = 0 ∀s, ∀t (pst) (5.38)

Constraints (5.19)-(5.22) identify the supply countries’ activities. In particular,
constraint (5.19) imposes an upper bound on the total quantity of gas that producers
can extract (XG

nt). As stated by the constraint (5.20), the gas produced by supplying
countries can can be left in the gaseous form, and then sold either with LTCs (see
variable xGnmt) or on the spot market (see variable xSpotGnt ), or can be transformed in
LNG (see variable XLNG

nt ). The variable XLNG
nt represents the total amount of LNG

produced by the supply country n that is then sold either with LTCs (xLNGnmt ) or on
spot (xSpotLNGnmt ), as indicated by constraint (5.21). On the other side, constraint (5.22)
imposes capacity limits on the liquefaction process. Note that the variable XLNG

nt in
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constraints (5.21) and (5.22) is multiplied by the factor (1−αn) to account for the gas
loss αn that accrues during the liquefaction phase.

Constraints (5.23)-(5.32) refer to mid-streamers. In particular, mid-streamers buy
gas and LNG from supplying countries with LTCs, or buy/sell gas on the spot market,
or buy spot LNG. Mid-streamers regasify the total amount of LNG purchased (Y LNG

mt )
taking into account the capacity of their technologies as indicated in constraint (5.23).
On the other side, constraint (5.24) explains that Y LNG

mt accounts for the LNG that mid-
streamers purchase both with LTCs (yLNGnmt ) and on spot (ySpotLNGnmt ). Note that both in
(5.23) and (5.24) the variable Y LNG

mt is multiplied by the factor (1−βm) to consider the
losses of the regasification process. Constraints (5.25) and (5.26) define the balances
among the quantities of gas managed by mid-streamer in the low (t = 1) and in the
high-demand (t = 2) periods, respectively. More precisely, constraint (5.25) enforces
that the total amount of gas purchased by the mid-streamer minus the gas injected in
the storage site has to be greater or equal to the amount of gas sold to final consumers
(zmst) and on the spot market. In contrast, constraint (5.26) imposes that total amount
of gas purchased by the mid-streamer plus the gas withdrawn from the storage site has
to be greater or equal to the quantity of gas sold to final consumers (zmst) and on
the spot market. Constraints (5.27)-(5.30) regulate the storage process. In particular,
(5.27) enforces that amount of gas injected in the storage site has to greater than the
quantity withdrawn. Constraints (5.28) and (5.29) respectively define the injection
and the withdrawal capacity limits, and, finally, (5.30) imposes the working gas limit
throughout all withdrawal periods. On the other side, constraints (5.31) and (5.32)
are used to model the “no flexibility” assumption described above. In particular, they
respectively impose that the yearly amounts of gas and LNG that mid-streamers have
to buy through LTCs have to be greater or equal to the volumes established (for that
year) in already existing contracts. Such a constraint formulation allows mid-streamers
not only to accomplish the volume TOP clause of the LTCs into which they have already
enter, but also to possible negotiate new contracts. We explain in Section 5.3.4 how
these constraints are modified to model the mid-streamers’ flexible behaviour.

Constraint (5.33) enforces the capacity limit of the entry points located in the
destination country, while constraints (5.34), (5.35), (5.36) and (5.37) are the balances
for gas and LNG respectively traded with LTCs and exchanged on a spot basis. Note
that, as mentioned above, constraints (5.34) and (5.35) also include the external supply
risk indicator as a weight of the quantities of gas and LNG purchased by the mid-
streamers. Constraint (5.38) imposes the balance between the total quantity of gas
sold by mid-streamers (zmst) and demanded by consumers (dst).

Finally, In order to detect the behaviur of the different players involved in the
natural gas supply chain we consider complementarity formulation of this optimization
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problem:

0 ≤ −γnt +
∂Cnt

(
XG
nt

)
∂XG

nt

+ γnt ⊥ XG
nt ≥ 0 ∀n,∀t (5.39)

0 ≤ −(1− αn) · δnt + (1− αn) · δnt + γnt +
∂LCnt

(
XLNG
nt

)
∂XLNG

nt

⊥ XLNG
nt ≥ 0 ∀n,∀t

(5.40)
0 ≤ −pGnmt + ptcGnm + γnt ⊥ xGnmt ≥ 0 ∀n,∀m,∀t (5.41)

0 ≤ −pSpotGt + γnt + ptcSpotGn +
F∑
f=1

Γfn · κft ⊥ xSpotGnt ≥ 0 ∀n,∀t (5.42)

0 ≤ −pLNGnmt + stcLNGnm + δnt ⊥ xLNGnmt ≥ 0 ∀n,∀m,∀t (5.43)
0 ≤ −pSpotLNGnmt + stcLNGnm + δnt ⊥ xSpotLNGnmt ≥ 0 ∀n,∀m,∀t (5.44)
0 ≤ −pst + dcms + λmt ⊥ zmst ≥ 0 ∀m,∀s,∀t (5.45)

0 ≤ −(1− βm) · ηmt +
∂RCm

(
Y LNG
mt

)
∂Y LNG

mt

+ (1− βm) · ηmt ⊥ Y LNG
mt ≥ 0 ∀m,∀t

(5.46)

0 ≤ −λmt − ψGnm + ΠG
nm · pGnmt +

F∑
f=1

Γfn · κft ⊥ yGnmt ≥ 0 ∀n,∀m,∀t (5.47)

0 ≤ −λmt + pSpotGt ⊥ ySpotGmt ≥ 0 ∀m,∀t (5.48)
0 ≤ −λmt − ψLNGnm + ΠLNG

nm · pLNGnmt + ηm ⊥ yLNGnmt ≥ 0 ∀n,∀m,∀t (5.49)
0 ≤ −λmt + pLNGnmt + ηm ⊥ ySpotLNGnmt ≥ 0 ∀m,∀t (5.50)
0 ≤ −pSpotGt + λmt ⊥ qSpotGmt ≥ 0 ∀m,∀t (5.51)

0 ≤ −µm + ∂Im1 (im1)
∂im1

+ νm + λm1 ⊥ im1 ≥ 0 ∀m, t = 1 (5.52)

0 ≤ −λm2 + µm + σm + φm ⊥ wm2 ≥ 0 ∀m,∀t = 2 (5.53)
0 ≤ X̄n −XG

nt ⊥ γnt ≥ 0 ∀n,∀t (5.54)
0 ≤ L̄n − (1− αn) ·XLNG

nt ⊥ δnt ≥ 0 ∀n,∀t (5.55)
0 ≤ R̄m − (1− βm) · Y LNG

mt ⊥ ηmt ≥ 0 ∀m,∀t (5.56)

0 ≤
N∑
n=1

yGnmt +
N∑
n=1

yLNGnmt + ySpotGmt +
N∑
n=1

ySpotLNGnmt +

−imt −
S∑
s=1

zmst − qSpotGmt ⊥ λmt ≥ 0 ∀m, t = 1 (5.57)

0 ≤
N∑
n=1

yGnmt +
N∑
n=1

yLNGnmt + ySpotGmt +
N∑
n=1

ySpotLNGnmt + wmt +
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−
S∑
s=1

zmst − qSpotGmt ⊥ λmt ≥ 0 ∀m, t = 2 (5.58)

0 ≤ im1 − wm2 ⊥ µm ≥ 0 ∀m (5.59)
0 ≤ Īm − im1 ⊥ νm ≥ 0 ∀m (5.60)
0 ≤ W̄m − wm2 ⊥ σm ≥ 0 ∀m (5.61)
0 ≤ WGm − θ2 · wm2 ⊥ φm ≥ 0 ∀m (5.62)
0 ≤

∑
t

θt · yGnmt − τnm ⊥ ψGmn ≥ 0 ∀n,∀m (5.63)

0 ≤
∑
t

θt · yLNGnmt − ξnm ⊥ ψLNGmn ≥ 0 ∀n,∀m (5.64)

0 ≤ Υft −
(

N∑
n=1

M∑
m=1

Γfn · yGnmt +
N∑
n=1

Γfn · xSpotGnt

)
⊥ κft ≥ 0 ∀t (5.65)

0 ≤ pst − ast + bst · dst ⊥ dst ≥ 0 ∀s,∀t (5.66)

XG
nt −

(
M∑
m=1

xGnmt + xSpotGnt +XLNG
nt

)
= 0 ∀n,∀t (γnt : free) (5.67)

(1− αn) ·XLNG
nt −

(
M∑
m=1

xLNGnmt +
M∑
m=1

xSpotLNGnmt

)
= 0 ∀n,∀t (δnt : free) (5.68)

(1− βm) · Y LNG
mt −

(
N∑
n=1

yLNGnmt +
N∑
n=1

ySpotLNGnmt

)
= 0 ∀m,∀t (ηmt : free) (5.69)

xGnmt − ΠG
nm · yGnmt = 0 ∀n,∀m,∀t (pGnmt : free) (5.70)

N∑
n=1

xSpotGnt + qSpotGmt −
M∑
m=1

ySpotGmt = 0 ∀t (pSpotGt : free) (5.71)

xLNGmnt − ΠLNG
nm · yLNGmnt = 0 ∀n,∀m,∀t (pLNGmnt : free) (5.72)

xSpotLNGnmt − ySpotLNGnmt = 0 ∀n,∀m,∀t (pSpotLNGnmt : free) (5.73)∑
m

zmst − dst = 0 ∀s, ∀t (pst : free) (5.74)

“Flexibility” case

The formulation of the welfare optimization problem under the “flexibility” assump-
tion is identical to that presented in Section 5.3.4 with the exception of the constraints
regulating the volumes of gas and LNG volumes that mid-streamers have to buy with
LTCs. In particular, this change change regards constraints (5.31) and (5.32) that
from lower bounds on the gas and LNG volumes purchased with LTCs become upper
bounds. These are expressed as follows:
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τnm −
∑
t

θt · yGnmt ≥ 0 ∀n,∀m (ψGmn) (5.75)

ξnm −
∑
t

θt · yLNGnmt ≥ 0 ∀n,∀m (ψLNGmn ) (5.76)

From a mathematical point of view, this constraint modification implies some small
changes in the KKT formulation of the optimization problem. In particular, conditions
(5.47), (5.49), (5.63), and (5.64) are respectively substituted with the following ones:

0 ≤ −λmt + ψGnm + ΠG
nm · pGnmt +

F∑
f=1

Γfn · κft ⊥ yGnmt ≥ 0 ∀n,∀m,∀t (5.77)

0 ≤ −λmt + ψLNGnm + ΠLNG
nm · pLNGnmt + ηm ⊥ yLNGnmt ≥ 0 ∀n,∀m,∀t (5.78)

0 ≤ τnm −
∑
t

θt · yGnmt ⊥ ψGmn ≥ 0 ∀n,∀m (5.79)

0 ≤ ξnm −
∑
t

θt · yLNGnmt ⊥ ψLNGmn ≥ 0 ∀n,∀m (5.80)

More precisely, since constraints (5.75) and (5.76) impose upper bounds on the
primal variables yGnmt and yLNGnmt , the associated dual variables ψGmn and ψLNGmn enter
with a positive sign in the KKT conditions (5.77) and (5.78) of these primal variables.
The reverse happens in the complementarity formulation of the optimization problem
under the “no flexibility” assumption. Since constraints (5.31) and (5.32) define lower
bounds on variables yGnmt and yLNGnmt the associated dual variables ψGmn and ψLNGmn enter
with a negative sign in the KKT conditions (5.47) and (5.49) of these primal variables.
Finally, all the other KKT conditions are as indicated in Section 5.3.4. From an
economical point of view, the illustrated constraint modification allows us to describe
a more flexible behaviur of the mid-streamers which, in this case, have the possibility
to ask for a LTC re-negotiation or to avoid the respect of the contract TOP clause for
a short period.

5.4 Case study

Our case study is based on the Italian gas market that we consider as the gas destina-
tion area where mid-streamers operate. We select this market for two reasons: first, it
is one of the three largest gas markets in Europe together with the UK and Germany;
second, it mainly relies on natural gas imports to cover its demand since the national
production is very low. According to the annual report of the Italian Authority (see
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AEEGSI (2016)4) the 90.6% of the national gas demand in 2015 was satisfied with
imports from Russia, Algeria, Libya, the Netherlands, Qatar, and Norway. The main
companies (mid-streamers) operating in Italy are ENI, Edison, and Enel with a market
share of respectively 53.8%, 21.2%, and 11.2% (see AEEGSI (2016)). In 2015, these
companies bought natural gas from Russia, Algeria, Libya, the Netherlands, and Nor-
way; while LNG was imported by Qatar and Algeria (see AEEGSI (2016)). In general,
residential/commercial is the gas consumers’ sector with the highest demand, followed
by power generation, and industrial sector (see also AEEGSI (2016)). The Italian natu-
ral gas and LNG imports are mainly delivered via long-term contracts, even though gas
can also be traded on the Italian spot market “Punto di Scambio Virtuale (PSV)” that
was created in 2003 (see Honoré (2013) for a description of the liberalization process
of the Italian gas market and the establishment of the PSV).

Considering this framework, our analysis refers to 2015 data and it is based on the
following assumptions:

• Destination country: Italy.

• Supplying countries: Russia (RU), Algeria (AL), Libya (LIB), the Netherlands
(NL), Qatar (QT), and Norway (NW). Since in the last years the Italian gas
production is progressively reducing (see AEEGSI (2016)), we do not account for
Italy among the producing and supplying countries.

• Natural gas origin: Russia, Algeria, Libya, the Netherlands, and Norway. For
modeling the mid-streamers’ flexibility assumptions, we consider the LTCs that
Italy has established with these countries in the last years and are still active in
2015.

• LNG origin: Algeria and Qatar (see BP (2016); GIIGNL (2018)). Similarly to
gas, we consider the LNG LTCs that Italy has established with these two countries
in the last years and are still active in 2015 to model the mid-streamers’ flexibility
assumptions.

• Mid-streamers: We assume that there is just one mid-streamer, since we do
not dispose of detailed data for all the companies operating in the Italian gas
market. This representative mid-streamer can buy both natural gas and LNG
through LTCs or can trade them on the respective spot markets.

As already explained, we account for a time span of one year subdivided into two
time periods with different demand levels. The high-demand period is assumed to have

4This annual report is in Italian and refer to 2015 data. An English version is available at http:
//www.autorita.energia.it/allegati/relaz_ann/15/annual_report2015.pdf but refers to 2014
data.

http://www.autorita.energia.it/allegati/relaz_ann/15/annual_report2015.pdf
http://www.autorita.energia.it/allegati/relaz_ann/15/annual_report2015.pdf
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a duration of 151 days and comprehends the months from November to March included;
the low-demand period lasts 214 days and covers the remaining months. Since, in our
analysis, we consider a representative day per each period, all quantities are expressed
in mcm/day while prices and costs are in e/cm.

The production (extraction) capacity data of the aforementioned supplying coun-
tries are taken from Egging et al. (2008) .5 These data are not recent but considering
that the gas reserve to production (R/P) ratio computed at worldwide level has been
almost unchanged in the last twenty years,6 we consider these capacity data as a rea-
sonable proxy. The liquefaction capacity data related to the supplying countries are
taken from GIIGNL (2018) and refer to 2015.

No capacity limits are imposed on the natural gas transports via pipelines between
supplying countries and Italy or on the LNG cargos. However, we consider the ca-
pacity of the entry points located at the borders of the Italian network that enforces
restrictions on the amount of natural gas imported via pipelines. Italy has five entry
points for pipelines that are Mazara del Vallo, Gela, Tarvisio, Passo Gries, and Gorizia.
In Mazara del Vallo, natural gas is imported from Algeria thanks to the connection
with the pipeline Transmed/Enrico Mattei; the natural gas from Libya enters in Gela
though the connection with the pipeline Greenstream; Gorizia and Tarvisio receive
gas from Russia thought the TAG pipeline, and, finally, Pass Gries gets gas from the
Netherlands and Norway respectively via the Trans-European pipeline and the Tran-
sitgas. Considering this information about the gas provenience at the different entry
points, we are able to limits the imports between Italy and the supplying countries (see
constraint (5.33) in our formulation). The 2015 capacity data of these entry points are
provided by Snam (2016). For what concerns LNG, the capacity of the regasification
plants implicitly limits the Italian LNG imports. There are three regasification plants
in Italy that are located in Rovigo, Livorno, and Panigaglia. In our case study, we
consider just one regasification plant whose capacity is obtained by aggregating those
of these two plants. The respective data are taken from GIIGNL (2018) and refer to
2015.

The natural gas production costs faced by supplying countries are defined as linear
function of the following type:

Cnt = cGn ·XG
nt ∀n, ∀t

where the parameter cgn has been estimated taking as reference Egging et al. (2008).
In particular, the value of cgn for the considered supplying countries is obtained by

5See Table 14 at page 2410 of Egging et al. (2008).
6See BP at http://www.bp.com/en/global/corporate/energy-economics/

statistical-review-of-world-energy/natural-gas/natural-gas-reserves.html

http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/natural-gas/natural-gas-reserves.html
http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/natural-gas/natural-gas-reserves.html
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multiplying the marginal production costs reported in the column “Max mag” of Table
14 in Egging et al. (2008) by 1.9 that is the average for 2015 of the “Euro Area Gross
Domestic Product Chained 2010 Prices YoY”.7

The liquefaction costs incurred by supplying countries are determined by the fol-
lowing quadratic function:

LCnt = lc1LNGn ·XLNG
nt + lc2LNGn · (XLNG

nt )2 ∀n, ∀t

where the terms lc1LNGn and lc2LNGn , as for the production costs, have been esti-
mated taking as reference the data and the approach proposed by Egging et al. (2008).
More precisely, the values of lc1LNGn and lc2LNGn respectively correspond to the α and
β parameters reported in Table 15 of in Egging et al. (2008) multiplied by 1.9. i.e. the
2015 GDP.

For the Italian mid-streamer’s regasification costs, we consider the following quadratic
function:

RCt = rc1LNG
(

N∑
n=1

Y LNG
nt

)
+ rc2LNG

(
N∑
n=1

Y LNG
nt

)2

∀t

where the terms rc1LNGn and rc2LNGn have been evaluated using the data available
in Egging et al. (2008). More precisely, the values of rc1LNGn and rc2LNGn respectively
correspond to the α and β parameters reported in Table 16 of in Egging et al. (2008)
multiplied by 1.9. i.e. the 2015 GDP.

The mid-streamer also controls and manages the storage site. We suppose that there
is just one storage site whose capacity and injection rate are obtained by aggregating
the capacities and injection rates of all the storage sites available in Italy. As in Egging
and Gabriel (2006), we impose that the injection rate is equal to the peak output rates,
while the extraction capacity is assumed to be twice the injection capacity. The data
related to working gas and storage rates refer to 2015 and are taken from IEA (2016a)
and from the Stogit website.8 Injection costs are defined through the following linear
function:

I1 = ic · i1

where the parameter ic is the unitary injection cost whose value has been taken

7Gross domestic product (GDP) measures the final market value of all goods and services pro-
duced within a country. It is the most frequently used indicator of economic activity. The GDP by
expenditure approach measures total final expenditures (at purchasers’ prices), including exports less
imports. This concept is adjusted for inflation. For our simulation, we GDP data from Bloomberg
(ticker: EUGDEMU). See https://www.bloomberg.com/quote/EUGNEMUY:IND

8See http://www.stogit.it/en/about-us/where-you-can-find-us/storage-sites.html

https://www.bloomberg.com/quote/EUGNEMUY:IND
http://www.stogit.it/en/about-us/where-you-can-find-us/storage-sites.html
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from AEEGSI (2016).
Supplying countries also face the natural gas and LNG transportation costs. The

costs of transfer natural gas though pipelines are taken from NERA (2014). In par-
ticular, we have taken the 2018 data in Figure 77 at page 132 of Appendix A and we
have adjusted them with the pipeline cost adders provided in Figure 87 at page 139 of
Appendix A for 2018. We have finally transformed all cost data from $/Mcf to e/cm.
On the other side, for evaluating the LNG transportation costs we follow the same
approach adopted for production, liquefaction, and regasification costs. We consider a
cost of 0.005e/cm/1000 sea miles that we have taken from Egging et al. (2008) and
we have then multiplied it by 1.9. The sea miles are deduced from GIIGNL (2018).
On the other side, the distribution costs faced by the mid-streamer are taken from
AEEGSI (2016).

The data needed for the computation of the external supply risk indicators refer to
2015 and are taken from BP (2016); GIIGNL (2018); AEEGSI (2016). As in Le Coq
and Paltseva (2009), we consider the political risk rating for 2015 published by the PRS
Group.9 This political risk measure assigns countries a rate whose values are between
1 and 100 with the following reasoning: the highest the rate, the lowest the political
risk associated. In all indicators that we construct, we consider the complementary of
this PRS risk, namely rn is set in the following way:

rn = 100− PRSRisk

Recall that the indicators ΠREES,G
nm and ΠREES,LNG

nm also account for the distance
(dnm) between the supplying and the destination countries and the fungibility of natural
gas (FG

nm) and the LNG (FLNG
nm ). Following Le Coq and Paltseva (2009), we set FG

nm = 1
and FLNG

nm = 2, and the transport risk is identified by the following parameter dnm:

dnm =


1, distance between capitals < 1700 Km
2, 1700 Km ≤ distance between capitals < 2500 Km
3, 2500 Km ≤ distance between capitals < 3300 Km
4, distance between capitals ≥ 3300 Km

(5.81)

The external risk indicators that we obtain from our computations are reported in
Table 5.2.

In order to model the different degrees of mid-streamer’s flexibility, we need the
data of the annual volumes of gas and LNG that have been regulated by LTCs in
2015. We recall that Italy has natural gas LTCs with Russia, Algeria, the Netherlands,

9See https://www.prsgroup.com/category/risk-index

https://www.prsgroup.com/category/risk-index
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Table 5.2: External supply risk indicators

ΠHHI,G
nm ΠSWN2,G

nm ΠGES,G
nm ΠREES,G

nm

NW 1.598 2.877 0.102 0.115
NL 1.174 3.974 0.113 0.126
RU 18.779 19.140 11.564 6.464
AL 1.508 8.784 0.300 0.335
LIB 1.377 15.494 0.495 0.553

ΠHHI,LNG
nm ΠSWN2,LNG

nm ΠGES,LNG
nm ΠREES,LNG

nm

AL 0.111 3.515 0.001 0.003
QT 93.444 0.360 0.973 0.799

Norway, and Libya; while LNG LTCs are with Algeria and Qatar. The considered
annual data are reported in Table 5.3 and are taken from Cedigaz10

We consider the following inverse demand functions to model the final consumers’
gas demand:

pst = ast − bst · dst ∀s,∀t

Parameters ast and bst have been estimated using an elasticity value of -0.1 for
all consumer groups, the amount of gas demanded by Italian industry, power sector,
and residential/commercial and the average prices that they paid for purchasing gas
in 2015. These data are taken from AEEGSI (2016).

Table 5.3: Volumes of gas and LNG regulated by LTCs between Italy and supplying
countries in 2015 (annual value)

Gas LNG
NW 5,450 -
NL 9,200 -
RU 35,000 -
AL 27,380 1,840
LIB 5,610 -
QT - 6,400
Tot 82,640 8,240

Finally, we recall that the solution of the optimization problems presented in Sec-
tions 5.3.4 and 5.3.4 is found by implementing their complementarity conditions. These

10See http://www.cedigaz.org/products/natural-gas-database.aspx

http://www.cedigaz.org/products/natural-gas-database.aspx
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KKT conditions are run in the GAMS modeling environment, using PATH as solver
(see Dirkse and Ferris (1995)).

5.5 Results
To analyze the impacts of external supply risk on the mid-streamer imports’ choices
and we consider the following assumptions

1. Mid-streamer’s behaviour:

• The mid-streamer has at least to buy an amount of gas and LNG as defined
in already existing LTCs (“No FLEX” case in the following);

• The mid-streamer has at most to buy an amount of gas and LNG as defined
in already existing LTCs (“FLEX” case in the following).

2. External supply risk:

• No external supply risk is considered in model (“NO Risk” case in the fol-
lowing);

• All external supply risk indicators that we constructed are considered in the
model as explained in the previous sections (“Risk” case in the following).

In the following we first analyze the impacts of the application of different degrees
of mid-streamers’ flexibility by comparing the “No FLEX” and “FLEX” without con-
sidering any of the external supply risk indicators (see Section 5.5.1). The effects of
gas/LNG volumes and prices with risk are then presented in Section 5.5.2. Note that
in this section we consider the risk indicators imposed in both the “No FLEX” and the
“FLEX” cases. Note that, in any of the simulations that we have implemented, the
mid-streamer re-sells gas on the spot market. Finally, we assume that the risk regards
both the supply of gas and LNG with LTCs at the same time.

5.5.1 No external supply risk

We first consider the effects of the mid-streamer’s flexibility on the annual amount of
gas purchased. Fig. 5.2a illustrate the yearly volume of natural gas, both in gaseous and
liquefied forms, that the mid-streamer exchanges in the “No FLEX” and the“FLEX”)
cases, assuming that the external supply risk is not considered (“NO Risk”).

The mid-streamer accomplishes all gas and LNG LTCs that it has with all the
supplying countries (compare the values reported in Figure 2a with those reported in
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Fig. 2: Yearly amount of gas exchanged per type and yearly demand per consumer
group (mcm/year)

the supply from Algeria). The set of supplying countries from which the mid-streamer
receives gas/LNG is not subject to many modifications. Considering LTCs (Figure 3),
the main changes in the gas supply mix between the “No FLEX” and “FLEX” cases
are as follows: under the flexibility assumption, Norway does no longer provide gas
to Italy in any period; Libya still procures Italy with gas but only in the low-demand
period; and, finally, the total amount of gas provided by Algeria reduces, especially
in the low-demand period. Note that this unsold Algerian gas is then transformed in
LNG and sold on the spot market (see Figure 4). For what concerns LNG, as already
indicated above, the difference between the “No FLEX” and “FLEX” cases is that the
volume TOP clause of the Algerian and Qatari LTCs is not respected under the flex-
ibility assumption because the mid-streamer prefers to buy spot LNG. On the other
side, both in the “No FLEX” and “FLEX” cases, Libya and the Netherlands supply
spot gas to Italy, even though in different quantities. Moreover, in the high-demand
period of the “FLEX” case Russia appears as an additional supplier.

The comparison of the “No FLEX” and “FLEX” results under the assumption
of absence of external supply risk shows that the mid-streamer changes its supply
choices when it has the possibility to do that. The profit analysis can help under-
standing this change of strategies in the mid-streamer’s behaviour. Table 4 reports
supplying countries and the mid-streamer’s profits, the final gas consumers’ surplus,
and the social welfare in the “No FLEX” and “FLEX” cases. In the “No FLEX” case,
the mid-streamer is forced to satisfy the LTCs that it has already contracted. This
guarantees the remuneration of the supplying countries which gain from their activi-
ties, but it causes a significant loss for the mid-streamer because its cost of purchasing
gas and LNG (“Purchase costs”) is higher than the revenues it obtains from selling
gas to final consumers (compare Tables 5, 6, and 7 that report the LTC prices, the

Figure 5.2: Yearly volume of gas exchanged per type and yearly demand per consumer
group (mcm/year)

Table 5.3), while this does not happen under the “FLEX” assumption leading to a
gas volume drop of 21%. In particular, the mid-streamer reduces by 20% the annual
volume of gas purchased with LTCs and does no longer buy LNG with LTCs. Even
though it increases respectively by 4% and 107% the amount of gas and LNG acquired
on spot markets at yearly basis, these spot purchases do not suffice to compensate the
reduction in the LTC volumes. This has a negative impact on final consumers that see
their gas availability reduced in the “FLEX” case. In particular, the mid-streamer still
guarantee almost the entire gas supply to the residential/commercial sector (the drop
is “only” by 7%), but it decreases the supply to the power companies and industry
respectively by 51% and 22% with respect to the “No FLEX” case (see Fig. 5.2b).

Fig. 5.3 and 5.4 provide more details on the daily amount of gas and LNG exchanged
between supplying countries and mid-streamers in the low- and in the high-demand
periods under the “No FLEX” and “FLEX” assumptions. In general, we observe that
between the flexibility and not flexibility cases, there is no a drastic variation of the mix
of supplying countries. What the mid-streamer significantly modifies is the amount of
gas/LNG purchased in the two time periods (shift of volumes exchanged in low- and
high-demand periods) and the selection of the physical status of the gas traded (shift
between the quantities of gas and LNG purchased, especially for the supply from Alge-
ria). The set of supplying countries from which the mid-streamer receives gas/LNG is
not subject to many modifications. Considering LTCs (Fig 5.3), the main changes in
the gas supply mix between the “No FLEX” and “FLEX” cases are as follows: under
the flexibility assumption, Norway does no longer provide gas to Italy in any period;
Libya still procures Italy with gas but only in the low-demand period; and, finally, the
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total amount of gas provided by Algeria reduces, especially in the low-demand period.
Note that this unsold Algerian gas is then transformed in LNG and sold on the spot
market (see Fig. 5.4. For what concerns LNG, as already indicated above, the differ-
ence between the “No FLEX” and “FLEX” cases is that the volume TOP clause of the
Algerian and Qatari LTCs is not respected under the flexibility assumption because
the mid-streamer prefers to buy spot LNG. On the other side, both in the “No FLEX”
and “FLEX” cases, Libya and the Netherlands supply spot gas to Italy, even though in
different quantities. Moreover, in the high-demand period of the “FLEX” case Russia
appears as an additional supplier.
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Figure 5.3: Natural gas and LNG bought through LTCs (mcm/day)

The comparison of the “No FLEX” and “FLEX” results under the assumption of
absence of external supply risk shows that the mid-streamer changes its supply choices
when it has the possibility to do that. The profit analysis can help understanding
this change of strategies in the mid-streamer’s behaviur. Table 5.4 reports supplying
countries and the mid-streamer’s profits, the final gas consumers’ surplus, and the
social welfare in the “No FLEX” and “FLEX” cases. In the “No FLEX” case, the mid-
streamer is forced to satisfy the LTCs that it has already contracted. This guarantees
the remuneration of the supplying countries which gain from their activities, but it
causes a significant loss for the mid-streamer because its cost of purchasing gas and
LNG (“Purchase costs”) is higher than the revenues it obtains from selling gas to
final consumers (compare Tables 5.5, 5.6, and 5.7 that report the LTC prices, the
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Figure 5.4: Natural gas and LNG bought on the spot market (mcm/day)

Table 5.4: Supplying countries and mid-streamer’s profits, final consumers’ surplus,
and social welfare under the “NO Risk” assumption (e/year)

e/cm NO Risk No FLEX NO Risk FLEX

Supplying countries

Revenues 51,021 38,342
Production costs 14,745 11,171
Transport costs 36,057 27,188
Net profits 218 -17

Mid-streamer

Revenues 50,247 52,550
Distribution costs 11,326 9,895
Purchase costs 51,021 38,342
Regasification costs 149 53
Injection costs 161 150
Net profits -12,410 4,110

Final consumers

Industry’s surplus 21,820 13,962
Power Sector ’s surplus 14,454 4,899
Residenatial’s surplus 182,618 159,711
Total surplus 218,892 178,572

Social welfare 206,700 182,664

spot prices, and the prices charged to final consumers, respectively).11 The situation
changes in the “FLEX” case where the mid-streamer is not obliged to fully satisfy all

11Note that, in the “No FLEX” case, the weighted average gas and LNG prices computed over the
involved supplying countries and paid by the mid-streamer are: 0.50 e/cm (gas LTCs), 0.66 e/cm
(LNG LTCs), 0.32 e/cm (gas spot), and 0.50 e/cm (LNG spot). In contrast, the weighted average
price that the mid-streamer applies to final consumers is 0.48 e/cm).
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the contracts. The outcome is that the mid-streamer modifies its supply mix in such
a way it avoids negative profits. However, the mid-streamer’s strategy of reducing
its purchase of gas and LNG with LTCs compared to the “No FLEX” case is not
beneficial for the whole gas supply chain because it implies not only a reduction of
gas availability for final consumers with a consequent decrease of their surplus, but
also a drop of supplying countries’ profits that become negative (see Table 5.4). The
final result is a 12% reduction of the social welfare. We recall that the remuneration
of supplying countries is important because these guarantee the maintenance of the
existing infrastructures and the investments in new ones, whose costs are, in general,
very high. Considering these results, we can say that LTCs are necessary to maintain
the stability and to guarantee the security of supply, even though this may incur in
losses for the mid-streamers.

We finally reports in Tables 5.5 and 5.6 the prices for natural gas and LNG respec-
tively sold with LTCs and on the spot market obtained in the “No FLEX” and the
“FLEX” cases. Note that the label “n.s.” in Tables 5.5 and 5.6 stands for “not sold”.
We recall that the gas spot price is not differentiated per supplier because we assume
that there is just one market where all participants submit their offers and bids. This
market sets the price for spot gas on a daily basis. The prices of LTCs for gas and
LNG are higher than those defined on the spot market both under the “No FLEX”
and the “FLEX” assumptions. This reflects the differences between these two pricing
systems and explains the reason why mid-streamers have asked for the re-negotiation
of the LTCs. Indeed, higher LTCs prices guarantee returns to supplying countries, but
also they may lead to possible losses for mid-streamers. Moreover, as expected, the
spot prices in the low-demand period are lower than in those in high-demand period
because of the different consumption levels in the two time frameworks.

Table 5.5: Prices of gas and LNG LTCs under the “NO Risk” assumption (e/cm)

NW NL RU AL LIB QT

Gas LTCs No FLEX 0.54 0.38 0.51 0.54 0.41
FLEX n.s. 0.38 0.51 0.55 0.41

LNG LTCs No FLEX 0.51 0.72
FLEX n.s. n.s.

Looking at Table 5.5, one can see that the gas prices of the LTCs with the Nether-
lands, Russia, and Libya are identical in the “No FLEX” and “FLEX” cases. In fact,
the quantities of gas LTCs exchanged between these countries and Italy are the same
under the two flexibility assumptions. This explains the effects on the volume re-shuffle
between low- and high-demand periods to which we assist in the “FLEX” case, as ex-
plained above. The unique exception is Algeria where the LTCs price in the “FLEX”
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Table 5.6: Prices spot of gas and LNG under the “NO Risk” assumption (e/cm)

Low High

Gas Spot No FLEX 0.31 0.33
FLEX 0.25 0.32

LNG Spot
No FLEX AL 0.49 0.50

QT n.s. n.s.

FLEX AL 0.31 0.38
QT n.s. n.s.

case is higher than under the “No FLEX” assumption. This is the reason why, in the
“FLEX” case, the mid-streamer decides to reduce the amount of gas purchased with
LTCs from Algeria and buy this gas on the spot basis at lower prices (compare Algerian
prices in Tables 5.5 and 5.6).

Considering Table 5.6, one can notice that the prices of the gas and LNG traded
on the spot markets are lower in the “FLEX” case than in the “No FLEX” instance.
This is the reason why the mid-streamer increase its purchases on spot.

Finally Table 5.7 reports the prices applied in the two time periods to final con-
sumers in the “no FLEX” and the “FLEX” cases. Note that the prices that the mid-
streamer is able to apply to final consumers under the “FLEX” assumption are higher
than those imposed in the “no FLEX” case. This indeed allows mid-streamer to in-
crease its revenues and compensate its costs in such a way it does not incur in a profit
loss (see Table 5.4).

Table 5.7: Final consumers’ prices under the “NO Risk” assumption (e/cm)

NO Risk No FLEX NO Risk FLEX
Low High Low High

Industry 0.39 0.48 0.57 0.60
Power sector 0.37 0.45 0.55 0.58
Residential/commercial 0.47 0.56 0.65 0.68

5.5.2 External supply risk

In this section, we analyze the effects of the application of the external supply risk in
the “No FLEX” and “FLEX” cases. We recall that the risk is applied only on gas and
LNG LTCs.

The main outcomes are as follows. The external supply risk does not affect the
mid-streamer’s behaviur in the “No FLEX” case since the total volume of exchanged
gas and LNG both via LTCs and on spot are as under the “NO Risk No FLEX”
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Figure 5.5: Yearly volume of gas exchanged per type (mcm/year)

assumption (see Fig. 5.5) with the consequence that the total quantity of gas offered
to final consumers remains unchanged (see Fig. 5.13). Moreover, no changes in the
supplying country mix is encountered with respect to the not-flexible risk without risk.
As in the “NO Risk No FLEX” case, the mid-streamer accomplishes the natural gas
and LNG LTCs independently of the risk measure considered (see Fig. 5.6 and 5.7).
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Figure 5.6: Volumes of gas exchanged via LTCs under the “Risk” and “No FLEX”
assumptions (mcm/day)

This depends on the fact that the mid-streamer must satisfy the LTC volume clause
and it has, at least, to buy the volumes of gas and LNG that it has already contracted.
The risk does not either affect the spot supply, even though the mid-streamer does not
have any constraints on the amount of gas and LNG that it has to buy on the spot
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Figure 5.7: Volumes of LNG exchanged via LTCs under the “Risk” and “No FLEX”
assumptions (mcm/day)

markets (see Fig. 5.8 and 5.9).
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Figure 5.8: Volumes of spot gas exchanged under the “Risk” and “No FLEX” assump-
tions (mcm/day)

In other words, the external supply risk does not have significant impacts on the
mid-streamer’s strategies when no flexibility is allowed. We register only some shifts
between the quantities of the LTCs and spot gas purchased in the low- and in the
high-demand period (see Fig. 5.6 and 5.8, respectively). This implies that the gas and
LNG prices as well as those paid by the final consumers in all “Risk No Flex” cases
are identical to those reported in Tables (5.5)-(5.7) for the corresponding “NO Risk No
Flex” case, independently of the considered external supply risk indicator. The same
holds for the social welfare of the gas supply chain and the profits/surplus of its player
groups.



186 Impacts of the external supply risk in a natural gas supply chain

	-						

	2.00				

	4.00				

	6.00				

	8.00				

	10.00				

	12.00				

NO	Risk		 RISK	HHI	 RISK	SWNI2	 RISK	GES	 RISK	REES	 NO	Risk		 RISK	HHI	 RISK	SWNI2	 RISK	GES	 RISK	REES	

LOW	 HIGH	

LNG	SPOT	NO	Flex	

QT	

LIB	

AL	

RU	

NL	

NW	

Figure 5.9: Volumes of natural gas exchanged via LTCs under the “Risk” and “No
FLEX” assumptions (mcm/day)

The situation in the “Risk FLEX” cases remains in line with that described under
the “NO Risk FLEX” assumption and, depending on the considered supply risk indi-
cator, it is even more exacerbated. The mid-streamer’s actions in the “Risk FLEX”
cases can be summarized with the following items (see Fig. 5.5 and Fig. 5.10-5.12):

1. The total amount of natural gas that is traded in the “Risk FLEX” cases is lower
than under the “NO Risk FLEX” assumption. This is particular evident when
the ΠHHI

nm and ΠSWNI2
nm indicators are applied. Globally, we register a significant

drop of gas imports compared to the “No FLEX” cases;

2. In the “Risk FLEX” cases, the mid-streamer modifies the mix of supplying coun-
tries depending on the applied risk indicator;

3. The amount of gas that the mid-streamer exchanges with LTCs in the “Risk
FLEX” cases is lower than the corresponding one in the “NO Risk FLEX” because
the risk induces the mid-streamer to buy cheaper gas and LNG on the respective
spot markets;

4. The volumes of gas and LNG that are exchanged on the spot markets increases
under the “Risk FLEX” assumptions compared to the “NO Risk FLEX” (and
also “NO Risk No FLEX”) cases, but this increase does not suffice to recover the
amount of gas that is not bought with LTCs;

5. As in the “NO Risk FLEX” case, also under all “Risk FLEX” assumptions, the
mid-streamer does not respect the volume TOP clause of the LNG LTCs; i.e. no
LNG is exchanged with contracts.
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Figure 5.10: Volumes of natural gas exchanged via LTCs under the “Risk” and “FLEX”
assumptions (mcm/day)
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Figure 5.11: Volumes of spot gas exchanged under the “Risk” and “FLEX” assumptions
(mcm/day)

Table 5.8 provides a summary of the supplying countries that exchanges the different
types of gas with Italy under the risk and flexibility assumptions. These are compared
to the results obtained in the “NO Risk FLEX” case. For each case analyzed, “Yes” in
the table cells indicates that there is a trade and the subsequent percentage reported
in brackets corresponds to the weight in terms of volumes that the considered country
has in the Italian supply mix. The symbol “-” means that no exchanges of gas or
LNG are allowed between Italy and the producer, while “-No” means that Italy does
not import from the specific country even though it has the possibility to do it. The
provenience of spot gas and LNG is not affected by risk since the relative indicators
are applied only on LTCs. As we already observed, there is an increase of the total
volume of spot gas and LNG that is imported both from Algeria and Qatar, but this



188 Impacts of the external supply risk in a natural gas supply chain

	-						

	5.0				

	10.0				

	15.0				

	20.0				

	25.0				

	30.0				

	35.0				

	40.0				

	45.0				

NO	Risk		 RISK	HHI	 RISK	SWNI2	 RISK	GES	 RISK	REES	 NO	Risk		 RISK	HHI	 RISK	SWNI2	 RISK	GES	 RISK	REES	

LOW	 HIGH	

LNG	SPOT	FLEX	

QT	

LIB	

AL	

RU	

NL	

NW	

Figure 5.12: Volumes of spot LNG exchanged under the “Risk” and “FLEX” assump-
tions (mcm/day)

increase is not enough to restore the gas volume availability guaranteed by the respect
of LTCs. The inclusion of risk has a significant impact on the external supply of gas
with LTCs because the mid-streamer changes the provenience and the proportion of
gas imported depending on the indicator. The principle driving the mid-streamer’s
choice is considering not risky countries. For instance, under the ΠHHI

nm , the mid-
streamer decides to fully respect the gas LTCs with the Netherlands and Libya because
these are the two countries with the lowest risk level (see ΠHHI,G

nm in Table 5.2). The
same happens when applying the other risk indicators. Note that the gas contracts
with Russia are not honored because this is the producer with the highest risk in all
considered indicators and, moreover, the mid-streamer does not accomplish to any gas
LTCs under the ΠSWNI2

nm since the risk values associated with the different countries in
this indicator are extremely high, much higher than those of the other indicators (see
Table 5.2). On the other side, the mid-streamers does not buy LNG with contracts
but prefers to resort to its purchase on spot, as it happens in the “NO Risk FLEX”
case. This drop of natural gas import with LTCs has been already observed in Section
5.5.1 when describing the effect of the “NO Risk FLEX” case. The combination of the
flexibility with the risk assumption exacerbates the phenomenon, implying a significant
reduction of the total gas offered to final consumers in the “Risk FLEX” cases (see Fig.
5.13). Only the residential/commercial sector maintains a relative adequate supply
level, even though lower than in the corresponding “Risk No FLEX” and “Risk FLEX”
cases, whereas industries and power generators face a significant curtailment. These
two sectors are not even supplied when the ΠSWNI2

nm risk applies.
The mid-streamer behaves in this way because it wants to limit its exposure to

risk, but mostly because it desires to mitigate its possible profit losses. This issue has
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Table 5.8: Supplying countries that exchange gas and LNG with Italy under the “Risk”
and “FLEX” assumptions

NW NL RU AL LIB QT

Gas LTCs

NO Risk No Yes (14%) Yes (54%) Yes (25%) Yes (8%) -

Risk ΠHHI
nm

No Yes (62%) No No Yes (38%) -

Risk ΠSWNI2
nm

No No No No No -

Risk ΠGES
nm

Yes (15%) Yes (24%) No Yes (50%) Yes (11%) -

Risk ΠREES
nm

Yes (14%) Yes (23%) No Yes (50%) Yes (13%) -

LNG LTCs

NO Risk - - - No - No

Risk ΠHHI
nm

- - - No - No

Risk ΠSWNI2
nm

- - - No - No

Risk ΠGES
nm

- - - No - No

Risk ΠREES
nm

- - - No - No

Gas Spot

NO Risk No Yes (59%) Yes (1%) No Yes (40%) -

Risk ΠHHI
nm

No Yes (50%) Yes (16%) No Yes (34%) -

Risk ΠSWNI2
nm

No Yes (84%) No No Yes (16%) -

Risk ΠGES
nm

No Yes (53%) No No Yes (47%) -

Risk ΠREES
nm

No Yes (54%) Yes (5%) No Yes (41%) -

LNG Spot

NO Risk - - - Yes (100%) - No

Risk ΠHHI
nm

- - - Yes (29%) - Yes (71%)

Risk ΠSWNI2
nm

- - - Yes (29%) - Yes (71%)

Risk ΠGES
nm

- - - Yes (29%) - Yes (71%)

Risk ΠREES
nm

- - - Yes (29%) - Yes (71%)

already been detected in Section 5.5.1 when discussing the “NO Risk FLEX” case.
Table 5.9 reports supplying countries and the mid-streamer’s profits, the final gas

consumers’ surplus, and the social welfare in the “NO Risk FLEX” and in the “Risk
FLEX” cases. In all “FLEX” cases, the mid-streamer’s profits are positive thanks to the
set of strategies that it adopts. Note that the significant curtailment of the expensive
gas volumes traded with LTCs under the risk assumption allows the mid-streamer to
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Table 5.9: Supplying countries and mid-streamer’s profits, final consumers’ surplus,
and social welfare under the “NO Risk” assumption (e/year)

FLEX

No Risk Risk ΠHHI
nm Risk ΠSWNI2

nm Risk ΠGES
nm Risk ΠREES

nm

Supplying countries

Revenues 38,342 23,346 21,272 30,178 30,692
Production costs 11,171 6,986 5,232 10,139 10,285
Transportation costs 27,188 11,880 8,214 20,166 20,630
Net Profits -17 4,480 7,825 -128 -223

Mid-streamer

Revenues 52,550 49,877 45,647 52,481 52,464
Distribution costs 9,895 6,247 4,471 8,472 8,579
Purchase costs 38,342 23,346 21,272 30,178 30,692
Regasification costs 53 185 185 185 185
Injection costs 150 133 79 160 161
Net Profits 4,110 19,966 19,640 13,486 12,846

Final consumers

Industry’s surplus 13,962 961 - 7,436 7,934
Power Sector ’s surplus 4,899 - - 945 1,122
Residenatial’s surplus 159,711 86,322 47,453 133,285 135,427
Total surplus 178,572 87,283 47,453 141,666 144,483

Social welfare 182,664 111,728 74,918 155,024 157,107

increase its net profit compared to the “NO Risk FLEX” case. This is also due to the
fact that the prices imposed to final consumers are higher than under the “NO Risk
FLEX” assumption (see Table 5.11). This is particular evident when the ΠSWNI2

nm risk
is implemented, since no gas/LNG is purchased with LTCs, but also when applying the
ΠHHI
nm where the amount of gas/LNG bought on spot is proportionally higher than that

imported with LTCs. This indeed has a negative impact on final consumers that see
their surplus reducing with respect to the “NO Risk FLEX” assumption. In fact, the
lowest consumers’ surplus is registered when the ΠSWNI2

nm risk is applied. The effects
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of the risk implementation on supplying countries’ profits vary according to the risk
indicator analyzed. In particular, supplying countries globally face losses when the risk
indicators ΠGES

nm and ΠREES
nm are considered, while they gain with the ΠHHI

nm and ΠSWNI2
nm

measures. Note that these losses are higher than in the “NO Risk FLEX” case. In this
latest case, it is true that their revenues are lower, but also the associated production
and transportation costs are limited. This allows supplying countries to gain from the
situation.

Table 5.10 reports the LTC prices for gas under the “NO Risk FLEX” and “Risk
FLEX” assumptions. One can note that the risk leads to the a slight increase of these
prices.

In conclusion, the “FLEX” strategy is more protecting for the mid-streamers, but
it does not result to be beneficial for the whole supply chain that registers a reduction
of the social welfare. This phenomenon becomes more extreme with the application of
the external supply risk measures.

Table 5.10: Prices of gas LTCs under the “Risk FLEX” assumptions (e/cm)

FLEX
NW NL RU AL LIB QT

NO Risk n.s. 0.38 0.51 0.55 0.41
Risk ΠHHI

nm n.s. 0.39 n.s. n.s. 0.43
Risk ΠSWNI2

nm n.s. n.s. n.s. n.s. n.s.
Risk ΠGES

nm 0.56 0.41 n.s. 0.56 0.43
Risk ΠREES

nm 0.55 0.40 n.s. 0.56 0.42

Table 5.11: Final consumers’ prices under the “Risk FLEX” assumptions (e/cm)

FLEX
NO Risk FLEX Risk ΠHHI

nm Risk ΠSWNI2
nm Risk ΠGES

nm Risk ΠREES
nm

Low High Low High Low High Low High Low High
Industry 0.57 0.60 1.05 1.13 n.s. n.s. 0.74 0.77 0.73 0.76
Power Sector 0.55 0.58 n.s. n.s. n.s. n.s. 0.65 0.75 0.65 0.73
Residenatial 0.65 0.68 1.18 1.21 1.56 1.59 0.82 0.86 0.81 0.84

5.6 Conclusions
In this work, we analyze the security of the external supply of the Italian gas market
that mainly relies on imports to satisfy its gas demand. In particular, we develop an
optimization problem model that describes the equilibrium state of a natural gas supply
chain where supplying countries, mid-streamers and consumers exchange natural gas
and LNG both with LTCs and on the spot market.
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Mid-streamers who buy natural gas and LNG are assumed to be the market player
mainly exposed to the external supply risk associated with the imports from foreign
countries. In other words, mid-streamers define the amount of gas and LNG to be
imported not only on the basis of the relative production and transportation costs,
but also on the external supply risk associated with the countries from which the gas
originates. The external supply risk is measured through indicators that we construct
starting from those already existing in the literature. These indicators are then inserted
in the volume balance constraints of the gas and LNG LTCs.

In addition to the impact of the external supply risk, we analyze different degrees
of mid-streamer’s flexibility. In particular, we consider both a situation where the mid-
streamer fully satisfies the LTCs quantity clause and a case where the mid-streamer
behaves in a more flexible way and it is not obliged to fulfill the LTC volume require-
ments.

Our analysis shows that, if the mid-streamer have to comply with the LTCs quantity
clause (“No FLEX” assumption), it does not significantly change its supplying choices
even when the risk is considered. Under this assumption, the mid-streamer faces sig-
nificant losses, while the supplying countries gain. In contrast, these mid-streamers’
losses disappear when it is not obliged to fully satisfy the LTCs requirements (“FLEX”
case) because it is able to modify its supply mix. In particular, compared to the “No
FLEX” case, it reduces the amount of gas imported with LTCs because it is more
expensive and increases the quantity of cheaper spot gas. In addition, it increases its
imports from less risky countries when possible. However, this flexible mid-streamer’s
behaviur has several drawbacks compared to the “No FLEX” case: the suppliers can
face losses because of the significant drop in their revenues; the total amount of gas
and LNG purchased drops because the decrease of the quantity of gas imported via
LTCs is not fully compensated by the increase of the spot gas or LNG. This also leads
to a reduction of gas availability for final consumers. In particular, the mid-streamer
still guarantee the gas supply to the residential/commercial sector, but it decreases
the supply to the power companies and to industries with respect to the “No FLEX”
case. Considering these results, it turns out that LTCs are necessary to maintain the
stability and to guarantee the security of supply, even though this may incur in losses
for the mid-streamers. The “FLEX” strategy is more protecting for the mid-streamers,
but it does not result to be beneficial for the society. This phenomenon becomes more
extreme with the application of the external supply risk measures.



Chapter 6

Closure

6.1 Summary
This thesis can be seen as an attempt to study relevant issues related to the decar-
bonization of electricity and gas markets. Renewable energy generation is seen as one of
the most effective ways to curb climate change, and intermittent sources like wind and
solar are considered to be those with the highest potential. Anyway, renewable gener-
ation implies dealing with issues related to the variability and predictability of these
sources, which represent a challenge for the power system. Possible solutions include
integrating storage units to provide flexibility and use gas-fired plants as backup capac-
ity. Because of the crucial role played by gas market in achieving the decarbonization
targets, issues related to gas procurement in Europe are also analyzed. In particular,
we investigate the re-negotiation of the LTCs required by European mid-streamers to
make LTC gas prices more aligned with those resulting from the spot trading at the
hubs. Moreover, we consider the issue of the risk of external supply, with a particular
focus on the Italian gas market. The need of investigating this topic arises from the
fact that most of the European Member States, and especially Italy, relies on imports
from politically and economically unstable countries to cover their demand.

6.2 Conclusions
In this section, we briefly recall the main conclusions derived from the work developed
in this thesis. Please refer to chapter related conclusions for additional details.
Policy mechanisms are needed to internalize the societal cost of carbon and address
the transformation of the electric power system required by the decarbonization pro-
cess. Onshore wind represents the best option to reach immediate emission reduction.
Anyway, if CSP achieves its projected cost decrease and efficiency gains, it can become
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an extremely competitive alternative. Moreover, the role of storage is fundamental in
a renewable-dominated electric power system because it provides flexibility and allows
for costs saving by serving electricity during peak hours. Electricity should also con-
tribute to the decarbonization of the transport sector by facilitating the integration
of electric vehicles. Benefits in terms of carbon emission reduction deriving from the
EVs’ usage are already tangible with the actual electricity generation mix, but these
are expected to grow with the progressive increase of the renewable energy penetration
expected in the years to come.

As indicated in the Energy Roadmap 2050, natural gas is the cheapest fossil fuel,
and combined cycle power plants represent the most convenient electricity generation
units in terms of both cost/efficiency ratio and emission rate. From a technological
point of view, our analysis shows that the integration of the CCS mechanism in gas-
fired power plants is a plausible option for the future in order to completely abate their
carbon emissions. This is a general outcome that could be valid for all gas markets.
However, considering our analysis of the European gas market, we can conclude that
the LTCs need to be re-negotiated by also including, among the oil-based underlying
assets, spot prices of gas traded at the hubs. Under this framework, introducing spot
gas indexation might help mid-streamers’ to compensate for possible losses caused by
the accomplishment to quantity clause that anyway it is important to maintain the
security of gas supply. The quantity clause is also a key issue in the analysis of the risk
associated with external gas supply. Our analysis shows that, if the mid-streamer have
to comply with the LTCs quantity clause, it does not significantly change its supplying
choices even when the risk is considered. Under this assumption, the mid-streamer faces
significant losses, while the supplying countries gain. In contrast, these mid-streamers’
losses disappear when it is not obliged to fully satisfy the LTCs requirements because
it is able to modify its supply mix.

6.3 Future Research

The models developed in the thesis project could be improved and further developed
under different aspects. For this reason, we provide future research suggestions in the
following:

• To extend the model proposed in Chapter 2 by developing a multi-stage stochastic
optimization planning investment model with decarbonization targets.

• To consider alternative clustering methods, such as hierarchical agglomerative
clustering using Ward’s method, which has been shown to perform well when
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dealing with a combination of renewable sources with atypical pattern (wind)
and storage.

• To increase the number of operating conditions and scenarios and adopt a Ben-
der’s decomposition approach for the solution of the model investigated in the
Chapters 2 and 3.

• To apply the models proposed in Chapter 2 to a realistic case study on the
European electricity market and include pumped hydro storage as standalone
storage unit.

• To compare the solutions of a stochastic optimization approach with those of an
adaptive robust optimization approach by applying these two methodologies on
the same problem.

• To consider smart charging strategies and vehicle-to grid systems in the planning
of a SSEES as possible development of model investigated in Chapter 3.

• To develop the model formulated in Chapter 5 by introducing stochasticity in the
demand by considering future consumption evolution by sector in the equilibrium
problem on the gas supply chain.
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