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Abstract
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Network Theory in Finance: Applications to Financial Contagion Analysis and
Portfolio Optimization

by Gabriele TORRI

Network theory is a powerful tool for the analysis of complex systems, and in re-
cent years a growing body of literature highlights the usefulness of this approach in
finance.

This thesis explores two particular fields of application of network theory in fi-
nance. The first is the modelization of systemic risk and financial contagion in a
banking network, and is discussed in three chapters: first we estimate sparse par-
tial correlation networks build from credit default swaps (CDS) spreads using tlasso,
a methodology based on the multivariate t-Student distribution, suitable for data
with fat tails and outliers. Then we propose an analysis based on network-∆CoVaR,
a tail-risk network constructed using quantile graphical models. We study in depth
the characteristics of the resulting networks, focusing in particular on the structural
properties of the system. Finally, we study a liquidity contagion model in presence
of a network with communities.

The second field of application is portfolio optimization. In particular, the tlasso
model is applied to the estimation of parameters in Markowitz style portfolios. The
covariance matrix of a set of assets, and in particular its inverse, the so-called preci-
sion matrix, is closely related to graphical models. Here, the previously cited tlasso
model is used for the estimation of the precision matrix. Moreover, the interpretation
of the precision matrix as a network opens the possibility to implement investment
strategies based on network indicators.

The main contributions of the thesis are the following: first, we introduced the
use of tlasso in the financial literature, extending the results obtained. Then we in-
troduce the network version of ∆CoVaR, and we propose an estimation procedure
based on the SCAD penalization framework. Concerning the study of systemic risk,
this work is among the first to focus on the presence of a community structure in a
banking system, that is particular in the Europe setting where national borders are
still relevant divisions.

Keywords: Financial contagion, portfolio optimization, network theory, tlasso,
network-∆CoVaR, liquidity contagion.
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Chapter 1

Introduction

1.1 Network theory in finance

The study of networks has a long history in the mathematical literature, and can
be reconducted to the field of graph theory, a branch of combinatorics started in the
XVIII century by the Swiss mathematician Leonhard Euler. The field witnessed a
growth of interest in the 1970s, with the development of applications in the social
sciences (see e.g. Granovetter, 1977; Freeman, 1978), but it is in the last two decades
that become a fundamental tool for the study of complex systems, mostly thanks
to the increasing availability of large and granular datasets and improvements in
computational power.

A network can be defined as a collection of nodes and edges that connect pairs
of them. It is possible to characterize the network by assigning to the edges certain
attributes, for instance, they can have a direction (directed networks) or a weight
(weighted networks).

In symbols, we can represent a network as:

G = (V, E), (1.1)

where V is the vertex set, and E is the set of the edges.
A growing body of literature highlights the usefulness of network theory in fi-

nance, presenting several applications to solve traditional problems such as the de-
termination of asset prices in the market, or study the risk exposures of financial
institutions, overcoming the limits of other techniques. Moreover, network theory
may provide insights on classical results or mathematical techniques, giving new
interpretations to traditional methodologies. Network applications span a large set
of techniques, from agent-based models, used to study the formation of prices in the
market, to models that describe the diffusion of financial contagion and to portfo-
lio optimization. In each of the applications, the nodes and edges in a network are
modelled differently. For instance, nodes can represent market traders, banks or as-
sets in a portfolio and the edges can describe for instance flows of information, the
exposures in interbank markets, or statistical measures such as partial correlations.
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1.2 Banking networks – literature review

In this section we outline the main applications of network theory related to the
modelization of systemic risk and financial contagion in banking systems, showing
the main channel of transmission and some relevant models. We also briefly review
the effects of network topology in the diffusion of contagion.

1.2.1 Financial contagion, systemic risk and network theory

One of the most striking features of financial crises is that they often spread quickly
across countries and institutions, and that small shocks affecting a particular region
or a small group of institutions can cause contagion in the rest of the system and
infect other economic sectors.

The focus on contagion become particularly relevant after the 2008 crisis and
become associated with the concept of systemic risk, defined by Schwarcz, 2008 as:
The risk that (i) an economic shock such as market or institutional failure triggers (through
a panic or otherwise) either the failure of a chain of markets or institutions or a chain of
significant losses to financial institutions, (ii) resulting in increases in the cost of capital or
decreases in its availability, often evidenced by substantial financial-market price volatility.

Further insights on the (loose) definition of contagion are proposed by Rigobon,
2016, that underlines how the three expressions “contagion”, “spillovers” and “in-
terconnectedness” have been defined in several ways in the academic literature, with
the first indicating mostly the unexpected component of transmission of shocks in
the system or change in behaviour during crises, while the other two terms refer
typically to the expected component of common movements among different insti-
tutions and different markets. The distinction between the concepts is often tenu-
ous and model dependent and, beyond the semantic, the two major points of inter-
est in the study of systemic risk are the estimation of transmission during normal
times and the the estimation of change in the transmission mechanisms after certain
macroeconomic events.

Overall, the interaction structure between financial institutions plays a key role
in the analysis of systemic risk, and network approaches can help shedding some
light over the analysis of contagion. A better understanding of the topology of the
network of such relationships should then help to evaluate risk and predict the im-
pact of economic shocks. Crucial steps are to identify the channels for the propa-
gation of systemic risk among banks, and to model the mechanisms of diffusion of
distress. Given the complexity of financial systems, there are multiple channels for
the propagation of systemic risk. Hurd, 2016 suggests the following classification of
the main contagion channels:

• Default contagion: In case of insolvency of a financial institution, the credit
relationships between banks (constituted by traditional interbank lending, but
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also swaps, derivatives and securitized assets), can represent a contagion chan-
nel, and may chain together in a domino effect creating default cascades, in par-
ticular when the interbank exposure is high compared to the lender’s equity.

• Liquidity contagion: In a situation of funding illiquidity, a bank may try to re-
spond by curtailing its interbank lending, possibly resulting in funding shocks
for other banks, triggering a chain that amplifies the distress.

• Market illiquidity and asset fire sales: The tendency of distressed financial
institutions to liquidate assets in depressed markets can create an asset fire sales
cascade. This mechanism works in two steps: first the asset sales by a distressed
bank decreases the prices, then the marked-to-market losses on others’ banks
balance sheets lead to losses, and possibly further asset sales.

• Asset correlation: Banks often hold common assets in their portfolios. Down-
ward shocks on these assets can increase the banks’ leverage and increase the
vulnerability of assets’ portfolios, making the institutions more vulnerable to
other types of contagion.

It is important to underline that the diffusion channels can influence each other
and, on top of this, the spread of financial distress can be influenced by several other
factors, including for instance the regulatory framework, the behaviour of investors
or the possible bail-out of defaulted institutions by the public sector.

Together with the “source-specific approaches” outlined above, Benoit et al., 2017
identify a second family of indicators defined “global measures”, not focused on
any specific transmission mechanisms, more statistical in nature, and based on the
analysis of time series of market instruments. These methods rely on the idea that,
if markets are efficient, current prices of securities can incorporate a vast amont of
information. The most common approaches in this class are the ∆CoVaR (Adrian
and Brunnermeier, 2016), the systemic risk measure SRISK (Brownlees and Engle,
2016), or network based indicators such as the ones proposed by Billio et al., 2012 or
Diebold and Yılmaz, 2014.

The analysis of some network-based global measures will be the focus of Chap-
ters 4 and 5, and we remind to these sections the discussion on “global measures”.

Here, we now briefly discuss the main characteristics of “source-specific conta-
gion models”, and we present the main findings in the literature. liquidity contagion
in a network with a community structure will be the focus of Chapter 6.

1.2.2 Financial contagion models

A common mathematical framework for the analysis of financial contagion is based
on the study of static cascade models (Hurd, 2016). The general idea is to model banks
starting from their balance sheets, and to consider the damaging shocks that can be
transmitted over interbank links. The contagion mechanisms can then be modeled,
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either analytically or by simulations, and the development of the contagion will de-
pend on the nature of the shock, by the balance sheet and bilateral exposure data,
and by the behavioural rules that the actors are assumed to follow.

One of the first contribution in the financial literature is the seminal model pro-
posed by Allen and Gale, 2000, that consider a minimal setting of only four banks,
where an interbank market arises due to the hetereogeneity of consumers’ prefer-
ences, and the consequential differences in liquidity needs. The authors then study
the effect of liquidity shortage at an aggregated level on the system in different net-
work configurations, showing that the diffusion of distress depends crucially on the
network structure, and that the relationship between the density of the bonds in the
market and the distress introduced in the system is non-monotonic. Another seminal
work is the one proposed by Eisenberg and Noe, 2001, that model default contagion
in a banking system by assuming that all banks are part of a single clearing system
and introduce an efficient algorithm to obtain iteratively the final state of the sys-
tem. They also prove the existance and uniqueness of the clearing vector under mild
conditions. The Eisenberg and Noe, 2001 model has then be extended, by Gai and
Kapadia, 2010, that introduce more realistic balance sheet modelization and conta-
gion mechanism, finding the presence of a robust-yet-fragile tendency, that is, while
the probability of contagion may be low, the effects can be extremely widespread
when problems occur. In another work, they apply a similar model to liquidity con-
tagion (opposed to default contagion), finding that in period of distress the liquidity
hoarding phenomenon can decrease the stability of the system. Other authors ex-
panded the literature on static cascade models. We can cite the generalized liquidity
cascade model introduced by Hurd, 2016, that generalize the Gai, Haldane, and Ka-
padia, 2011 and the Lee, 2013 models; the Cifuentes, Ferrucci, and Shin, 2005 that
includes asset fire sales and the model due to Caccioli et al., 2014 that investigates
the case in which contagion is caused by the fire sales of assets in presence of over-
lapping portfolios. An extensive review of the most relevant models, complete with
the formal specification is available in Hurd, 2016.

1.2.3 Robust-yet-fragile feature and the topology of network structure

A common theme in the study of financial contagion over networks, is the presence
of a robust-yet-fragile structure. That is, interconnected banking systems tend to be
overall stable and resiliant but, in presence of extreme situations, they tend to be vul-
nerable to contagion dynamics that amplify the effect of shocks, potentially leading
to catastrophic outcomes. Such trade-off comes from the fact that high interconnec-
tion can increase the efficiency of the system, allowing banks to obtain liquidity more
easily but, on the other hand, it also increases the potential channels of transmission
of distress. Acemoglu, Ozdaglar, and Tahbaz-Salehi, 2015 study this issue in a model
similar to Eisenberg and Noe, 2001, finding a sort of phase transition in financial con-
tagion: in presence of shocks of small entity, they find that high level of intercon-
nectivity in the market increases the overall stability and the complete network (i.e. a
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network where all the edges are active) is the most stable configuration. However,
when the system faces shocks of high intensity, the complete network becomes one
of the least stable configurations. This result is consistent with other works in the
literature, including among the others Gai, Haldane, and Kapadia, 2011, Hurd, 2016
and Battiston et al., 2012a. Fragility related to high interconnection is now a major
concern also for regulators, that after the crisis acknowledged the role of intercon-
nectivity as a major theme for the stability of the system, see for instance Haldane
et al., 2009 and the assessment methodology for the Global Systemically Important
Banks (G-SIB) defined by the Basel Committee FSB, 2013 that include the extent of
interbank market exposure as one of the criteria to identify systemically important
financial institutions.

The resiliance of the system to financial contagion is influenced not only by the
density of the interconnections, but also by their architecture. A relevant stream of
literature studies the effects of network configuration on the transmission of conta-
gion. A common stylized fact in banking system is the presence of hubs, that are
nodes that are much more connected compared to others. The presence of such
structure is one of the causes of the robust-yet-fragile configuration, since compared
to a more homogeneous network, such structure is more resiliant to random fail-
ures, but more fragile to failures happening at the nodes (see for instance Barabási
and Albert, 1999). Heterogeneity among the banks has been studied also in relation
to size (see Iori, Jafarey, and Padilla, 2006), level of connectivity (Amini, Cont, and
Minca, 2016) and balance sheet composition Caccioli, Catanach, and Farmer, 2012.
The diffusion of contagion can be also influenced by the presence of meso-structure
features such as a core-periphery configuration (see Anand, Craig, and Von Peter,
2015) and a community structure, or by behavioural factors such as the presence of
imperfect information or bank runs (Battiston et al., 2012b) and moral hazard (Br-
usco and Castiglionesi, 2007).

Overall, the effect of heterogeneity is complex and non linear, and the identifi-
cation of contagion patterns has to take into account multiple dimensions. Another
source of complexity is given by the fact that the financial system are typically con-
nected through multiple channels, that differ in terms of type of instrument (debt,
equity exposures, derivatives, etc) and maturity, while the majority of the studies
focus only on the short term interbank lending market (typically overnight). Alda-
soro and Alves, 2018 study the multiplex structure of the European banking market,
finding a high degree of similarity among these layers, but with some peculiarities
that may help to better assess the systemic importance of the banks in the system.

Although some stylized facts have emerged, the literature on financial contagion
is still limited, and the effect of several network features on the diffusion of con-
tagion have to be analysed yet. moreover, due to the confidentiality and limited
availability of the real-world data, a relevant challenge for regulators and the scien-
tific community is to match the results obtained in theorical and simulation studies
to real world settings, in order to develop effective regulatory tools.
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1.2.4 Characteristics of the interbank market: evidence from the e-MID
platform

The study of the structure of the network requires large and highly disaggregated
datasets, in order to build each day the set of all the bilateral exposures among banks.
The gathering of such dataset is challenging due to confidentiality, and to the fact
that the transactions are often done over-the-counter. A relevant exception is the e-
MID platform, that is the only regulated market for interbank deposits in the Euro
Area. The market has been funded in Italy in 1990, and is now used for transac-
tions by banks operating in the European market. A rich dataset, that reports all
the transactions settled on the market, is available for research purposes. It includes
the univocal code for the two couterparts of each transaction, their nationality, the
amount of the loan, its duration, the interest rate and the aggressor. The main lim-
itation of the dataset is the anonimity of the banks, that makes impossible to cross
the data with other sources, such as balance sheet data or the market prices of issued
securities.

The e-MID dataset has been analysed in several studies, including, among the
others, Finger, Fricke, and Lux, 2013, Fricke and Lux, 2015a, Temizsoy, Iori, and
Montes-Rojas, 2015, and Anufriev et al., 2016. Next, we present the main findings in
the literature, indicating the relevant references.

Concerning the network structure of the market, Fricke and Lux, 2015a show evi-
dence of a rather stable core–periphery configuration. Moreover, they show the pres-
ence of a high level of asymmetry between in-coreness and out-coreness and identify
the provision of liquidity to the system as the main role of core banks. Fricke and
Lux, 2015b analyse the degree distribution of the networks, finding good fit for nega-
tive binomial distribution at daily frequency, and Weibull, Gamma, and Exponential
distribution for quarterly aggregates. In contrast with some previous studies, they
do not find evidence supporting the fit of power-law distributions, casting doubts on
the generative mechanism of preferential attachment (see Barabási and Albert, 1999)
that is often associated to networks in complex systems. Finger, Fricke, and Lux,
2013 show that the network structure is influenced by the time aggregation used for
the analysis: at daily level, the network appears to be substantially random, show-
ing little persistence over time, while considering longer time aggregations the links
appear more stable, hinting the presence of non-random determinants of link forma-
tion based on some preferential relationships. They also find a significant structural
break for several network measure in presence of the global financial crisis in 2008.
Temizsoy, Iori, and Montes-Rojas, 2015 further analysed the presence of preferen-
tial lending channels, showing how they can increase the stability of the system and
allow borrowers to obtain more favourable rates. The empirical evidence suggests
that such preferential channels have been are particularly relevant during the global
financial crisis. Finally, Pecora, Kaltwasser, and Spelta, 2016 found evidence of the
presence of a structure characterized by overlapping communities within the core
banks in the network.
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The literature also shows that the structure of the e-MID market has been subject
to significant changes in correspondence to the non conventional monetary policies
implemented by the ECB. This is argued by Barucca and Lillo, 2018, that using a
stochastic block model to analyse the topological properties of the network, found
that after the LTRO (long term refinancing operation) in 2012, the stucture becomes
more randomized due to the changes in trading behaviour of some banks as a con-
sequence of the flood of cheap liquidity in the market.

Finally, some studies tried to develop agent based models to describe the forma-
tion and evolution of the network structure. Anufriev et al., 2016 develop a model
in which the behaviour of banks in the market is driven by the trade-off between an
uncertain gain on the loaned funds in the interbank market and the need to meet
reserve requirements. They found that such framework predicts the emergence of
a network structure consistent with the characteristic of the e-MID market, when
analysed at daily frequency. This model however does not allow to describe the
presence of preferential relationships, that affects the configuration of the market
when analysed at longer frequencies. Instead, Iori et al., 2015 propose an alternative
agent based model to account for preferential relationships by introducing memory
in the trading patterns as a proxy for trust. In such model, the connections active
in the past are more likely to be activated, and are reinforced. Such mechanism is
regulated by a single memory parameter that can be tuned to market data. The find-
ings are consistent with Finger and Lux, 2017 that, using a stochastic actor oriented
model, conclude that in the e-MID market the existence and extent of past credit
relationships is a major determinant of credit provision. They also find that after
the financial crisis the relevance of core banks increased and the banks tend to limit
indirect exposures, probably fearing indirect counterparty risks.

1.2.5 Regulatory framework

The monitoring and controlling of systemic risk and contagion in increasingly rele-
vant for the regulators, that aim to develop effective and coordinate policies. The
Basel III framework brings innovations in three main issues: first it aims to im-
prove systemic risk taking by imposing higher capital ratios and with more targeted
macroprudential policies such as the use of specific sectorial capital requirements,
introducing at the same time countercyclical capital buffers (BCBS, 2011). A second
area of intervention is related to liquidity regulation, and aims to reduce maturity
mismatches and preventing the need for banks to liquidate their assets generating
large downturns (Basel III, 2013). Finally, a special attention is also dedicated to the
so-called too-big-to-fail institutions, that is, banks that are so relevant that the entire
economy would face severe consequences in case of a default and are potentially
characterized by moral hazard risk. In particular, Europe introduced specific re-
quirements in terms of capitalization and transparency for Systemically Important
Financial Instititions (SIFIs), with the G-SIB framework in Europe (FSB, 2013), while
in the United States the Dodd–Frank Act created the Financial Stability Oversight
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Council (FSOC), that is in charge of identifying and monitoring systemic risks in
the USA, as well as eliminating expectations that American financial companies are
too-big-to-fail and will be bailed out.

Global coordination is also a relevant issue, and the institution of the Financial
Stability Board (FSB) in 2009 aims to foster greater coordination among supervisors
and to identify global systemic weaknesses.

Regulators have still to face several challeges to deal with systemic risk. In par-
ticular, one of the main open topics are to effectively develop capital requirements
based on the actual network structure of the financial system. Alter, Craig, and
Raupach, 2015 propose for instance to define capital requirements based on the cen-
trality of banks in the interbank market network, showing that this approach would
reduce bankruptcy costs in case of systemic events. Another issue is related to the
use of standardized capital requirement and stress tests methodologies, that on the
one hand allow regulators to identify the vulnerabilities of the system, but on the
other hand may reduce heterogeneity in risk taking and lead to hearding behaviours
(Wagner, 2010).

Finally, as pointed out by Benoit et al., 2017, one of the main challenges is re-
lated to the identification of relevant measures of systemic risk, that can be used by
regulator to calibrate targeted tools, such as the imposition of systemic risk taxes
that, by forcing institutions to internalize the risk, for some authors may be more
effective compared to source-specific approaches, that prevent banks to take specific
positions.

1.3 Network theory and portfolio management – literature
review

Portfolio management is an increasingly popular field of application of network the-
ory. In recent years, several studies used networks to develop innovative strategies,
or to provide new interpretations to traditional methodologies. We can identify three
main strains of literature: the first uses networks to support the decision making
process in the development of active portfolio strategies, including stock picking in
tilting strategies and technical analysis. Greppi et al., 2018 for instance propose to
use bayesian networks to process systematically accounting, market, and sentiment
data, in order to identify market signals and develop effective trading rules. Patel
et al., 2015 instead use neural networks and other machine learning techniques to
forecast stock price movements, and Dash and Dash, 2016 use neural networks to
analyse the nonlinear relationships between some popular technical indicators to
suggest profitable decisions. All these approach have in common the fact that net-
works are instrumental to the definition of portfolio decision, and do not represent
directly the investable assets. A main issue with such models is that they may result
in black-box systems, in which the agent has little or no control and understanding
of the investment strategy.



Chapter 1. Introduction 9

A second strand focuses on the development of investment strategies based on
networks in which the investable assets are the nodes, and the edges are defined us-
ing statistical relationships among them. These papers use network measures, typ-
ically centrality indicators, to define investment strategies. An example is the work
of Peralta and Zareei, 2016, that create portfolios by overweighting assets charac-
terized by a low centrality in correlation networks. The rationale is that by using
non-central elements, the resulting portfolio would be better diversified than alter-
native portfolio strategies. They also found an empirical relationship between the
weights of centrality based portfolios and the traditional global minimum variance
portfolio, showing that peripheral nodes are typically over-represented in the lat-
ter. Such empirical relation has been confirmed by Hüttner, Mai, and Mineo, 2016,
that demonstrate how centrality portfolios and minimum variance portfolios are not
related algebrically, and that such heuristic relationship is due to specific features
of the observed correlation matrix, making it a stylized fact of financial time se-
ries. Baitinger and Papenbrock, 2017 propose a centrality-based investment strategy
based on mutual information networks capable of accounting for non-linear rela-
tionships, and they also found that investment strategies that overweight peripheral
assets improve portfolio performances. They also found that such strategies can
reduce portfolio turnover, decreasing transaction costs.

Finally, a third strand of literature is also focused on portfolios where the nodes
are investable assets. Differently from the second strand, in this case, the network
interpretation of the system is functional to the estimation of portfolio optimization
parameters, and do not enter the portfolio strategy directly. An example is Goto
and Xu, 2015, that consider a partial correlation network interpretation of the co-
variance matrix, and provide a more stable and reliable estimate of the covariance
matrix, used then in the estimation of minimum variance portfolio weights. Another
example is the work of Brownlees and Mesters, 2017, that propose a methodology
inspired by the network literature to detect the set of granular time series in large
panels, that is, the set of assets that are able to influence the entire cross-section. In
Chapter 3 we contribute to this last strand of literature by proposing an extension
of the work by Goto and Xu, 2015, in which we consider tlasso, a technique for the
sparse estimation of partial correlation networks based on the t-Student distribution.

Overall, the literature is still young, and the topic presents several interesting
research directions, related in particular to the possibility of merging multiple data
sources, including for instance social media data, sentiment analyses, transaction
data and financial time series.

1.4 Aim of the thesis

The goal of this thesis is to use network theory to address problems in the field
of systemic risk in banking systems and portfolio optimization. In particular, in



Chapter 1. Introduction 10

Chapter 3 we use the tlasso model to estimate the precision matrix for portfolio op-
timization, providing an interpretation in terms of partial correlation networks. In
Chapter 4 we study the European banking system using partial correlation networks
build using Credit Default Swaps (CDS). Also in this case we use the tlasso model.
In Chapter 5 we consider network-∆CoVaR, to study the conditional tail risk net-
work between European banks, extending to the multivariate setting the ∆CoVaR
model, commonly used for the study of systemic risk. Finally, in Chapter 6 we anal-
yse the diffusion of liquidity contagion in networks with communities, using a static
cascade model in a simulation framework.
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Chapter 2

Tools

In this chapter we review some of the tools used in the rest of the thesis. The presen-
tation is not supposed to be exhaustive, but instead it is a brief overview, functional
to the following chapters, and a collection of references to the relevant literature for
the topics.

We first discuss regularization methods, then we present the framework of graph-
ical models and partial correlation networks, discussing the traditional Gaussian
case, the t-Student graphical model and quantile graphical models, recently intro-
duced in the statistical literature. We then provide an introduction to quantile re-
gression and penalized quantile regression, and finally we describe some of the main
indicators, used to denote the properties of a network.

2.1 Regularization methods

In this thesis, sparsity-inducing regularization methods based on penalized opti-
mization have a relevant role. The idea at the base of this approach is to estimate
models with some of the parameters exactly equal to zero, and it can be applied in
many different fields and declined in multiple ways. By relying on the assumption
that some of the parameters are equal to zero, it is indeed possible to increase the
efficiency of the estimators, especially in case of high dimensionality, improving the
out-of-sample performances. Moreover they often allow a better intepretability of
the model. Typically these benefits come at the cost of increased bias (Tibshirani,
1996).

One of the most common type of regularization is the Least Absolute Shrinkage
and Selection Operator (lasso), introduced by Tibshirani, 1996 that uses anL1 penalty
in the estimation of the parameters of a linear model.

Let β be the (p × 1) vector of parameters of a linear model, y a (t × 1) vector of
observations of a response variable, x a (t × p) matrix of observations of predictor
variables, k and λ two coefficients that act as tuning parameters, the lasso estimator
is obtained as:

β̂ = arg min
β

(y − xβ)′(y − xβ) (2.1)

s.t. ||β||1 < k, (2.2)
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or equivalently:

β̂ = arg min
β

(y − xβ)′(y − xβ) + λ||β||1, (2.3)

where ||β||1 =
∑p

i=1 |βi| is the L1 norm of the vector β. The estimation can be per-
formed fast and reliably, and lasso estimator for linear models is implemented in
many of the most common statistical software packages and programming envi-
ronments. The sparsity of the model is controlled by the parameter λ that can be
calibrated using cross validation, or information criteria such as the Bayesian Infor-
mation Criterion (BIC).

Lasso is not the only technique that allows to obtain a sparse model. Considering
a generic penalty function p(βi), where βi is the i-th element of the vector β, we can
write penalized estimators as:

β̂ = arg min
β

(y − xβ)′(y − xβ) +
∑
i

p(βi). (2.4)

Fan and Li, 2001 describe the class of folded concave penalized estimators, that
allow to obtain a sparse estimator, while maintaining better asymptotic properties
compared to lasso Fan, Xue, and Zou, 2014. One of the most relevant is the Smoothly
Clipped Absolute Deviation (SCAD) penalty, defined as follows:

pSCAD
λ,a (βi) =


λ|βi| if |βi| ≤ λ

−|βi|
2 − 2aλ|βi|+ λ2

2(a− 1)
if λ < |βi| ≤ aλ

(a+ 1)λ2

2
if |βi| > aλ

. (2.5)

where λ and a are positive constants. The function is linear and equivalent to
a lasso penalization near the origin, then quadratic for a trait and finally flat (see
figure 2.1).

The non-convexity of the penalization makes the optimization problem much
harder to solve, however several specific algorithms have been developed. In the
penalized mean regression framework, iterative algorithms based on local linear ap-
proximation of the penalty function have been proposed, allowing for relatively fast
estimation (see Zou and Li, 2008; Fan, Xue, and Zou, 2014). Moreover, Fan, Xue, and
Zou, 2014 showed that if such algorithm is initialized at a lasso optimum satisfying
certain properties, the two-stage procedure produces an oracle solution, and Loh
and Wainwright, 2013 show that under suitable conditions, any stationary point of
the objective function will lie within the statistical precision of the underlying pa-
rameter vector and propose specific algorithms to obtain near-global optimum solu-
tions.
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FIGURE 2.1: lasso (left) and SCAD penalty (right)

−4 −2 0 2 4

0.
0

1.
0

2.
0

3.
0

lasso penalty

beta

pe
na

lty

−4 −2 0 2 4

0.
0

1.
0

2.
0

3.
0

SCAD penalty

beta
pe

na
lty

2.1.1 Penalized quantile regression

Although initially developed for the estimation of mean regression models, lasso is
quite general, and can be applied to several statistical models, including quantile
regression, as described in Koenker, 2005.

Quantile regression is a statistical tool that allows to study the behaviour of the
τ conditional quantiles of response variable given the value of predictor variables,
in contrast to the more common mean regression, that studies the behaviour of the
conditional mean. The basic idea dates back to the work of Boscovich in the 18th

Century, but the methodology gained popularity only in the second half of the 20th

Century with the diffusion of computers.
It is possible to express quantile regression as an optimization problem by con-

sidering the following loss function: ρτ (u) = (1 − τ)uIu≤0 + τuIu>0 = (τ − Iu≤0)u,
where τ ∈ (0, 1) and I{} is an indicator function. Given a response variable y and a
predictor variable x, the optimization problem is then:

β̂τ = arg min
βτ

E[ρτ (y − xβτ )]. (2.6)

The problem can be expressed as a linear program, and solved efficiently using the
simplex method or interior point approaches (see Koenker, 2005, Chapters 1 and 6).

The introduction of a lasso penalty in the optimization problem (2.6) is quite nat-
ural, and allows to maintain the linear structure of the problem (see Koenker, 2005,
Chapter 4.9.2 and Belloni, Chernozhukov, et al., 2011). In particular, the optimization
problem for lasso penalized quantile regression is:

β̂τ = arg min
βτ

E[ρτ (y − xβτ )] + λ||βτ ||1, (2.7)
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where λ is a coefficient that controls the amount of penalization and || · ||1 is the
L1-norm.

An alternative penalization is the Smoothly Clipped Absolute Deviation (SCAD)
introduced by Fan and Li, 2001. In the context of penalized linear regression, the
non-convexity does not allow a linear programming representation of the problem
but, following Wu and Liu, 2009, it is possible to address the problem using a Differ-
ence Convex Algorithm (DCA) that uses the representation of SCAD penalty as the
difference between a linear and a convex function, and solves a sequence of convex
problems to approximate the SCAD problem efficiently.

2.2 Graphical models and partial correlation networks

We focus now on the concept of partial correlation networks, in which the system is
modelled as a multivariate distribution, the nodes are the individual variables and
the edges are the partial correlation between them. In particular, under the Gaussian
case we can talk about Gaussian graphical models.

Let X = (X(1), . . . , X(m)) be a random vector with a multivariate Gaussian dis-
tribution Nm(µ,Σ), where µ is the mean vector and Σ the covariance matrix. We
can define an undirected graph G = (V, E), where the nodes in V correspond to each
element of X, the edges E consist of the pairs of random variables with non-zero
partial correlations, E = {(i, j) ∈ V × V|ρij 6= 0}, and the edge weights correspond
to partial correlations ρij . The partial correlations are computed from the inverse of
the covariance matrix Ω := Σ−1 (i.e., the precision matrix) as follows:

ρij =
−ωij√
ωiiωjj

i, j = 1, . . . ,m,

where {ωij} is an element of the matrix Ω. In matrix form the partial correlation
matrix P is:

P = −DΩD, (2.8)

whereD = diag( 1√
ωii

).
The estimation of the graph structure corresponds then to the estimation of the

precision matrix Ω, and its sparse estimation, that is, estimation with most off-
diagonal entries of the matrix exactly equal to zero, offers advantages in terms of
interpretability and estimation error. A common approach to introduce sparsity
is to penalize the maximum likelihood estimation problem by an L1-norm. In the
Gaussian case we can state the graphical lasso (glasso) estimation problem as:

Ω̂glasso = arg max
Ω

(
log|Ω| − tr(ΩS)− ρ||Ω−||1

)
, (2.9)

where S is the sample covariance matrix, ρ is a tuning parameter that controls
the sparsity (i.e. the larger ρ, the larger the number of elements of the precision
matrix set equal to zero), | · | is the determinant, tr(·) the trace, || · ||1 the L1-norm of a
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matrix and Ω− is a square m×m matrix with the off-diagonal elements equal to the
corresponding elements of Ω and the diagonal elements equal to zero (Friedman,
Hastie, and Tibshirani, 2008).1

As pointed out by Yuan and Lin, 2007, the use of an L1 penalty allows to induce
sparsity in the precision matrix, making it possible to perform model selection and
parameter estimation simultaneously. The choice of the tuning parameter ρ, that
controls the level of sparsity of the estimates assumes therefore a major role in the
estimation.

The statistical properties of the glasso estimator have been studied, among oth-
ers, by Banerjee, Ghaoui, and d’Aspremont, 2008, Rothman et al., 2008 and Lam and
Fan, 2009. Rothman et al., 2008 show that under some regularity conditions and
for a suitable choice of the parameter ρ, the estimator in (2.9) has a rate of conver-
gence to the true parameter Ω in the Frobenius norm of order

√
((m+ kΩ) log(m)/t),

where kΩ is the number of non-zero off diagonal entries of the true matrix Ω and t

the number of observations. The main implication is that the convergence is faster
for matrices that are truly sparse. Lam and Fan, 2009 studied the consistency and
sparsistency of the estimator (i.e. the property that all parameters that are zero are ac-
tually estimated as zero with probability tending to one), showing that sparsistency
requires a lower bound on the rate of the regularization parameter ρ, while an upper
bound is necessary to control the bias introduced by the L1 penalty and to obtain a
consistent estimator.2 Under some technical conditions, the compatibility of these
bounds requires the number of off-diagonal non-zero entries of the true precision
matrix to be no larger than O(m) (Lam and Fan, 2009). In practical terms, the true
precision matrix has to be sparse enough, and the glasso estimates of dense preci-
sion matrices will not be consistent. On the other hand, the modelization of sparse
precision matrices has the advantage of reducing the variability of the estimates.

The optimization problem (2.9) is convex, as proved by Banerjee, Ghaoui, and
d’Aspremont, 2008. Friedman, Hastie, and Tibshirani, 2008 proposed an efficient
algorithm to solve it that has a computational complexity of O(m3) for dense prob-
lems, and considerably less than that for sparse problems. The algorithm is de-
scribed in Appendix A.

An advantage of the glasso model is that the solution Ω̂glasso is always unique
and has bounded eigenvalues,3 also when the number of covariates m is smaller
than the number of observations t. Moreover, for the case in which t > m, empiri-
cal analyses show that the estimate is generally better conditioned compared to the
sample covariance matrix (see e.g. Goto and Xu, 2015). Finally, we point out that the
sparsity of the precision matrix does not necessariliy correspond to the sparsity of
the covariance matrix.

1The original specification proposed by Friedman, Hastie, and Tibshirani, 2008 applied the penalty
to the entire matrix Ω. The version of the model with the penalty applied to Ω is the one studied by
Rothman et al., 2008 and is currently implemented in the R package ‘glasso’ (Friedman, Hastie, and
Tibshirani, 2014).

2See Theorem 2 and Technical Condition (B) in Lam and Fan, 2009.
3see Banerjee, Ghaoui, and d’Aspremont, 2008, Theorem 1.
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Other than increasing the efficiency of the estimator, glasso allows to improve
the interpretability of the model, by identifying only the most relevant items. In
the estimation of a financial network for instance, we can identify the most relevant
edges, similarly to other techniques such as minimum spanning trees (Mantegna,
1999) or planar maximally filtered graphs (Tumminello et al., 2005), but without
imposing any topological structure on the resulting network.

2.2.1 The tlasso model

The tlasso model was recently introduced in the statistical literature to estimate sparse
partial correlation matrices under the assumption that the data follow a multivariate
t-Student distribution (Finegold and Drton, 2011). Compared to glasso, the distribu-
tional assumptions of this model are less restrictive for financial applications, where
time series are typically leptokurtic (see for instance Cont, 2001). Furthermore, tlasso
is robust to model misspecification and estimation errors due to outliers (Finegold
and Drton, 2011).
Let X = (X(1), . . . , X(m)) be an m-variate random vector with a multivariate t-
Student distribution tm(µ,Ψ−1, v), with v degrees of freedom, mean vector µ and
dispersion matrix Ψ−1 (m ×m positive semi-definite matrix4). The covariance and
precision matrices are then Σ = v

v−2Ψ−1 and Ω = v−2
v Ψ, respectively.

Similarly to the Gaussian case, we can associate to the distribution a graph G =

{V, E}, in which E = {(i, j) ∈ V×V|ρij 6= 0}, where {ρij} are the elements of the par-
tial correlation matrix P computed from the precision matrix Ω by standardization.
Tlasso provides a sparse estimate Ψ̂tlasso and the corresponding partial correlation
matrix P̂ that represents the network structure of the model.

In contrast to the Gaussian set-up, when using the t-Student distribution, or the
class of elliptical distributions in general, an absence of correlation does not nec-
essarily correspond to conditional independence (Baba, Shibata, and Sibuya, 2004).
However, despite the lack of conditional independence for ωij = 0, Finegold and
Drton, 2011 proved that if two nodes j and k are separated by a set of nodes C
in G, then X(j) and X(k) are conditionally uncorrelated given X(C). It is then rea-
sonable to substitute the conditional independence with zero partial correlation or
zero conditional correlation. In this case, disconnected vertices in a graphical model
can be considered orthogonal to each other after the effects of other variables are
removed. The absence of conditional correlations entails that a mean-square error
optimal prediction of variable X(j) can be based on the variables X(k), which corre-
spond to neighbours of the node j in the graph.

The tlasso model can be estimated using an Expectation-Maximization (EM) al-
gorithm (Finegold and Drton, 2011). The EM estimation procedure exploits the
scale-mixture representation of the t-Student distribution, consisting of a multivari-
ate Gaussian and a gamma distribution (Kotz and Nadarajah, 2004). The procedure

4We chose the uncommon parametrization based on the inverse of the diffusion matrix to highlight
the relevance of Ψ in the graphical model.
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is computationally efficient as it is based on glasso, which is called at every M-step
of the algorithm. A description of the algorithm can be found in Appendix A.

2.2.2 Quantile graphical models

Conditional quantiles provide an alternative approach for the construction of a graph-
ical model: Quantile Graphical Models (QGM), recently introduced in the statistical
literature to describe the dependency structure of multivariate random variables.5

Several specifications have been discussed in the literature, in particular we cite
Belloni, Chen, and Chernozhukov, 2016; Ali, Kolter, and Tibshirani, 2016; Chun et
al., 2016. In general, we can express the quantiles of the distribution of an item
conditional to the others as

QXi,τ = f(X\i, τ), (2.10)

where the function f is a generic function. The identification and estimation of
the function f(X\i, τ) is a crucial step, and several approaches can be chosen. We
may determine the function in a fully non-parametric form but, due to course of
dimensionality, some simplifying assumptions have to be made in order to allow
estimation in finite samples. A common choice is to define an additive form such
as f(X\i, τ) =

∑
j 6=i fj(Xj , τ), where fj(Xj , τ) are smooth functions (see e.g. Ali,

Kolter, and Tibshirani, 2016). A further simplification is to assume that fj(Xj , τ) are
linear functions (Belloni, Chen, and Chernozhukov, 2016); in such case the function
f can be expressed in terms of linear quantile regression coefficients: f(X\i, τ) =

αi + β
i|·
τ X\i, where αi is a constant, and βi|·τ is a 1 × p − 1 vector. Such coefficients

can be conveniently represented by the matrixBτ such that:

{Bτ}ij =

β
i|j
τ if i 6= j

0 if i = j
. (2.11)

In this way, under the assumption of a linear specification, we can express the con-
ditional quantile as:

f(X\i, τ) = αi + {BτX}i. (2.12)

QGM allow a richer modelization of the interdependence structure among nodes in
a network as they consider a larger amount of information. In particular, they allow
to focus not only on the conditional means, but also on the entire conditional distri-
butions, especially the tails, that are particularly relevant in financial applications.

5Note that a QGM in the Gaussian case is a simple rescaling of partial correlation networks. The
topic is discussed in greater detail in Section 5.3.2.
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2.3 Network Indicators

Network theory allows to model complex systems parsimoniously and to explain
the behaviour of the systems on the basis of their topological properties. In order to
describe this relationship quantitatively, it is necessary to compute suitable indica-
tors to describe the properties of the network.

Such indicators are typically categorized into local and global, where local indica-
tors refer to characteristics of individual nodes and global indicators refer to proper-
ties of the network as a whole.

Focusing on undirected weighted networks (i.e., networks where edges do not
have a direction but have a weight), we present here some of the most common net-
work indicators. In the following Sections we use the convenient representation of
a network in terms of its adjacency matrix A, that is, the square matrix in which
columns and rows represent the nodes, and the entries represent the weights of the
edges connecting all the couples of nodes. Notice that, in case of undirected net-
works, the adjacency matrixA is symmetric.

2.3.1 Centrality measures

Centrality measures are indicators used to quantify the importance of individual
nodes in the network. We present here three common measures: strength centrality,
eigenvector centrality and Bonacich power centrality.

The strength centrality of node i is defined as:

cSi =
m∑
j=1

wij , (2.13)

where cSi is the strength centrality, or strength of node i, m is the total number of
nodes and wij is the weight of edge ij. This measure can be considered an extension
of degree centrality to weighted networks (Barrat et al., 2004).

The eigenvector centrality is a measure that assigns to each node a score based on
the principle that connections to important nodes contribute more to centrality than
connections with less central nodes, showing a recursive nature. Formally, the ith
node’s centrality score is proportional to the sum of the scores of all the nodes which
are connected to it:

cEi =
1

δ

m∑
j=1

aijc
E
j , (2.14)

where cEj is the eigenvector centrality of node j, aij is the ijth element of the adja-
cency matrix A and δ is a constant. Under suitable conditions, eigenvector centrality
can be computed as the eigenvector corresponding to the largest eigenvalue of the
adjacency matrix A. Eigenvector centrality can be generalized to weighted networks
using the weighted adjacency matrixW instead ofA.
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Bonacich power centrality is another recursive centrality measure, defined as:

cBi =

m∑
j=1

(α+ βcBj )aij (2.15)

where cBi is the Bonacich power centrality of node i, α and β are two constants, and
aij is ijth element of the adjacency matrix A (Bonacich, 1987). Similarly to eigen-
vector centrality, a node’s centrality is influenced by the neighbours’ centralities. For
convenience, we consider the case in which α = β = 1.

2.3.2 Freeman centralization

Strength, eigenvector and Bonacich centralities are local measures that apply to indi-
vidual nodes. It is also possible to consider global measures that characterize the
centralization of the entire network computing the Freeman centralization measure as
follows (Freeman, 1978):

C =

∑m
i=1 c∗ − ci

max
(∑m

i=1 c∗ − ci
) , (2.16)

where ci is a local centrality measure for the node i, c∗ is the centrality correspond-
ing to the most central node in the network and max

∑m
i=1(c∗−ci) is a normalization

factor computed on the network with the highest centralization index for a given
number of nodes.6 In other words, Freeman centralization calculates the difference
between the centrality of the most central node and all the others, Therefore, a net-
work with a high centralization has a node, or a group of nodes, that has a high
centrality and a large number peripheral nodes.

2.3.3 Clustering coefficient

The clustering coefficient measures the tendency of the network to create triangles. In
a network with communities it is likely that, for a given node, two of its neighbour-
ing nodes are connected to each other, “closing the triangle”.
We consider the clustering coefficient for weighted networks proposed by Fagiolo,
2007, which is defined as:

cwi =
(W [1/3])3

ii

ki(ki − 1)
, (2.17)

where ki is the degree of node i and W [1/3] = {w1/3
i,j }, that is, the matrix obtained

by the weight matrix W by taking the third root of each entry. The measure takes
values in [0,1] and is equal to the non weighted clustering coefficient when the weights
become binary. Fagiolo’s clustering coefficient cwi is a local measure that applies to

6For several centrality measures the most centralized network is star-shaped, while for the eigen-
vector centrality it is a disconnected network with a single edge connecting two nodes and a large
number of disconnected nodes.
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each individual node i. Still, it is possible to derive a global clustering measure Cw

computed as the average of cwi over all the nodes.

2.3.4 Modularity

Modularity is a measure that allows us to measure how well a certain partition de-
scribes the network. A high level of modularity indicates that the number of edges in-
ternal to each partition is higher than expected. Given a partition G = {G1, . . . , Gp}
we can define modularity Q as follows:

Q =
1

2M

m∑
i=1

m∑
j=1

(
wij −

sisj
2M

)
δ(gi, gj), (2.18)

where wij is an element of the weighted adjacency matrix, si is the strength of node

i, M =
1

2

∑m
i=1

∑m
j=1wij , gi is the group in the partition in which the element i

belongs and δ(gi, gj) is 1 if gi = gj and 0 otherwise. Modularity can be computed on
any partition of the network, and can assume values between -1 and 1, with positive
and high values denoting a good division of the network into communities.

It is possible to identify the best partition of a network by an optimization pro-
cedure that maximise modularity over the space of all the possible partitions in a
network. The procedure proposed in Newman, 2004 solves this problem by using
a greedy optimization that, starting with each vertex being the unique member of
a community, repeatedly joins together the two communities whose amalgamation
produces the largest increase in modularity. This approach can be implemented ef-
ficiently on large networks and identifies automatically the optimal number of com-
munities.

2.3.5 Assortativity

A useful indicator to describe the structure of a network is assortativity, defined by
as the Pearson correlation coefficient for a nodes’ characteristic computed over the
edges of the network. This indicator measures the extent to which nodes with sim-
ilar properties are connected to each other and can be computed for virtually any
property assigned to the nodes, including categorical ones (Newman, 2010). Assor-
tativity is typically used with the node degree or strength, but can be computed on
any scalar characteristic of the nodes.
In a weighted network, the expression for assortativity with respect to a scalar char-
acteristic is the following:

r =

∑m
k=1wk(xk − µx)(yk − µy)√∑m

k=1wk(xk − µx)2
∑

k wk(yk − µy)2
, (2.19)

where k is the index corresponding to each edge, wk is the weight of edge k, xk
and yk are scalar characteristics of the originating and destination nodes (the scalar
characteristic in our case is eigenvector centrality) and µx and µy are the respective
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average values weigthed by the edges’ weights. In other words, the assortativity is
the weighted correlation coefficient over the edges of each network and thus lies in
the range [-1,1] with r = 1 indicating perfect assortativity and r = −1 indicating
perfect disassortativity. Note that assortativity is not defined for negative weights,
therefore in the computation of the indicator we set the weight for negative edges to
zero.

An assortative network can be consistent with a core-periphery structure, where
we observe a core of highly central nodes surrounded by a less dense periphery of
nodes with lower centrality. Newman and Park, 2003 show that a high level of assor-
tativity can be found also in network characterized by a the presence of communities,
typically social networks.

2.3.6 DebtRank

DebtRank is a methodology introduced by Battiston et al., 2012a that allows to eval-
uate the systemic relevance of banks in a system and to conduct simple stress test
analyses. Unlike the network indicators and methodologies presented so far, Deb-
tRank has the peculiarity of being developed explicitly for the study of banking sys-
tems. DebtRank allows to estimate the systemic impact of a shock to a node in the
network. Here, we focus on a small shock hitting individual banks and we want to
measure the final effect, due to the shock reverberations through the network.

We define the impact of node i on node j as α · bi,j , where bi,j is the weight of the
link in the network and α is a parameter that controls the intensity of the impact. The
impact of i on its first neighbours is

∑
j bi,jvj , where vj is a measure of the economic

size of j.
We associate to each node two state variables: hi ∈ [0, 1] (continuous variable)

and si ∈ {U,D, I} (discrete variable with 3 possible states: undistressed, distressed,
inactive).

Denoting by Sf the set of nodes in distress at time 1, the initial conditions are:
hi(1) = Ψ ∀i ∈ Sf ; hi(1) = 0 ∀i /∈ Sf , and si(1) = D, ∀i ∈ Sf ; si(1) =

U ∀i /∈ Sf . The parameter Ψ measures the initial level of distress: Ψ ∈ [0, 1], with
Ψ = 1 meaning default.

The dynamics is defined as follows:

hi(t) = min

{
1, hi(t− 1) +

∑
j

(bji)
+hj(t− 1)

}
, where j|sj(t− 1) = D, (2.20)

si(t) =


D if hi(t) > 0, si(t− 1) 6= I, si(t− 1) 6= D

I if si(t− 1) = D

si(t− 1) otherwise

, ∀i. (2.21)
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b+ji is defined as min{0, bji} and denotes the positive edges in the network. After
a finite number of steps T the dynamics stop and all the nodes in the network are
either in state U or I.

The DebtRank of the set Sf is then defined as

R =
∑
j

hj(T )vj −
∑
j

hj(1)vj , (2.22)

and it can be interpreted as the amount of distress induced in the system by the
reverberation of the initial shock. Conceptually, DebtRank can be considered a sort
of feedback centrality measures such as eigenvector centrality or Pagerank, since they
can also be computed using iterative algorithm (see Page et al., 1999 and Newman,
2010).
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Chapter 3

Sparse precision matrices for
minimum variance portfolios
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(Torri, Giacometti, and Paterlini, 2017).

3.1 Introduction

Markowitz’s mean-variance model (Markowitz, 1952) represents a cornerstone for
asset allocation frameworks and financial theory in general (see for example Kolm,
Tütüncü, and Fabozzi, 2014 and references therein). Since then, many alternative
methods and new strands of research have been established, fostered by the FinTech
industry, which relies on the development of data-driven and automatic investment
tools. Markowitz’s simplistic Gaussian framework, the idea of risk-return optimiza-
tion and diversification are still the starting points for the largest majority of more
sophisticated recent approaches. Possibly, one of the main challenge of Markowitz’s
mean-variance model is the need to provide reliable estimates of the input param-
eters: the expected asset returns vector and the expected covariance matrix. Con-
cerning the expected returns, it is acknowledged that they are extremely difficult
to estimate and are often the main source for unreliable allocations (Michaud, 1989;
Brodie et al., 2009), with suboptimal Sharpe ratios compared to the minimum vari-
ance portfolios (Black and Litterman, 1992). Most research has recently focused on
building robust and reliable estimators for the covariance matrix to better control
for the estimation error, especially to avoid its impact on asset weights estimates.
In the minimum variance setting, the problem with the estimation of the covariance
matrix is amplified by the fact that the input required for the analytical solution is its
inverse, the precision matrix (Stevens, 1998). Hence, the optimal minimum variance
portfolio strongly depends on the largest eigenvalues of the precision matrix, which
are the smallest eigenvalues of the covariance matrix and are typically dominated
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by noise. As widely discussed in the literature, sample estimates often result in ill
conditioned covariance matrices when the number of asset is relatively large com-
pared to the depth of the time series (see e.g. Ledoit and Wolf, 2004a; Meucci, 2009;
Won et al., 2013). This, in turn leads to optimal portfolios with extreme and unstable
positions over time (see for instance Michaud, 1989 and Ledoit and Wolf, 2004b).
Furthermore, the presence of positive multicollinearity among asset returns impacts
even further the weight estimates by resulting in unrealistic short positions, which
have to be offset by corresponding long positions. This is exacerbated when the
number of assets is large compared to the number of observations available for the
estimates. High volatilities, positive multicollinearity and the presence of extremes
are typical during financial crises. Some works have focused on GARCH-based ap-
proaches to better capture time-varying volatility (see Engle, 2002). Here, instead,
we rely on a rolling-window mechanism to update the input estimates for the min-
imum variance portfolio. In the aftermath of the 2008 crisis, the academic litera-
ture has seen a surge of contributions to improve covariance estimation, such as the
Ledoit-Wolf shrinkage estimator (Ledoit and Wolf, 2004b) and random matrix theory
(Laloux et al., 1999). Other strands of research instead focus on robust optimization
methods (De Miguel and Nogales, 2009) and, most recently, on regularization meth-
ods such as lasso (Tibshirani, 1996), which relies on imposing a penalty function on
the L1-norm of the asset weight vector (De Miguel et al., 2009; Brodie et al., 2009;
Fan, Zhang, and Yu, 2012). We refer the reader to Kremer, Talmaciu, and Paterlini,
2017 for a comparison of state-of-art techniques within a minimum risk framework.

Here, we introduce two approaches that rely on constraining the L1-norm of the
precision matrix to reduce the estimation error impact on optimal portfolio weights.
The proposed methods are based on Markovian graphs to improve the stability of
the precision matrix estimates. In particular, we consider two statistical set-ups: the
first one assumes that asset returns are normally distributed, hereafter glasso (Fried-
man, Hastie, and Tibshirani, 2008), while the second relies on the assumption of
t-Student asset returns, which better fits assets returns that, as it is widely known,
are leptokurtic and typically characterized by fat tails, hereafter tlasso (Finegold and
Drton, 2011). To our knowledge, within the financial literature the glasso approach
has been discussed in the context of portfolio optimization by Goto and Xu, 2015
and Brownlees, Nualart, and Sun, 2018, while the tlasso has not received any at-
tention yet. Here, we aim to fill some gaps in the literature by showing that glasso
and tlasso are effective tools for the development of data-driven investment strate-
gies. In particular, the main goal of the analysis is to investigate the out-of-sample
performances of glasso and tlasso in an equity portfolio set-up. We focus on the min-
imum variance framework, since it has an analytical solution that depends on the
precision matrix, allowing us to point out the effect of estimation error in the inputs.
Moreover, aligned to many studies in the literature (e.g., De Miguel et al., 2009; Fan,
Zhang, and Yu, 2012), we focus on the global minimum variance case, given that
estimates of expected returns are typically unreliable (Michaud, 1989).
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We underline that our focus is on the estimation of the covariance and precision
matrix, not on the development of benchmark-beating equity investment strategies.
As a consequence, in the empirical part of the work we focus on the comparison of
different estimators strategies for the input parameters maintaining the focus on the
global minimum variance portfolios for a more meaningful comparison. Still, asset
managers relying on quantitative modelling might benefit from our findings when
setting up more complex investment strategies thanks to a better estimation of the
interconnectivity structure.

The chapter is structured as follows. Section 2 introduces the minimum vari-
ance portfolio framework and describes the glasso and tlasso approaches. Section
3 discusses the simulation set-up and the main results. Section 4 provides empiri-
cal results on real-world financial data, when compared with state-of-art methods.
Section 5 then concludes.

3.2 Methodology

3.2.1 The minimum variance portfolio

Since the seminal work of Markowitz (Markowitz, 1952), the idea of risk minimiza-
tion by diversification has become central to modern portfolio theory. Markowitz
minimum variance portfolio framework is still considered the reference model for
many scholars and practitioners. The simplicity of the risk diversification idea,
quantified by linear dependence, resulting in the need to estimate “just” the covari-
ance matrix, and the possibility to rely on an analytical solution, or to deal with a
“simple” quadratic optimization problem, have been possibly among the main fac-
tors behind the widespread use of the minimum variance model, as stated below:

min
w

w′Σw (3.1)

s.t. 1′w = 1,

where Σ is the n× n true covariance matrix, w the n× 1 vector of asset weights
and 1 a n× 1 unit vector. The optimization problem has then an analytical solution:

wMV =
Σ−11

1′Σ−11
, (3.2)

where wMV is the vector of weights of the optimal minimum variance portfolio.
As Σ is unknown, an estimate Σ̂ has to be computed to obtain the weights:

ŵMV =
Σ̂
−1

1

1′Σ̂
−1

1
. (3.3)

Markowitz’s minimum variance portfolios have been widely critized, mainly
due to the sensitivity to estimation error in the input estimates, resulting in unre-
alistic extreme weights and bad out-of-sample properties. One of the main critiques
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is related to the use of the sample covariance estimates, and subsequently its inverse,
as an input. Indeed such estimator has a slow convergence rate to the true covari-
ance matrix. As a consequence, finite sample estimation is characterized by a higher
eigenvalue dispersion compared to the true covariance matrix and by a low accu-
racy of the eigenvectors corresponding to the smallest eigenvalues, especially for
matrices of large dimension estimated on short time series (Meucci, 2009). Another
shortcoming is related to the role of the inverse of the covariance matrix Ω ≡ Σ−1,
the so called precision matrix, in the solution of the optimization problem. From (3.2),
it is clear that the accuracy of the estimation of the weights is directly related to
the accuracy of the precision matrix. Using spectral decomposition, the relationship
between the two matrices can be explicitly studied. In fact, the eigenvector decom-
position of the covariance matrix can be expressed as Σ = V ΛV ′, where V is the
matrix of eigevectors with V −1 = V ′ and Λ = diag(λ1, . . . , λn) with λ1 ≥ · · · ≥ λn

is the diagonal matrix of the eigenvalues sorted in decreasing order on the main di-
agonal. Analogously, the eigendecomposition of the precision matrix is such that
Ω = U∆U ′,where ∆ = diag(δ1, . . . , δn) with δ1 ≤ · · · ≤ δn (note that in this case the
eigenvalues are sorted in ascending order). By inverting the covariance matrix, we
have

Σ−1 = (V ΛV ′)−1 (3.4)

= (V ′)−1Λ−1V −1

= V Λ−1V ′.

It follows that U = V and ∆ = Λ−1 with the ith element δi = 1/λi, that is, the
eigenvectors of the precision matrix are the same as those of the covariance matrix
and the eigenvalues are the reciprocal of those of the covariance matrix.

The consequence is that the dominant eigenvectors of the precision matrix (i.e.,
the ones corresponding to the largest eigenvalues) are the ones most likely influ-
enced by noise and estimation error, especially in ill-conditioned covariance matri-
ces.

3.2.2 Graphical lasso or glasso

Graphical models can be useful to describe both the conditional and unconditional
dependence structure of a set of variables. Gaussian Graphical Models (GGMs) are
probably the most popular tools to capture the network structure of a set of vari-
ables. As Markowitz’s model relies on the normality assumption of the asset returns,
GGMs are the natural choice for capturing and estimating linear dependence among
assets (see Dempster, 1972; Murphy, 2012). Such models are also known as covariance
selection or concentration graph models, as they rely on the use of partial correlations
as a measure of independence of any two variables, by exploiting the relationship



Chapter 3. Sparse precision matrices for minimum variance portfolios 27

between partial correlations and the inverse of the correlation matrix.

Let the asset return X ∼ Nn(µ,Σ) be a random variable with a multivariate
normal distribution with µ the n×1 vector of the expected returns and Σ their n×n
covariance matrix. We define the precision matrix as the inverse of the covariance
matrix: Ω ≡ Σ−1.

We can then associate to the vector X an undirected graph defined as G = (V, E),
where the nodes in the vertex set V correspond to each element of X , the edges
E consist of the pairs of random variables with non-zero partial correlations: E =

{(i, j) ∈ V ×V|rij 6= 0}, where rij denotes the partial correlation between two assets,
that is, the correlation of the set of the remaining assets, but i and j. In the graph, the
edge weights are the partial correlations. It can be shown that matrix of the partial
correlations R = {rij} and the precision matrix Ω are related as follows (Lauritzen,
1996):

R = −DΩD, (3.5)

whereD = diag( 1√
ω11

, . . . , 1√
ωnn

) and ωii is an entry of Ω.

The estimation of sparse precision matrices, that is, precision matrices with most
off-diagonal entries exactly equal to zero, is then an important task. A common
approach to introduce sparsity is to penalize the maximum likelihood estimation
problem by anL1-norm. In the Gaussian case we can state the graphical lasso (glasso)
estimation problem as

Ω̂glasso = arg max
Ω

(
log|Ω| − tr(ΩS)− ρ||Ω−||1

)
, (3.6)

where S is the sample covariance matrix, ρ is a tuning parameter that controls
the sparsity (i.e. the larger ρ, the larger the number of elements of the precision
matrix set equal to zero), | · | is the determinant, tr(·) the trace, || · ||1 the L1-norm of
a matrix and Ω− is a square n×n matrix with the off-diagonal elements equal to the
corresponding elements of Ω and the diagonal elements equal to zero (Friedman,
Hastie, and Tibshirani, 2008).1

As pointed out by Yuan and Lin, 2007, the use of an L1 penalty allows to induce
sparsity in the precision matrix, making it possible to perform model selection and
parameter estimation simultaneously. The choice of the tuning parameter ρ, that
controls the level of sparsity of the estimates assumes therefore a major role in the
estimation and it will be examined in Section 3.3.3.

The statistical properties of the glasso estimator have been studied, among oth-
ers, by Banerjee, Ghaoui, and d’Aspremont, 2008, Rothman et al., 2008 and Lam and

1The original specification proposed by Friedman, Hastie, and Tibshirani, 2008 applied the penalty
to the entire matrix Ω. The version of the model with the penalty applied to Ω is the one studied by
Rothman et al., 2008 and is currently implemented in the R package ‘glasso’ (Friedman, Hastie, and
Tibshirani, 2014).
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Fan, 2009. Rothman et al., 2008 show that under some regularity conditions and for a
suitable choice of the parameter ρ, the estimator in (3.6) has a rate of convergence to
the true parameter Ω in the Frobenius norm of order

√
((n+ kΩ) log(n)/t), where kΩ

is the number of non-zero off diagonal entries of the true matrix Ω and t the number
of observations. The main implication is that the convergence is faster for matrices
that are truly sparse. Lam and Fan, 2009 studied glasso’s consistency and sparsistency
(i.e., the property that all parameters that are zero are actually estimated as zero with
probability tending to one, also known in the literature as selection consistency). They
show that sparsistency requires a lower bound on the rate of the regularization pa-
rameter ρ, while an upper bound is necessary to control the bias introduced by the
L1 penalty and to obtain a consistent estimator.2 Under some technical conditions,
the compatibility of these bounds requires the number of off-diagonal non-zero en-
tries of the true precision matrix to be no larger than O(n) (Lam and Fan, 2009). In
practical terms, the true precision matrix has to be sparse enough, and the glasso es-
timates of dense precision matrices will not be consistent. On the other hand, the
modelization of sparse precision matrices has the advantage of reducing the vari-
ability of the estimates, as it will be discussed in Section 3.2.3 with reference to the
regression hedge.

The optimization problem (3.6) is convex, as proved by Banerjee, Ghaoui, and
d’Aspremont, 2008. Friedman, Hastie, and Tibshirani, 2008 proposed an efficient al-
gorithm to solve it, that is briefly described in Appendix A. They also show that the
resulting matrix remains positive definite and invertible if the procedure is initial-
ized with a positive definite matrix.

Empirical analysis show that glasso estimates are better conditioned compared
to the sample covariance matrix, even when the number of covariates n is close to
the number of observations t (see e.g., Goto and Xu, 2015). Moreover, the solution
Ω̂glasso is always unique and has bounded eigenvalues,3 also when n ≤ t, allowing
the use this method also in high-dimensional setting, in which the sample covariance
matrix estimate is singular. Finally, we point out that the sparsity of the precision
matrix does not necessariliy correspond to the sparsity of the covariance matrix.

3.2.3 Sparse precision matrix estimation and regression hedge

From a financial point of view, the sparsity of the precision matrix can be considered
in the framework of regression hedge. In fact, as discussed by Stevens, 1998 and Goto
and Xu, 2015, the precision matrix has an interpretation in terms of optimal hedging
between assets: specifically, the ith row (or column) of Ω is proportional to the ith
asset’s hedge portfolio. Such ith hedge portfolio consists of the combination of a long
position in the ith asset and (n−1) positions in all the other assets that minimize the
variance of the tracking error of the ith asset w.r.t. the remaining (n− 1) assets. The
ith tracking portfolio is defined as follows:

2See Theorem 2 and Technical Condition (B) in Lam and Fan, 2009.
3see Banerjee, Ghaoui, and d’Aspremont, 2008, Theorem 1.
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Xi,τ = αi +

n∑
k=1,k 6=i

β
(i)
k Xk,τ + εi,τ i = 1, . . . , n, (3.7)

where Xi,τ is the ith asset return at time τ , β(i)
k is the coefficient of asset k in the

regression for asset i, εi,τ is the unhedgeable component of Xi,τ .
The regressions in (3.7) are typically defined in the financial literature as regres-

sion hedge. As shown in Stevens, 1998, the OLS estimates of the βs can be easily
related to the precision matrix. We identify the following partition of the sample
covariance matrix S

S =

(
S\i,\i s\i,i

s′\i,i si,i

)
, (3.8)

where X\i denotes all the elements of X except the ith, S\i,\i denotes the firsts n− 1

rows and columns of S, s\i,i the first n− 1 elements of the last column, and si,i is the
element in the last row and column.4

We then have that the following relationship holds:

β̂(i) = S−1
\i,\is\i,i, (3.9)

where β̂(i) is the ((n − 1) × 1) vector of the coefficients in the ith regression hedge.
Moreover, let vi = var(εi) be the variance of the residual εi, then the elements of Ω̂

can then be computed as follows:5

ω̂ij =


−
β̂

(i)
j

vi
if i 6= j

1

vi
if i = j

. (3.10)

Further details can be found in Stevens, 1998.
In financial applications, the regression hedge framework generally suffers in

presence of multicollinearity among the regressors. Regularization techniques that
allow to set some βs to zero, can then provide more reliable estimates and better
out-of-sample performances, at the cost of introducing some bias. One of the most
common techniques is the lasso regression, that introduces an L1-norm penalty in
the estimation problem. As we discuss now, the glasso estimator allows to introduce
an L1 regulatization of all the regression hedges, while maintaining the relationship
with the precision matrix as presented in (3.10).

The naive application of the lasso penalty on each regression hedge, indeed is
not consistent with (3.10), since this approach does not constrain Ω̂ to be symmet-
ric and positive definite. Instead, the glasso algorithm estimates all the regression
hedges iteratively as n coupled lasso problems. The information is shared between

4Notice that this representation implies a permutation of the rows and columns to have the ith asset
as the last one.

5vi can be interpreted as the unhedgeable component of Xi,t.
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the lasso problems through the common estimate of the matrixG, providing a posi-
tive definite, symmetric and sparse estimate of Ω (Friedman, Hastie, and Tibshirani,
2008). This allows to extend the analysis of Stevens, 1998 to the sparse case (Goto
and Xu, 2015). On one hand, the use of the lasso penalization in the regression hedge
equations introduces a bias. On the other hand it reduces the estimation variation,
leading to a more efficient estimator of the precision matrix.

Overall, the glasso method has a shrinkage effect on the βs of the regression
hedge, filtering the estimation noise in Σ and its effect when computing Ω ≡ Σ−1.
Empirical evidence suggests that the glasso estimates of Ω and Σ are better con-
ditioned than the sample covariance matrix (Goto and Xu, 2015). The spectrum of
glasso estimates is therefore typically less disperse than the one of sample covariance.

Despite its appealing properties, so far, we are aware of only two applications of
glasso within asset allocation frameworks (Goto and Xu, 2015; Brownlees, Nualart,
and Sun, 2018). Here, we contribute to the literature by providing further evidence
when comparing glasso to state-of-art methods. Moreover, as widely known, asset
returns normality assumption is too stringent, as stylized facts suggest that asset
returns have a leptokurtic distribution, which can be better captured by a t-Student
assumption (Cont, 2001). Hence, we move one step further by introducing the so-
called tlasso model that allows to estimate the precision matrix under the assumption
of multivariate t-Student distribution of asset returns.

3.2.4 Robust graphical modeling with tlasso

As widely discussed in the statistical literature, deviations of returns from Gaussian-
ity can significantly impact the estimation and the inference on GGMs. Asset return
distributions typically deviate from normality by having fatter tails and leptokur-
tic distributions. Hence, the t-Student assumption with a low number of degrees
of freedom is considered a better choice to model asset returns. Moreover, relying
on such distribution can provide more robust estimates in presence of outliers or
contaminated data (Lange, Little, and Taylor, 1989). Recently, Finegold and Drton,
2011 introduced the so called tlasso, replacing the glasso Gaussian assumption with
a t-Student to provide a tool for robust model selection. The tlasso algorithm esti-
mates then a sparse precision matrix under the assumption that the data follow a
multivariate t-Student distribution.

Let X = (X1, . . . , Xn) be a random vector following a multivariate t-Student dis-
tribution tn(µ,Ψ−1, df), with df degrees of freedom, mean vector µ and dispersion
matrix Ψ−1 (n× n positive semi-definite matrix). The covariance matrix is then

Σ =
df

df − 2
Ψ−1, (3.11)

and the precision matrix is

Ω = (Σ)−1 =
df − 2

df
Ψ. (3.12)
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Similarly to the Gaussian case, we can associate a graph G = {V, E} in which
E = {(i, j) ∈ V × V|rij 6= 0} and the edge weights are the corresponding partial
correlations rij computed from the precision matrix.

Under the t-Student assumption, in contrast to the Gaussian set-up, the absence
of correlation does not necessarily correspond to conditional independence (Baba,
Shibata, and Sibuya, 2004). However, despite the lack of conditional independence
for ωij = 0 (where ωij is an element of Ω), we have that, if two nodes j and k are
separated by a set of nodes C in G, then Xj and Xk are conditionally uncorrelated
given X{C} (see Finegold and Drton, 2011, Proposition 1). Disconnected vertices
can be considered orthogonal to each other after the effects of other variables are
removed. The absence of conditional correlations entails that a mean-square error
optimal prediction of variable Xj can be based on the variables Xk, which corre-
spond to neighbours of the node j in the graph.

We adopt the estimation procedure introduced by Finegold and Drton, 2011, that
exploits the scale-mixture representation of the multivariate t-Student distribution
consisting of a multivariate Gaussian and a gamma distribution (Kotz and Nadara-
jah, 2004) and uses an EM-algorithm (Expectation-Maximization) described in Ap-
pendix A In particular, the E-step consists in the estimation of the mixing gamma
variable and the M-step in the estimation of parameters µ̂ and Ψ̂ given the latent
variable (the degrees of freedom df are assumed to be known in this version of the
algorithm). Since the sparse parameter Ψ is the precision matrix of the conditional
Gaussian variable, it can be estimated efficiently in the M-step of the algorithm using
glasso (Finegold and Drton, 2011). The E- and the M-steps are then iterated until con-
vergence. The estimate of the precision matrix Ω̂tlasso of the multivariate t-Student
vector is finally obtained by rescaling the estimate Ψ̂tlasso using (3.12).

The tlasso procedure is computationally efficient since it is based on glasso al-
gorithm at every M-step. While convergence to a stationary point is guaranteed
in the penalized versions of EM (McLachlan and Krishnan, 2007), the algorithm is
not guaranteed to converge to the global maximum since the tlasso penalized log-
likelihood function to be maximized is not concave (Finegold and Drton, 2011).

The scale-mixture representation of the multivariate t-Student also allows the
regression hedge interpretation as in the Gaussian case. Indeed, the non penalized
version of the EM algorithm can be interpreted as an iteratively reweighted least
square estimation of the regression of each variable on all the others, as shown in
Lange, Little, and Taylor, 1989. In the penalized case, the estimation is consistent
with the iteratively reweighted glasso estimation.

Finally, we underline that in the empirical application we use the tlasso and glasso
to estimate the correlation matrix and its inverse (rather than the covariance and pre-
cision matrices). We then obtain the corresponding estimates of the covariance and
precision matrix by scaling the output using the sample variances. This approach en-
sures that the penalization is not influenced by the scale of the variables (Højsgaard,
Edwards, and Lauritzen, 2012) and, as proved by Rothman et al., 2008, ensures a
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faster convegence of the estimator in the matrix 2-norm.

3.3 Simulation analysis

We conduct a simulation analysis to test the empirical properties of the precision
matrix estimates by glasso and tlasso. In particular, our two main goals are to mea-
sure the quality of the estimates of the true covariance and precision matrices and
to assess their impact on the solution of the minimum variance portfolio. We com-
pare the results obtained with glasso and tlasso to the traditional sample covariance
matrix, as well as to the naive equally weighted portfolio strategy (EW) and to two
state-of-art covariance estimation methods: random matrix theory filtering (RMT)
(Bouchaud and Potters, 2009) and Ledoit Wolf shrinkage estimation (LW) (Ledoit
and Wolf, 2004b). Appendix B provides a brief description of these methods with
relevant references.

3.3.1 Statistical performance measures

To test the quality of the covariance and precision matrix estimates we measure the
error, bias and inefficiency with respect to the true parameters. For explanatory
purposes, we describe the measures referring to the covariance matrix Σ, which can
then be computed also for the precision matrix Ω.

First, we introduce the following loss function:

Loss[Σ̂,Σ] ≡ ||Σ̂−Σ||2, (3.13)

where ||·||2 = tr
[
(·)2
]

is the square of the Frobenius norm. Then, we can compute
three measures to quantify the estimation accuracy. First, the error, that is the square
root of the expected loss between the estimated and the true parameters:

Err[Σ̂,Σ] =

√
E
[
||Σ̂−Σ||2

]
.

Second, the inefficiency, which is a measure of dispersion of the estimates and is
computed as:

Inef[Σ̂] =

√
E
[
||E
[
Σ̂
]
− Σ̂||2

]
.

Finally, the bias, that quantifies the distance between the expected value of the esti-
mated covariance and the true parameter:

Bias[Σ̂,Σ] =

√
||E
[
Σ̂
]
−Σ||2.

As widely known, the following relationship holds:

Err2[Σ̂,Σ] = Bias2[Σ̂,Σ] + Inef2[Σ̂]. (3.14)
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Using regularization and shrinkage techniques, we expect to reduce the estima-
tion error by increasing the efficiency of the estimator compared to the sample co-
variance, typically at the cost of an increased bias.

Glasso and tlasso rely on the direct regularization of the precision matrix. There-
fore, we expect them to provide good estimates of the optimal assets’ weights in the
minimum variance portfolio framework, given that the precision matrix represents
the input of the optimization. To evaluate the overall impact of the estimation error
in Σ̂ and Ω̂, we compute the empirical, actual and oracle risk of optimal portfolios.
In particular, considering the standard deviation as a risk measure we have:

Rempirical =

√
ŵT
MV Σ̂ŵMV , (3.15)

Ractual =
√

ŵT
MV ΣŵMV , (3.16)

Roracle =
√

wT
MV ΣwMV , (3.17)

where Σ is the true covariance matrix, Σ̂ is an estimate, wMV is the optimal vector of
minimum variance weights with Σ as input and ŵMV is the optimal weight vector
for Σ̂.

These measures give us insights on the impact of the estimation error of Σ̂ and
Ω̂ in the optimization process: the empirical risk represents the perceived risk by the
investor, the actual risk is the one which the investor is exposed to, while the oracle
risk is the minimum risk possible given the true covariance matrix (Fan, Zhang, and
Yu, 2012). Since in the real world the last two are unknown, the estimation process
should minimize errors due to estimation and provide an empirical risk as close as
possible to the oracle and actual.

3.3.2 Simulation set-up

We consider two different approaches for the simulation set-up. The first one is
a three-factors model, similar to the one in Fan, Zhang, and Yu, 2012 (which we
denote as the Factor Model data). It assumes that the excess returns of the assets are
generated according to:

Xi = bi1f1 + bi2f2 + bi3f3 + εi i = 1, . . . , n, (3.18)

where f1, f2 and f3 are the three factors’ returns, bik are the factor loadings for
the kth factor and for the ith asset and εi is the idiosyncratic noise. The factors’
are generated by a multivariate t-Student distribution with 5 degrees of freedom,6

while the idiosyncratic terms are generated from a univariate t-Student distribution.
The parameters of factor returns, factor loadings and level of idiosyncratic noise are
calibrated on real market data (see Fan, Zhang, and Yu, 2012 for more details).

6In the original model the factors followed a multivariate normal distribution (Fan, Zhang, and Yu,
2012). We used a t-Student to capture the leptokurtic distribution of financial time series (Cont, 2001).
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In the second approach (henceforth Simulated S&P100), we generate the assets’
returns by a multivariate t-Student distribution with 5 degrees of freedom and a co-
variance matrix estimated on the daily returns of constituents of the S&P100 equity
index for the period 01/01/2006 – 31/12/2016, adding to each asset a noise factor
distributed as univariate t-Student with variance equal to 0.1 times the variance of
each asset.

For each setting, we consider two configurations characterized by different di-
mensionality: 50 and 85 assets, respectively. In both cases the parameters are esti-
mated over a window of 100 observations and we consider 30 simulation runs. The
number of degrees of freedom for the tlasso has been set equal to 5.

3.3.3 Optimal choice of ρ

The structure of the precision matrix estimated by glasso and tlasso depends largely
on the choice of the penalization parameter ρ, that controls the level of sparsity in
the precision matrix. We select the optimal ρ on a grid of values using the Bayesian
Information Criterion (BIC)

BIC = −2log(Likρi) + k
Ω̂
× log(t), (3.19)

where Likρi is the value of the likelihood function corresponding to the ith value
of ρ in the grid, k

Ω̂
is the number of non-null elements in the estimate of the precision

matrix, and t the number of observations.7 The grid is composed by 20 logarithmi-
cally spaced values between 0 and 1. The choice of this interval guarantees that the
glasso estimates span from a completely dense precision matrix (ρ = 0) to a com-
pletely sparse one (ρ = 1) when estimated using the correlation matrix as input.8.
For tlasso such result is not guaranteed, but we found empirically that such interval
is wide enough to include the estimate characterized by the optimal BIC in all the
cases (see Figures 3.1 and 3.2).

For sake of brevity, we report exclusively the parameter calibration of tlasso; the
procedure and the results are analogous for glasso and available from the authors
upon request.

Figures 3.1 and 3.2 show for tlasso the values of error, bias and inefficiency of the
covariance matrix estimator, as well as the in- and out-of-sample standard deviation
as a function of ρ for the Factor Model and Simulated S&P100, respectively. In both
cases we consider 85 assets estimated on a window of 100 observations. Panel (a)
reports the value of BIC, Panel (b) the error, bias and inefficiency of the estimation
of covariance matrix and Panel (c) the in-sample and out-of-sample standard devi-
ations. We observe in Panel (a) that the BIC optimal model lies within the interval

7In the case of glasso we refer to the likelihood of a multivariate normal distribution, while with
tlasso we refer to the one of a multivariate t-Student distribution.

8The result follows from Corollary 1 in Witten, Friedman, and Simon, 2011, according to which
the ith node is fully unconnected to all other nodes if and only if |Σij | ≤ ρ ∀i 6= j. When Σ is the
correlation matrix, all its elements are smaller or equal to one and therefore for ρ = 1 all the elements
are disconnected, that is, the precision matrix is diagonal.
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FIGURE 3.1: Optimal Choice of ρ for tlasso, Factor Model, 85 assets.
Panel (a) displays the value of BIC for every value of ρ in the grid.
Panel (b) shows the values of error, bias and inefficiency of the es-
timation of the covariance matrix (see (3.13) and (3.14)). Panel (c)
displays the in- and out-of-sample standard deviation of the optimal
minimum variance portfolios. The value reported are based on 30
runs and the vertical lines denote the median of the optimal ρ across

the runs.

ρ ∈ [0, 1], in both cases with values close to 0.4, characterized by a medium sparsity
level in Ω̂. From Panel (b), the bias increases with the values of ρ, while the ineffi-
ciency decreases. This pattern is consistent with the fact that, for the tlasso estimates
computed with higher values of ρ, the number of parameters to estimate is smaller,
given that more elements of the precision matrix are set equal to zero. The overall
estimation error reaches a minimum for intermediate values of ρ not distant from the
ones chosen by the BIC. Concerning the portfolio performances, we see from Panel
(c) that the effect of ρ on the out-of-sample standard deviation is different for the
two simulation settings: in the case of Factor Model, the portfolios have minimum
risk with a rather low value of ρ, while for Simulated S&P100, the out-of-sample risk
is minimized for a wider range of ρ.
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FIGURE 3.2: Optimal Choice of ρ for tlasso, Simulated S&P100, 85 as-
sets. Panel (a) displays the value of BIC for every value of ρ in the
grid. Panel (b) shows the values of error, bias and inefficiency of the
estimation of the covariance matrix (see (3.13) and (3.14)). Panel (c)
displays the in- and out-of-sample standard deviation of the optimal
minimum variance portfolios. The value reported are based on 30
runs and the vertical lines denote the median of the optimal ρ across

the runs.

3.3.4 Simulation results

Accuracy of the estimates

Table 3.1 reports bias, inefficiency and error for the covariance (columns 2–4) and the
precision matrix (columns 5–7) computed on 30 runs for four test cases: Factor Model
and Simulated S&P100, with 50 and 85 assets. It also reports the average condition
numbers of the estimates for 30 runs (column 8) and the ones of the true covariance
matrices. Concerning the estimation of the covariance matrix, we observe that glasso,
tlasso, RMT and LW present in all the cases a low inefficiency compared to the sample
covariance matrix. This comes at the cost of a higher bias. As a consequence of
these two opposite effects, the overall error levels end up being similar. Indeed,
glasso, tlasso and LW provide only minor improvements in terms of overall error
with respect to the naive sample covariance approach, while RMT shows in three
out of four test cases an estimation error larger than the sample covariance due to
a particularly high bias. The results are consistent for all the simulation set-ups.
The fact that the Factor Model test cases are characterized by larger errors then the
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Simulated S&P100 can be explained by higher values of the entries of the covariance
matrix, resulting from higher volatility and collinearity in the data.

In the context of minimum variance portfolio selection, the focus is on the esti-
mation of the precision matrix, that is the input of the closed form optimal solutions
in (3.3). Indeed, the analysis of the estimation error of such matrix displays a rather
different picture, more aligned to the well documented pitfalls of minimum vari-
ance portfolios estimated using sample covariance (Michaud, 1989). The estimation
of the precision matrix obtained by inverting the sample covariance is indeed char-
acterized by an error much higher than the alternative estimates in all the test cases
considered, especially when the number of assets is large. For instance, in Panel 2
(Factor Model with n = 85), the error for the precision matrix is equal to 102120.68,
while the error of the estimates obtained using glasso and tlasso is equal to less than
a tenth of it: 8928.08 and 8985.56, respectively. The large error of the sample covari-
ance estimator is not surprising, given that such matrices are characterized by high
condition numbers, and their inverses are therefore highly sensitive to estimation
error (the most relevant eigenvectors of the precision matrix are indeed the ones cor-
responding to the smallest eigenvalues of the covariance matrix, which are typically
dominated by noise). Glasso and tlasso show good performances, with the smallest
error in test case 1, 3 and 4. The difference with RMT and LW in terms of error are
generally moderate. The results are similar for the Factor Model and the Simulated
S&P100 set-ups, although in the latter the absolute value of the estimation errors for
the precision matrix are smaller than in the Factor Model. This difference is probably
due to the worse conditioning of the covariance matrices in the Factor Model cases,
which amplifies the estimation error of the covariance matrix.

Empirical, actual and oracle risk

Table 3.2 reports empirical, actual and oracle risk. Concerning the Factor Model test
cases (Panel 1 and 2), we see that, in terms of actual risk, glasso and tlasso obtain the
best results: in the case with 50 assets, they have an actual risk of 0.038 and 0.037
(Panel 1), lower than the LW, RMT and EW portfolios. They are also the portfolios
with the lowest actual risk in the setting with 85 assets (Panel 2). The portfolios esti-
mated using the sample covariance are a peculiar case, since they obtain the lowest
actual risk for 50 assets, but have the highest actual risk for 85 assets. This is consis-
tent with the high error in the estimation of the precision matrix, as highlighted in
Section 3.3.4. Such portfolios are also the ones with the largest difference between
actual and empirical risk (especially in Panel 2, 85 assets settings, where they are
equal to 0.045 and 0.006, respectively), while the other techniques provide much less
divergent values (in Panel 2 for instance the actual and empirical risk for tlasso are
equal to 0.030 and 0.032). As the empirical risk is the only one known to investors in
real-world applications, positive differences between actual and empirical can lead
to risk underestimation.
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TABLE 3.1: Bias, inefficiency and error for the estimation of covari-
ance and precision matrices; condition number of covariance matrix.

Values are computed in 30 runs.

Panel 1 - Factor Model - 50 assets, 100 obs. (cond. number of Σ: 12359.42)
Covariance matrix Precision matrix Cond. number
bias inef error bias inef error

sample cov. 0.08 0.64 0.64 8390.62 4801.40 9667.26 29770.64
glasso 0.19 0.60 0.63 5476.29 190.52 5479.60 1401.60
tlasso 0.16 0.57 0.59 5331.74 244.77 5337.35 1645.16
RMT 0.73 0.43 0.85 6127.47 79.91 6127.99 425.54
LW 0.21 0.60 0.63 5579.33 327.75 5588.94 1336.68
Panel 2 - Factor Model - 85 assets, 100 obs. (cond. number of Σ: 27016.97)

Covariance matrix Precision matrix Cond. number
bias inef error bias inef error

sample cov. 0.12 0.96 0.97 74698.65 69632.92 102120.68 296622.82
glasso 0.32 0.89 0.94 8924.83 240.91 8928.08 2119.29
tlasso 0.35 0.82 0.89 8981.38 274.12 8985.56 1938.62
RMT 1.27 0.59 1.41 9706.34 100.23 9706.86 679.27
LW 0.30 0.90 0.95 8732.19 702.21 8760.37 2825.45
Panel 3 - Simulated S&P100 - 50 assets, 100 obs. (cond. number of Σ: 1064.35)

Covariance matrix Precision matrix Cond. number
bias inef error bias inef error

sample cov. 0.20 1.20 1.22 402.24 601.64 723.72 2014.03
glasso 0.47 1.07 1.17 263.69 57.79 269.94 275.73
tlasso 0.87 0.75 1.15 284.75 45.29 288.32 190.13
RMT 1.25 0.73 1.45 312.06 31.60 313.66 137.84
LW 0.53 0.92 1.06 289.43 64.61 296.56 294.64
Panel 4 - Simulated S&P100 - 85 assets, 100 obs. (cond. number of Σ: 1630.18)

Covariance matrix Precision matrix Cond. number
bias inef error bias inef error

sample cov. 0.77 3.78 3.85 4327.64 9170.36 10140.22 37909.67
glasso 1.21 3.42 3.63 309.70 79.65 319.77 446.39
tlasso 1.49 1.58 2.17 330.86 71.30 338.46 315.02
RMT 2.13 2.35 3.17 367.85 50.81 371.34 218.32
LW 0.99 1.82 2.07 332.10 103.70 347.91 428.29

In the Simulated S&P100 test cases we observe that, again, glasso and tlasso port-
folios have the lowest actual risk. The advantage over RMT and LW in this case is
limited, much smaller than the Factor Model framework (Panels 3 and 4). Sample
covariance portfolios show a particularly high actual risk (0.182 and 0.270 for the
settings with 50 and 85 assets, respectively, against the 0.135 and 0.122 for tlasso),
highlighting the limits of this simple estimation technique. Equally weighted port-
folios, typically considered a difficult benchmark to beat (DeMiguel, Garlappi, and
Uppal, 2009), do not seem to show interesting performances in terms of the risk
measures that we consider, exhibiting the highest actual risk in three out of four test
cases.

Summing up, glasso and tlasso perform well in all the test cases, exhibiting low



Chapter 3. Sparse precision matrices for minimum variance portfolios 39

portfolio risk exposures compared to the alternative techniques, especially in mar-
kets characterized by ill-conditioned covariance matrices (i.e. the Factor Model case).
This suggests that these techniques might be particularly suitable in presence of mul-
ticollinearity, a characteristic typically associated to financial crises.

TABLE 3.2: Empirical, actual and oracle risk for the optimal portfo-
lios. Average results over 30 runs.

Panel 1 - Factor Model
50 assets, 100 observations 85 assets, 100 observations
empirical actual oracle empirical actual oracle

sample cov. 0.015 0.032 0.022 0.006 0.045 0.018
glasso 0.039 0.038 0.022 0.031 0.030 0.018
tlasso 0.038 0.037 0.022 0.032 0.030 0.018
RMT 0.052 0.053 0.022 0.042 0.041 0.018
LW 0.039 0.044 0.022 0.028 0.037 0.018
EW 0.190 0.193 0.022 0.186 0.188 0.018
Panel 2 - Simulated S&P100

50 assets, 100 observations 85 assets, 100 observations
empirical actual oracle empirical actual oracle

sample cov. 0.074 0.182 0.122 0.032 0.270 0.103
glasso 0.098 0.136 0.122 0.079 0.123 0.103
tlasso 0.101 0.135 0.122 0.082 0.122 0.103
RMT 0.100 0.136 0.122 0.080 0.125 0.103
LW 0.102 0.138 0.122 0.080 0.129 0.103
EW 0.239 0.244 0.122 0.217 0.228 0.103

3.4 Real-world data analysis

3.4.1 Empirical set-up

We test the performance of the portfolio determined by glasso and tlasso on four
real-world datasets. The first two are provided by Kenneth French and are publicly
available on his website.9 One consists of the monthly returns of 48 US industry
portfolios (FF 48) and the other of the returns of 100 portfolios formed on size and
book-to-market ratio (FF 100) of US companies. The third and the fourth datasets
are made of the stock returns of the constituents of S&P 100, at monthly and daily
frequency (S&P 100 monthly and S&P 100 daily). The choice of the datasets spans
different combinations of constituents, dimensionality and sampling frequency, pro-
viding robustness to the results.

We analyse the out-of-sample performances using a rolling window approach,
rebalancing the portfolios every three months by computing the optimal global min-
imum variance portfolio on a window of fixed size. The out-of-sample period is

9http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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defined for all the portfolios from January 2006 to December 2016. The estimation
windows consist of 1 year (252 observations) in the case of the daily data, while for
the monthly data we considered longer time windows in order to have sufficient
data points (10 years, 120 observations). The main characteristics of the datasets are
summarized in Table 3.3.

We evaluate the resulting portfolios in terms of risk/return profile (computing
standard deviation, average return and Sharpe ratio) and in terms of portfolio com-
position, computing statistics relative to shorting, diversification and turnover. As
in the simulation study, we estimated the tlasso with 5 degrees of freedom.

TABLE 3.3: Descriptive statistics of the real-world datasets. The first
three columns report the number of assets (n), the window size for the
calibration (t) and the ratio between these two values (n/t), respec-
tively. Columns 4 and 5 report the period spanned by each dataset
and the frequency of the data. Note that, concerning the S&P100, we
included in the analysis only the assets whose time series spanned

the entire time period.

Portfolio n t n/t time period data freq.
FF 48 48 120 0.40 01/1996 - 12/2016 monthly
FF 100 100 120 0.83 01/1996 - 12/2016 monthly
S&P 100 monthly 86 120 0.72 01/1996 - 12/2016 monthly
S&P 100 daily 91 252 0.36 01/2005 - 12/2016 daily

3.4.2 Empirical results

Table 3.4 displays the performance measures for the portfolios estimated on real
data. As we construct minimum variance portfolios, we focus in particular on the
standard deviation, which is the quantity of interest in the optimization. Still, we
also compute the average return and the Sharpe ratio of the portfolios to analyse the
risk-adjusted return profiles.

As expected, the out-of-sample standard deviation is larger than the in-sample in
all the cases. The difference between the two is especially relevant for the portfolios
computed using the sample covariance estimator when the number of assets is large
compared to the length of the estimation window. For instance, in the FF 100 case,
in which we consider 100 assets and the estimation window is made of 120 observa-
tions, the in-sample standard deviation for the sample covariance portfolio is equal
to only 3.8%, while its out-of-sample counterpart is equal to 23.0%, more than 6
times larger. This provides further evidence to previous findings related to the large
impact of estimation error, when using the sample covariance (e.g., Michaud, 1989).
The other estimation techniques do a better job at minimizing the out-of-sample
standard deviation and reducing the gap between in- and out-of-sample results. In
particular, tlasso compares favourably to the alternative approaches, obtaining the
lowest out-of-sample standard deviation in the FF 48 and S&P 100 daily datasets and
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performing well also in the FF 100 and S&P 100 monthly. Table 3.5 shows the differ-
ences between the out-of-sample standard deviation of tlasso portfolios and the ones
optimized using other techniques. The confidence levels are computed using the
Ledoit and Wolf bootstrap confidence interval for the ratio of two variances (Ledoit
and Wolf, 2011). We observe that the out-of-sample standard deviation of tlasso is
lower, and statistically significantly different than both glasso and LW in the FF 48
and S&P 100 daily datasets, while it is never higher and statistically significantly
different from any other model.

We underline that tlasso in real-world scenarios shows better performance com-
pared to glasso, while in the simulation study they obtain similar results. This can be
related to the robustness of tlasso to misspecification and outliers in the data (Fine-
gold and Drton, 2011), and therefore the better capability of dealing with the typical
fat-tail distribution of asset returns. The comparison between the results on the S&P
100 with daily and monthly returns allows to better characterize the relationship
between glasso and tlasso. Indeed, from Table 3.5, we notice that the difference in
the out-of-sample standard deviation of the tlasso and the glasso portfolios is statis-
tically significant when using data with daily frequency, but not for the monthly
ones. This may be due to the stylized property of aggregational Gaussianity, as re-
ported by Cont, 2001, which refers to the fact that the distribution of equity returns
tends to have ticker tails for shorter time frequencies (e.g., daily), while being bet-
ter approximated by a Gaussian distribution as the time frequency increases (e.g.,
monthly). Moreover, when the length of the estimation time interval is large com-
pared to the number of asset weights to be estimated (e.g., 120 observations for FF
48), and consequently the precision matrices are less ill-conditioned, tlasso portfolios
exhibit better out-of-sample risk properties than glasso. Finally, we notice that the
equally weighted portfolios generally show high standard deviations compared to
glasso, tlasso, RMT and LW. In two of the datasets, however, it performs better than
the sample covariance matrix portfolios.

Concerning the Sharpe ratio, we obtain different results across the test cases:
the sample covariance estimator shows the most inconsistent performance, with the
highest out-of-sample Sharpe ratio in the FF 100 case (1.039) and the lowest in the FF
48 and S&P 100 monthly (0.384 and 0.151, respectively). The other estimators gen-
erally obtain good performance in all the test cases, with glasso and tlasso displaying
the highest out-of-sample Sharpe ratios in the S&P 100 daily, RMT in the S&P 100
monthly and FF 48 and LW in the FF 100 case. Finally, we notice that the EW port-
folio, despite beating the sample covariance portfolio in FF 48 and S&P100 monthly,
does not seem to be competitive with the other methods in terms of risk adjusted
performance.

Table 3.6 reports summary portfolio statistics. Columns 2 to 4 display the gross
exposure (i.e., the sum of absolute values of the portfolio weights), the total negative
exposures and the maximum negative exposure of individual assets. We see that the
sample covariance portfolios are characterized by extreme exposures, especially for
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TABLE 3.4: In-sample and out-of-sample (oos) standard deviation,
mean return and Sharpe ratio for for real-world data analysis.

Standard deviation Mean return Sharpe ratio
Model in-sample oos in-sample oos in-sample oos
Panel 1 - 48 Industry Portfolios (FF 48)
sample cov. 0.068 0.124 0.070 0.048 1.042 0.384
glasso 0.083 0.110 0.074 0.077 0.889 0.697
tlasso 0.081 0.106 0.072 0.065 0.887 0.618
RMT 0.085 0.108 0.075 0.081 0.885 0.756
LW 0.074 0.113 0.068 0.070 0.917 0.620
EW 0.166 0.179 0.097 0.105 0.592 0.587
Panel 2 - 100 Size and Book-to-Market Portfolios (FF 100)
sample cov. 0.038 0.230 0.228 0.239 6.147 1.039
glasso 0.085 0.127 0.102 0.069 1.189 0.546
tlasso 0.085 0.124 0.099 0.075 1.152 0.608
RMT 0.098 0.129 0.088 0.068 0.890 0.531
LW 0.070 0.121 0.105 0.092 1.496 0.758
EW 0.187 0.187 0.091 0.073 0.493 0.392
Panel 3 - S&P 100 2006-2016 - monthly data (S&P 100 mon.)
sample cov. 0.039 0.206 0.100 0.031 2.652 0.151
glasso 0.084 0.119 0.099 0.079 1.211 0.663
tlasso 0.075 0.116 0.099 0.066 1.330 0.570
RMT 0.074 0.107 0.110 0.084 1.488 0.788
LW 0.069 0.115 0.094 0.052 1.362 0.453
EW 0.160 0.160 0.077 0.082 0.489 0.516
Panel 4 - S&P 100 2006-2016 - daily data (S&P 100 daily)
sample cov. 0.067 0.138 0.090 0.090 1.531 0.649
glasso 0.086 0.124 0.110 0.108 1.411 0.872
tlasso 0.083 0.121 0.102 0.108 1.377 0.892
RMT 0.085 0.122 0.099 0.097 1.308 0.799
LW 0.074 0.125 0.100 0.094 1.475 0.755
EW 0.181 0.202 0.089 0.084 0.844 0.414

TABLE 3.5: Difference in out-of-sample standard deviations between
the tlasso portfolios and the alternative methods. Negative numbers
denote a lower standard deviation for tlasso compared to the alterna-
tive method (i.e., sample covariance, glasso, RMT, LW and EW). Statis-
tical significance has been assessed with Ledoit and Wolf procedure
(Ledoit and Wolf, 2011). *,**,*** denote 90%, 95% and 99% confidence

level, respectively.

sample cov. glasso RMT LW EW
FF 48 -0.019** -0.004*** -0.002 -0.007* -0.073***
FF 100 -0.106*** -0.002 -0.004 0.003 -0.063***
S&P 100 mon. -0.091*** -0.003 0.009 0.001 -0.044***
S&P 100 daily -0.018*** -0.003*** -0.001 -0.004*** -0.081***
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TABLE 3.6: Portfolio statistics on real-world data. The Table reports,
from left to right, gross exposure (gross exp.) (

∑
i |wi|), total short ex-

posure (short exp), maximum negative exposure of individual assets
(max short), percentage of active positions in the portfolios (active
pos.), modified Herfindahl diversification index corrected to account
for short portfolio (H∗ =

∑
i w
′2
i where w′i = wi/(

∑
i |wi|)) and port-

folio turnover (turnover). The reported values are the average across
all the rebalancing periods.

Model gross exp. short exp. max short active pos. H∗ turnover
Panel 1 - 48 Industry Portfolios
sample cov. 4.426 1.713 -0.213 100% 0.036 1.149
glasso 2.142 0.571 -0.068 100% 0.040 0.282
tlasso 2.253 0.627 -0.070 100% 0.039 0.317
RMT 1.894 0.447 -0.046 100% 0.046 0.201
LW 2.866 0.933 -0.103 100% 0.040 0.455
EW 1.000 0.000 0.000 100% 0.021 0.000
Panel 2 - 100 Size and Book-to-Market Portfolios
sample cov. 22.516 10.758 -0.807 100% 0.017 11.799
glasso 4.656 1.828 -0.121 100% 0.018 0.703
tlasso 4.573 1.786 -0.114 100% 0.018 0.798
RMT 3.022 1.011 -0.062 100% 0.022 0.272
LW 5.512 2.256 -0.141 100% 0.018 0.973
EW 1.000 0.000 0.000 100% 0.010 0.000
Panel 3 - S&P 100 2006-2016 (monthly data)
sample cov. 6.954 2.977 -0.297 100% 0.020 3.016
glasso 1.488 0.244 -0.025 100% 0.022 0.309
tlasso 1.707 0.353 -0.030 100% 0.025 0.271
RMT 1.850 0.425 -0.036 100% 0.023 0.258
LW 2.190 0.595 -0.039 100% 0.024 0.338
EW 1.000 0.000 0.000 100% 0.011 0.000
Panel 4 - S&P 100 2006-2016 (daily data)
sample cov. 4.569 1.785 -0.186 100% 0.022 3.192
glasso 2.376 0.688 -0.061 100% 0.023 1.058
tlasso 2.479 0.739 -0.058 100% 0.025 1.113
RMT 2.121 0.561 -0.043 100% 0.026 0.888
LW 3.043 1.021 -0.078 100% 0.025 1.650
EW 1.000 0.000 0.000 100% 0.011 0.000

the FF 100 portfolios, where the gross exposures is more than 22 times higher than
the initial endowment, due to a short exposure of 10.758. glasso, tlasso, RMT and
LW show considerably lower exposures, both in terms of whole portfolios and of
individual securities. The EW portfolio, as it is long only by construction, is trivially
the one with the lowest exposures. None of the methods promote sparsity of the
weights, therefore in all cases the percentage of active position is 100%. The level
of diversification is computed by the modified Herfindahl concentration coefficient
H∗. Such measure can deal with short portfolio exposures and takes the lowest
value for the most diversified portfolio (i.e., the EW portfolio). The concentration
levels are similar for different portfolios, including the sample covariance one. This
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suggests that the main differences in the portfolio structure result from the allocation
of weights and the level of gross exposures and not from the excessive concentration
in a limited number of assets. Finally, we compute the turnover rate of the portfolios.
The sample covariance portfolios show the worst performance in terms of turnover,
due to both the amount of gross exposure and the estimation error. The equally
weighted portfolio has zero turnover by construction and all the other techniques
show considerably lower turnover levels than the sample covariance case.

3.5 Conclusion

The estimation of the precision matrix is fundamental to the implementation of sev-
eral quantitative investment strategies. In this chapter, we consider two innovative
methods based on Markovian graphs: glasso and tlasso. These techniques allow us
to regularize the estimation of the precision matrix (i.e., the inverse of the covari-
ance matrix) by imposing a constraint on the L1-norm, assuming Gaussian and t-
Student distributions, respectively. We test the models both on simulated and real
world data, measuring the quality of the estimation and the out-of-sample perfor-
mances of the optimized global minimum variance portfolios. We compare them to
the naive sample covariance estimator, equally weighted portfolios and two state-
of-art techniques: random matrix and Ledoit Wolf shrinkage methods. According to
our analysis, glasso and tlasso show interesting results: in the simulation framework
they both improve the estimation of the precision matrix compared to the alternative
techniques, reducing the bias and error of the estimates, and the actual risk in simu-
lated portfolios, especially with ill-conditioned matrices. When applied to real data,
they obtain good out-of-sample performances. Tlasso, which is more robust to mis-
specification and outliers, stands out for the low out-of-sample standard deviation,
providing better results than glasso by just paying a small price in computational
efficiency compared to glasso. The results are consistent across all the dataset con-
sidered, and the advantage of tlasso over glasso is larger when using data with daily
frequency compared to monthly. Moreover, glasso and tlasso limit the portfolio short
exposures and reduce considerably the turnover compared to the sample covariance
estimator. We underline that the analysis proposed here was focused on a simple in-
vestment strategy in order to isolate the effect of covariance matrix estimator, but
these regularization methods can be applied in any asset allocation framework that
requires the estimation of the covariance and precision matrices, such as risk parity
portfolio (Roncalli, 2014) and maximum diversification portfolio (Choueifaty and
Coignard, 2008), as well as for index tracking investment strategies. Indeed, the
good portfolio performance, together with the simple implementation, make glasso
and tlasso interesting tools for the Fintech industry and for the implementation of
data-driven investment models, suitable also for distressed markets, when covari-
ance matrices of the assets tend to be ill-conditioned.
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Chapter 4

Robust and sparse banking
network estimation with tlasso

Acknowledgement
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Estimation” co-authored by Sandra Paterlini and Rosella Giacometti, published on
the European Journal of Operational Research (Torri, Giacometti, and Paterlini, 2018).

4.1 Introduction

The recent financial crises have pointed out the need to capture the interconnected-
ness between the banks in a system, in order to introduce risk-management tools
capable to better control potential spillover effects in case of distress of some institu-
tions. The “too-big-to-fail” slogan that became popular just after the 2008 financial
crisis, was soon replaced by “too-interconnected-to-fail”. This new expression ac-
knowledges that systemic events can be triggered not only by the distress of large
institutions, but also by small entities that cover specific roles in the system, or that
are in key positions within the network. The relevance of interconnections is stressed
also in the Basel Committee’s regulation for assessing and identifying global system-
ically important banks (G-SIBs). This regulation requires that global systemic impor-
tance should be measured in terms of the impact that a bank’s failure could have on
the global financial system and the economy, rather than the probability that such a
failure occurs. Hence, Basel introduced an indicator-based measurement approach
that considers not only size but also interconnectedness, complexity, substitutability
and the level of cross-jurisdictional activities (FSB, 2013).

Applications of network theory and statistical tools that can capture the depen-
dence structure within an entire system have then flourished in finance and eco-
nomics in the aftermath of the crisis, in conjunction with the rapid development of
network modelling in other fields, such as sociology and biology (e.g., Albert and
Barabási, 2002; Watts and Strogatz, 1998; Newman and Park, 2003). In a banking
system, network nodes are typically financial institutions, and edges capture the re-
lationship among them. The goal of these applications is to model the dynamics
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of financial co-movements and contagion, the potential impact on the system, and
ideally to set up improved risk management tools to avoid spillover effects (see e.g.,
Battiston et al., 2012a; Paltalidis et al., 2015; Acemoglu, Ozdaglar, and Tahbaz-Salehi,
2015; Cont and Minca, 2016).1

Still, much research on the estimation of the network structure of a banking sys-
tem and comparison across different modelling approaches is needed. The first con-
tributions in the field have mostly focused on interbank lending markets, where the
network structure consists in the set of bilateral credit exposures between banks (see
for instance Mistrulli, 2011 and Lelyveld and Veld, 2014). Most of the initial work
was set up by regulators for stress testing and to understand potential consequences
of new regulation. A main limitation is still that bilateral exposures are generally
non-disclosed and unavailable to researchers outside central banks. In absence of
bilateral data, the network structure must be reconstructed from partial data or one
must rely on other sources, such as time series of equity prices or CDS spreads.

There exists a strand of literature that reconstructs the bilateral interbank ex-
posures using the total exposures of each bank towards the entire banking system
through statistical techniques such as maximum entropy or minimum density al-
gorithms (Elsinger et al., 2013; Anand, Craig, and Von Peter, 2015). Nevertheless,
such approaches usually require strong assumptions on the behaviour of the banks
in the interbank market and they often fail to represent the true network structure
(Mistrulli, 2011).

An alternative is instead to infer the network structure using tools that can cap-
ture co-movements and dependence patterns between financial time series to estab-
lish the existence of links among banks. An example is the estimation of credit risk
networks from credit default swap (CDS) spreads or equity price times series (e.g.,
Puliga, Caldarelli, and Battiston, 2014; Anufriev and Panchenko, 2015; Billio et al.,
2012). One major advantage of these approaches is that they rely on public data and
well known statistical modelling techniques. We focus in particular on graphical
models, that are probabilistic models, nowadays widely used in machine learning
(Murphy, 2012), in which the graph captures the conditional dependence structure
between the nodes. Gaussian graphical models are possibly the most widely known.
By relying on the assumption that nodes are random variables with a multivariate
normal distribution, edges are estimated as partial correlations in these models. Val-
ues of zero imply then independence between nodes, while the conditional proba-
bility among nodes factorizes according to the partial correlation graph (Lauritzen,
1996). The advantage of using conditional dependence, compared to direct corre-
lations, is that it allows us to single out the direct co-movements between nodes,
controlling for spurious connections due to common exposures. Our work aims to
fill some gaps in the literature by proposing a robust method, based on graphical

1Other common applications of network theory in finance include the assessment of credit risk for
SMEs including spatial dependence (Fernandes and Artes, 2016) and the linkages between different
markets, such as Bekiros et al., 2017 that analyses the causal linkages between equity and commodity
futures markets.
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models and regularization techniques, for estimating only the relevant links in the
network from CDS spread time series data. The estimated network then provides
information on the dependence among banks and possible paths of shock propaga-
tion. We underline that we consider synchronous, and not delayed co-movements
of time series, and that we estimate sparse undirected networks. As a consequence,
we cannot interpret the edges as causal relationships, at least in a Granger (i.e. in-
tertemporal) sense. Other approaches, such as Granger causality networks (Billio et
al., 2012), variance decomposition (Diebold and Yılmaz, 2014) and transfer entropy
(Bekiros et al., 2017) would allow us to consider intertemporal and directed rela-
tionships by modeling the data, either in a Vector AutoRegression (VAR) framework
or by using an informational theoretical approach. Still, we believe that given the
aim of our work, partial correlation networks deliver an appropriate estimate of
the connectivity patterns among banks since, assuming that the markets are suffi-
ciently liquid and promptly reacting, the information available to the market should
be discounted by the prices fast enough to be reflected by synchronous relation-
ships.2 Although it is not always possible to match the co-movement networks to
the actual network structure of the interbank market, some studies highlight their
usefulness to capture salient aspects of the financial system, which allows regula-
tors to design more effective policies and to set-up risk monitoring and mitigating
tools (Anufriev and Panchenko, 2015). Other studies found some interdependence
between co-movement networks and interbank exposures networks. It is the case of
Abbassi et al., 2017, that highlight the capability of detecting similar patterns when
comparing partial correlation networks based on CDS data in the German banking
system and the actual bilateral exposures provided by the Deutsche Bundesbank
credit register, suggesting that market based measures can serve well in the absence
of bilateral interbank market data.

One of the main drawbacks of Gaussian graphical models, besides the normality
assumption, which is hardly satisfied by financial times series, is the fact that the
estimated graph is typically dense and difficult to interpret. Regularization meth-
ods can then be exploited to detect sparse graph structures for which not all the
edges are active and only the relevant links are detected. The glasso model, one of
the best known approaches for matrix regularization in the statistical literature, in-
duces sparsity in the network structure by introducing a penalty proportional to the
1-norm of the precision matrix in the estimation process (Friedman, Hastie, and Tib-
shirani, 2008). While glasso has found a range of applications in biology and other
fields, its use within the financial literature is still limited (e.g., Goto and Xu, 2015;
Anufriev and Panchenko, 2015). This is possibly because the assumption of Gaus-
sianity is often too restrictive when dealing with financial times series.

2Intertemporal causation may indeed indicate the presence of financial turmoil, as reported by Billio
et al., 2012, that show how Granger causality networks may allow to identify periods of market dis-
location and distress, and Jenkins, Kimbrough, and Wang, 2016 who report that during the financial
crisis in 2008, the US CDS market was less efficient (in terms of semi-strong market efficiency).
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Here, we introduce the tlasso, a model that allows to estimate the partial corre-
lation matrix by relying on the more realistic assumption of multivariate t-Student
variables. This allows us to better capture the leptokurtic behaviour of financial
times series. The model is also more robust to model misspecification and the pres-
ence of outliers compared to glasso, providing more stable and reliable estimates of
the sparse network structure. However, differently from the Gaussian setting, un-
der the t-Student distributional assumption the absence of an edges does not imply
conditional independence, but only conditional zero correlation. To the best of our
knowledge, besides Torri, Giacometti, and Paterlini, 2017 on portfolio selection and
optimization, tlasso has never been applied to the estimation of the networks of fi-
nancial institutions. After illustrating the robustness properties of tlasso compared to
glasso in a simulation study, we focus on estimating the network structure of a sam-
ple of large European banks, providing some financial interpretation of the network
in two ways. First, we analyse the structural properties of the system using a rele-
vant set of network measures. Second, we propose a decomposition of the strength
centrality measure to characterize more accurately the role of each bank in the net-
work and to highlight the most relevant channels for the transmission of financial
distress. We thus introduce a tool that can be used to evaluate the risk profile of each
bank in the system.

Our empirical results suggest a highly connected network structure, character-
ized by geographical communities and by the absence of a core-periphery structure.
The analysis complements previous studies that focus on domestic banking systems
(e.g., Anand, Craig, and Von Peter, 2015; Mistrulli, 2011; Lelyveld and Veld, 2014),
which are generally characterized by very sparse, strongly tiered network structures
with a small set of large banks that play the role of hubs. Other works conducted on
samples of international financial institutions, while relying on different modelling
techniques, provide results that are in line with ours, although they put less or no
emphasis on the community structure. In particular, Craig and Saldías, 2016 found
that, considering a network derived from equity prices, the European banking sys-
tem is characterized by a high level of interconnectivity, high clustering coefficient,
and high assortativity. Our results are also in line with Aldasoro and Alves, 2018,
which studied the interbank network of large European financial institutions, and
found evidence of a high network density and a core composed by a large number
of banks.

The Chapter is organized as follows: Section 2 describes the tlasso model, after
introducing the Gaussian graphical model and glasso. Section 3 illustrates the prop-
erties of tlasso and compares it to glasso in a simulation set-up. Section 4 reports
the empirical results obtained by analysing a sample of large European banks using
CDS data. Estimation results are presented along with network properties, followed
by the proposal of the decomposition of strength centrality and a discussion of the
financial and economic implications of our analysis. Section 5 draws the main con-
clusions.
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4.2 The tlasso model

4.2.1 Preliminaries

We briefly review partial correlation networks in the context of Gaussian graphical
models and the glasso model that, starting from a dense network, identifies a sparse
partial correlation matrix under the hypothesis of Gaussianity.

Let X = (X(1), . . . , X(m)) be a random vector with a multivariate Gaussian dis-
tribution Nm(µ,Σ), where µ is the mean vector and Σ the covariance matrix. We
can define an undirected graph G = (V, E), where the nodes in V correspond to each
element of X, the edges E consist of the pairs of random variables with non-zero
partial correlations, E = {(i, j) ∈ V × V|ρij 6= 0}, and the edge weights correspond
to partial correlations ρij . The partial correlations are computed from the inverse of
the covariance matrix Ω := Σ−1 (i.e., the precision matrix) as follows:

ρij =
−ωij√
ωiiωjj

i, j = 1, . . . ,m,

where {ωij} is an element of the matrix Ω. The estimation of the graph structure cor-
responds to the estimation of the precision matrix Ω. The partial correlation matrix
P is:

P = I −D−
1
2

Ω ΩD
− 1

2
Ω , (4.1)

whereD
− 1

2
Ω = diag( 1√

ωii
) and I is a conformable identity matrix. The representation

of partial correlations in the matrix form P is the weighted adjacency matrix of the
graph, that is, the m×m matrix in which the entries are the weights of the edges in
the network. Notice that, following a common convention, the diagonal elements of
P are equal to zero. The reader is referred to Lauritzen, 1996 for Gaussian graphical
models, while Anufriev and Panchenko, 2015 provide a review of partial correlation
networks in the Gaussian framework.

Traditional estimation techniques for graphical models, such as maximum like-
lihood, typically return dense adjacency matrices in which all the elements off the
main diagonal are different from zero. It may then be challenging to identify the rel-
evant links among nodes. Moreover, the presence of collinearity in the data would
result in ill-conditioned estimates of the covariance matrices and, consequently, large
estimation error for the precision matrix (Torri, Giacometti, and Paterlini, 2017).

The glasso model, introduced by Friedman, Hastie, and Tibshirani, 2008, was
proposed as a tool to solve this issue and to obtain sparse estimates of the precision
matrix Ω. Under the assumption of Gaussianity, the precision matrix can be esti-
mated by penalized quasi maximum likelihood, where the penalty is proportional
to the 1-norm of the precision matrix. Omitting constants and multiplicative fac-
tors, the estimates obtained with glasso can be computed by solving the following
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optimization problem:

Ω̂glasso = arg max
Ω

(log|Ω| − tr(ΩΣS)− λ||Ω||1), (4.2)

where ΣS is the empirical sample covariance matrix, λ is the regularization param-
eter (the larger the λ, the sparser the estimated model), | · | is the determinant of a
matrix, tr(·) the trace and || · ||1 the 1-norm. The optimization problem can be solved
efficiently using the algorithm proposed by Friedman, Hastie, and Tibshirani, 2008.

4.2.2 The tlasso model

One of the main limitations of glasso is the Gaussianity assumption that, as widely
discussed in the literature, generally does not hold for financial time series, typically
characterized by fat tails and leptokurtic distributions (e.g., Cont, 2001). We then
consider tlasso, a recently introduced model for the inference of sparse partial corre-
lation networks under the assumption that the data follow a multivariate t-Student
distribution (Finegold and Drton, 2011). Compared to glasso, the distributional as-
sumptions of tlasso are less restrictive for financial applications. Furthermore, the
use of t-Student distributional assumption as an alternative to Gaussianity is known
to increase the robustness of the estimates in presence of outliers in several appli-
cations, such as linear and nonlinear regression, robust estimation of the mean and
covariance matrix with missing data, unbalanced multivariate repeated-measures
and multivariate nonlinear regression Lange, Little, and Taylor, 1989.

Let X = (X(1), . . . , X(m)) be an m-variate random vector with a multivariate t-
Student distribution tm(µ,Ψ−1, v), with v degrees of freedom, mean vector µ and
dispersion matrix Ψ−1 (m ×m positive semi-definite matrix3). The covariance and
precision matrices are then Σ = v

v−2Ψ−1 and Ω = v−2
v Ψ, respectively. Similarly to

the Gaussian case, we can associate to the distribution a graph G = {V, E}, in which
E = {(i, j) ∈ V × V|ρij 6= 0}, where {ρij} are the elements of the partial correlation
matrix P computed from the precision matrix Ω as in (4.1). The tlasso model allows
us to estimate a sparse Ψ̂tlasso and the corresponding partial correlation matrix P̂
that represents the network structure.

In particular, we consider a scale-mixture representation of the t-Student dis-
tribution. Let W ∼ Nm(0,Ψ−1) and τ ∼ Γ(v/2, v/2) be random variables dis-
tributed as a multivariate Gaussian and a gamma distribution, respectively. Then:

X = µ+
W√
τ
∼ tm(µ,Ψ−1, v), (4.3)

where Ψ−1 is the dispersion matrix of the t-Student distribution, µ is a m× 1 vector,
and v is the number of degrees of freedom in the multivariate t-Student distribution

3We choose the uncommon parametrization based on the inverse of the diffusion matrix to highlight
the relevance of Ψ in the graphical model.
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(Kotz and Nadarajah, 2004).4

In contrast to the Gaussian set-up, when using the t-Student distribution, or the
class of elliptical distributions in general, an absence of correlation does not nec-
essarily correspond to conditional independence (Baba, Shibata, and Sibuya, 2004).
However, despite the lack of conditional independence for ωij = 0, it can be proved
that if two nodes j and k are separated by a set of nodes C in G, then X(j) and X(k)

are conditionally uncorrelated given X(C) (Finegold and Drton, 2011). It is then rea-
sonable to substitute the conditional independence with zero partial correlation or
zero conditional correlation. In this case, disconnected vertices in a graphical model
can be considered orthogonal to each other after the effects of other variables are
removed. The absence of conditional correlation entails that a mean-square error
optimal prediction of variable X(j) can be based on the variables X(k), which corre-
spond to neighbours of the node j in the graph.

The Expectation-Maximization algorithm

The tlasso model can be estimated using an Expectation-Maximization (EM) algo-
rithm (Finegold and Drton, 2011). The EM estimation procedure exploits the scale-
mixture representation (4.3), and it is computationally efficient since it is based on
the glasso algorithm, which is iteratively applied at every M-step of the algorithm.

The EM algorithm treats τ as a hidden variable in the E-step, exploiting the fact
that the conditional distribution of X given τ is Nm(0,Ψ−1/τ). Then, in the M-step
the algorithm maximizes the penalized log-likelihood of the latent Gaussian vector
using the glasso procedure.

Let X1, . . . ,Xn be an n-sample drawn from tm(µ,Ψ−1, v). The EM algorithm
iterates the following two steps:

• E-step

– Given:
E[τ |X = x] =

v +m

v + (δx(µ,Ψ))
, (4.4)

where δx(µ,Ψ) = (x− µ)TΨ(x− µ), from the current estimates µ̂(t) and
Ψ̂

(t)
, we compute τ̂ (t+1) for the (t+ 1)th iteration:

τ̂
(t+1)
i =

v +m

v + (δXi(µ̂
(t), Ψ̂

(t)
))

i = 1, . . . , n. (4.5)

• M-step

– Compute the estimates at iteration t+ 1:

µ̂(t+1) =

∑n
i=1 τ̂

(t+1)
i Xi∑n

i=1 τ̂
(t+1)
i

, (4.6)

4Note that the scale-mixture representation clarifies how the use of t-Student distribution leads to
more robust inference, as extreme observations can arise from small values of τ .
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Ŝ
(t+1)

=
1

n

n∑
i=1

τ̂
(t+1)
i [Xi − µ̂(t+1)][Xi − µ̂(t+1)]′. (4.7)

– Then, the estimate Ψ̂
(t+1)

is computed by solving the following optimiza-
tion problem:

Ψ̂
(t+1)

= arg max
Ψ

(
log|Ψ| − tr(ΨŜ

(t+1)
)− λ||Ψ||1

)
, (4.8)

which relates to (4.2) for glasso and can be solved using the algorithm from
Friedman, Hastie, and Tibshirani, 2008.

The E and M steps are sequentially iterated until a convergence criterion is satisfied,
that is, until the maximum term in absolute value of the matrix difference between
Ψ̂s in two consecutive iterations is smaller than a given threshold. While conver-
gence to a stationary point is guaranteed in the penalized versions of EM (McLach-
lan and Krishnan, 2007), the algorithm is not guaranteed to find the global maximum
since the penalized log-likelihood function to be maximized is not concave (Finegold
and Drton, 2011).

4.2.3 The regularization parameter

The regularization parameter λ controls the intensity of the shrinkage towards zero
of individual elements of the precision matrix: the larger λ, the more sparse is the
precision matrix estimate. Different approaches, such as cross-validation and infor-
mation criteria, can be used to select the optimal regularization parameter λ (Fine-
gold and Drton, 2011). We rely on the Bayesian Information Criterion (BIC) for
the calibration of λ, as the literature highlights that it performs better than cross-
validation (Foygel and Drton, 2010).

For tlasso, we consider a grid of values of λs, that is λi ∈ C = [λmin, . . . , λmax]

and estimate the tlasso network for each λ value. Then, we choose the value of λ that
solves the BIC optimization problem:

min
λ∈C

BIC = −2log(L̂λi) + k × log(n), (4.9)

where L̂λi is the value of the likelihood function for the multivariate t-Student dis-
tribution with the parameters computed using the corresponding λi parameter, k is
the number of active edges in the network, and n is the number of observations. The
calibration procedure is analogous for glasso, with the only difference being the use
of the likelihood function for a multivariate Gaussian distribution instead of a mul-
tivariate t-Student distribution. In preliminary analyses on simulated data, we also
compared the BIC with the Extended Bayesian Information Criterion (EBIC) and the
Akaike Information Criterion (AIC), finding that the BIC provides more accurate
results than the others.



Chapter 4. Robust and sparse banking network estimation with tlasso 53

4.3 Simulation analysis

As a first step, we test the tlasso on simulated data using several network configura-
tions and distributions, and we compare its performances to the ones of the glasso.
We consider 16 settings with different combinations of network structures and un-
derlying distributions of the data (see Section 4.3.1). For each combination, we per-
form 30 Monte Carlo runs and estimate the networks using tlasso and glasso on a grid
of 30 different λ values ranging from λmin = 0.007 to λmax = 1. We set the number of
degrees of freedom to v = 3, the lowest possible value that yields a finite covariance
matrix, to test for the influence of fat tails. We also investigate how tlasso and glasso
estimates are affected by the sample size, comparing estimates obtained for n = 100,
200, 500 and 1000. Finally, we evaluate the performance of the BIC for the optimal
choice of the regularization parameter λ.

4.3.1 Simulation set-up

In the simulation set-up, we consider four distributional assumptions and four net-
work configurations, chosen from commonly used benchmark cases and more com-
plex structures that are typical of financial networks. We then run the simulation
analysis for the sixteen combinations of network structures and distributions. We de-
scribe the structure of the network in terms of the precision matrix Ω, which makes
it possible to easily derive the partial correlation matrix P as in (4.1).

a. Chain graph: This simple graph structure can be represented by a matrix Ωa,
where all the non-diagonal entries are zero except the elements on the first sub-
and super-diagonal. In particular, these entries have been set equal to -0.3, while
diagonal elements are set equal to 1.

b. Sparse random graph: The matrix Ωb is defined as follows: first a value of -
1 is assigned independently with probability 0.05 to the elements in the lower
diagonal, then the matrix is mirrored to obtain a symmetric adjacency matrix. A
value equal to the negative of the sum of the elements in the respective columns
minus one is assigned to the elements on the diagonal. This guarantees that the
matrix is positive definite.

c. Core-periphery matrix: The matrix Ωc is consistent with a core-periphery struc-
ture, that is, it has a group of strongly interconnected nodes (the core) and a pe-
riphery connected to nodes within the core, but not among nodes within the pe-
riphery. The core is composed of 10 elements and the percentage of the active
edges between the core and the periphery has been set to 30%.

d. Block diagonal matrix: The matrix Ωd is characterized by a strong block diago-
nal structure with five distinct blocks. This structure is consistent with a network
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composed of five disconnected sub-networks. In particular, the blocks are mod-
elled independently and in each of them the time series are generated as a linear
combination of two independent factors plus some random noise.

FIGURE 4.1: Alternative network structures based on partial correla-
tion matrices

chain (a)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

random (b)

0.0

0.1

0.2

0.3

0.4

0.5

core−periphery (c)

0.00

0.05

0.10

0.15

0.20

0.25

block diagonal (d)

0.00

0.05

0.10

0.15

0.20

0.25

The figure represents the color coded heatmaps of the adjacency matrices P corresponding to network structure (a
- d). The structures are in order: the chain graph (a), a random graph with high sparsity (b), a core-periphery graph
(c) and a block diagonal graph (d).

We assume the following four underlying distributions:

1. Multivariate Gaussian distribution: X ∼ Nm(0,Ω−1).

2. Multivariate t-Student distribution: X ∼ tm(0,
v − 2

v
Ω−1, v), with v = 3.

3. Contaminated Gaussian distribution: Gaussian-mixture distribution where
85% of the observation are distributed as a centered Gaussian distribution with
covariance matrix Ω−1, and the remaining 15% is drawn from independent
centered Gaussian distributions with larger variances:

X ∼ Nm(0,Ω−1)× b+Nm(0, 2× diag(Ω−1))× (1− b),

with b ∼ Bernoulli(p), and p = 0.85.

4. Empirical marginals from real CDS data and t-copula: Distribution charac-
terized by a multivariate t-copula and marginals estimated from real CDS data
using a Gaussian kernel. The data are described in Section 4.4 and refer to the
period 01/01/2009 – 30/06/2016.

4.3.2 Performance measures

We first evaluate the performances of tlasso and glasso estimators in terms of ROC
(Receiver Operating Characteristics) curves, measuring their ability to identifying
correctly the edges in the network. A good estimator should have a high sensi-
tivity (high ratio of true positives to all positives), while having a high specificity
(high ratio of true negatives to all negatives), that is, it should identify all the ac-
tive edges in the original network without introducing spurious ones. ROC curves
are a powerful and commonly used tool for the identification of these features. For
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FIGURE 4.2: ROC curves for 16 simulation set-ups
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ROC curves for tlasso and glasso estimation with different network structures and underlying distributions, as
defined in Section 4.3.1 (structures (a - d), from left to right; distributions (1 - 4), from top to bottom). Red circles
refer to tlasso and green crosses to glasso. Dark green circles and dark red crosses refer to the optimal estimates
identified using the BIC for tlasso and glasso, respectively.

binary classifiers, they consist in a plot of the sensitivity rate over (1 - specificity)
for different thresholds (see for instance Hanley and McNeil, 1982). We use them
for the performance analysis of glasso and tlasso, comparing network estimates with
different levels of sparsity as determined for a grid of λ values. In order to provide
better representation of the dispersion of the data, instead of computing the average
value over several runs and drawing an interpolated ROC curve, we represent all
the individual data points.

In addition to ROC curves, we evaluate the quality of the estimates of the partial
correlation matrix P using the Frobenius norm as distance measure between the
optimal estimate of the adjacency matrix P̂ and the known adjacency matrix P , as
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FIGURE 4.3: ROC curves for different sample size
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ROC Curves (n. of obs.:200) 
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ROC curves for tlasso and glasso estimation with block diagonal network structure (d) and multivariate t-Student
distribution with 3 degrees of freedom (2). Green points refers to glasso and red points to tlasso. Darker points are
the optimal estimates identified using the BIC. From left to right the four graphs display results for sample size
equal to 100, 200, 500 and 1000.

follows:
DF (P̂ ,P ) = ||P̂ − P ||F =

√
(tr((P̂ − P )(P̂ − P )′)), (4.10)

where P̂ is the estimate of the partial correlation matrix and P is the one used for
the generation of the data. In particular, we use the Frobenius norm to measure the
accuracy of the estimation of the optimal networks identified by BIC.

TABLE 4.1: Gini coefficients for ROC curves

Network structure
Distribution Chain (a) Random (b) Block diag. (c) Core-periphery (d)

Panel a - tlasso
Multivariate normal (1) 0.992 0.997 0.702 0.952

Multivariate t (2) 0.979 0.986 0.752 0.959
Contam. normal (3) 0.972 0.984 0.746 0.921

t-copula + emp. marg. (4) 0.984 0.992 0.760 0.930
Panel b - glasso

Multivariate normal (1) 0.986 0.988 0.793 0.943
Multivariate t (2) 0.757 0.873 0.528 0.812

Contam. normal (3) 0.385 0.812 0.179 0.244
t-copula + emp. marg. (4) 0.934 0.965 0.616 0.869

Gini Coefficient for different network structures and underlying distributions.

4.3.3 Simulation results

Figure 4.2 displays the ROC curves for all the four combinations of network con-
figurations (from a to d) and distributions of the data (from 1 to 4), described in
Section 4.3.1. Each data point refers to one estimate of the network structure for a
different value of λ. Red circles refer to tlasso networks, while green crosses indi-
cate glasso ones. The optimal networks identified by the BIC are highlighted with
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darker colours. The more concentrated the data are in the upper left corner, the bet-
ter the performance, as measured by a high number number of true positives and a
low number of false positives. We see that the quality of the estimates varies drasti-
cally across different combinations of distributions and network structures. Moving
from top to bottom, we analyse the performance of glasso and tlasso on data with
different distributions. In the case of data with a Gaussian distribution (first row),
the performances of glasso and tlasso are similar, though the first model is correctly
specified while the second is not. When the distribution is not Gaussian (rows 2, 3
and 4), tlasso performs consistently better than glasso, especially in the case of the
distribution characterized by the presence of outliers (row 3).

When studying the effect of the partial correlation structure (Figure 4.2 from left
to right), we notice that the topology of the network strongly affects the quality of the
estimates provided by the tlasso and glasso. We see that both models perform better
in case of simple structures like the chain graph (a) or a very sparse random graph
(b). They have problems, however, in correctly identifying more complex structures
such as the core-periphery (c) or the block diagonal configurations (d).

The optimal networks identified by the BIC are highlighted with darker circles
and crosses. We see that, in the case of the tlasso, the BIC is highly effective for all
the specifications considered, as it often selects optimal λs corresponding to good

TABLE 4.2: Average Frobenius distance for tlasso

Network structure
Distribution Chain (a) Random (b) Block diag. (c) Core-periphery (d)

Panel a - tlasso
Multivariate normal (1) 1.22 1.05 1.11 0.71

(s.d.) (0.10) (0.12) (0.06) (0.04)
Multivariate t (2) 1.29 1.09 1.13 0.79

(s.d.) (0.22) (0.08) (0.06) (0.08)
Contam. normal (3) 1.51 1.32 1.16 0.87

(s.d.) (0.15) (0.12) (0.06) (0.06)
t-copula + emp. marg. (4) 1.24 1.11 1.17 0.76

(s.d.) (0.13) (0.11) (0.06) (0.05)
Panel b - glasso

Multivariate normal (1) 1.15 0.95 1.12 0.73
(s.d.) (0.11) (0.09) (0.05) (0.05)

Multivariate t (2) 1.88 1.67 1.91 1.72
(s.d.) (0.31) (0.28) (0.30) (0.40)

Contam. normal (3) 2.21 1.95 3.29 3.45
(s.d.) (0.09) (0.15) (0.35) (0.37)

t-copula + emp. marg. (4) 1.38 1.28 1.53 1.15
(s.d.) (0.10) (0.11) (0.11) (0.13)

Average Frobenius distance (and standard deviation in parenthesis) between optimal estimators P̂ and known
network structure P for tlasso (Panel a) and glasso (Panel b) for all network structures and distributions presented
in Section 4.3.1. Optimal networks are selected using BIC.
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estimates of the true network structure (high sensitivity and specificity, lying in the
upper-left corner of the graph). In the case of the glasso, the BIC works well for the
selection of the optimal parameter λ when the model is correctly specified (row 1),
but performs poorly when the distribution is not Gaussian or in presence of outliers
(rows 2, 3 and 4).

We integrate the visual analysis of the ROC curves with the computation of the
Gini coefficient. In particular, we fit a smoothing cubic spline on the data in order
to obtain a unique ROC curve, we then compute the Area Under the Curve (AUC)
as in Hanley and McNeil, 1982. We then compute the Gini coefficient as: Gini =

2×AUC−1, that ranges from 0 to 1. A Gini coefficient close to 0 denotes a low ability
of a model to identify correctly the edges of the network, while a coefficient close to
1 denotes a good ability to identify the edges. The value of the Gini coefficient for
each model is shown in Table 4.1, confirming the previous results: tlasso outperforms
glasso in all except one of the simulation settings, and has a stronger advantages in
the case of non-Gaussian distributions (in particular the contaminated normal case).

Figure 4.3 illustrates as a robustness check how the quality of the estimates changes
with the sample size n = 100, 200, 500 and 1000. From all the combinations, we re-
port only the case of a known block diagonal network structure and multivariate t-
Student distribution with 3 degrees of freedom (corresponding to combination (d2)
in Figure 4.2). Other pairs provide similar results, which are available upon request.
As expected, the larger the sample size n, the lower the estimation error, as indicated
by the concentration of the points in the upper left corner in Figure 4.3 for n = 1000.
We see that tlasso consistently outperforms glasso, which fails to provide accurate es-
timates, even with large sample size, due to the model misspecification and its lack
of robustness.

Finally, Table 4.2 reports the average Frobenius distance of the optimal networks
from the true networks for tlasso (Panel a) and glasso (Panel b). The results confirm
those of the ROC curve analysis and show that tlasso outperforms glasso in most of
the specifications, obtaining smaller distances. The difference between the models
is particularly relevant for the distribution 3, which is characterized by outliers. The
only exceptions are the simulations with normally distributed data, where glasso and
tlasso show similar performance.

In summary, the simulation study shows that tlasso generally outperforms glasso,
in particular under non-normality, model misspecification, and in presence of out-
liers.

4.4 Empirical analysis

Here, we present the application of the tlasso model to the problem of estimating
the network structure of a sample of large European banks. Our goal is to infer the
network structure from the partial correlations between CDS to capture dependence
related to credit risk, and to describe the properties of the system and its evolution
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over time. We further provide insights on the network estimates by the tlasso when
compared to those obtained using the glasso. Finally, we introduce a decomposition
of strength centrality that allows us to characterize accurately the role of each bank
in the network and to highlight the most relevant channels for the transmission of
financial distress.

4.4.1 Banking data

The dataset consists of 31 weekly time series of CDS spreads (5 years maturity,
quoted in Euros) of European banks from 12 countries. The data have been down-
loaded from Thomson Reuters Datastream and span the time period from 01/01/2009
to 30/06/2016. 20 out of 31 banks belong to countries within the Eurozone, while the
other 11 are located in the United Kingdom, Sweden and Denmark. Our database
includes 85% of those banks with total assets over EUR 500 billion under the ECB’s
supervision in 2016 and 47% of the banks involved in the European Banking Author-
ity (EBA) stress-test exercise of 2016. The complete list of the banks is reported in
Appendix C.2. For the analysis, we consider the log-differences of the CDS spreads.

The glasso and tlasso models assume that the data follow a multivariate Gaussian
and t-Student distribution, respectively. Due to complexity in testing the multivari-
ate goodness of fit in high dimensionality (see e.g., Justel, Peña, and Zamar, 1997;
McAssey, 2013), we do not test directly for the multivariate distributional assump-
tion, but instead we focus on the marginal univariate and bivariate distributions.5

Results for individual banks are reported in C.2. On average, the marginal distri-
butions show low skewness and high excess kurtosis. We test for two parametric
distributions: the t-Student and the Gaussian, fitting them using maximum likeli-
hood. We then evaluate the goodness of fit using the Kolmogorov-Smirnov test and
the χ2 goodness of fit test, both at a significance level of α = 1%. According to the
Kolmogorov-Smirnov test, we do not reject the null hypothesis of a t-Student distri-
bution for any of the banks except for one (i.e., Bayerische Landesbank), while the
assumption of Gaussianity is rejected for 8 of the 31 banks. The χ2 goodness of fit
test rejects the null hypothesis of a t-Student and Gaussian distribution for 4 and 18
banks, respectively. Concerning the fitting of t-Student marginal distributions, the
estimated numbers of degrees of freedom are low, ranging from 1.75 to 8.80 with
mean value equal to 5.37. The statistical tests thus provide evidence in favour of
t-Student marginal distributions.

Concerning the dependence structure, we analyse 465 bivariate distributions for
each pair of banks, fitting different copula families and selecting the best-fitted cop-
ula model for each pair using the Bayesian Information Criterion (BIC). The copulas
we consider are Gaussian, t (with 3, 6 and 10 degrees of freedom), Gumbel, and reverse
Gumbel. This selection encompasses models with different levels of tail dependence

5Following Kotz and Nadarajah, 2004, any partition of a random variable that follows a multivariate
t-Student distribution is also distributed as a t-Student. By testing the distribution of marginals we
find a necessary, although not sufficient, condition for the entire distribution to follow a t-Student
distribution. Such property holds also for multivariate Gaussian distributions as a special case.
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and allows us to model both symmetric and asymmetric relationships. Table 4.3 re-
ports the percentages of the bivariate distributions for which each copula is the best
fit according to the BIC. The vast majority of the tests provide evidence in favour of
the t-copula. In fact, the t-copula with 6 degrees of freedom turns out to be optimal for
more than half of the pairs (54.4%), and t-copulas with 3, 6 or 10 degrees of freedom
are optimal in 93.2% of the cases. The bivariate data therefore appear to display a
relatively high level of tail dependence.

TABLE 4.3: Bivariate copula fitting for pairs of banks.

Copula Percentage
t-copula (3 degrees of freedom) 10.8%
t-copula (6 degrees of freedom) 54.4%
t-copula (10 degrees of freedom) 28.0%

Gaussian copula 4.7%
Gumbel copula 1.9%

Reverse Gumbel copula 0.2%

Percentage out of the 465 bivariate relationships between each pair of banks’ CDS spreads, for which each copula
is the best fit according to BIC (01/01/2009 – 30/06/2016).

The results obtained for the marginal and bivariate distributions suggest the
need to consider a methodology that moves beyond the Gaussian distributional and
dependence assumption. We therefore expect the tlasso model to be a more appro-
priate tool than the glasso due to empirical properties of the data and the tlasso’s
robustness to outliers and model misspecification.

The analysis of the autocorrelograms of the log-differences of CDS spreads and
their squared returns (not reported for brevity) does not highlight relevant evidence
of serial correlation and heteroskedasticity. In the rest of the analysis we therefore
consider the variables as independent and identically distributed (i.i.d.). As a ro-
bustness check, in C.1 we repeat the analysis on the residuals of an ARMA-GARCH
model using a static conditional correlation model (CCC-GARCH) and a dynamic
conditional correlation one (DCC-GARCH) (see C.1). The results obtained with
these specifications are very similar to the baseline scenario.

We finally study the model after controlling for conditioning variables, consid-
ering as factors a set of 11 European sovereign CDS spreads (i.e., Austria, Belgium,
Denmark, France, Germany, Italy, Netherland, Portugal, Spain, Sweden and United
Kingdom), and re-estimating the model after controlling for their effect. Also in
this case, the results are consistent to ones obtained with raw data. The results are
reported in C.1.

4.4.2 Stability and robustness to outliers

As illustrated in Section 4.3, tlasso outperforms glasso in the majority of the simula-
tion set-ups we consider. Here, we test the performance of glasso and tlasso on real
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data, using them to estimate the sparse correlation network underlying the Euro-
pean banking system.

Since the true network structure is unknown, we cannot use the performance
measures described in Section 4.3 for the simulated data. Instead, we compare the
glasso and tlasso focusing on the stability and robustness to outliers. In particular, we
consider the stability of the network estimates in a rolling window analysis, comput-
ing measures of similarity between estimated networks on different time-windows.
The rationale behind this approach is that a robust method should return very sim-
ilar network estimates on largely overlapping time-windows and the presence of
sudden changes in the network structure would indicate that the model is not ro-
bust to outliers and prone to estimation errors.

We consider the period from 01/01/2008 to 30/06/2016, with rolling windows
of 100 weekly observations for a total of 343 windows.6 In order to allow for a more
meaningful comparison between time periods, we do not calibrate the penalization
parameters λ for tlasso and glasso in each window, but instead we set the parameter
in such a way that the average density of the network across the time windows is
equal for the two models. For the estimation of tlasso we set the degrees of freedom
to 5, close to the mean value of the marginal distributions of the data (see C.2).

We use the Frobenius norm of the difference between the two adjacency matrices,
defined as in (4.10) as an indicator for the distance between networks. Figure 4.4
represents graphically the distance between each pair of rolling windows and table
4.4 reports the average distance computed on windows 5, 10 and 15 weeks apart.

The results show that the Frobenius distance between networks tends to in-
creases with the distance in time of the estimation windows, which is in line with
our expectations. This can be seen in Figure 4.4, where the points close to the diago-
nal (which represent windows close to each other) have smaller Frobenius distance.
Similarly, we see in Table 4.4 that networks estimated on windows 15 weeks apart
from each other differ more than those estimated on windows 10 and 5 weeks apart.
Comparing the two models, we notice that, on average, the distance between net-
works estimated on different windows is smaller for tlasso than for glasso, resulting
in a more stable structure over time for tlasso. Interestingly, the tlasso networks are
not only more stable on average, but they are also characterized by a smoother tran-
sition of the network over the rolling windows. This can be observed in Figure 4.4,
where tlasso has a less block-diagonal structure than glasso. Such result is confirmed
in Table 4.4, where the value of the standard deviation of the Frobenius distances for
tlasso is much smaller than for glasso. The absence of sudden changes suggests that
tlasso is less affected by outliers and extreme events, which leads to more reliable
and stable estimates.

6For the rolling analysis the sample is reduced to 29 banks, since CDS series for Intesa San Paolo and
Unicredit are not available for the entire period.
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TABLE 4.4: Frobenius distance on rolling window networks

Frobenius distance
tlasso glasso

5 weeks 0.55 0.64
(0.06) (0.23)

10 weeks 0.78 0.91
(0.07) (0.26)

15 weeks 0.95 1.11
(0.09) (0.27)

Average Frobenius distance and standard deviation (in brakets) between networks computed on rolling windows
respectively 5, 10 and 15 weeks apart.

FIGURE 4.4: Frobenius distance between networks on different time
windows.

Frobenius distance between networks computed on different time windows. Lower distance denotes more similar
networks. The horizontal and vertical axes represent the last day in each time window.

4.4.3 Structural analysis of the European banking system network

As a next step, we focus on the identification of the structural properties of the Eu-
ropean banking system by computing relevant network indicators and monitoring
their changes in two sub-periods: during-crisis (01/01/2009 – 31/12/2012) and post-
crisis (01/01/2013 – 30/06/2016). We focus on the meso-scale properties of the net-
work, such as the presence of a core-periphery or a community structure (see Bor-
gatti and Everett, 2000; Fortunato, 2010).

Most of the available literature analyse the banking systems in individual coun-
tries, for which the bilateral exposures in the interbank markets are more easily avail-
able (e.g., Craig and Von Peter, 2014 for Germany, Lelyveld and Veld, 2014 for the
Netherlands, and Mistrulli, 2011 for Italy). The network structures in these studies
are typically characterized by a high level of sparsity, a core-periphery structure, a
scale-free configuration (i.e., networks where degree and strength distributions are
power-law), the presence of hubs (i.e., nodes with a number of edges that greatly
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exceed the average) and disassortative mixing patterns (i.e., highly connected banks
tend to connect to peripheral ones). The properties of international financial systems
are less well-studied, and seem to be characterized by more complex structures. Al-
dasoro and Alves, 2018 analyse the interbank market bilateral exposures of 53 large
European banks and identify a highly interconnected and layered structure with a
core-periphery configuration, characterized by a large core. Craig and Saldías, 2016
use equity data to analyse the global banking system and find a complex hierarchi-
cal structure, with a relevant regional homophily, a rich-club phenomenon (highly
connected nodes tend to be mutually linked) and a core-periphery structure. Here,
we provide further evidence in estimating and interpreting dependence networks
based on CDS data in international banking systems.

We first look at the descriptive network statistics, reported in Table 4.5. We then
compute a set of indicators useful to describe the meso-scale properties of the net-
work (see core-periphery structure, presence of geographical communities and as-
sortative mixing). A description of the network indicators is reported in Section
2.3.1.

TABLE 4.5: Descriptive network statistics for CDS Networks

during-crisis post-crisis
Density 49.25% 52.26%

Average strength 0.95 0.91
Largest connected component 100% 100%

Positive edges % 87.77% 79.42%
Positive edges % (weighted) 96.59% 89.28%

Descriptive network indicators computed on tlasso networks for the during-crisis and the post-crisis periods. See
Section 2.3.1 for the definition of network indicators.

FIGURE 4.5: Strength distribution of the estimated networks
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Strength distribution in the during-crisis (left) and post-crisis (right) periods.

In Table 4.5 we notice that for both sub-periods the network is connected (it ex-
ists at least a path that connect any two nodes in the network) and by similar values
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of density (49.25% and 52.26%), average degree (14.77 and 15.68), and average strength
(0.95% and 0.91%), suggesting a highly interconnected structure. Edges with posi-
tive weights are the majority, especially in the during-crisis period and when com-
puted in weighted terms. Figure 4.5 reports the strength distribution for the sub-
periods. Concerning the during-crisis period (left plot), we notice that the support
is narrower than in the post-crisis period (right plot) and that the distribution is ap-
proximately symmetric, suggesting that the networks do not have a scale-free struc-
ture and are not characterized by the presence of hubs. In the post-crisis period, the
strength distribution is negatively skewed, indicating the presence of some banks that
are less interconnected to the system compared to the during-crisis period.

TABLE 4.6: Network indicators for tlasso

during-crisis post-crisis
tlasso random network tlasso random network

Freeman Centralization 0.47** 0.66 0.52* 0.69
Coreness 0.11*** 0.34 0.15*** 0.31

Modularity (wrt country) 0.36*** -0.04 0.29*** -0.03
Clustering coefficient 2.70%** 2.12% 2.94%*** 2.39%

Assortativity (wrt eigen. centr.) 0.61*** 0.35 0.35 0.34
Assortativity (wrt str. centr.) -0.05 0.08 0.06 0.09

Assortativity (wrt betw. centr.) -0.05 -0.07 -0.08 -0.07
Assortativity (wrt Bonacich centr.) 0.03 0.08 0.11 0.08

Network indicators computed on tlasso networks for the during-crisis and the post-crisis periods. The Table also
reports the median value of the indicators computed on 1000 random rewirings of the networks. The stars denote
the statistical significance based on the empirical distribution of the indicators on the random networks (***, **, *
denote p-value smaller than 1%, 5% and 10%, respectively).

Table 4.6 reports a set of network indicators chosen to highlight the meso-scale
structural properties of the networks, focusing in particular on the presence of core-
periphery and community structure. As a reference, Table 4.6 also shows the median
value of the indicator for a random network and the statistical significance computed
on the quantiles of the distribution of the indicators on a random network.7

The Freeman centralization provides information about the extent to which the
network is centred around its most central node. A high centralization is typically
associated with a tiered structure or with the presence of strong hubs. In the during-
crisis period, this indicator is statistically significantly lower than in the random net-
works in both sub-periods, suggesting the absence of a core-periphery structure. This
is confirmed by the low coreness,8 equal to 0.11 in the during-crisis period and to 0.15
in the post-crisis period.

7The random networks have been computed by a rewiring procedure that consists in randomly
selecting two edges (a,b) and (c,d) and substituting them with (a,d), (b,c). The rewiring procedure is
repeated iteratively until the network is completely randomized (see for instance Fortunato, 2010). This
procedure allows us to destroy existing structural properties while maintaining the degree of the nodes
and other features such as the average strength. The significance level is obtained from the quantiles of
the empirical distribution of the indicators computed on 1000 randomly rewired networks.

8Coreness is an indicator that denotes the tendency of a network to have a strongly connected core
and a sparsely connected periphery (Borgatti and Everett, 2000).
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The following two indicators, modularity and the clustering coefficient, allow us to
measure the tendency of the networks to be organized in communities. In particu-
lar, the modularity computed on the country partition describes the tendency of the
networks to form communities aligned with national borders. The indicator has a
high and statistically significant value, especially in the during-crisis periods, where
it takes a value of 0.36. The presence of communities is also suggested by the high
value of the clustering coefficient,9 that is typically associated to networks with com-
munities (Fagiolo, 2007).

Finally, we compute the assortativity, an indicator that measures the tendency of
nodes to connect to similar ones. In particular, we consider the assortativity with
respect to four different centrality measures (eigenvector-, strength-, betweenness- and
Bonacich power centrality) to check the tendency of nodes to be linked to nodes with
the same level of importance. Negative assortativity is typical of network with hubs,
and such systems are typically resilient to random failures, but fragile to specific at-
tack to hubs Watts and Strogatz, 1998. Positive assortativity, instead, is typical of
social networks. Overall, the network does not present neither an assortative or dis-
assortative behaviour. The only exception is the eigenvector centrality in the during-
crisis period, where the indicator is statistically significantly higher than in a ran-
dom network. The absence of disassortative mixing may seem in contrast with the
literature, that shows disassortativity in financial networks (see e.g., Mistrulli, 2011;
Hurd, 2016). This may be explained considering that we included in our analysis
only the largest European banks, discarding the smallest, and arguably less intercon-
nected institutions. The result may also be related to the presence of a community
structure. In fact, Newman and Park, 2003 shows that communities can generate
a higher than expected assortative mixing since nodes in larger and denser groups
have a higher number of connections relative to nodes than in smaller communities.
This would lead to highly interconnected nodes being connected to other highly
connected nodes, increasing the assortativity.

Figure 4.6 shows a visual representation of the networks using a force layout
color-coded by country. The representation confirms the structural properties sug-
gested by the indicators: the banking system is characterized by a high interconnec-
tion and a relevant community structure aligned with national division, especially
in the during-crisis period.

The comparison with existing literature is complicated by the differences in method-
ology and sample selection. As we mentioned before, the structure identified here
differs significantly from that identified in studies that focus on actual bilateral expo-
sures in national banking systems. They describe much sparser networks, scale-free
distributions for the degree and strength, core-periphery configurations and disas-
sortative mixing (Mistrulli, 2011). Such divergence can be explained by the fact that
in our analysis we include only large banks that are part of the core of the network

9The clustering coefficient is an indicator that denotes the tendency of the network to “create trian-
gles”, that is, when a node a is connected to nodes b and c, there is a high chance that b and c are
connected.
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in each individual country. The comparison with studies focused on international
banking networks shows more consistent results. Aldasoro and Alves, 2018, using
the algorithm from Anand, Craig, and Von Peter, 2015 on a dataset of bilateral expo-
sure between large European banks, find a large core composed by twenty to thirty
banks, depending on the type of interconnections considered and Craig and Von
Peter, 2014 underline the presence of a strongly interconnected structure in Europe.

To our knowledge, our work is the first to put emphasis on the presence of geo-
graphical communities in the European banking system. Aldasoro and Alves, 2018
did not provide indicators to measure this feature and Craig and Von Peter, 2014
only describe qualitatively the presence of regional homophily and the higher den-
sity of the network structure within countries. From an economic point of view, the
identification of national communities is consistent with the different national legal
and economic systems, and possibly related to the European sovereign debt crisis
and CDS pricing.

It is well known in the complex network literature that, in general, structural and
topological properties influence the diffusion of processes on a network and strongly
affect the vulnerability to failures and attacks (Watts and Strogatz, 1998; Newman,
2002; Fortunato, 2010). Concerning banking systems, the structural properties have
clear implications in terms of diffusion of financial contagion and the assessment of
the network properties is useful for both financial institutions and policy makers.
The literature agrees that the presence of a highly interconnected structure in the in-
terbank market increases the stability of the system, but that in presence of liquidity
shocks, it makes the system less stable, leading to a robust-yet-fragile property. More-
over, the relationship between structural properties and stability is complex and non
linear (Hurd, 2016; Chinazzi and Fagiolo, 2015). Acemoglu, Ozdaglar, and Tahbaz-
Salehi, 2015, for instance, shows that more densely connected financial networks
enhance financial stability but, beyond a certain point, dense interconnections lead
to a less stable financial system. Hurd, 2016 shows that the presence of assortative
mixing facilitates the diffusion of contagion in the system, and Hübsch and Walther,
2017 show how the presence of inhomogeneities among banks can enhance conta-
gion risk. The modelization of the diffusion of financial contagion in networks par-
titioned in communities is still an open issue in the literature. Applications in other
fields show that the presence of communities influences the diffusion of processes
over a network (see Weng, Menczer, and Ahn, 2013; Galstyan and Cohen, 2007). We
thus expect that this feature may be relevant also in financial applications. Finally,
we underline that the presence of communities, similarly to other structural network
properties, may have an influence on the interpretation of centrality indicators and
raises new questions on how to measure the importance of a node in a system. In
the next section, we try to address these questions by introducing a decomposition
of strength centrality.
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FIGURE 4.6: tlasso networks - graphical representation
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Graphical representations of the tlasso networks using a force layout. For clarity, only the edges corresponding to a
partial correlation larger than 0.1 in absolute value are depicted.

4.4.4 Centrality measures for networks with communities

In the previous section, we analysed the structural properties of the estimated net-
works of the European banking system using the tlasso model. Here, we shift the fo-
cus to the analysis of individual institutions, studying their interconnectedness and
their systemic relevance. Following the definition reported by Schwarcz, 2008, sys-
temic risk is closely related to the propagation and reverberation of risk in a system,
and in the literature it has been typically measured either by econometric indicators
or by a network approach. Concerning the econometric approach, several studies
developed indicators that measure risk trasmission and spillover to the system and
from the system, such as marginal expected shortfall (Engle and Brownlees, 2010), ex-
pected capital shortfall (Acharya, Engle, and Richardson, 2012), CoVaR and ∆CoVaR
(Adrian and Brunnermeier, 2016). Concerning to network approaches, they typi-
cally aim at assessing the relevance of an institution in a system using traditional
centrality measures such as eigenvector-, strength- and betweeness centrality (see for in-
stance Alter, Craig, and Raupach, 2015), or by introducing specific measures such as
debtrank by Battiston et al., 2012a.

A common feature of most of the measures in the literature, either econometric
or network-based, is that they summarize in a single measurement the relationship
between a given institution and the system, but often do not allow to characterize the
relationship between an individual bank’s systemic risk and the topological features
of the entire network. We introduce a methodology that allows to take explicitly
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into consideration the network topology, in particular the presence of geographical
communities while assessing the role of each individual institution. To clarify the
concept, we can think of a network with a geographical community structure. In
such network, a bank may be characterized by high centrality because it has strong
international interconnections or because it is strongly connected to banks in the
same country. We can imagine that these two situations can be very different for
regulators who want to measure the systemic importance of a bank or understand
the level of EU integration. Our proposed method provides a flexible tool for deal-
ing with this situation by introducing a decomposition of strength centrality. This
measure, when computed on partial correlation networks, has an interesting inter-
pretation in terms of shock diffusion, that we discuss below.

We first recall the interpretation of the partial correlation matrix in terms of hedge
regressions, that are a set of regressions in which each asset is regressed against all
others (see Stevens, 1998). Assuming that E[X] = 0 (where 0 is a conformable vector
of zeros), the hedge regressions are expressed as:

X
(i)
t =

∑
j 6=i

β
(i)
j X

(i)
t + ε

(i)
t i = 1, . . . ,m, (4.11)

where X(i) is the ith asset, β(i)
j the coefficient for the jth asset in the ith regression

and ε(i) the residuals. Or in matrix form

X = BX + ε, (4.12)

where B is a matrix with off-diagonal elements ij equal to β
(i)
j and diagonal ele-

ments equal to 0.
We can relate the elements ωij of Ω, the precision matrix of the data, to the βs as

ωij =


−
β

(i)
j

νi
if i 6= j

1

νi
if i = j

, (4.13)

where νi is the variance of ε(i). Using (4.12), (4.13), and (4.1), after some algebra we
have

X = D
− 1

2
Ω PD

1
2
ΩX + ε. (4.14)

In order to account for the different conditional variances in the X(i)s, we introduce
the rescaled variable x = D

1
2
ΩX, in such a way that the rescaled residuals e = D

1
2
Ωε

have unit variance. By premultiplying the terms in (4.14) byD
1
2
Ω we have

x = Px + e. (4.15)

The rescaling allows to remove the effects of variables endogenous to the network by
expressing the extent of the shock in terms of the conditional variances (see Anufriev
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and Panchenko, 2015).
Considering the regression interpretation presented here, we now use the net-

work structure estimated by tlasso to study the systemic risk and financial contagion.
As we mentioned before, the setting described so far does not allow to identify direct
causation between variables, since it considers only synchronous co-movements.
Similarly to Anufriev and Panchenko, 2015, we then consider an observational inter-
pretation of (4.15), where the residuals e can be seen as an exogenous shock, and the
partial correlation network edges as the channels of propagation: a shock e hitting
a set of nodes will have an effect on the other nodes in virtue of (4.15) and the effect
on the direct neighbours of the hit nodes is computed as P e (first round effect).

We can then compute the effect on the entire system in terms of a unitary shock
hitting the ith node in terms of first round effect as

cSi =
∑
i 6=j

αjρij = α′P ei, (4.16)

where ei is a unitary shock hitting node i and α is a vector denoting the weight of
each node in the system. Notice that in case of α = 1, where 1 is a conformable
vector of ones, the quantity cSi consists in the strength centrality of node i. For the
symmetry ofP , the network is not directed and the quantities can also be interpreted
as the effect of a unitary shock hitting all the nodes on the node i.

As (4.16) is an homogeneous functions of degree 1 with respect toα, we can then
use the following Euler decomposition:

cSi = α′P ei =
m∑
j=1

αj
∂α′P ei
∂αj

= α′∇(α′P ei), (4.17)

where ∇ denotes the gradient with respect to vector α. We emphasize that this
framework accounts only for the immediate transmission of shock. Once the shock
is transmitted to the banks connected to the first one, it could be propagated fur-
ther, generating a cascade effect. We could account for these propagation effects by
considering different rounds of transmission of the shock, similarly to Anufriev and
Panchenko, 2015 or Battiston et al., 2012a. Here, we consider only the first round of
contagion transmission, and focus on the short term effects. We leave the modeling
of successive steps for further research, also considering that the structural prop-
erties of the network may change after a shock hits due to reactions of banks and
interventions from banking authorities.10

These components can then be aggregated according to meaningful attributes of
the data, in our case the geographical location of the banks.

10The effect of the shock after all the reverberations can be measured as the Bonacich power centrality
(Anufriev and Panchenko, 2015), and it can be decomposed as in (4.17). However, due to the rever-
berations, the shocks diffuse more uniformly to the entire networks, making the decomposition less
informative. The results are not reported for brevity, and are available upon request.
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We apply the decomposition of strength centrality to the networks estimated using
tlasso. In order to make the results easier to read, and to allow for a better compari-
son between banks, we perform the strength decomposition according to three broad
geographical groups and not on individual countries. The regions we consider are
Southern European countries (i.e., Italy, Spain and Portugal), Central European coun-
tries (i.e., Germany, France, Austria, Belgium and Netherlands) and the countries
outside the Eurozone (i.e., United Kingdom, Sweden and Denmark).11

Table 4.7 shows the average decomposition of the strength in each geographi-
cal area. On average, the largest part of the strength centrality of a bank can be at-
tributed to connections with banks in the same geographical region. This confirms
the presence of a community structure aligned to geographical divisions, especially
in Southern Europe and for the group of countries outside the Eurozone, for which
the edges within the same group in the crisis-period account respectively for 69.19%
and the 68.83% of the total strength centrality. Instead, the banks in Central European
countries seem to be characterized on average by a slightly less regional interconnect-
edness, as for them edges directed to banks in the same area account on average for
57.98% of the strength centrality. The result would be even more pronounced if we
exclude the French banks, that are tighly connected to each other. The decomposi-
tion yields similar results for the two periods, denoting stability in the structure of
European banking network. Still, in the post-crisis period the banks show on average
a higher international connectivity, quantified by a lower share of strength central-
ity attributable to banks in the same geographical group, especially for the banks
outside the Eurozone.

Figure 4.7 provides the relative decomposition of strength centrality for individ-
ual banks (top panels), the value of strength centality (middle panels) and eigenvector
centrality (bottom panels). The decomposition allows us to highlight the specific po-
sition of each bank in the system, and to describe more accurately its properties. We
see for instance that Italian and French banks are characterized by a localized in-
terconnectivity, while German, Danish and Dutch banks have on average stronger
connections to banks in other geographical areas. The representation allows also
to easily identify outliers and banks with specific features, such as the Italian bank
BNL, whose connections are mostly towards Central European banks. This is not sur-
prising, as BNL is part of the French BNP Paribas group. The identification of the
most internationalized banks can be used to detect potential bridges for the diffusion
of contagion between distant areas. Such banks may then be monitored more accu-
rately by regulators. We also show how the decomposition of the strength centrality
can be used to highlight specificities of each node related to the structural properties
of the network. For instance, focusing on RBS (Royal Bank of Scotland), we notice
that in the during-crisis period, it is one of the institutes with the highest eigenvec-
tor centrality, but its interconnectivity structure spans mostly a limited geographical

11The decomposition of strength centrality for individual countries gives results consistent with those
reported below. They are available from the authors upon request.
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area. According to the estimated network structure, a potential shock hitting RBS
would therefore spread initially to a localized neighbourhood, while a shock on a
bank with a wider interconnectivity structure may potentially affect international
institutions faster.

FIGURE 4.7: Decomposition of strength centrality and centrality mea-
sures.
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Geographical decomposition of strength centrality (upper panels) and value of strength centrality (middle panels)
and eigenvector centrality (lower panels). The three geographical areas (Southern Europe, Central Europe and outside
Eurozone) are highlighted with red vertical bands. Southern: Southern European countries (i.e., Italy, Spain and
Portugal). Central: Central European countries (i.e., Germany, France, Austria, Belgium and Netherlands). Outside:
Countries outside the Eurozone (i.e., United Kingdom, Sweden and Denmark).

We point out that the interaction between the structural properties of the net-
work and the local centrality measures assumes a particular relevance for the devel-
opment of macroprudential regulation and supervision toolkits, that aim to protect
the financial system as a whole, in contrast to microprudential regulation, which fo-
cuses on the stability of individual institutions, as discussed by Freixas, Laeven, and
Peydró, 2015.

In this context, the strength centrality decomposition that we propose can be used
to complement other network based centrality measures in order to define a new
multi-dimensional approach for the identification of systemic relevance, in a spirit
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TABLE 4.7: Decomposition of strength centrality - average % of
strength directed to each geographical area

During-crisis Post-crisis
Southern Central Outside Southern Central Outside

Southern 69.19 % 23.42 % 7.84 % 67.20 % 21.17 % 12.06 %
Central 21.05 % 57.98 % 21.82 % 20.19 % 56.52 % 27.85 %
Outside 7.60 % 22.21 % 68.83 % 10.85 % 23.44 % 60.75 %

Decomposition of strength centrality. The Table reports the average value of the strength directed to each geo-
graphical area. Southern: Southern European countries (i.e., Italy, Spain and Portugal). Central: Central European
countries (i.e., Germany, France, Austria, Belgium and Netherlands). Outside: Countries outside the Eurozone (i.e.,
United Kingdom, Sweden and Denmark).

similar to the G-SIB framework, an indicator-based assessment methodology intro-
duced in November 2011 by the Financial Stability Board as a response to the 2008
global financial crisis (FSB, 2013).

The question whether a bank with more localized interconnections poses a smaller
or greater threat to the system in terms of contagion risk is still an open issue in the
literature and should be further studied. On the one hand, a localized system may
slow down the diffusion of distress, allowing the contagion to dissipate before it
reaches all the nodes in the network. On the other hand, the concentration of distress
in a limited group of banks may reduce the system’s ability to dissipate shocks and
may trigger feedback effects that would amplify the initial shock. Still, the strength
centrality decomposition that we propose can provide a useful tool for the character-
ization of the contagion channels for each bank. The study of contagion mechanisms
in networks with geographical communities is high on our agenda.

4.5 Conclusion

In this work, we use partial correlation networks to estimate the structure of the
European banking system from CDS data, introducing the tlasso model in the finan-
cial network literature. Such model estimates efficiently sparse partial correlation
networks under the assumption of a multivariate t-Student distribution, inducing
sparsity by means of a 1-norm matrix penalization. We show by a simulation anal-
ysis and on real CDS data that the tlasso is a suitable tool for the estimation of the
European banking system network, as it performs better than the alternative glasso
model when the data are non Gaussian and it is robust to model misspecification
and to the presence of outliers.

We then study the topological properties of the financial networks estimated us-
ing tlasso, focusing on the meso-scale properties. We find evidence of a highly inter-
connected network characterized by a relevant community structure based on geo-
graphical divisions, especially during the crisis period. The network is also charac-
terized by the absence of a core-periphery structure and limited evidence of assorta-
tive mixing. The results contribute to the growing literature that analyses the network
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topology of the European banking systems and is consistent with previous works
(Craig and Saldías, 2016; Aldasoro and Alves, 2018). Instead, as expected, there are
relevant differences compared to studies that focus on national banking systems,
where banking networks are typically characterized by the presence of hubs and
core-periphery structures.

Finally, we propose a novel decomposition of the strength centrality measure, that
can be used to assess the contagion risk exposure of financial institutions and to
account for the topological features of the network. We use the decomposition to
analyse the centrality of financial institutions in presence of geographical communi-
ties, and we observe that banks from Southern Europe and from Outside the Eurozone
on average have a more geographically localized interconnectivity structure, while
Central European banks have on average a more internationalized set of interconnec-
tions. The presence of geographical communities emerges both during and after the
crisis, and appears to be more prominent in the crisis period.

Our study is, to our knowledge, one of the first to put such emphasis on the pres-
ence of a geographical community structure, to quantify the geographical centrality
of each bank in an international banking system. Further research will focus on the
analysis of the mechanisms of contagion diffusion in a network with communities,
and the implications in terms of macroprudential supervision policies.



74

Chapter 5

Network-∆CoVaR – Parametric and
non-parametric network
conditional tail risk estimation

5.1 Introduction

Since the global financial crisis in 2008, the relevance of systemic risk became clear
to scholars, regulators and investors, and several approaches have been defined to
measure and regulate it. One of the main challenges in the analysis of this phe-
nomenon is the lack of a common definition, that leads to very different modeliza-
tion approaches, each one focused on different aspects of systemic risk.

Some works interpret systemic risk in terms of potential for the spreading of fi-
nancial distress, by gauging this increase in tail comovement. These works focus on
the analysis of tail risk under stress scenario, and, treating the system as a portfolio
of assets, measure either the effect of a systemic shock to the value of an institution,
or the effect of the distress of an institution to the entire system. The most known
approaches are probably CoVaR and ∆CoVaR, two measures based on the tails of
bivariate distributions introduced by Adrian and Brunnermeier, 2016. In particular,
CoVaR measures the Value at Risk (VaR) of the system conditional to a particular
asset being distressed, and ∆CoVaR compares the CoVaR to its VaR in a non dis-
tressed situation. Similar indicators are the Marginal Expected Shortfall (MES) that
measures the marginal constribution of each asset to the expected shortfall of the
system (Acharya, Engle, and Richardson, 2012), and the SRISK, that provides a pre-
diction of the level of capital shortfall of an institution based on their MES, leverage
and regulatory capital requirements (Brownlees and Engle, 2016).

Another strand of literature focuses more on the interdependence among assets,
using a network approach, embracing a vision of systemic risk more focused on the
interdependence between institutions, and on the presence of risk spillover and con-
tagion (see e.g. the definition of systemic risk given by Schwarcz, 2008). These ap-
proaches, that model institutions as nodes in a network, and their relations as edges,
can then uncover structural features of the system that may not emerge from aggre-
gated data. A main challenge is the estimation of the network, that can be modelled
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in several ways, either considering physical measures of interconnectedness, such as
interbank bilateral lendings (Iori et al., 2015), or with statistical measures based on
time series, such as Granger causality (Billio et al., 2012), transfer entropy (Bekiros
et al., 2017), partial correlations (Torri, Giacometti, and Paterlini, 2018) or empirical
tail dependence measures (Poon, Rockinger, and Tawn, 2003).

In this work we merge these two approaches (network indicators and CoVaR)
by studying systemic risk from a network perspective, extending some of the results
developed in the CoVaR framework to a multivariate setting, studying the theoret-
ical properties of these networks and estimating them in an empirical application
focused on the European market. We underline that our methodology aims at pro-
viding regulators a more complete view on systemic risk in order to implement more
effective policies, complementary to other approaches.

The extension of ∆CoVaR relies on the concept of quantile graphical model, re-
cently introduced in the statistical literature, that models the quantiles of a variable
in a system conditional to the value of the other variables (see Belloni, Chen, and
Chernozhukov, 2016; Ali, Kolter, and Tibshirani, 2016; Chun et al., 2016). These
models are typically estimated using quantile regression and provide a rich and
flexible modelization of a multivariate system. Based on these, we introduce here
network-∆CoVaR (also denoted in matrix form as ∆CoVaR) and we show how
such model can also be considered an extension of partial correlation networks, in
which we consider conditional quantiles instead of the conditional means. Then,
using a parametric specification that assumes a multivariate t-Student distribution
of the data, we shed some light on the systemic risk transmission channels. In par-
ticular, we see that the distress of some assets is transmitted to the system primarily
in terms of conditional value at risk and standard deviation (instead of conditional
mean), even in a homoskedastic setting. In contrast to this, in a Gaussian setting this
“contagion” effect that amplifies the initial distress is not present, and the transmis-
sion of distress is limited to movements in conditional means. The results presented
here, derived under the t-Student hypothesis, are consistent with the idea proposed
in several papers, according to which during financial crises tail risk and volatility
tend to spread across financial institutions (see e.g. Adrian and Brunnermeier, 2016;
Brownlees and Engle, 2016; Engle and Susmel, 1993; Diebold and Yılmaz, 2014), and
we provide a simple explanation of this transmission mechanism.

Concerning real world applications, t-Student distribution presents some limita-
tions, as it implicitly assumes the same level of tail dependence among each couple
of assets due to the presence of a single value for the degrees of freedom. We there-
fore rely on a quantile regression approach as Belloni, Chen, and Chernozhukov,
2016 and Hautsch, Schaumburg, and Schienle, 2014. Differently from previous lit-
erature, we consider an estimation procedure that allows us to focus on the lower
tail of the conditioning distribution by using a custom calibration set. Furthermore,
we differentiate from the prominent quantile graphical model literature by using a
different technique to induce sparsity in the network: typically it is obtained using
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an L1 penalty (lasso), while we consider the SCAD penalty (see Fan and Li, 2001;
Wu and Liu, 2009).

We finally propose an empirical application focused on the European banking
system, in which we study the network properties of the system, we estimate central-
ity measures aimed at identifying systemic relevance and systemic fragility, and we
propose a methodology that integrates network-∆CoVaR and the non-performing
loans (NPL) ratio, a commonly used balance sheet indicator of credit risk.

Our work contributes to the literature in several aspects: first, it extends to a net-
work dimension of CoVaR and ∆CoVaR, discussing their properties, highlighting
the relation with partial correlation network and addressing their estimation in both
parametric and non-parametric frameworks. Then, concerning the estimation of the
quantile graphical model, we introduce the use of SCAD-penalized quantile regres-
sion in alternative to the more common lasso penalized regression, and we propose
an estimation procedure focused on the tail of the conditioning assets. Finally empir-
ical application highlights some structural features of the European banking system,
especially the role of conditional tail risk as a channel of transmission of financial
distress.

The chapter is structured as follows: Section 5.2 discusses the tail-based sys-
temic risk and graphical models, Section 5.3 defines network-CoVaR and network-
∆CoVaR, studying their properties under two parametric distributions, Section 5.4
describes the estimation procedure of ∆CoVaR, Section 5.5 describes the xnetwork
indicators used to study the structure of the networks, Section 5.6 presents an em-
pirical application to the European financial system and Section 5.7 concludes.

5.2 Market based systemic risk measurement

5.2.1 CoVaR and ∆CoVaR

The Value at Risk (VaR) is a commonly used risk indicator that expresses the poten-
tial loss of a position in a given time period with a level of confidence 1−τ (typically
95% or 99%). It is implicitly defined as the τ -quantile:

Pr{X ≤ VaRXτ } = τ. (5.1)

After the global financial crisis in 2008, it become clear that the risk measures
based on univariate distributions were not sufficient to assess the risks in the mar-
kets, as they failed to consider the interaction among assets, in particular ther joint
tail risk. New measures based on bivariate tails have then been developed. Among
these, one of the most popular is CoVaR, introduced by Adrian and Brunnermeier,
2016.1 It is a measure that considers potential spillover risks to the system and al-
lows to capture the contribution to systemic risk of a financial institution. CoVaR

1The measure has been introduced first in 2008, and then revised and discussed several times over
the years. In this work we refer to the version presented in Adrian and Brunnermeier, 2016.
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measures what happens to the system’s VaR when one institution is under stress.
After defining the quantile τ = Pr{Xi ≤ VaRXiτ }, we denote CoVaR as a value

such that
Pr{Xsys ≤ CoVaRsys|Xiτ |Xi = VaRXiτ } = τ, (5.2)

whereXsys is the return of the entire system, andXi the returns of the ith institution.
A high CoVaR is not necessarily a sign of strong influence of asset i on the tail

risk of the system, as it may simply depend by an overall high VaR of the system. It
is therefore necessary to compare the CoVaR to a reference value, typically the VaR
of the system when the ith institution is in a normal state (i.e. its median value). This
leads to the construction of the ∆CoVaR:

∆CoVaRsys|Xiτ = CoVaRsys|Xiτ − CoVaRsys|Xi50% . (5.3)

∆CoVaR is a popular measure of systemic risk. The estimation is commonly
performed using quantile regression, due to the simple implementation and the
relatively little assumptions made on the distribution of the data (see Adrian and
Brunnermeier, 2016, for more details). Under the quantile regression framework,
∆CoVaR can be expressed as follows:

∆CoVaRsys|Xi=VaRXiτ
τ = βsys|Xiτ (VaRXiτ − VaRXi50%), (5.4)

where βsys|Xiτ is the τ -quantile regression parameter of Xsys over Xi. Alternative
approaches for the estimation of CoVaR and ∆CoVaR include the use of copulas
(see Mainik and Schaanning, 2014) or bivariate GARCH models (Girardi and Ergün,
2013). Such models typically rely on parametric assumptions on the distribution of
the data, and on the computation of the quantiles of the conditional distribution.
We will discuss in greater detail the computation of CoVaR under the assumption of
multivariate t-Student distribution later.

In order to avoid to isolate the conditioning effect from the one due to the vari-
ability of the asset, it is common to consider an alternative, standardized, specifica-
tion of the indicator (see e.g. Girardi and Ergün, 2013):

∆CoVaR%sys|Xi
τ =

(
CoVaRsys|Xiτ − CoVaRsys|Xi50%

)
/CoVaRsys|Xi50% , (5.5)

Finally, we underline how the idea of CoVaR can be extended to other risk mea-
sures. One example is the conditional Expected shortfall (CoES), that is computed
as the expected shortfall of the market conditional to the fact that one asset is in dis-
tress, for which it has been recently proposed an estimation methodology based on
super quantile regression (Huang and Uryasev, 2018).
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Issues with the ∆CoVaR framework

Although very popular in the literature, CoVaR and ∆CoVaR may present some is-
sues as systemic risk indicators. First, as highlighted by Benoit et al., 2017, ∆CoVaR
can be interpreted as a measure of systematic risk rather than systemic: in the Gaussian
framework the ∆CoVaR measure is a multiple of the traditional regression beta mul-
tipled the VaR of the conditioning institution (see Equation 5.4). As a consequence,
∆CoVaR fails to consider the contagion component of systemic risk. Moreover, since
in this setting ∆CoVaR is simply a proxy for systemic beta (weighted by the VaR),
it would be more logic to estimate directly the betas using either standard OLS re-
gression, or more robust methods such as regression under t-Student distribution
(Lange, Little, and Taylor, 1989). In this case, the use of ∆CoVaR is only a source of
estimation error.

Another issue with CoVaR is that by using the VaR(Xi) as a conditioning vari-
able, it does not consider the most extreme stress events. Girardi and Ergün, 2013
introduced an alternative specification that uses a different conditioning set, consid-
ering the cases where the conditioning asset is lower than its VaR. An additional issue
is that CoVaR and ∆CoVaR are not monotonically increasing with the level of inter-
dependence. Indeed, as shown by Mainik and Schaanning, 2014, even in Gaussian
settings, a stronger correlation may result in lower ∆CoVaR.

A more subtle argument regards the shape of the bivariate distribution, and the
characteristics of the lines of conditional quantile functions. The properties of the
quantile functions have surprising effects on the calculation of CoVaR and ∆CoVaR.
We can divide these effects in two parts: the first is related to the estimation pro-
cedure, and in particular to the linearization of the conditional quantile functions
estimated with quantile regression. As an example, concerning the t-Student distri-
bution, the conditional quantile functions for τ < 0.5 are concave in Xi, while the
functions estimated using linear quantile regressions are parallel lines (these results
are shown in greater detail in Appendix D.1 for the multivariate case, and the bi-
variate setting is a sub-case). In this case the estimation method masks the fact that
the conditional quantiles are not linear, leading to systematic underestimation of
∆CoVaR. The problem could be addressed by considering non-parametric quantile
regression techniques, using smoothing splines such as in Ali, Kolter, and Tibshirani,
2016, or smoothing kernels (e.g. Bondell, Reich, and Wang, 2010). Such approches
however increase the number of parameters to estimate, requiring more data points,
with a relevant impact on the computational burden.

A second issue is related to the slope of the quantile functions in some distribu-
tions characterized by tail dependence, for instance with Clayton copulas. In such
cases CoVaR may be unrelated to the level of tail dependence. Intuitively, if two
variables have a strong tail dependence, the regression lines for different quantiles
will be very close to each other in the lower tails of the distribution, and will spread
out when moving right and up. As a consequence, the regression lines for the lower
quantiles will be less steep (i.e. the βsys,Xiq will be smaller). In Figure 5.1 we represent
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FIGURE 5.1: Simulation (50,000 datapoints) of different bivariate
distributions with linear conditional quantiles highlighted (τ ∈
{0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95}). Each variable is characterized by
different distribution. Note that in the Clayton copula cases, the
lower quantiles are less steep than the median regression line, while
in elliptical distributions (Gaussian and t-Student) they are parallel.

the linear conditional quantile functions estimated using quantile regression for four
different distributions (see caption for details). We see that higher tail dependence
(as in the case of the Clayton copula) may have flatter conditional quantile lines and,
consequently, lower ∆CoVaR for a given level of correlation. Indeed, from Table
5.1, we see that for the same level of correlation between variables, the ∆CoVaR
is higher for the Gaussian and t-Student settings, in which the tail dependence is
smaller compared to the setting characterized by a Clayton copula.

Finally, the ability of conditional tail measures to predict actual risk of financial
institutions has been questioned by empirical analyses. For instance Idier, Lamé,
and Mésonnier, 2014 show that Marginal Expected Shortfall (a measure similar in
spirit to CoVaR) has smaller predictive power of future losses in periods of crisis,
compared to balance sheet metrics. Moreover, Benoit et al., 2017 show that under
certain assumptions ∆CoVaR is a multiple of the conditioning asset’s VaR, making
the forecasting of ∆CoVaR equivalent to the forecasting of the VaR of the asset in
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FIGURE 5.2: Conditional quantiles of a bivariate t-Student distribu-
tion with degrees of freedom equal to 3. Note that the slope of the
quantiles for τ < 0.5 is higher than the best linear approximation

(parallel to the βmean) in the region X1 < E[X1].

Model CoVaR ∆CoVaR ρ σ2
X1

σ2
X2

Gaussian 2.29 1.38 0.83 1.01 1.00
Gaussian marg., Clayton copula 1.85 1.08 0.83 0.98 0.98

t-Student 2.17 1.30 0.83 0.97 0.99
t-Student marg., Clayton copula 1.82 1.05 0.80 1.01 1.00

TABLE 5.1: Systemic risk measures for different bivariate distribu-
tions. The table reports CoVaR, ∆CoVaR (using the quantile τ =
0.05), correlation coefficient (ρ) and the variances of both assets (σ2

X1

and σ2
X2

). The parameter for the Clayton copula is equal to 4, and the
dispersion parameters in the Gaussian and t-Student distributions are
set in such a way that the correlation is equal for all the settings (ex-
cept for the t-Student + Clayton copula, where it is slightly smaller).

isolation.

5.2.2 Systemic risk and network models

Network models are increasingly popular for the analysis of systemic risk, as they
allow to consider the component of contagion across companies or financial institu-
tions. In particular, several works study the systemic relevance of institutions based
on measures of centrality on the network (e.g. Puliga, Caldarelli, and Battiston, 2014;
Alter, Craig, and Raupach, 2015). In general, we can model a network G as a set of
nodes and a set of edges: G = {V, E}. We can also represent conveniently the net-
work in terms of its adjacency matrix A, that is a p× p matrix, where p is the number
of nodes, and in which non-zero elements ij of the matrix are the edges connecting
nodes i and j, and the value is the corresponding weight. Concerning the estima-
tion of the network structure, the literature describes several approaches. A relevant
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strand of literature focuses on measures of co-movement of time series (see e.g. Billio
et al., 2012; Puliga, Caldarelli, and Battiston, 2014; Poon, Rockinger, and Tawn, 2003;
Torri, Giacometti, and Paterlini, 2018). Here we discuss in particular the approach
of partial correlation networks.

5.2.3 Partial correlation networks

Partial correlation networks are increasingly common in the analysis of systemic
risk, as they allow to model the interactions among nodes in a system while con-
trolling for the influence of other nodes (Torri, Giacometti, and Paterlini, 2018). The
edge ij of the network is defined as the partial correlation between nodes i and
j, conditional to all the other variables in the system. We can represent them us-
ing the weighted adjacency matrix P , that can be derived from the precision matrix
Ω = Σ−1, (i.e. the inverse of the covariance matrix) as {P }ij = ρij = − ωij

ωiiωjj
for

i 6= j, and ρij = 0 for i = j, where ωij is an element of Ω. In matrix form we can
write:

P = I −D−1/2
Ω ΩD

−1/2
Ω , (5.6)

where DΩ is a matrix with the diagonal elements of Ω, and I is a conformable iden-
tity matrix.2

Commonly used partial correlation networks are Gaussian graphical models that,
under the assumption of jointly normally distributed data, imply that two nodes
not connected by an edge are conditionally independent (Højsgaard, Edwards, and
Lauritzen, 2012; Murphy, 2012). Concerning the estimation, in order to overcome
issues related to the high dimensionality of the datasets and to improve the inter-
pretability of results, it is common to induce sparsity using penalization techniques.
In the Gaussian setting we can rely on the glasso model, that induces sparsity in
the partial correlation graph by penalizating the L1 norm of the precision matrix
in a quasi maximum likelihood procedure (Friedman, Hastie, and Tibshirani, 2008).
Other approaches include folded concave penalties, a class that have better asymp-
totic properties, such as Smoothly-Clipped Absolute Deviation (SCAD) (Fan and Li,
2001) and the Minimax Convex Penalty (MCP) (Zhang et al., 2010). An alternative is
represented by two-steps techniques, such as the adaptive lasso (Zou, 2006).

However, the Gaussian assumption is unrealistic in many fields. In particular,
financial time series tend to have fat tails and other well known characteristics that
limit the potential application of glasso model, leading to estimation problems. Fine-
gold and Drton, 2011 propose an extension of the glasso model, the so called tlasso,
that allows to deal with data characterized by fat tails by relying on a multivariate
t-Student distribution. Furthermore, the model shows empirically to be more robust

2We follow the convention of setting the diagonal elements of P equal to zero in line with Anufriev
and Panchenko, 2015, as it provides a more convenient network representation. Alternatively, we
could have set the diagonal elements equal to -1.
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than glasso in presence of model misspecification or outliers. Two financial applica-
tion of tlasso can be found in Torri, Giacometti, and Paterlini, 2017 and Torri, Gia-
cometti, and Paterlini, 2018, focusing on equity portfolios and banking system credit
networks, respectively. Differently from the Gaussian case, zero partial correlation
among two nodes does not implies conditional independence, but only implies that
two nodes are partially uncorrelated, as shown by Finegold and Drton, 2011. In par-
ticular, as we will see later for the multivariate setting in Section 5.3.2, conditional
variances is not constant, and conditional value at risk is not an affine function of
the conditioning asset.

We underline that partial correlation networks, by modeling the conditional means
of the variables, do not allow to consider conditional tail risk or conditional volatil-
ity, limiting their ability to assess systemic risk.

5.3 Network-∆CoVaR

We propose here the extension of the ∆CoVaR measure to the network case, and
we discuss its implementation considering a quantile regression framework.

5.3.1 Network-∆CoVaR and quantile graphical models

As described in Section 5.2.1, CoVaR is defined as the quantile of the distribution
of an asset conditional to the distress of another asset. In a multivariate setting,
we can extend the concept by modeling the quantile of an asset as a function of all
the others, and assessing the marginal effect of distress in another node. We can
link this approach to the framework of Quantile Graphical Models (QGM), recently
introduced in the statistical literature to describe the dependency structure of mul-
tivariate random variables. Several specifications have been discussed, in particular
Belloni, Chen, and Chernozhukov, 2016; Ali, Kolter, and Tibshirani, 2016; Chun et
al., 2016.

In general, we can express the quantiles of the distribution of an item conditional
to the others as

QXi,τ = f(X\i, τ), (5.7)

where the function f is a generic function. The identification and estimation of
the function f(X\i, τ) is a crucial step, and several approaches can be chosen. In
theory, the function could be determined in a fully non-parametric form but, due
to curse of dimensionality, some simplifying assumptions have to be made in order
to allow estimation in finite samples. A common choice is to define an additive
form such as f(X\i, τ) =

∑
j 6=i fj(Xj , τ), where fj(Xj , τ) are smooth functions (see

e.g. Ali, Kolter, and Tibshirani, 2016). A further simplification is to assume that
fj(Xj , τ) are linear functions (Belloni, Chen, and Chernozhukov, 2016); in such case
the function f can be expressed in terms of linear quantile regression coefficients:
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f(X\i, τ) = αi + β
i|·
τ X\i, where αi is a constant, and βi|·τ is a 1× (p− 1) vector. Such

coefficients can be conveniently represented by the matrixBτ such that:

{Bτ}ij =

β
i|j
τ if i 6= j

0 if i = j
. (5.8)

In this way we can express the conditional quantile as:

f(X\i, τ) = αi + {Bτ}i,·X. (5.9)

An alternative approach is to consider parametric specifications for the distribu-
tion of the underlying process, such as a multivariate t-Student or a Gaussian. In
this way the conditional quantile function f(X\i, τ) can be modeled parametrically
and computed exactly.

Using the definition, we can express CoVaR in terms of the conditional quan-
tile function: under the bivariate case we have that CoVaRsys|Xiτ = f(VaRXiτ , τ).
If the quantile function is assumed to be linear we obtain the original CoVaR for-
mulation proposed by Adrian and Brunnermeier, 2016, while relaxing the linearity
assumption we obtain alternative CoVaR specifications, for instance the QL-CoVaR
proposed by Bonaccolto, Caporin, and Paterlini, 2018.

Analogously to the bivariate setting, we can extend the approach to the multi-
variate setting by considering a p-variate distribution of returns. We measure the
quantile function of asset i conditional of asset j in distress, and the other assets in
the system in their normal (i.e. median) state. More formally we have:

Pr{Xi ≤ CoVaRXi|Xjτ |Xj = VaRXjτ , X\{i,j} = VaR
X\{i,j}
50% } = τ, (5.10)

where VaR\{ij}50% is the p− 2 vector of the VaRs of all the assets except ith and jth.3

It follows the definition:

Definition 1.

CoVaRXi|Xjτ := VaRτ
(
Xi

∣∣∣Xj = VaRτ (Xj), X\{ij} = VaR\{i,j}50%

)
. (5.11)

Once computed the network-CoVaR, we compute network-∆CoVaR analogously
to the bivariate case:4

Definition 2.
∆CoVaRXi|Xjτ = CoVaRXi|Xjτ − CoVaRXi|Xj50% . (5.12)

3To avoid notation clutter we use the notation CoVaRXi|Xjτ similar to the standard bivariate CoVaR,

while a more accurate description would be CoVaR
Xi|Xj=VaR

Xj
τ ,X\{i,j}=VaR

X\{i,j}
50%

τ .
4With a slight abuse of notation we define CoVaRXi|Xj50% as the VaRXiτ when the asset Xj is in the

median state.
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The set of all bilateral ∆CoVaRXi|Xjτ constitute the edges of a directed and weighted
network, that can be represented as the square adjacency matrix ∆CoVaRτ .

If f(X\i,τ ) is an affine function, we can express ∆CoVaRτ as:

∆CoVaRτ = Bτ (VaRX
τ − VaRX

50%), (5.13)

where VaRX
τ is the p× 1 vector of the VaRs of each variable in X.

5.3.2 Parametric examples

We consider QGM and ∆CoVaR under two parametric approaches (Gaussian and
t-Student), and we discuss their properties under these distributional assumptions.

Parametric QGM and network-∆CoVaR – Gaussian distribution

In this Section we show how in the Gaussian setting network-∆CoVaR in strictly re-
lated to partial correlation networks, representing a simple standardization of these.
Indeed, we show how to express ∆CoVaR as a function of the partial correlation
matrix and the VaR of the conditioning assets.

Let X ∼ Np(µ,Σ) be a p-variate Gaussian distribution, and consider the follow-
ing partition:

X =

[
X\i

Xi

]
∼ Np

([
µ\i

µi

]
,

[
Σ\i,\iΣ\i,i

Σi,\iΣi,i

])
, (5.14)

where i denote the ith variable, and \i the set of all the variables except i. The
conditional distribution of Xi|X\i can be expressed analytically, and is itself Gaus-
sian (see e.g. Tong, 2012). To simplify the exposition, we consider the case with µ = 0

and we have:
Xi|X\i ∼ N (µi|\i,Σi,i|\i), (5.15)

µi|\i = Σ′\i,iΣ
−1
\i,\iX\i,

Σi,i|\i = Σi,i −Σ′\i,iΣ
−1
\i,\iΣ\i,i.

We can then use (5.15) to study the quantiles of the conditional distributions of i
as a function of X\i:

Qτ (Xi|X\i, τ) = Φ−1(τ)Σ
1/2
i,i|\i + µi|\i (5.16)

= Φ−1(τ)(Σi,i −Σ′\i,iΣ
−1
\i,\iΣ\i,i)

1/2 + Σ′\i,iΣ
−1
\i,\iX\i,

where Φ−1(τ) is the inverse of the cumulative density function of a univariate stan-
dard Gaussian distribution. The conditional quantile is then an affine function in
X\i, and we see that the quantile level τ does not influence the slope of the quantile
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function. It follows that the conditional quantile functions are parallel. We also no-
tice that the quantity Σ′\i,iΣ

−1
\i,\i corresponds to the multiple OLS regression βi|\imean.5

(5.16) can then be expressed as:

Qτ (Xi|X\i, τ) = Φ−1(τ)Σ
1/2
i,i|\i + β

i|\i
meanX\i. (5.17)

It follows that all the conditional quantile functions are affine, and parallel to the
β
i|\i
mean. This result is analogous to the one presented by Adrian and Brunnermeier,

2016, (Section C) for the bivariate case.
As a consequence of the linearity of the conditional quantile function, the marginal

effect of any individual variable in X\i on the conditional quantile of Xi does not
depend on the level of other variables. It is therefore possible to decompose the
effect of the system on the conditional quantile function linearly as f(X\i, τ) =∑

j 6=i fj(Xj , τ).

Focusing on two assets i and j, we can use (5.16) to describe the network-CoVaRXi|Xj

and network-∆CoVaRXi|Xj in terms of the βmean coefficients:6

CoVaRXi|Xjτ = Φ−1(τ)Σ
1/2
i,i|\i +

{
Σ′\i,iΣ

−1
\i,\i

}
j

VaRXjτ (5.18)

= Φ−1(τ)Σ
1/2
i,i|\i + β

i|j
meanVaRXjτ ,

where βi|jmean is the coefficient for the jth node in the regression of node i on all the
others, and Σi|\i is defined as in (5.15).

From (5.18) we then compute network-∆CoVaR:

∆CoVaRXi|Xj = CoVaRXi|Xjτ − CoVaRXi|Xj50% (5.19)

= β
i|j
mean

(
VaRXjτ − VaRXj50%

)
= β

i|j
meanVaRXjτ ,

where in the last passages we used the fact that under a centered Gaussian dis-
tribution VaR50%(Xj) = E(Xj) = 0.

We also know that VaRτ in a centered Gaussian distribution is multiple of the
standard deviation: VaRXτ = Φ−1(τ)σ(X). It follows that we can rewrite (5.19) in
terms of the standard deviation of the conditioning asset j as:

∆CoVaRXi|Xj = β
i|j
meanΦ−1(τ)σ(Xj), (5.20)

5We use the notation βi|\imean to indicate ordinary least square estimates (instead of β̂
i|\i
OLS) for clarity

and greater generality, as in empirical analysis it is common to consider more robust estimators, espe-
cially when considering datasets with outliers, distribution mis-specifications or large dimensionality.
We also underline that the vector βi|\imean = Σ′\i,iΣ

−1
\i,\i is a row vector and X is a column vector, while

typically in the econometric literature, the opposite convention applies.
6we refer to the vector of βs in the multivariate regression of i against all the other variables as

βi|\imean, and its jth element as βi|jmean.
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where σ(Xj) is the (unconditional) standard deviation of asset Xj .
Using the representation in terms of βi|jmean We can also re-write (5.19) and (5.20)

in matrix notation, denoting the network structure as the following weighted adja-
cency matrix:

∆CoVaRτ = Φ−1(τ)BD
1/2
Σ , (5.21)

where DΣ is a diagonal matrix with the diagonal elements of the covariance
matrix Σ and B is a matrix of the coefficients defined as in (5.8). Note that, as we
highlighted before, under the Gaussian hypothesis the mean regression coefficients
βmean are equal to the τ -quantile regression βτ .

Finally, we can express ∆CoVaRτ in terms of the partial correlation matrix. The
variance Σi,i|\i in the conditional distribution of Xi, is the variance of the residuals
in the regression of Xi against the other variables \i (known as hedge regression, see
Stevens, 1998; Goto and Xu, 2015). This quantity is closely related to the precision
matrix. Indeed, as shown by Anufriev and Panchenko, 2015, Σi|\i is equal to 1/ωii,
where ωii is a diagonal element of the precision matrix Ω := Σ−1. We establish
therefore the relation between the conditional distribution of Xi|\i and the elements
of precision matrix Ω as follows:

ωij =


−β

i|j
mean

Σi,i|\i
i 6= j

1

Σi,i|\i
i = j

, (5.22)

that in matrix form is:
Ω = DΩ(I −B), (5.23)

or equivalently
B = I −D−1

Ω Ω. (5.24)

We can then represent the network-∆CoVaR in terms of precision matrix Ω. In
particular, by considering the representation of βi|jmean = −ωij/ωii, where ωik is an
element of the precision matrix Ω, we can see that network-∆CoVaR is simply a
rescaled version of the precision matrix:

∆CoVaR = Φ−1(τ)(D
1/2
Σ −D−1

Ω ΩD
1/2
Σ ). (5.25)

In general, the ∆CoVaR networks in the Gaussian case do not carry any addi-
tional information compared to βmean and can be directly derived from the covari-
ance matrix of the distribution. In the following section we focus on a t-Student
distribution setting, showing how in this case the relation between quantile graphi-
cal models, ∆CoVaR and partial correlation networks is more complex.
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Parametric QGM and network-∆CoVaR – t-Student distribution

In the multivariate t-Student setting, the conditional quantile functions are not lin-
ear (with the exception of the one for τ = 0.5). We can still compute esplicitly the
conditional distribution that, as shown in Ding, 2016 is still a t-Student distribution.
We show here some characteristics and we analyse the issues arising from the linear
approximation of the quantile functions, common in the linear quantile regression
estimation procedures.

Let X ∼ tp(µ,Σ, ν) where µ,Σ, ν are the location, scale and number of degrees
of freedom of the distribution, respectively. We also consider the partition

X =

[
X\i

Xi

]
∼ tp

([
µ\i

µi

]
,

[
Σ\i,\iΣ\i,i

Σi,\iΣi,i

]
, ν

)
. (5.26)

We focus on the case with µ = 0 as in the previous section and, following Ding,
2016, we have that:

Xi|X\i ∼ tp2(µi|\i,
ν + d(X\i)

ν + p− 1
Σi,i|\i, ν + p− 1), (5.27)

µi|\i = Σ′\i,iΣ
−1
\i\iX\i, (5.28)

Σi,i|\i = Σi,i −Σ′\i,iΣ
−1
\i,\iΣ\i,i, (5.29)

where d(X\i) = X′\iΣ
−1
\i,\iX\i is the squared Mahalanobis distance of X\i from

the origin with scale matrix Σ\i,\i.
We can then compute the conditional quantile of Xi as function of X\i obtaining:

Q(Xi|X\i, τ) = Qt,ν+p−1(τ)

(
ν + d(X\i)

ν + p− 1
Σi,i|\i

)1/2

+ µi|\i, (5.30)

where Qt,ν+p1(τ) is the quantile function of a t-Student distribution with ν + p − 1

degrees of freedom.
The function is not linear in X\i due to the term d(X\i). Differently from the

Gaussian case, the conditional quantile cannot be computed simply as a translation
of the βmean.

Figure 5.3 provides a graphical representation of the conditional quantiles: we
plot the conditional quantile of a univariate marginal Xi versus another univariate
marginal Xj , keeping all the other variables equal to zero, for multivariate t-Student
distributions with different dimensions. (We use 5 degrees of freedom, and we con-
sider distributions with dimension 5, 10, 20, 30, 50 and 1,000, respectively). We see
that the curvature of the conditional quantile functions reduces when the dimen-
sion of the multivariate distribution increase (i.e. when the quantile is conditioned
by more assets). Still, the non linearity remains significant also for a relatively high
number of assets. We also see that the conditional quantiles are closer to the mean
for high dimensionality, meaning that under t-Student distribution, the presence of
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a large number of assets that assume mean values will reduce the dispersion of the
conditional distributions, flattening them to their expected value.
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FIGURE 5.3: Conditional quantiles (τ = 0.05) of multivariate t-
Student distributions tp(0, I, 5) with dimensionality p = 5, 10, 20, 30,
50 and 1,000, respectively. Note that the curvature of the quantile
reduces when p increases, but that it remains significant also for rela-

tively high levels of p (e.g. a system of 50 assets).

Equation 5.30 shows that, differently from the Gaussian case, the quantile func-
tion under a t-Student distribution is not linear. The assumption of linearity however
is common in the empirical estimation based on quantile regression. We can com-
pute the best linear approximation as follows, in order to assess the effect of such
assumption on conditional quantiles and ∆CoVaRτ estimates.

Proposition 1. Let X ∼ tp(µ,Σ, ν), given a partition X =

[
X\i

Xi

]
, the linear approxima-

tion of the conditional quantile τ of Xi|X\i as a function of X\i can be expressed as:

Q̄(Xi|X\i, τ) = g(X\i) = Qt,ν+p−1(τ)EX\i

[(
ν + d(X\i)

ν + p− 1
Σi,i|\i

)1/2
]

+ Σi,\iΣ
−1
\i,\iX\i

(5.31)

= Qt,ν+p−1(τ)EX\i

[(
ν + d(X\i)

ν + p− 1
Σi,i|\i

)1/2
]

+ µi|\i. (5.32)

see proof in Appendix D.1.

Remark. Note that, differently from the true conditional quantiles (5.30), the linear approx-
imations in (5.31) are all parallel to the mean-regression line as in the Gaussian case.

Remark. The τ -quantile function for τ = 0.5 is a linear function and coincides with the
linear approximation since Qt(0.5) = 0. It follows that, if βi|j0.5 = 0, the two variables are
conditionally uncorrelated, consistently to Finegold and Drton, 2011, Proposition 1.
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Given the linear approximation in (5.31), we can quantify the approximation er-
ror compared to the real quantile function, and we have the following result:

Proposition 2. Given X and the partition as defined in (5.26), The slope of the τ -conditional

quantile function for τ <
1

2
is higher than the one of the linear approximation for X\i|Xj <

0 ∀j 6= i.

See proof in Appendix D.1.

Remark. The higher the degrees of freedom, the better the linear approximation is, and the
smaller the concavity for low quantiles. The limit case is the Gaussian distribution where the
quantiles are linear.

Thanks to equation (5.30), we can compute the CoVaR and ∆CoVaR:

CoVaRXi|Xj
τ = Qt,ν+p−1(τ)

ν + d(X
dj
\i )

ν + p− 1
Σi,i|\i

1/2

+ β
i|\i
meanX

dj
\i , (5.33)

where X
dj
\i denotes a state of the system in which Xj = VaRXj

τ ,X\{i,j} = VaR
X\{ij}
50%

and βi|\imean = Σ′\i,iΣ
−1
\i,\i.

∆CoVaRXi|Xj = CoVaRXi|Xj
τ − CoVaRXi|Xj

50% (5.34)

= Qt,ν+p−1(τ)Σ
1/2
i,i|\i


ν + d(X

dj
\i )

ν + p− 1

1/2

−
(

ν

ν + p− 1

)1/2

+ β
i|\i
meanX

dj
\i .

In the last passage we used the fact that d(VaR
X\i
50%) = 0 under a centered t-Student

distribution.

Remark. As a consequence of Proposition 2, we have that for τ < 0.5, the estimation
of ∆CoVaR done with linear quantile regression, or a linear approximation of the quantile
function, would result in an underestimation of risk.

βi|jmean(VaRXj
τ − VaRXj

50%) ≤ ∆CoVaRXi|Xj . (5.35)

Other than the computation of ∆CoVaR, the explicit representation of condi-
tional distribution of Xi|X\i allows to highlight an additional characteristic of QGM
in a t-Student setting, related to the standard deviation of the conditional distribu-
tion. From (5.27) we see that the standard deviation of the distribution of Xi|X\i is
an increasing function of d(X\i). It follows that any deviation of the conditioning
variable from the center of the distribution (positive or negative) has the effect of
increasing the standard deviation of the conditioned variable. The economic inter-
pretation is that, in line with several studies, the volatility is then a channel for the
transmission of financial distress (e.g. Engle and Susmel, 1993; Diebold and Yılmaz,
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2014). That is, a shock in the price of an asset may have as a consequence a spike in
volatility in the neighbouring assets, even without considering an heteroskedastic
model.

Finally, we highlight that a limitation of the t-Student framework presented here,
is that the distribution has a unique value for the degrees of freedom, resulting in
an easier estimation, but in a less flexible framework as it does not allow to model
separately the shape of the tails in correspondance to each couple of variables. Still,
this parametric framework allows to point out the relevance of non-linearity of the
quantile function. In the empirical application we will consider a non-parametric
estimation based on quantile regression, described in Section 5.4.

5.3.3 Normalized network-∆CoVaR

∆CoVaR measures the absolute impact on the VaR on an institution. In some cases
it may be useful to consider the relative impact. We propose a standardized version
of network-∆CoVaR. For the bivariate case Mainik and Schaanning, 2014 propose
to normalize ∆CoVaR dividing it by CoVaRXi|Xj50% (see Eq. 5.5). We extend the same
approach to the multivariate case as follows:

Definition 3.

∆CoVaR%Xi|Xj

τ =
∆CoVaRXi|Xj

τ

CoVaRXi|Xj

50%

. (5.36)

This quantity represents the relative impact on Xi of an idiosyncratic shock hit-
ting variable Xj , and will be used in the empirical analysis in Section 5.6.

We can also write (5.36) in matrix form as follows:

∆CoVaR%
τ = D−1

CoVaR50%
∆CoVaR, (5.37)

whereDCoVaR50%
is a diagonal matrix composed of the CoVaR50%s.

Under the Gaussian setting this standardization helps us further clarify the rela-
tion between partial correlation networks and ∆CoVaR. Indeed, if X ∼ N (0,Σ),
using (5.20), (5.36) and Φ−1(50%) = 0, we have:

∆CoVaR%,i|j
τ =

β
i|j
meanΦ−1(τ)σ(Xj)

Φ−1(τ)Σ
1/2
i,i|\i + β

i|j
meanVaRXj

50%

(5.38)

=
β
i|j
meanσ(Xj)

Σ
1/2
i,i|\i

, (5.39)

or in matrix form, using (5.22):

∆CoVaR%
τ = D

1/2
Ω BD

1/2
Σ , (5.40)



Chapter 5. Network-∆CoVaR – Parametric and non-parametric network
conditional tail risk estimation

91

where DΩ is a matrix with the diagonal elements of Ω on the diagonal. For compar-
ison, partial correlation networks are defined as:

P = D
1/2
Ω BD

−1/2
Ω , (5.41)

we observe that the two matrices differ only by the standardization of the columns:
for ∆CoVaR%

τ the unconditional standard deviations D1/2
Σ are used, while for par-

tial correlation the conditional onesD−1/2
Ω . Intutively, we can see the standardization

in partial correlation network as a way to assess the effect of an idiosyncratic shock,
corresponding the the component of standard deviation not explained by the move-
ment of other assets. In the ∆CoVaR% case instead, we assess the effect on the
system of one asset being in distress, quantifying the distress state as its VaR.

If the distribution of the data is not multivariate Gaussian, we do not have the
equivalency between βi|jmean and β

i|j
τ , and therefore partial correlation networks and

tail ∆CoVaR% networks differ not only for the standardization.

5.4 Estimation of network-∆CoVaR

5.4.1 Parametric estimation under Gaussian and t-Student distributions

We first consider a parametric approach for the estimation of network-∆CoVaR. If
we assume a Gaussian or a t-Student distribution of the variables, we can use Equa-
tions 5.18 and 5.33 to compute network-∆CoVaR analytically. Therefore, the esti-
mation problem boils down to the estimation of the parameters of the multivariate
distributions, in particular of the dispersion matrix. In settings with a large num-
ber of assets compared to the length of the time series, such estimation can become
challeging and the sample estimates are typically ill-conditioned. Concerning the
Gaussian case, we can use more robust approaches that allow to obtain better con-
ditioned estimates such as Ledoit-Wolf shrinkage estimator (Ledoit and Wolf, 2004a),
random matrix theory filtering (Laloux et al., 2000) or graphical lasso (glasso) (Fried-
man, Hastie, and Tibshirani, 2008). The advantage of this last approach, is that it
provides a sparse estimate of the precision matrix and it has a natural interpretation
in terms of Markovian networks (Højsgaard, Edwards, and Lauritzen, 2012).

Under the t-Student distribution it is possible to rely on the tlasso model intro-
duced by Finegold and Drton, 2011, and used in the context of banking network
estimate by Torri, Giacometti, and Paterlini, 2018. This model allows us to obtain
a robust estimate of the scatter parameter, that is also parsimonious thanks to the
sparsity induced by the L1 penalization applied on the precision matrix.



Chapter 5. Network-∆CoVaR – Parametric and non-parametric network
conditional tail risk estimation

92

5.4.2 Non-parametric estimation with SCAD-penalized quantile regres-
sion

Quantile regression provides a powerful framework for the estimation of non-parametric
quantile graphical models, and it can be directly used for the estimation of network-
∆CoVaR. We consider penalized quantile regression, that allows to perform model
selection and estimation at the same time, increasing the efficiency of the estimator
in setting with a high number of variables in relation to the observations (see e.g.
Koenker, 2005), and we introduce the usage of SCAD-penalized quantile regression
(Wu and Liu, 2009) in the estimation of quantile graphical models, alternatively to
the more traditional lasso penalization (Belloni, Chernozhukov, et al., 2011).

The procedure consists in the estimation of the quantile graphical model, that can
then be used to compute network-∆CoVaR as in (5.13). Similarly to Belloni, Chen,
and Chernozhukov, 2016, we consider a quantile graphical model specification in
which the f(X\i, τ) is assumed to be an affine function. CoVaRXi|X\i is therefore an
affine function of X\i too. We estimate the coefficients of the model independently
by penalized quantile regression, and we then construct the matrixB of the β coeffi-
cients. The use of penalization allows to regularize the solution in large dimensional
settings by increasing the efficiency of the estimator (see e.g. Tibshirani, 1996; Fan
and Li, 2001; Friedman, Hastie, and Tibshirani, 2008).

Each quantile regression can be computed by minimizing the following function:

min
β
i|·
τ

E[ρ(Xi − βi|·τ X\i)] +

p∑
j=1,j 6=i

n
√
τ(1− τ)pλ(βi|jτ ) ∀i = 1, . . . , p, (5.42)

where ρτ (x) = (τ − I{x≤0})x is the asymmetric loss function (see Koenker and
Hallock, 2001), n is the number of observations, βi|jτ is the jth element of the vec-
tor of coefficients βi|·τ , and pλ(β) the penalization function. The introduction of the
penalization allows to regularize the solution of the estimation problem, especially
in high dimensional settings. In particular, for some penalization functions, such as
the lasso, it is possible to induce sparsity in the regressors (i.e. setting some of the
coefficients exactly to zero), indentifying only the most relevant ones (see Tibshirani,
1996; Fan and Li, 2001).

For the estimation of the model Belloni, Chen, and Chernozhukov, 2016 propose
an algorithm suitable for high-dimensional setting, in which they induce sparsity
using lasso penalization (see Algorithm 3.2, in Belloni, Chen, and Chernozhukov,
2016). We consider an alternative estimation algorithm based on the Smoothly Clipped
Absolute Deviation (SCAD) penalization (instead of the lasso). SCAD penalty has
been introduced in the statistical literature by Fan and Li, 2001 and is defined as:
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pSCAD
λ (β) =


λ|β| if |β| ≤ λ

−|β|
2 − 2aλ|β|+ λ2

2(a− 1)
if λ < |β| ≤ aλ

(a+ 1)λ2

2
if |β| > aλ

, (5.43)

where λ and a are positive constants. The function is linear and equivalent to a
lasso penalization near the origin, then quadratic in the interval (λ, aλ] and finally
flat. It belongs to the wider class of folded concave penalizations defined by Fan and
Li, 2001.

Wu and Liu, 2009 proved that the model estimation performed using SCAD
penalty possesses the oracle property (i.e., asymptotically, it identifies the right sub-
set model and it has an optimal estimation rate), while the lasso penalty estimator
does not (see Zou, 2006; Lam and Fan, 2009).

The non-convexity of the penalization makes the optimization problem much
harder to solve, however several specific algorithms have been developed. In the
penalized mean regression framework, iterative algorithm based on local linear ap-
proximation of the penalty function allow for relatively fast estimation (see Zou and
Li, 2008; Fan, Xue, and Zou, 2014). Moreover, Fan, Xue, and Zou, 2014 showed
that if such algorithms are initialized at a lasso optimum satisfying certain proper-
ties, the two-stage procedure produces an oracle solution, and Loh and Wainwright,
2013 show that under suitable conditions, any stationary point of the objective func-
tion will lie within the statistical precision of the underlying parameter vector and
propose specific algorithms to obtain near-global optimum solutions.

In the context of penalized linear regression, the non-convexity does not allow a
linear programming representation of the problem but, following Wu and Liu, 2009,
it is possible to address the problem using a Difference Convex Algorithm (DCA)
that uses the representation of SCAD penalty as the difference between a linear and
a convex function, and solves a sequence of convex problems to approximate the
SCAD problem efficiently.

The SCAD penalization requires the calibration of two parameters: the penaliza-
tion factor λ and the parameter a that regulates the shape of the penalty. Concerning
the parameter a, we follow the suggestion of Fan and Li, 2001, that sets a = 3.7, that
is the value that minimizes Bayes risk.

Concerning the parameter λ, we use Bayesian Information Criterion (BIC) to se-
lect the best model across a grid of values for λ.

We further highlight that, in the Gaussian case, the estimation performed using
linear quantile regression should give the same result of the parametric model, as the
conditional quantile functions are linear, while under the t-Student assumption the
quantiles are not linear and the linear approximation leads to an underestimation of
tail risk.
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Tail-located non-parametric estimation

One of the main drawbacks of the conditional quantile estimation obtained with
quantile regression is the implicit linearity of the quantile function. We have seen,
as an example, that under the t-Student distribution this assumption does not hold.
In low dimensional settings this issue can be addressed by considering non-linear
quantile regression, using a basis expansion (Ali, Kolter, and Tibshirani, 2016) or
kernel weights (Bonaccolto, Caporin, and Paterlini, 2018).These techniques however
typically increase the number of parameters in the model, leading to larger esti-
mation error, especially in highly multivariate setting. We consider an alternative
solution, that is to estimate the model on a calibration set defined specifically to
approximate a particular section of the conditional quantile function.

Using the terminology of Belloni, Chen, and Chernozhukov, 2016, we need to
estimate a W-Conditional quantile graphical model in which the quantile is com-
puted conditional to a family of events $ ∈ W corresponding to a distress state of
the system.

In the bivariate case the conditioning set can be identified as the set of all the ob-
servations in which X1 < {VaRX1

τ |X1 < κ}, consisting of the observations where
the conditioning asset X1 is below a certain threshold κ (e.g. we may consider
κ = VaRX1

50%). In a multivariate setting the selection of the conditioning set is more
challenging, as we have multiple conditioning assets. We propose the following two
step estimation procedure:

1. Identify the distress setW as the set of time observations in which a diversified
portfolio is below a certain threshold (e.g. the 50th percentile). The portfolio
is composed by the equity returns of the banks sample, weighted by their re-
spective standard deviation.7

2. Construct the W-Conditional quantile graphical model with the required τ

(e.g. 0.05) using as a conditioning set W , and use the estimated coefficients
to compute ∆CoVaR.

This approach allows us to consider the characteristics of the conditional quantile
function in situations of downward movements of the overall market, offering a
better approximation of the true quantile function.

Indeed, by conditioning to the datapoints with the lowest aggregated returns, we
can obtain linear approximation of the quantile functions that are more focused on
the lower tail of the distribution. This in turn should allow to better reflect the slope
of the quantile function in distressed situation. Note that, compared to the bivariate
case, in which we can estimate CoVaR using only the lowest returns of the condi-
tioning asset, in a multivariate setting we cannot choose a set for each conditioning

7We used this weighting to avoid to over-represent large or more volatile banks in the sample. We
considered alternative distress states, consisting respectively in the days with lowest returns of an
equally weighted portfolio of all the assets in the system and a capitalization weighted portfolio of the
same assets. In both cases the the results are similar due to the high level of collinearity in the market,
leading to high correlation of all these conditioning portfolios. The results are not reported for brevity.
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asset as they are all estimated together. If the assets in the market are positively cor-
related, the portfolio that we consider represents a sufficiently good approximation
(in the trivial case of perfect rank correlation among all the variables, the bivariate
case extends perfectly). The choice of the conditioning set is an heuristic approach to
identify the observations that are most likely to influence the behaviour of the tails
of the assets.8

5.5 Network systemic risk indicators

Once the ∆CoVaR networks are estimated, we can use them to assess systemic risk
in the system, using specific network measures. Differently from partial correlation
networks, ∆CoVaR networks are directed. We can therefore compute two sets of
indicators, one constructed using incoming edges, and the other based on outcoming
edges. Similarly to Diebold and Yılmaz, 2014, we can interpret these two sets as
indicators of fragility to shock from the system (systemic fragility) and contribution
to systemic risk (systemic relevance), respectively.

In the empirical analysis, we first focus on the structural properties of the net-
work, in particular on the community structure. A community structure is a topolog-
ical feature that consists in the presence of groups of nodes that are more connected
to each other than to the rest of the network. Such feature is commonly found in
social networks, where the groups may reflect the sharing of common interests and
background, or geographical proximity (see e.g. Girvan and Newman, 2002). Sim-
ilarly, in a banking system the presence of communities may derive from the pref-
erential relationship among banks in terms of exposures in the interbank networks,
similarity of business models or, in the case of Europe, historical presence of national
banking systems relatively separated from each other. We can quantify the level of
community structure in a network by using the concept of modularity, a quantity
that can be optimized to obtain the optimal partition for the network.9 We expect
that in the European banking system, despite the increasing integration is still char-
acterized by the presence of strong national communities, due to differences in term
of market reach, business practices and, to some extent, regulatory frameworks.

After the study of network properties, we focus on the analysis of individual
institutions using network centrality measures. These are commonly used for the
identification of the most relevant nodes in a network. In banking applications they
have been used to assess the relevance of institutions in the system. From the lit-
erature we mention Balla, Ergen, and Migueis, 2014, Diebold and Yılmaz, 2014 and
Billio et al., 2012. Network centrality indicators are considered to some extent also

8We also considered an alternative procedure in which the distress set is defined separately for each
node, considering a portfolio composed of its neighbours in a QGM with τ = 0.5 (median QGM). The
results are rather similar and are not reported for brevity.

9See Section 2.3.4 for the formal definition of modularity and Newman, 2004 for a greedy optimiza-
tion algorithm.
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in the normative framework: two of the indicators considered in the G-SIB assess-
ment methodology (see FSB, 2013) account for the level of intra-financial system
liabilities and assets, respectively, consistently with the in- and out-strength in the
network of interbank exposures (Kaltwasser and Spelta, 2018). We consider in par-
ticular strength centrality, that is computed as the sum of the weights of the con-
nected edges. Since the network is directed, we compute strength centrality both
for incoming and outcoming nodes, obtaining in-strength ciin, that denotes systemic
fragility (incoming edges), and out-strength ciout, denoting systemic relevance (out-
coming edges):

ciin =

p∑
j=1

wij , (5.44)

ciout =

p∑
j=1

wji. (5.45)

Credit risk weighted interconnectivity

Tipically, centrality measures allow to assess the role of each node in the system
purely in terms of the interconnections among the nodes in the network. Still, the
degree of systemic risk depends not only on these interconnection, but also on the
idiosyncratic characteristics of one nodes, and the ones of their neighbours. For
this reason, the inclusion of information on the idiosyncratic characteristics of each
bank in network models is a challenging, but relevant topic. Several contagion
model for instance use balance sheet data to assess the ability of a bank to absorb
a shock or to transmit it to other institutions (Gai, Haldane, and Kapadia, 2011;
Hurd, 2016). Benoit et al., 2017 highlights how one of the main challenges for the
measurement and assessment of systemic risk is to develop measures that combine
multiple sources of information, including market data, balance sheet figures, expert
assessments and proprietary data on portfolio position.

We propose here to integrate the ∆CoVaR measure with balance sheet data.
In particular, we use Non-Performing-Loans (NPL) as a proxy of credit risk of an
institution. We build for each bank two indicators ciNPL-in, ciNPL-out composed as the
average NPL ratio of each neighbouring bank, weighted by the strength of the edges:

ciNPL-in =

p∑
j=1

wjiNPLj , (5.46)

ciNPL-out =

p∑
j=1

wijNPLi, (5.47)

where wij is the strength of the edge ij, and NPLi is the NPL ratio of bank i,
computed as the ratio between non performing loans over total loans. Such measure
may be computed using several different indicators.
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This measure allows us to provide a more reliable and nuanced assessment of
systemic risk. Interconnection alone may not be enough to cause financial risk. The
credit quality of the neighbours may influence the risk of a bank: a strong connection
with a solid bank may indeed not represent a threat, while a fragile company may
significantly affect the stability of the neighbours. We underline that, differently
from other systemic risk measures (for instance SRISK (Brownlees and Engle, 2016)
and to some extent ∆CoVaR), ciNPL cannot be translated directly in terms of capital
shortfalls, or other monetary indicators. Instead, it can be thought as an overall
indicator of systemic relevance/fragility, similarly to the score-based system in the
G-SII framework (FSB, 2013). The difference is that in this case the aggregation of
these measures is not a linear combination, but is defined as in (5.5). We opted for
a simple weighted average, but future work may explore different forms for the
aggregation function.

Alternatively to the NPL ratio, we could use a market based indicator of credit
risk, such as the spread of credit default sawps (CDS). Such contracts however may
already include a componenent referring to systemic risk accounted by the market.
Alternatively, we could build a forward looking measure using the determinants
of NPL, to overcome the fact that NPL can be considered an ex-post measure of
systemic risk. We leave this analysis to future studies.

5.6 Empirical analysis

5.6.1 Data and methodology

In the empirical analysis we estimate network-∆CoVaR on the equity returns of a
set of large European banks. The set includes 36 banks and is largely overlapping to
the set of banks included in the EBA stress test exercises. In line with Balla, Ergen,
and Migueis, 2014; Billio et al., 2012; Adrian and Brunnermeier, 2016, we consider
equity returns as these data are widely available, very liquid and allow us to use
daily data or even higher frequencies. Other studies on systemic risk consider CDS
spreads, as they may reflect more closely the credit risk of financial institutions (e.g.
Puliga, Caldarelli, and Battiston, 2014). However in many cases CDS time series are
incomplete and their market are not liquid enough to use daily data.

Due to the presence of heteroskedasticity in the data, we proceed in two steps:
first we fit a DCC-GARCH model to the data (Engle, 2002), and then we estimate the
conditional quantile model on the residuals. The residual of the GARCH model are
standardized to have unitary standard deviation, and this allows to avoid that the
size of the variables influences the penalization. The practice of standardizing the
variable is indeed common in the estimation of penalized models (see Højsgaard,
Edwards, and Lauritzen, 2012).

We consider two different periods: Jan 2007–Dec 2012, roughly corresponding
to the crisis period and the one immediately before, and Jan 2013–Apr 2018, corre-
sponding to the period after the crisis. We analyse a sample of 36 banks from 15
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countries, for which the time series are available for the entire period. The list of the
institutions is available in Appendix D.2. Concerning the NPL ratios, we use from
Thomson Reuters Datastream data of end-2012 for the first period, and end-2017 for
the second period.

We estimate two different network structures: first we consider ∆CoVaR net-
work using the tail-located non-parametric estimation approach outlined in Section
5.4.2. Concerning the value of τ , we opted for a value of 0.1 to achieve a good
balance in terms of tail risk analysis, and stable numerical results. Lower values
of τ may indeed lead to unreliable estimates in finite samples. We then estimate a
quantile graphical model using τ = 0.5, that we call median-QGM to describe the in-
terconnections of the conditional medians. This model, has an interpretation similar
to partial correlation networks, and allows to describe the interconnections in term
of conditional location of the distributions.10 We highlight that the computation of
the ∆CoVaR for τ = 0.5 is not meaningful as it would be always equal to zero by
construction. We therefore consider the conditional quantile computed using data
standardized by the unconditional variance.

5.6.2 Empirical results

Structural properties of the network

We report in Figure 5.4 the ∆CoVaRτ network (τ = 0.1) and the median QGM
(τ = 0.5) for the two periods. In Figure 5.5 we represent the adjacency matrices.
The network is computed using daily data. We see that the structures retrived by
network-∆CoVaRτ are less sparse than the median QGM in both periods. This is
aligned to the results presented in Section 5.3.2 for the t-Student distribution case,
where the non-linearity of the quantile functions leads to stronger effects in the tails
of the distributions compared to the means. We also notice that, in both networks,
institutions from the same country tend to stay close to each other. This geographical
division is much clearer in the median QGM than in the ∆CoVaR networks. The
interpretation is that economic shocks are transmitted at international scale in terms
of conditional tail risk to a greater extend compared to the conditional means. We
also see that the median QGM networks are characterized by a clearer division of
the banks according to countries (highlighted with different colors), denoting a more
pronounced modular community structure.

We further study the topological properties of the network by identifying the
community structure using the modularity maximization algorithm proposed by
Newman, 2004. Tables D.2 and D.3 in Appendix D.3, report the composition of the
optimal communities for both ∆CoVaRτ and median QGM networks for the two

10In a preliminary analysis we compared these networks to partial correlation networks computed
using tlasso (Finegold and Drton, 2011) and the results are rather similar, confirming the suitability
of the t-Student parametric assumption, at least for the analysis of conditional means networks. The
results are not reported for brevity.
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FIGURE 5.4: Network representation of ∆CoVaR (τ = 0.1) and me-
dian QGM model for the European banking system computed on the

periods 2007-12 and 2013-18.
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FIGURE 5.5: Adjacency matrix representation of ∆CoVaR (τ = 0.1),
median QGM model and tlasso for the European banking system com-

puted for the periods 2007-12 and 2013-18.
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FIGURE 5.6: In- and Out-strength centrality (blue and red, respec-
tively) of the banks in the system for ∆CoVaR networks (left) and
median QGM (right), for the periods 2007-12 and 2013-18. We also
highlight the decomposition of strength centrality: the darker parts
of the bars represent the component of strength centrality attributable
to banks in the same community, while the lighter parts to banks in

other communities.
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periods. We see that the communities strongly reflect the nationality of the banks,
and are very similar between the ∆CoVaRτ and the median QGM networks.

We highlight that, in accordance with the visual inspection, the community struc-
ture is stronger in the median QGM than in ∆CoVaRτ , as shown by the value of the
modularity reported in Table 5.2, where we also report the modularity of the optimal
partitions. We see that the median QGM has a stronger community structure com-
pared to the ∆CoVaRτ network, especially in the period of the crisis. Comparing
the two time periods, in accordance to the analysis of CDS spreads partial correla-
tion networks in Torri, Giacometti, and Paterlini, 2018, the median QGM appears to
have a stronger community structure in the period 2007-12, that includes the global
financial crisis compared to the following period. Instead, the modularity of the tail
network remains approximately stable. The combined interpretation of these fac-
tors is that, in crisis period, local clusters of banks tend to insulate from each other,
but that such segregation is not sufficient to contain tail risk, that can still propagate
across the entire network.

TABLE 5.2: Modularity of the optimal network partitions

2007-12 2013-18
∆CoVaR 0.38 0.38
median QGM 0.49 0.42

In- and out-strength centrality analysis and decomposition

Focusing on individual institutions, Figure 5.6 reports the in- and out-strength cen-
trality for each bank. Strength centrality is one of the most common network indica-
tors, and is used to assess the relevance of a node in the system. Since the network
is directed, we distinguish between in-strength centrality, that denotes the fragility
of an institutions, and out-strength, that denotes the potential of systemic risk trans-
mission. We also represent the component of strength attributable to edges with
banks in the same community and banks outside. We see that the centrality mea-
sures are rather heterogeneous among the assets in the ∆CoVaR networks, espe-
cially for out-strength centrality, denoting the presence of systemic risk spreaders.
More in detail, we see that in the period 2007–12 the most systemically relevant
bank (i.e. the ones with the highest out-strength) is the Dutch ING, followed by two
Spanish banks (Banco Santander and BBVA). We also see that many of the most inter-
connected institutions are settled in Central Europe and United Kingdom, and not
in peripheral countries. This suggests that banks in core countries are particularly
relevant in the transmission of tail risk. Concerning the decomposition of strength
directed to nodes in the same communities and to nodes in other communities, we
see that in most of the cases the out-stregth is composed for the largest part of links
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to banks in the same community, but that the component directed to other commu-
nities is relatively large for banks in central Europe. A similar situation applies to
in-strength. Concerning the median QGM, we see that both in- and out-strength
are more homogeneous across banks, meaning that the relative importance of each
institutions is more uniform. The decomposition shows a larger relevance of intra-
communities edges compared to the ∆CoVaRτ network, coherently to the stronger
community structure for this network identified before.

In the period 2013–18, the results are similar, although the in- and out-strengths
are on average smaller. We also notice that some of the financial institutions appear
to be significantly disconnected from the system, in particular Bank of Greece and
the two Irish banks AIB Group and Bank of Ireland. The strength centralities in the
∆CoVaRτ network and the median QGM are rather similar, while in the previous
period they show significant differences.

Overall, this evidence suggests that in the first period, that includes the great
financial crisis, the transmission of risk was more concentrated on the tails, while
in the post crisis period the transmission channels for tail risk are similar to the
ones for the conditional mean. The combined results denote a scenario where, in
periods of financial crisis, idiosyncratic shocks have a direct effect on the conditional
expected return of other institutions only on regional basis, but have a much more
widespread effect on the conditional tail risk. The results are consistent with the
theoretical analysis performed in Section 5.3.2, where we highlighted how in the case
of a t-Student distribution, the tail risk interconnection is pronounced compared to
the relation of conditional means.

This shows evidence that the transmission of distress across the network is con-
centrated on tail risk, and not in the means (indeed networks build on central mea-
sures, as QGM and tlasso, show an interconnection structure with a strong commu-
nity structure).

Credit risk weighted interconnectivity

We report in Figure 5.7 the in- and out-centrality adjusted for NPL ratio and, for
reference, the plain in- and out- strength centralities. We see several differences be-
tween the two sets of indicators. First, we see that banks in Northern and Central
Europe, in particular Switzerland, Denmark, Norway, Sweden and UK, have partic-
ularly low NPL-adjusted in- and out-strength centrality, especially in the time period
2013-18. This may denote less systemic relevance, and less fragility thanks to the
low levels of systemic risk among them and their neighbours. Spanish and French
banks maintain a relatively high level of systemic importance. The banks that have
the highest NPL-adjusted in- and out-stength centrality are the Italian ones, due to
the high level of NPLs, and the strong connectivity among each other. Irish banks,
on the other hand, have very high level of both NPL-adjusted in- and out-strength
centrality in the period 2007-12, but a low one in the period 2013-18. These results
highlight the relevance of peripheral countries in terms of systemic risk management
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in Europe, but at the same time allows to shift the focus to the interconnectivity of
individual banks in the network. Focusing on the Italian banks, we can see for ex-
ample that Banca Monte dei Paschi di Siena, one of the institutions with the highest
level of NPL (i.e. highest credit risk), is not one of the most relevant in terms of NPL-
adjusted centrality, due to the limited level of connectivity compared to other banks.
On the contrary, the relevance of ING Bank is relatively high, despite the level of
NPL is low, in view of its strong interconnectivity.
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FIGURE 5.7: In- and out-strength centrality (blue and red, respec-
tively) of the banks in the system for ∆CoVaR networks in the peri-
ods 2007-12 (left) and 2013-18 (right). The top panels represent tradi-
tional strength centrality, while the bottom ones are the NPL-adjusted

centralities
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5.7 Conclusion

In this work we have introduced network-∆CoVaR (or ∆CoVaR), a framework
that allows us to study systemic risk from a network perspective focusing on con-
ditional tail risk. After introducing CoVaR and ∆CoVaR in the bivariate case, and
highlighting their main limitations, we formalize the definition of network-∆CoVaR
in a multivariate framework. We then highlight some study properties of these net-
works by considering two different parametric settings, characterized by a multi-
variate Gaussian and t-Student distribution, respectively. In particular, we describe
the relationship of ∆CoVaR networks with partial correlation networks (that in the
Gaussian case can be obtained by a simple rescaling), and we compute analytical
the conditional quantile functions under both distributions, showing that in the lat-
ter case the use of linear approximations of the function leads to an underestimation
of risk.

We then propose an estimation procedure based on SCAD penalized quantile
regression and focused on the estimation of the tails of the distribution.

Finally, we propose an empirical application focused on the European banking
system, where we estimate network-∆CoVaR, we analyse the properties of the net-
work and we compare it to the median QGM (i.e. the network the reflects the condi-
tional medians). We found that ∆CoVaR networks are characterized by a stronger in-
terconnectivity, and a weaker community structure. From a regulators’ perspective,
these results highlight how conditional tail risk may represent a channel of transmis-
sion of systemic shocks, and how network-∆CoVaR provides different information
compared to median quantile regressions and partial correlation networks. Being
based on comovement of time series, network-∆CoVaR does not allow to isolate
the mechanisms for the transmission of contagion. However, by allowing to map
the channels of tail risk transmission, and to assess the relevance of each institution
in the system, may represent powerful tools for regulators, complementar to other
indicators of systemic relevance and fragility.

This work contributes to the toolbox of financial regulators by providing a method-
ology for the construction of market-based tail risk networks, and by suggesting an
approach to integrate balance sheet information to market’s view on interconnect-
edness in situation of distress.
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Chapter 6

Liquidity contagion in banking
networks with community
structure
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6.1 Introduction

One of the most striking features of financial crises is that they often spread quickly
across countries and institutions, and that small shocks affecting a particular region
or a small group of institutions can cause contagion in the rest of the system and
infect other economic sectors. The focus on contagion become a fundamental aspect
of the analysis of systemic risk, especially after the 2008 crisis. We can refer for in-
stance at the definition of systemic risk provided by Schwarcz, 2008, that underline
the presence of transmission mechanism that spread and boost the diffusion of dis-
tress in the system. Due to the focus on risk transmission, network theory is a power-
ful tool, and network-based modeling approach are now increasingly common, and
have been extensively applied to model default contagion and liquidity crises in
banking systems, see for instance Eisenberg and Noe, 2001 and Hurd, 2016. Within
this framework, a fundamental research question regards the study the effect of the
structural properties of the network on the diffusion of financial contagion. Hurd,
2016 study the effect of assortativity on the diffusion of contagion, Gai, Haldane,
and Kapadia, 2011 and Acemoglu, Ozdaglar, and Tahbaz-Salehi, 2015 analyse the
relationship between contagion and the level of network connectivity. Other studies
highlighted the role of heterogeneity in the system (e.g. Amini, Cont, and Minca,
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2016), information asymmetries Battiston et al., 2012b and moral hazard (Brusco and
Castiglionesi, 2007). Overall, the relationship between structural properties and sta-
bility is complex and non linear and tend to show a robust-yet-fragile configuration
(Hurd, 2016; Chinazzi and Fagiolo, 2015).

Here, we focus on a particular network property that has not been studied ex-
tensively in the literature: the presence of communities, that are groups of banks
with stronger relationships among each other compared to the rest of the element
in the system. In an international banking system, we expect these communities to
reflect the grouping of banks in countries and geographical areas. Focusing on the
European context, the presence of national communities is indeed a rather intuitive
feature of a banking system where the merging of the regulatory systems is still an
ongoing process and is composed by national banking systems with very a long his-
tory. This in turns requires researchers to put greater attention to the international
dimension of the network, as the regulation and the supervision is now increasingly
centralized and harmonized, and market practices are leading to a greater market
integration. Indeed, the available literature shows that the European banking sys-
tem is characterized by a complex and stratified structure, with a large group of
interconnected banks and a high level of interconnectedness (Aldasoro and Alves,
2018; Craig and Saldías, 2016). Still, the studies that focus on international banking
systems are limited compared to the ones that study national sectors, probably due
to the limited availability of the required datasets, that are typically undisclosed also
for researchers.

Several studies show that the presence of communities can influence the diffu-
sion of epidemic diseases among people or rumors in online social networks (e.g.
Stegehuis, Hofstad, and Leeuwaarden, 2016 and Salathé and Jones, 2010). Here we
fill a gap in the literature on financial contagion by addressing the same question
in the context of liquidity banking crises, adopting a simulation scheme similar to
Gai, Haldane, and Kapadia, 2011 and modeling the presence of community in the
simulated networks in a realistic way, and we connect the results to the network
literature developed in other fields. The Chapter is structured as follows: Section
6.2 presents a motivating example for the analysis, based on the partial correlation
networks constructed using the tlasso model, Section 6.3 discusses the role of com-
munity structure in process diffusion over network, not necessarily related to the
financial setting, Section 6.4 describes the characteristics of the model, the structure
of the simulated balance sheet, the structure of the simulated networks and the con-
tagion dynamics. Section 6.5 describes the simulation study, presents the results and
introduces different policy simulations. Section 6.7 concludes.
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6.2 Community detection in partial correlation banking net-
works in Europe

Here, in a setting similar to Chapter 4, we analyse the presence of a community
structure in the European banking system. Using the tlasso model, we construct a
partial correlation network among large European banks from CDS (credit default
swaps) data. We then identify the community structure using a community detec-
tion algorithm and we analyse its evolution over time.

Following a relevant stream of literature, instead of focusing on the real expo-
sured between banks to construct the network, we infer the network structure using
tools that can capture co-movements and dependence patterns between financial
time series to establish the existence of links among banks, assuming that markets
are efficients, prices should provide useful information about the interconnection
structure. An example of this is the estimation of credit risk networks from credit
default swap (CDS) spreads or equity price times series (e.g. Puliga, Caldarelli, and
Battiston, 2014, Anufriev and Panchenko, 2015 and Billio et al., 2012). One major
advantage of these approaches is that they rely on public data and well known sta-
tistical modelling techniques.

6.2.1 Dataset

The dataset consists of 31 weekly time series of CDS (5 years maturity) of Euro-
pean financial institutions settled in 12 countries. They refer to CDS spreads quoted
in Euro and they span the time period from January 2009 to June 2016. 20 of the
banks in the sample belong to countries in the Eurozone, the other 11 are located in
the United Kingdom, Sweden and Denmark. We observe that our database includes
85% of the banks with total assets over 500 billions that are under the European Cen-
tral Bank (ECB) supervision and it is also consistent with the European Banking Au-
thority (EBA) stress-test exercise 2016, representing 47% of the banks involved. For
the analysis we consider the log-differences of CDS spreads, computing the partial
correlation matrix from them using tlasso algorithm. We first estimate the network
using the data of the entire sample period, and then we analyse the evolution over
time using a rolling analysis using windows of 100 weekly observations each.

6.2.2 Community structure and community detection algorithm

A community in the field of complex network can be defined as a group of nodes that
are more densely connected among themselves than with nodes outside the group.
The problem of identifying the best community structure is well studied in the net-
work literature (see for instance Fortunato, 2010).1 We consider an optimization-
based approach in which the optimal community structure is the one associated

1In the case of non-overlapping communities we can refer to the optimal community structure as
optimal partition.
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with the highest modularity (Newman, 2004), a quantity defined as follows. Given a
partition G = {G1, . . . , Gp} the modularity Q is:

Q =
1

2m

∑
i,j

(
aij −

sisj
2m

)
I[gi=gj ], (6.1)

where aij is an element of the adjacency matrix A, si is the strength of node i,
m = 1

2

∑
i,j ai,j , gi is the group in the partition in which the element i belongs and

I[gi=gj ] is 1 if gi = gj and 0 otherwise. Modularity can assume values between -1 and
1, with positive and high values denoting a good division of the network into com-
munities. The procedure proposed in Newman, 2004 identifies the optimal partition
using a greedy optimization that, starting with each vertex being the unique member
of a community, repeatedly joins together the two communities whose amalgama-
tion produces the largest increase in modularity. This approach can be implemented
efficiently on large networks and identifies automatically the optimal number of
communities. Note that a positive value of modularity is not a sufficient condition
for identifying a network divided in communities, therefore we need to test if it is
the modularity is statistically significantly higher than the one of a random network.
In particular we generate the random networks using a degree-preserving rewiring
procedure Fortunato, 2010.

6.2.3 Empirical results

Static analysis

Figure 6.1 shows the network represented using a force layout. The visual inspection
denotes the clustering of banks in communities aligned with the national groups.

Table 6.1 shows the composition of the optimal communities identified by New-
man’s algorithm. The partition consists in five communities and it is possible to
notice that it roughly overlaps with geographical divisions, confirming the results of
the visual inspection of Figure 6.1. In particular, community 1 is composed uniquely
by banks from Mediterranean Countries, community 2 by British and German banks,
communities 3 and 4 include a more diversified group of banks from United King-
dom (UK), central and northern Europe and finally community 5 is composed by
French banks (with the exception BNL, that is part of the French group BNP Paribas
but is Italian).

Table 6.2 reports the value of modularity of the optimal community structure
compared to two geographical partitions, one obtained grouping banks by coun-
try and one by grouping them in three broad geographical areas: Southern Europe,
Central Europe and countries outside Eurozone. For comparison we also consider a
partition based on the size of the banks, to check whether banks of similar dimen-
sion tend to connect to each other.2 For each indicator we compute a confidence

2In particular we defined 5 classes of homogeneous size based on the total assets based on 2015
balance sheet.
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level based on the empirical distribution of the indicator computed on 1000 random
rewirings of the network. We observe that the modularity of the optimal partition
is equal to 0.461 and statistically significantly different from the null model with a
confidence level higher than 99%, confirming that the network is characterized by
a relevant division in communities. We also see that the modularity of geograph-
ical partitions (0.352 and 0.335 for the country partition and the area partition re-
spectively), although smaller than the optimal one, are rather high and statistically
significant, indicating that the geographical divisions represent a relevant feature of
the banking network. Concerning the partition by size, although the modularity is
positive and statistically significant, it has a much smaller value compared to the
other partitions (0.087), suggesting that is a less relevant factor.
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FIGURE 6.1: Graphical representation of the network with a force lay-
out.

Dynamic analysis

We perform a rolling analysis to monitor the evolution of the community structure
over time. In particular, we consider the evolution of modularity as presented in
Figure 6.2. We see that the modularity of the optimal partition is highest in the pe-
riod corresponding to the Sovereign crisis, decreases from mid-2012 and then grows
again in recent years. The pattern is similar for the geographical partitions, while
modularity of the partition generated by the size show a moderate increase across
the time period. The high level of modularity during the crisis is consistent with
the sovereign-driven nature of the European crisis: the increased relevance of coun-
try risk leads to a decrease in confidence in the transnational interbank market, and
thus to a “flight to safety”and a tightening of national banking systems. The rise
in modularity in the last part of the sample may be related to the low level of the
interbank interest rates in recent years, that makes less convenient for banks in core
countries to lend to banks in peripheral countries, exacerbating the division among
national banking systems. In an unreported test, we also measure the stability of the
community structure by testing how well the optimal partition in a given estimation
window can describe the community structure in a future window. We found that
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Community Number of banks Constituents

1 9

M.te Paschi(IT), Banco
Popolare(IT), BPM(IT), Intesa

S.P.(IT), Mediobanca(IT),
Unicredit(IT), B.co

Santander(ES), BBVA(ES),
Banco Com. Port.(PT)

2 7

Commerzbank(DE), DB(DE),
Barclays Bank(UK), Bank of

Scotland(UK), Lloyds
Bank(UK), Natwest Bank(UK),

RBS(UK)

3 6

KBC Bank(BE), Bayerische
LBank(DE), Erste Group(AUT),

Skandinaviska(SE), Svenska
Handb.(SE), Danske Bank(DK)

4 4
Rabobank(NL), ING Bank(NL),

HSBC Bank(UK), Std.
Chartered(UK)

5 5
BNL(IT), BNP Paribas(FR), Cr.

Agricole(FR), Credit
Lyonnais(FR), Soc. Gen.(FR)

TABLE 6.1: Constituents of Optimal Communities.

Partition Modularity
Optimal partition 0.461***
Countries 0.352***
Geographical area 0.335***
Total assets 0.087***

TABLE 6.2: Modularity of 4 partitions. ***,**,* refer to confidence level
of 99%, 95% and 90% respectively.

the optimal partition, despite the variations in the modularity over time, is charac-
terized by a great stability. The results are available from the author upon request.

6.3 Epidemic diffusion in networks with communities

The study of dynamic process on network is of great interest in many scientific fields,
including, among the others, the diffusion of diseases, information spread in social
network, and adoption of innovations of behaviour (Pastor-Satorras et al., 2015). The
characteristics of the diffusion depends on the specificities of the process, as well as
the structural properties of the network (Granovetter, 1977; Watts and Strogatz, 1998;
Centola and Macy, 2007). The presence of a community structure is known to influ-
ence the diffusion of dynamic process, and the effects strongly depends on the nature
of the process (see e.g. Fortunato, 2010; Salathé and Jones, 2010). The evidence shows
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FIGURE 6.2: Evolution of Modularity over Time for Different Parti-
tions.

that a community structure can either enforce as well as inhibit diffusion processes
(Stegehuis, Hofstad, and Leeuwaarden, 2016), it is therefore of primary importance
to study the effect of the community structure in relationship to the specific charac-
teristics of the process and the topology of the network.

Starting from the seminal work of Granovetter, 1977, that describes the role of
“weak ties” in the spread of processes in social networks, a large part of the litera-
ture focuses on contagion models where processes can diffuse by means of a single
contacts between two nodes. In such models, edges connecting distant nodes (i.e.
the “weak ties”) are the primary channels for the diffusion of process, while connec-
tions among dense groups of nodes in the networks are not as relevant, since they
represent redundant connections and therefore contribute less to the overall diffu-
sion of the process. Examples of these simple contagion models are the susceptible-
infected (SI) contagion model and the susceptible-infected-recovered (SIR) model,
where a node can be infected as long as it is exposed to at least one affected node
(for an overview see Newman, 2010). Such forms of diffusion processes may bene-
fit from the presence of ties among distant nodes in a network, that work as bridges
for a faster transmission of the process. The presence of tight communities on the
other hand, leads to a reduction in the transmission effectiveness by creating redun-
dant patterns between nodes in the same communities, and reducing the number of
edges across distant nodes in the network. As an example, Huang and Li, 2007 show
how in a SI model, in networks with scale-free distributions the presence of a strong
community structure can reduce the danger brought by epidemic prevalence in the
network. The interpretation is that the outbreak of a shock tends to be confined in a
community, reducing its spread to the rest of the network. Similar results have been
obtained by Salathé and Jones, 2010 considering a SIR model, showing how commu-
nity structure has a hindering effect on spreading of contagious diseases in human
populations, and that target vaccination to individuals bridging communities can be
effective in containing the spread of diseases.

Centola and Macy, 2007 study a different form of dynamic processes on net-
works, that are defined complex contagion. In this case a node can be affected only
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if a certain number (or a certain percentage) of its neighbours is affected, requiring
therefore multiple channels for the diffusion of contagion. In this case, the presence
of reduntant patterns is necessary for the transmission of the process, and therefore
netoworks with high level of clustering coefficient allow a more effective transmis-
sion of contagion. They indeed show that the most effective networks for the trans-
mission of complex contagion are regular lattices, while random graphs with weak
ties do not allow the transmission of contagion (Centola, Eguíluz, and Macy, 2007).
Moreover, Reid and Hurley, 2011 show that complex contagion can spread faster
in networks with overlapping community structure, and O’Sullivan et al., 2015 de-
velop an approximation method that allow to study the effect of clustering on the
diffusion of complex contagion, confirming the results of Centola and Macy, 2007.

In the analysis of social networks, complex contagion has an explanation in terms
of social reinforcement behaviours, in which an individual is likely to adopt an habit
if several of his neighbours do it. For instance, Mønsted et al., 2017 study the diffu-
sion of information in social media, proposing an experiment using Twitter bots, and
showing that information diffusion can be better described using complex, instead
of simple contagion models.

To our knowledge, the concept of complex contagion has not been explicitly ap-
plied in the financial literature, however, several financial contagion models may be
considered similar to complex contagion, as a single exposure to a distressed insti-
tution may not be sufficient to cause the transmission of contagion. The DebtRank
methodology proposed by Battiston et al., 2012a, for instance, consists in a conta-
gion model in a financial system, where an institution defaults when losses exceed
the capital, transmitting then the distress to other institutions. A single default of
a debtor may not be sufficient to cause an institution to go in distress, due to the
presence of capital buffers, while multiple debtors’ defaults can instead facilitate the
transmission of contagion (Battiston et al., 2012a). Similarly, in other contagion mod-
els such as Gai and Kapadia, 2010; Gai, Haldane, and Kapadia, 2011; Elsinger et al.,
2013 the distress transmission can be fostered by the presence of redundant paths,
as multiple distressed neighbours may weaken the protection of capital or liquidity
buffers.

In a network with a strong community structure, the relatively high density
within communities, compared to a random network, may increase the ability of
the distress to grow and reach a relevant dimension, while in a more randomized
network the shock would disperse more easily. On the other hand, the separation of
communities may reduce the ability to spread to the entire network.

The balance of these two aspects make the study of diffusion of complex conta-
gion in network with communities particularly challenging, also because many of
the common approximations used for the derivation of analytical results require as-
sumptions not compatible with the presence of a community structure (O’Sullivan
et al., 2015), and since in financial application it is well known how the introduction
of heterogeneity among nodes is crucial for the analysis of contagion mechanisms,
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reducing the ability to find analytical solutions (Chinazzi and Fagiolo, 2015; Amini,
Cont, and Minca, 2016).

Numerical simulations are powerful tools for the analysis of financial contagion,
and in the next section we propose a study based on the liquidity contagion frame-
work of Gai, Haldane, and Kapadia, 2011, where we isolate the role of community
structure while controlling for other variables in the system and including some level
of heterogeneity in the network construction.

6.4 Interbank contagion modelization

The contagion model that we adopt is largely similar to the one proposed by Gai,
Haldane, and Kapadia, 2011, and allows us to model the diffusion of liquidity shocks
in a banking system. In this Section we present the properties of the model, focusing
on three main aspects: the network, the construction of banks’ balance sheets and
the contagion dynamics.

6.4.1 Interbank network simulation

The interbank system is constructed as a directed network in which the edges repre-
sent bilateral exposures between two institutions. Here we construct the network as
random graphs. The focus of the study is on the presence of a community structure;
to model the communities in the network we proceed as follows: first we construct
m separate networks (that will be the communities), each of them characterized by
the same degree distribution, and then we progressively rewire the communities,
blending them together. The result is a set of networks with a progressively weaker
community structure. The rewiring procedure allows to maintain several properties
of the network, in particular the degree distribution, allowing to compare the results
of networks with different rewiring.3 We consider three different network specifi-
cations characterized by different degree distributions: in the first specification the
degree distribution of the nodes follow a Poisson distribution (Poisson network), in
the second the degree distribution follows a power law (power-law network) and in
the last specification the distribution is different for the in-degree (Poisson) and for
the out-degree (power-law) (asymmetric network).4

Power law and Poisson networks are known to be characterized by rather differ-
ent behaviours in presence of crisis: typically power-law networks are more resilient
to random failures, but are more fragile to specific failures to central nodes, showing
a robust-yet-fragile behaviour. The third network model introduces an asymmetry
in the degree distributions and allows to isolate the concentration of assets on the
creditor-side while maintaining a relative uniform distribution of the degree for the
debtors. Overall, the three models should allow to assess the effect of the degree

3For more on the rewiring procedure see for instance Fortunato, 2010.
4The Poisson networks have been generated using the classical Erdős–Rényi model, while the scale-

free and asymmetric networks with the fitness model proposed by Goh, Kahng, and Kim, 2001.
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distribution and allow to obtain robust results. Moreover, the framework is flexible
enough to easily accommodate other network configurations. The networks are rep-
resented using the adjacency matrix A, that is an n × n square matrix where each
element aij is equal to one if it exists a credit exposure between node i and node j,
and zero otherwise. We also define the matrix Q, that is a right stochastic matrix (i.e.
a matrix in which all the rows sum to one) in which the elements qij =

aij
kj

, where kj
is the in-degree of element j. in matrix form we can write:

Q = DAA, (6.2)

where DA = diag( 1
k1
, . . . , 1

kp
) is the diagonal matrix composed by the reciprocal

of the degrees of the nodes in the network.

Network indicators

In Section 6.5.2 we test whether the introduction of liquidity requirement policies
based on network measures influence the diffusion of distress. In particular, we
consider the following centrality measures:

• In-degree and out-degree. Degree is one of the simplest centrality measures,
and is computed as the number of edges connected to a node. In signed net-
work in-degree is the number of ingoing edges (liabilities in the interbank mar-
ket) and out-degree is the number of outgoing edges (assets in interbank mar-
ket).

• Eigenvector centrality. It is a centrality measures that expands degree cen-
trality and accounts for the fact that connections to important nodes should be
more important than connections to secondary nodes.

• Betweenness centrality. Measure that counts the number of shortest paths be-
tween each pair of nodes. Nodes with a high betweenness centrality may have
a particular important role in the diffusion of distress, since they represent
“bridges” between different communities in the network.

6.4.2 Balance sheet

The structure of the balance sheet is similar to the one proposed by Gai, Haldane,
and Kapadia, 2011, and although it makes some simplifications, most importantly
the size homogeneity among banks, it allows to isolate the network effects while
maintaining some realistic features, such as the option for the banks to obtain liq-
uidity by entering (repurchasement agreements) repo transactions. The liabilities
are composed of unsecured liabilities in the interbank market LIBi ; repo contracts
LRi ; retail deposit LDi ; and capital Ki. The assets are composed by unsecured assets
in the interbank market AIBi ; fixed assets such as mortgages and corporate loans
AFi ; reverse repo assets (collateralized lending) ARRi ; assets which may be used as
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collateral in repo transactions (collateral assets) ACi ; and fully liquid assets ALi . The
interbank assets and liabilities are the actual exposures in the network. In order to
simplify the analysis and to focus on the network effects, we assign to each bank
the same amount of liability in the interbank market (therefore LIBi = LIB ∀i).
The interbank assets are then computed endogenously for each bank according to
the connections in the network. The balance sheet items, together with the baseline
calibration values, are shown in Table 6.3.

Parameter Description Baseline calibration
Liabilities
LIBi Unsecured interbank liabilities 15% of balance sheet

LRi
Repo liabilities (i.e. borrowing

secured with collateral)
20% of balance sheet

LDi Retail deposits Endogenous (balancing item)
Ki Capital 4% of balance sheet
Assets

AIBi Unsecured interbank assets i
Endogenous (depending on

network)

AFi
Fixed assets (e.g. individual

corporate loans or mortgages)
Endogenous (depending on

AIBi )

ACi
assets that can be used as

collateral in repo transactions
10% of balance sheet

ARRi
Reverse repo assets (i.e.
collateralized lending)

11% of balance sheet

ALi Fully liquid assets 1.2% of balance sheet
εi Idiosyncratic liquidity shock 0.2 for i = 1; 0 oth.
Network
n Number of banks in the system 100

z
Average in- and out-degree of

the nodes
10

c
Number of banks in each

community
20

TABLE 6.3: Balance Sheet Items and Baseline Calibration.

6.4.3 Liquidity shortage and contagion mechanism

Our framework studies the diffusion of liquidity shocks. A liquidity shock happens
when a bank cannot temporary fulfill its duties due to an idiosyncratic shock, a
change in repo haircuts or the hoarding of liquidity from its creditors in the interbank
market. The general idea behind the contagion mechanism is that, under distress,
the banks act preemptively and hoard liquidity from the interbank market shrinking
their balance sheets. This is turn may cause its counterparties in the market to have
a liquidity shortage and to start a chain reaction.

The liquidity of a bank i is composed by its liquid assets ALi and by the funds
that can be obtained entering a repo transaction using as a collateral ACi and ARRi

1−h
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(note that the repo transaction requires an haircut, therefore the liquidity raised is
multiplied by 1 − h − hi).5 The total liquidity is then composed by three items:
the value of the repo liabilities LRi , the amount of uninsured liabilities withdrawn
from the creditors in the interbank market (Q′λ)LIBi (more on this later), and an
idiosyncratic shock εi. We do not specify the cause of the shock, since we are only
interested to the effect on the liquidity position. Formally we can write:

li = ALi + (1− h− hi)(ACi +
ARRi
1− h

)− LRi − (Q′λ)LIBi − εi i = 1, . . . , n, (6.3)

where the balance sheet items are defined as in Table 6.3.6 A bank i suffers a
liquidity crisis when li < 0. For convenience we define the vector e such that ei =

ALi + (1− h− hi)(ACi +
ARRi
1− h

)− LRi . Then, we can rewrite Equation 6.3 as:

li = ei − (Q′λ)LIBi − εi i = 1, . . . , n, (6.4)

where Q is the right stochastic n×n matrix that represents the interbank market
(see Section 6.4.1) and λ, a vector of length n, denotes the percentage of liquidity
that each bank withdraws from the market as a consequence of a liquidity crisis.
(Q′λ)i is therefore the percentage of interbank liabilities of bank i withdrawn by all
its creditors.

The values in the vector λ are crucial for the spreading of contagion in the mar-
ket: the higher they are, the larger the possibility to start a chain reaction and infect
other subjects. The upper bound for each element λi is 1, that is, a distressed bank
withdraws all its asset in the interbank market. On the other hand, the lower bound
consists in the case in which a distressed bank withdraws only the minimum amount
of assets required to face its liquidity shortage. It is reasonable to assume that a bank
witnessing a liquidity shortage withdraws precautionary more than the minimum
required, fearing further liquidity problems in the future. Gai, Haldane, and Kapa-
dia, 2011 propose to use a value of λi = 1 for each bank with a liquidity shortage.
Instead, we consider an milder approach, and in our specification a distressed bank
withdraws assets from the interbank market in a quantity proportional to the liq-
uidity shortage with a multiplicative factor λ0 > 1 . This difference allows to model
the cascade more realistically, as the assumption of withdraw of the entire liquidity
would very often result in extreme liquidity crises even in case of minor liquidity
shortage, while in reality policy intervention and proactive reactions by the banks

5The haircut refers to the difference between the amount of cash lent on a repo transaction and
the value of the collateral. It reflects the liquidity and default risk that the lender assumes. Here it is
assumed that the total haircut depends on a common component h and an idiosyncratic component hi
specific for every bank.

6Notice that in our model we implicitly assume that the banks cannot obtain new liquidity by selling
its fixed assets or withdraw lending to the real economy. This assumption is motivated on the fact that
banks may prefer to hoard liquidity from the interbank market since it is faster and less visible to other
market participants (Gai, Haldane, and Kapadia, 2011).
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may limit the extent of the crisis. We also impose that λi ≤ 1 ∀i, so that a bank
cannot withdraw more that its total assets invested in the interbank market:

λi = min

(
−min(li, 0)

AIBi
λ0, 1

)
. (6.5)

In our baseline specification we set λ0 = 2 (i.e. a bank hoard from the interbank
market twice the funds required to cover its liquidity shortage). It is clear that, if a
bank with a liquidity shortage withdraws enough assets from the interbank market,
may make another bank enter a liquidity crisis itself. The second bank will have to
hoard liquidity itself, and may potentially trigger a chain reaction in the network. In
Section 6.5 we also consider alternative values for λ0, in order to assess the sensitivity
of the model to this parameter.

Note that in our framework the transmission of distress is related to liquidity
hoarding and not to the presence of defaulting counterparts. This approach, in
which the distress moves upstream from creditors to debtors is symmetric to default-
based contagion mechanisms such as Eisenberg and Noe, 2001 or Gai and Kapadia,
2010.

6.5 Simulation study

The main goal of this analysis is to assess the effects of the presence of a community
structure on the diffusion of liquidity shocks. To isolate the effect of this topological
feature, we generate random networks and we control the level of community struc-
ture using a rewiring procedure: starting from networks composed by completely
separated communities, we progressively “shuffle” the edges in order to remove the
community structure while maintaining some properties such as the degree of indi-
vidual nodes (see e.g. Fortunato, 2010). we consider for each experiment 15 different
levels of rewiring, starting from networks with completely separated communities,
to ones with almost no community structure. Figure 6.3 reports a representation of
the rewiring process for a Poisson network.

The contagion is obtained by applying an idiosyncratic liquidity shock to one of
the banks. We point out that the main source of stochasticity in the model is related
to the network structure (and by the random selection of the starting node), while
the contagion diffusion process is deterministic. The balance sheet structure is also
fixed, with the exception of the interbank assets, that are determined endogenously
by the network structure.

We test the level of contagion by measuring the average ratio of banks that face
a liquidity shortage and the extent of systemic hoarding (i.e. the total amount of in-
terbank assets frozen during the crisis). We are also interested in understanding the
extent to which the distress propagates outside the community of the bank shocked,
therefore we decompose the first indicator in two parts: one accounts for the banks
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FIGURE 6.3: Graphical representation of the rewiring process using
a force-layout (first row) and the corresponding adjacency matrices

(second row).

in the shocked community, the other to the ones in the rest of the network. The
results are obtained on the basis of 500 simulation runs for each of the setting.

6.5.1 Scenario simulation

In this simulation setting we assume that the network is composed by five different
communities, each of them composed by twenty banks. The community structure
is progressively removed using a rewiring procedure, with 15 rounds of rewiring,
where in each round 50 rewirings are done (i.e. for 50 times we take two random
edges and we swap the destination node). The rewiring procedure does not influ-
ence the degree of the nodes, therefore we obtain a set of networks whose com-
munity structure is progressively weaker, but with comparable characteristics. The
values of balance sheet items are the ones in Table 6.3, and we repeat the experiment
using networks with different degree distributions (the Poisson, power-law and asym-
metric networks; see Section 6.4.1). For robustness, we repeated the experiments with
networks with different density, characterized by nodes with in-degree equal to 10
and 6 respectively.

We model a liquidity shock for one of the banks by introducing an idiosyncratic
shock ε = 0.2 and we simulate the diffusion of contagion over the network.

Figure 6.4 reports the percentage of distressed banks in the system for the six
network specifications and different levels of rewiring (in each Panel, from left to
right the networks are increasingly randomized. First row represents the networks
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with in-degree = 10 and second row in-degree = 6). It is possible to see that in most
of the setting the number of distressed banks is higher for networks with a stronger
community structure. More precisely, the percentage of distressed banks is relatively
smaller in the non-rewired network (since the contagion cannot spread outside the
first community), then it grows for moderate level of rewiring and finally reduces for
high level of rewiring. It is interesting to notice that, in networks with communities,
the number of distressed banks is higher not only in the shocked community, but
also in the rest of the network, meaning that the contagion spreads faster also outside
the community where the first shock hit. moreover, while the number of distressed
banks in the shocked community decreases with the level of rewiring, the effect in
the rest of the network does not change monotonically with level of rewiring and is
maximum for a limited number of rewiring. These results, consistent for different
network configurations and densities, suggests that the presence of communities
fosters the diffusion of distress and amplifies more the initial shock.

An explanation to the results is that the distress can increase its extent by re-
verberating within a community, and then diffuse in the rest of the network once it
assumes a larger size. The results are confirmed by Figure 6.5, that reports the quar-
tiles of the distribution of level of distress introduced in the system by the initial
shock. We see that the distress is generally higher for networks with tight commu-
nities, both in terms of median value across the iteration and the lowest quartile.

The comparison between banks with different density (first vs. second row of
Figures 6.4 and 6.5), shows that the community structure is even more relevant in
sparser networks: for the Poisson and scale-free networks the contagion spreads much
faster in networks with a strong community structure compared to the denser net-
works. This can be explained by the fact that denser networks are typically more re-
silient to contagion, making more difficult the development of a chain reaction. The
only exception to the previous results is the asymmetric and less dense networks,
where the community structure does not seem to influence the diffusion of conta-
gion, probably due to the superior resilience to shocks of this particular network
configuration.

6.5.2 Policy experiments

In this section we conduct four policy experiments, testing the effect of different
possible precautionary measures to reduce the diffusion of liquidity crises. The ex-
periments that we propose are general in nature, and consist in direct changes of
the model parameters. As we will point out however, such changes can be related
to specific policies, and the results may help to highlight some stylized facts and
to better assess real world scenarios. Examples are the introduction of liquidity cov-
erage ratio (LCR) and the liquidity risk monitoring tools introduced in the Basel III
framework as a response to the great financial crisis of 2007-08 (see Basel III, 2013).
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FIGURE 6.4: Average percentage of the banks in the network who
suffer liquidity shortages. x axes represent the level of rewiring. Left
column: Poisson, scale free and asymmetric network with average in-
and out-degree = 10. Right column: networks with average in- and

out-degree = 6.

The first experiment consists in a change ofthe percentage of liquid assets in the
balance sheet of every bank, corresponding to a change in the liquidity requirements
for the banks.

In particular, we test four different levels: ALij = {1.1%, 1.2%, 1.3%, 1.4%, 1.5%} ∀i,
(the baseline value was 1.2%). The results are presented in Figure 6.6 (first column).
In all the settings, the number of distressed banks decreases monotonically with the
liquid assets ALi , meaning that a higher level of liquidity helps to contain liquidity
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FIGURE 6.5: Average percentage of the banks in the network who
suffer liquidity shortages. x axes represent the level of rewiring. First
column: Poisson, scale free and asymmetric network with average in-
and out-degree = 10. Second column: networks with average in- and

out-degree = 6.

crises, especially for the networks with a stronger community structure (on the left
part of the graph). This experiment denotes a high sensitivity of the contagion effect
to the capital liquidity, especially in the case of network with a strong community
structure. In a more realistic setting this suggests to pose a particular attention to the
level of liquidity in the system, especially in a network with communities.

In the second policy exercise, we change the liquid assets only to the banks in the
country where the exogenous shock hits, leaving the ones for the other banks to the
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FIGURE 6.6: Percentage of distressed banks using alternative capital
requirements (methods 1 and 2). The first column represents the case
in which the liquid assets are changed for all the banks in the network.
The second column the case in which is changed only for banks in the

communities of the shocked bank.

baseline level of 1.2%. The results are reported in Figure 6.6 (second column). We
see that the results are similar to the ones obtained for the previous policy experi-
ment, especially in networks with a stronger community structures. This means that
in order to prevent contagion dynamics, an intervention on the banks in the com-
munity where the liquidity crisis starts is particularly effective. Rather intutively,
the real-world implication would be that in a trans-national context, nation-wide
interventions may be a good strategy to contain the spread of a liquidity contagion.
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FIGURE 6.7: Percentage of distressed banks using alternative capi-
tal requirements (methods 3 and 4). The first column is the case of
centrality-based liquidity requirements. The second column is the

case of different hoarding parameters λ0.

In the third experiment the liquid assets are partially determined using centrality
measures. In particular, we maintain the total amount of liquid asset in the system
equal to the baseline scenario, and we assign it to each bank as follow: each bank
will have 1% of the balance sheet of liquid assets, while the rest (0.2% on average)
is assigned proportionally to the centrality measures. The first column of Figure 6.7
reports the results of this experiments in terms of percentage of distressed banks in
the system. The green line is the baseline scenario (equal proportion of liquid assets
for all the banks), and the others are computed considering four centrality measures:
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in- and out-degree, eigenvector centrality and betweenness centrality. We see that
the allocation does not influence significantly the percentage of defaults in any of
the network configurations. This results may appear puzzling, given the debate on
too-central-to-fail institutions, that focuses the attention on the identification of sys-
tematically important banks and their role in the financial system, as for instance the
G-SIB (Globally Systemic Banks), an official list of financial institutions identified by
the FSB (Financial Stability Board), that are subject to stricter regulation (Board of Fi-
nancial Stability, 2013). Our results may be related specifically to our methodology,
in which the shock that hits a bank is not proportional to the size of the banks. In
this setting, a shock applied to a relevant node would be more easily dispersed and
would be less likely to cause chain reactions. Our results therefore do not dismiss the
need for regulators to pay a particular attention to the systemically important banks.
Instead, these results underline the fact that their safety is not a sufficient condition
for the stability of the system, that may be fragile also to shocks to more peripheral
banks, especially if the network structure is characterized by communities where
the effect of a liquidity crisis can be amplified. Moreover, this result underlines how
the usage of off-the-shelf centrality measures may have implicit drawbacks. Fu-
ture studies may further address this issue by comparing the performance of more
sophisticated centrality measures such as Debt Rank (Battiston et al., 2012a), central-
ity based on harmonic distance (Acemoglu, Ozdaglar, and Tahbaz-Salehi, 2015) and
strength between and within country (Torri, Giacometti, and Paterlini, 2018).

Finally, we model a fourth setting in which the coefficient λ0 varies from 1 to
3 (the baseline value is 2). This means that a distressed bank withdraws from the
system a quantity of liquidity different from the baseline scenario, where the banks
hoarded twice the amount of money required to fulfill their liquidity requirements.
The increase of λ0 corresponds to a more conservative approach of the banks in the
system, that fear further liquidity constraints, and can be associated to policies that
increases the transparency in the system or guarantee credit lines to distressed banks
in the event of a generalized liquidity crisis.7 The second column of figure 6.7 shows
the percentage of distressed banks for different levels of λ0. We see that the extent
of liquidity crises increases monotonically in λ0 for every simulation setting. For
λ0 = 1 the contagion does not spread at all, when λ0 increases the contagion is more
intense, especially in network with a strong community structure, and finally, for
high value of λ0, the contagion grows significantly and is stronger also in networks
without community structure.

6.6 Robustness analysis

In the previous sections we have seen that the results presented in the chapter are
robust to three different network specifications and to two levels of in-degrees of

7Note however that the introduction of guarantee systems can have a positive ex post effect, but
risk to mine market discipline, especially in presence of too-big-to-fail institutions.
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the nodes. We consider here two more robustness checks. First, we consider dif-
ferent levels of idiosyncratic shock (ε equal to 0.05, 0.075 0.1, 0.2, and 0.3, while the
baseline level was 0.2). We then consider scenarios where more than one node is in
distress, by applying a shock with ε=0.2 to 2,3,4 and 5 banks in the same community.
For brevity we report only the results for the Poisson networks, that are qualitatively
similar to the ones obtained with other network models.

FIGURE 6.8: Percentage of distressed banks using alternative speci-
fications. The top panels refer to scenarios with alternative level of
idiosyncratic shock for the distressed bank, while bottom panels re-
fer to scenarios where more than one bank is shocked. Panels on the
left refer to networks with in-degree equal to 10, and in panels on the

right the in-degree is equal to 6.

We see in the upper panels of Figure 6.8 the effects of changes in the size of the
idiosyncratic shock ε for Poisson networks with in-degree of the nodes equal to 10 and
6, respectively. The level of distress introduced in the system, expressed in terms of
ratio of distressed banks, grows proportionally to the size of the shock for small εs,
but when ε reaches a certain level, it stabilizes around values similar to the baseline
scenario. The explanation is that, once the shock is strong enough, the hit bank
hoards all its asset in the interbank market, and higher level of shocks do not further
affect the system.

The the effect of multiple shocks has drastic consequences on the system. In the
bottom panels of Figure 6.8 we see that the extent of the distressed introduced in the
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system is much higher when more than one bank receives an idiosyncratic shock.
Moreover, for the cases with 2-3 shocked banks, the graph is qualitatively similar to
the baseline case: the distress first increases with the level of rewiring, but then it
tend to decreases when the community becomes weak enough, and the shocks are
dispersed in the network. On the other hand, when the number of shocked banks is
higher, the level of distress remains high for high level of rewiring of the networks.

Overall, this robustness analysis confirms the results obtained before.

6.7 Conclusion

This work expands the literature on financial contagion in interbank credit markets,
modeling liquidity crises is simulation settings similar to Gai, Haldane, and Kapa-
dia, 2011. To our knowledge, our study is the first to analyze the role of a com-
munity structure in the diffusion of liquidity contagion in an interbank network.
We claim that this feature is particularly relevant for international banking systems
where the geographical collocation of banks greatly influences its interactions with
other banks, such as the European banking system.

In the analysis, we consider several network specifications, characterized by dif-
ferent degree distributions and density, simulating an idiosyncratic shock to a ran-
dom bank in the network. We compare the diffusion process in a simulation study
where we construct networks with identical degree distribution, but with a different
level of community structure, obtained thanks to a rewiring procedure.

The empirical application shows that the presence of communities has a strong
influence on the diffusion of contagion, increasing both the number of banks in-
volved and the size of the total liquidity shortage. The results are consistent across
different network specifications. We also introduce several variations to the origi-
nal model specification that reflect different policy interventions: an increased level
of liquid assets (first for all the banks in the system, then only for the community
where the crisis bursts) that reflect a tighter regulation on the liquidity requirement;
the assignment of liquidity requirements proportional to network centrality mea-
sures, that reflects policies that target the so called systemically important banks; fi-
nally we test the change of the parameter λ0, that controls the amount of funds that
a bank hoards from the interbank market as a consequence of a liquidity shortage,
whose changes may be determined by the level of confidence in the market influ-
enced by policies that promote transparency. The results show that the increase of
the liquidity requirements and the increase in the confidence in the market (lower
λ0) are effective measures in the reduction of contagion risk in the market, especially
in networks with tight communities. The introduction of centrality measures for
the determination of liquidity requirements on the other hand seem to have a lim-
ited effect on the contagion risk, at least in out empirical setting. We can point out
three main policy recommendation from this work: the first is that the prevention
of liquidity crises should be focused on the promotion of market transparency and
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the definition of sound liquidity requirements for all the banks, the second is that
the community structure of a network can have a great influence on the issue, fos-
tering the growth of uncontrollable chain reactions, and finally, that the monitoring
of systemically important banks is not sufficient for the prevention of liquidity crises.
Overall, the results presented here contribute to the general network literature that
studies the diffusion of dynamic process over networks with communities, showing
that, due to the peculiarities of the contagion model presented here, liquidity conta-
gion may be amplified by the presence of communities. This work can be expanded
in several directions: the first is to define specific risk measures for the systems that
are based on the concept of community structure, the second is to assess the struc-
tural properties of the true international interbank network in Europe in order to
test the empirical application of the results, and finally to introduce in the model
more realistic features such as informational asymmetries, the possibility of gather
liquidity from other sources or the public intervention in case of widespread crisis.
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Appendix A

Appendix for Chapter 2

In this appendix we describe the algorithms used for the estimation of glasso and
tlasso.

A.1 The glasso algorithm

Here we briefly describe the algorithm proposed by Friedman, Hastie, and Tibshi-
rani, 2008 to solve (2.9), the glasso model. For convenience, we define Xi as the ith
element of X , and and X\i as the vector of all the elements of X except the ith. We
also define the matrices G to be the estimate of Σ, and S the sample covariance
matrix. Furthermore, we identify the following partitions:1

G =

(
G\i,\i g\i,i

g′\i,i gi,i

)
, S =

(
S\i,\i s\i,i

s′\i,i si,i

)
. (A.1)

Banerjee, Ghaoui, and d’Aspremont, 2008 show that the solution for w\i,i can be
computed by solving the following box-constrained quadratic program:

g\i,i = arg min
y

{
y′G−1

\i,\iy : ||y − s\i,i||∞ ≤ ρ
}
, (A.2)

or in an equivalent way, by solving the dual problem

min
β(i)

{
1

2
||G1/2
\i,\iβ

(i) − c||2 + ρ||β(i)||1
}
, (A.3)

where c = G
−1/2
\i,\i s\i,i and β̂(i) = G−1

\i,\ig\i,i. (A.3) resembles a lasso least square
problem (see Tibshirani, 1996). The algorithm estimates then the ith variable on the
others using as input G\i,\i, where G\i,\i is the current estimate of the upper left
block. The algorithm then updates the corresponding row and column of G using
g\i,i = G\i,\iβ̂

(i) and cycles across the variables until convergence.
As noted by Friedman, Hastie, and Tibshirani, 2008, the resulting matrix remains

positive definite and invertible if the procedure is initialized with a positive definite
matrix.

Glasso algorithm

1The dimension ofG\i,\i, g\i,i and gi,i are respectively ((n− 1)× (n− 1)), ((n− 1)× 1) and (1× 1).
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1. Start withG = S + ρI . The diagonal ofG is unchanged in the next steps.

2. For each i = 1, 2, . . . , n, 1, 2, . . . , n, . . . , solve the lasso problem (A.3), which
takes as input G\i,\i and s\i,i. This gives a n − 1 vector solution β̂. Fill in the
corresponding row and column ofG using g\i,i = G\i,\iβ̂.

3. Repeat until a convergence criterion is satisfied.

A.2 The tlasso Expectation-Maximization algorithm

Let W ∼ Nm(0,Ψ−1) and τ ∼ Γ(v/2, v/2) be random variables distributed as a
multivariate Gaussian and a gamma distribution, respectively. Then:

X = µ+
W√
τ
∼ tm(µ,Ψ−1, v), (A.4)

where Ψ−1 is the dispersion matrix of the t-Student distribution, µ is a m× 1 vector,
and v is the number of degrees of freedom in the multivariate t-Student distribution.

The EM algorithm treats τ as a hidden variable in the E-step, exploiting the fact
that the conditional distribution of X given τ is Nm(0,Ψ−1/τ). In the M-step, the
algorithm then maximizes the penalized log-likelihood of the latent Gaussian vector
using the glasso procedure.

Let X1, . . . ,Xn be an n-sample drawn from tm(µ,Ψ−1, v). The EM algorithm
relies on the following two steps:

• E-step

– Given:
E[τ |X = x] =

v +m

v + (δx(µ,Ψ))
, (A.5)

where δx(µ,Ψ) = (x− µ)TΨ(x− µ), from the current estimates µ̂(t) and
Ψ̂

(t)
, we compute τ̂ (t+1) for the (t+ 1)th iteration:

τ̂
(t+1)
i =

v +m

v + (δXi(µ̂
(t), Ψ̂

(t)
))

i = 1, . . . , n. (A.6)

• M-step

– Compute the estimates at iteration t+ 1:

µ̂(t+1) =

∑n
i=1 τ̂

(t+1)
i Xi∑n

i=1 τ̂
(t+1)
i

, (A.7)

Ŝ
(t+1)

=
1

n

n∑
i=1

τ̂
(t+1)
i [Xi − µ̂(t+1)][Xi − µ̂(t+1)]′. (A.8)
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– Then, the parameter Ψ̂
(t+1)

is obtained by solving the following optimiza-
tion problem:

Ψ̂
(t+1)

= arg max
Ψ

(
log|Ψ| − tr(ΨŜ

(t+1)
)− λ||Ψ||1

)
, (A.9)

which relates to Equation 2.9 for glasso and can be solved using the algo-
rithm from Friedman, Hastie, and Tibshirani, 2008.

The E and M steps are sequentially iterated until a convergence criterion is met, that
is, until the maximum term in absolute value of the matrix difference between Ψ̂s
in two consecutive iterations is smaller than a given threshold. While convergence
to a stationary point is guaranteed in the penalized versions of EM (McLachlan and
Krishnan, 2007), the algorithm is not guaranteed to find the global maximum since
the penalized log-likelihood function to be maximized is not concave (Finegold and
Drton, 2011).

We finally underline that the estimates of the covariance matrix obtained using
tlasso are always positive-definite and invertible, as in each M-step the glasso is ap-
plied on a positive-definite matrix.
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Appendix B

Appendix for Chapter 3

B.1 Alternative covariance estimation methods

Here, we briefly describe the benchmark covariance estimators we use in the com-
parative analysis in Chapter 3. Differently from glasso and tlasso, these approaches
provide an estimate for the covariance matrix and not for the precision matrix. Hence,
we compute the precision matrix for such methods to be plug-in into the minimum
variance portfolio by inverting the covariance.

In particular, we consider the sample covariance and the equally weighted meth-
ods (that are commonly regarded as naive approaches) and two state-of-art estima-
tors: random matrix theory and Ledoit Wolf Shrinkage.

The equally weighted (EW) portfolio, a tough benchmark to beat (DeMiguel,
Garlappi, and Uppal, 2009), can be interpreted as an extreme shrinkage estimator
of the global minimum variance portfolio, obtained using the identity matrix as the

estimate of the covariance matrix. Indeed, using (3.3), we obtain ŵEW =
I1

1′I1
= 1

n1.
By assuming zero correlations and equal variances, such approach is very conserva-
tive in terms of estimation error and it suitable in case of severe unpredictability of
the parameters.

The second naive approach is the sample covariance estimator, defined as:

S =
1

t− 1

t∑
τ=1

(Xτ − X̄)(Xτ − X̄)′, (B.1)

where t is the length of the estimation period, Xi is the multivariate variate vec-
tor of assets’ returns at time τ and X̄ is the vector of the average return for the n
assets. Such estimator, when computed on datasets with a number of asset close to
the length of the window size, is typically characterized by a larger eigenvalue dis-
persion compared to true covariance matrix, causing the matrix to be ill-conditioned
(Meucci, 2009). Therefore, when computing the precision matrix by inverting the co-
variance matrix, estimates are typically not reliable and unstable on different sam-
ples as its ill-conditioning nature amplifies the effects of the estimation error in the
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covariance matrix.

The shrinkage methodology of Ledoit-Wolf (LW) is well-known to better con-
trol for the presence of estimation errors, especially for datasets with a large ratio
of n/t, where n is the number of assets and t the length of the estimation window.
The Ledoit-Wolf shrinkage estimator is defined to be a convex combination of the
sample covariance matrix S and Σ̂T , a highly structured target estimator, such that
Σ̂LW = aS + (1 − a)Σ̂T with a ∈ [0, 1]. Following Ledoit and Wolf, 2004b, we con-
sider as structured estimator Σ̂T the constant correlation matrix, such that all the
pairwise correlations are identical and equal to the average of all the sample pair-
wise correlations. As the target estimator is characterized by good conditioning, the
resulting shrinkage estimator Σ̂LW has a smaller eigenvalues dispersion than the
sample covariance matrix. In fact, the sample covariance matrix is shrunk towards
the structured estimator, with intensity depending on the value of the shrinkage con-
stant a. Ledoit-Wolf estimation of a is based on the minimization of the expected
distance between Σ̂LW and Σ. For further details, the reader is referred to Ledoit
and Wolf, 2004b.1

The last approach we focus on is the so called random matrix theory (RMT) esti-
mator Σ̂RMT , introduced by Laloux et al., 1999. The approach is based on the fact
that, in the case of financial time series, the smallest eigenvalues of the correlation
matrices are often dominated by noise. From the known distribution of the eigen-
values of a random matrix, it is possible then to filter out the part of spectrum that
is likely associated with estimation error and maintain only the eigenvalues that
carry useful information (Laloux et al., 1999). In particular, when assuming i.i.d.

returns, the eigenvalues of the sample correlation matrix are then distributed ac-
cording to a Marcenko-Pastur (MP) distribution as a consequence of the estimation
error. Therefore, we can compute the eigenvalues that correspond to noise based on
the minimum and maximum eigenvalues of the theoretical distribution, such that:

λmin max = σ2
(
1±

√
n/t
)2
, (B.2)

where λmin and λmax are the theoretical smallest and largest eigenvalues in a n×n
random covariance matrix estimated by a sample of t observations and σ2 is the vari-
ance of the i.i.d. asset returns. Only the eigenvalues outside the interval [λmin, λmax]
are then assumed to bring useful information, while the others correspond to noise.
Here, we estimate the covariance matrix then by eigenvalue clipping, a technique that
consists in substituting the eigenvalues smaller than λmax with their average:

1Interestingly, the Ledoit-Wolf shrinkage is closely related to portfolio optimization with L2 pe-
nalization of weight estimates. Indeed, the optimization problem minw∈C(w′Σ̂w + aw′w), with
C = {w|1′w = 1} can be equivalently stated as minw∈C(w′(Σ̂ + aI)w), which then is equivalent
to solving the problem using the Ledoit-Wolf shrinkage estimator with Σ̂T = I (Bruder et al., 2013).



Appendix B. Appendix for Chapter 3 137

Σ̂RMT = V ΛRMTV
′, (B.3)

where V represents the eigenvectors of the sample covariance matrix and ΛRMT

is the diagonal matrix with the ordered eigenvalues, where the eigenvalues λ ≤ λmax

are substituted by their average (Bouchaud and Potters, 2009). The RMT filtering has
then the effect of averaging the lowest eigenvalues, improving the conditioning of
the matrix and therefore reducing the sensitivity of the precision matrix to estimation
errors.

For further details the reader is referred to Laloux et al., 1999, Bouchaud and
Potters, 2009 and Bruder et al., 2013.
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Appendix C

Appendix for Chapter 4

C.1 Robustness Checks

Here, we report some robustness checks on the model by testing different specifica-
tions for the input data. We control for two potential sources of misspecification in
the model (ARMA-GARCH effects in the time series and exposures of the banks to
common risk factors), and we investigate the estimated network structure computed
by considering only distressed market periods, which are characterized by increas-
ing CDS spreads. We report a set of network indicators computed on the estimated
networks in Table C.1. For brevity, we present only the data for the during-crisis
period.

First, we control for the presence of serial correlation and heteroskedasticity. The
tlasso model requires the data to be approximately i.i.d., and the presence of serial
correlation in CDS log-differences or in their variance might be a problem for the
estimation. We consider two different multivariate models: first a Constant Con-
ditional Correlation (CCC) GARCH(1,1) model (Bollerslev, 1990), and a Dynamic
Conditional Correlation (DCC) GARCH(1,1) (Engle, 2002). For both models, we es-
timate an ARMA(1,1) process for the mean. Once the model is fitted, we estimate
the tlasso model on the residuals, in a two-step procedure similar to Anufriev and
Panchenko, 2015 and Billio et al., 2012. We report some of the indicators of Section
4.4.3 computed on the residuals of the GARCH models in Table C.1 (columns b,c).
The results are rather similar to the ones computed directly on the log-differences
of CDS spreads (column a), consistently with the fact that volatility clustering and
serial correlation in the data were not particularly relevant.

As a second robustness check, we apply a factor model to the data to control for
the exposure to conditioning variables. The factors we consider are 5-year sovereign
CDS spreads of the 11 European countries to which the banks in our sample be-
long (i.e., Austria, Belgium, Denmark, France, Germany, Italy, Netherland, Portugal,
Spain, Sweden and United Kingdom). In order to avoid collinearity issues, we per-
form a principal component analysis, retaining the first 8 orthogonal factors, which
together explain more than 80% of the variability in the dataset. From Table C.1, (col-
umn d), we see that the value of the indicators is rather similar to those computed
from original data. Notably, the modularity of the country partition is still positive,
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indicating that the clustering of banks along national borders is present even after
controlling for the exposure to sovereign debt.

Finally, we test if the network structure is different in presence of market distress.
We focus on the periods characterized by upward movements of the CDS spreads,
that is, increases in credit risk. We use the following method to identify these peri-
ods of distress. We first construct an equally weighted porfolio of bank CDS spreads
and then select the points in time at which the log-returns of the porfolio are pos-
itive, corresponding to an average increase of the CDS spreads. In this way, we
obtain for the during crisis period 102 observations, which we use to compute the
sparse partial correlation network with tlasso. Also in this case, the values of the net-
work indicators presented in Table C.1 (column e) are similar to those obtained for
the original specification, indicating that the partial correlation networks are stable
also in periods of increasing spreads. This result is consistent with the fact that the
distribution of the CDS spreads log-difference is symmetric, as implied by the mul-
tivariate t-Student assumption and suggested by the analysis of the data in Section
4.4.1.

TABLE C.1: Robustness check - Network indicators

During-crisis period
Raw data
(a)

CCC-
GARCH
(b)

DCC-
GARCH
(c)

Country
factors (d)

Distressed
market (e)

Density 49.25% 47.53% 47.74% 44.95% 43.44%
Avg strength 0.95 0.95 0.95 0.93 0.96

Largest connected component 100% 100% 100% 100% 100%
Positive edges % 87.77% 90.95% 90.99% 90.43% 84.65

Positive edges % (weighted) 96.59% 97.43% 97.43% 97.63% 94.91
Freeman Centralization 0.47 0.43 0.43 0.48 0.47

Coreness 0.11 0.12 0.12 0.13 0.11
Modularity (wrt country) 0.36 0.34 0.34 0.36 0.37

Clustering coefficient 2.70% 2.54% 2.54% 2.60% 2.82%
Assortativity (wrt centrality) 0.61 0.59 0.59 0.66 0.43

Network indicators computed on tlasso networks in the during-crisis period (01/01/2009 – 31/12/2012) with alterna-
tive model specifications. Raw data (a) refers to the network computed with the specifications presented in Section
4.4. CCC-GARCH (b) and DCC-GARCH(c) refer to the network computed on the residuals of Constant and Dynamic
Conditional correlation GARCH model fitted on the log-differences of CDS spreads, respectively. Country factors
(d) refers to the network computed on the residuals of a factor regression where the factors are Sovereign European
CDS spreads for 11 European countries. Distress market (e) refers to the network computed in periods of increasing
spreads.

C.2 List of banks and summary statistics
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Appendix D

Appendix for Chapter 5

D.1 Quantile functions for conditional distributions

We discuss here how to compute conditional quantile functions under multivariate
t-Student distributions and we present the linear approximation.

Let X ∼ tp(µ,Σ, ν) where µ,Σ, ν are the location, scale and number of degrees
of freedom of the distribution, respectively. We consider the following partition:

X =

[
X1

X2

]
∼ tp

([
µ1

µ2

]
,

[
Σ11Σ12

Σ21Σ22

]
, ν

)
. (D.1)

The conditional distribution can be obtained considering the following scale-
mixture representation of a multivariate t-Student distribution:

X = µ+ Σ1/2Z
√
q, (D.2)

where Z is a standard p-variate Gaussian, q ∼ χ2
ν/ν and Z is independent from

q. Following Ding, 2016, it is possible to show that the conditional distribution of
X2|X1 is itself a t-Student distribution, although with a different number of degrees
of freedom. For the case with µ = 0 we have:

X2|X1 ∼ tp2
(
µ2|1,

ν + d(x1)

ν + p1
Σ22|1, ν + p1

)
, (D.3)

µ2|1 = Σ21Σ
−1
11 X1, (D.4)

Σ22|1 = Σ22 −Σ21Σ
−1
11 Σ12, (D.5)

where p1 and p2 are the dimension of X1 and X2, and d(X1) = X′1Σ
−1
11 X1 is the

squared Mahalanobis distance from X1 to µ1 = 0 with scale matrix Σ11. We can
then compute the conditional quantiles as functions of x1 for the case in which X2 is
univariate, obtaining

Q(X2|X1, τ) = Qt,ν+p1(τ)

(
ν + d(x1)

ν + p1
Σ22|1

)1/2

+ µ2|1, (D.6)

where Qt,ν+p1(τ) is the quantile function of a t-Student distribution with ν + p1 de-
grees of freedom.
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Remark. Differently from the Gaussian case, the conditional quantile of X2|X1 is not an
affine function in X1, as d(X1) is a non-linear function of X1.

In Chapter 5 and in the rest of this Appendix, we refer to the case with µ = 0 and
where Xi = X2 is univariate.

D.1.1 Proof of Proposition 1

Proof. We obtain the best linear approximation by minimizing the squared distance
between the quantile function and an affine function g(x) = α+ βx. To simplify the
notation we consider X1 = X\i and X2 = Xi. We also define for convenience the
function

ǧ(x) = α+ β̌x = g(x)−Σ21Σ
−1
11 x. (D.7)

After defining the quantity σ22|1 :=

(
ν + d(X1)

ν + p1
Σ22|1

)1/2

, we express the distance

between the true quantile and the function g(x) as a function of X1 as

g(X1)−Qτ (X2|X1) = ǧ(X1) + Σ21Σ
−1
11 X1 −Qt(τ)σ22|1 −Σ21Σ

−1
11 X1 (D.8)

= α+ x1β̌ +Qt(τ)σ22|1. (D.9)

The optimal parameters α, β̌ are then obtained by minimizing the expected squared
distance over X1:

min
α,β̌

EX1

[(
X1β̌ + α−Qt(τ)σ22|1

)′ (
X1β̌ + α−Qt(τ)σ22|1

)]
=

(D.10)

min
α,β̌

EX1

[
β̌′X′1X1β̌ + α2 +Q2

t (τ)σ2
22|1 + 2β̌′X′1α− 2β̌′X′1Qt(τ)σ22|1 − 2αQt(τ)σ22|1

]
=

(D.11)

min
α,β̌

β̌CoV(X)β̌ + α2 +Q2
t (τ)E[σ2

22|1] + 2αβ̌′E[X1]− 2Qt(τ)β̌′E[X′1σ22|1]− 2αQt(τ)E[σ22|1] =

(D.12)

min
α,β̌

β̌CoV(X1)β̌ + α2 +Q2
t (τ)E[σ2

22|1]− 2αQt(τ)E[σ22|1].

(D.13)

The last equality is satisfied thanks to E[X1] = 0 by construction and E[X′1σ22|1] =∫
Ω x′1σ22|1dfx1 = 0, as x′1σ22|1fx1 is an odd function (note that fx1(X1) is an even

function since it is the density function of an elliptical distribution).
The function is convex and quadratic, and it has a global minimum. We compute the
first order condition by setting the partial derivative of the function h in D.13 w.r.t.



Appendix D. Appendix for Chapter 5 143

α and β̌ to zero:

∂h

∂α
= 2α− 2Qt(τ)E[σ22|1] = 0 (D.14)

∂h

∂β
= 2CoV(X1)β̌ = 0 (D.15)

and we find the optimal solution α = QtE[σ22|1] and β̌ = 0, from which β =

Σ21Σ
−1
11 x using (D.7).

D.1.2 Proof of Proposition 2

Proof. The difference D(X1) between the τ -quantile function (D.6) and its linear ap-
proximation (5.31) is:

D(x1) = Qt,ν+p−1(τ)

(
ν + d(X1)

ν + p− 1
Σ22|1

)1/2

−Qt,ν+p−1(τ)EX1

[(
ν + d(X1)

ν + p− 1
Σ22|1

)1/2
]
.

(D.16)

Considering that d(X1) is an even, positive, and convex function, and has minimum
in X1 = 0, Σ22|1 is positive by construction, (·)1/2 is an increasing function, and the
second term of (D.16) is a constant, it follows that the function is convex for Q > 0

(i.e. τ > 0.5) and concave for Q < 0 (i.e. τ < 0.5). Since the max is for X1 = 0, the
difference function D(X1) is negative for X1 with all negative values, and the thesis
follows.

Remark. Assuming that the focus is on low quantiles, the ∆CoVaR computed using a
linear function for the conditional quantile (as in the classical implementation of Adrian and
Brunnermeier, 2016), it will underestimate the true ∆CoVaR if the data are jointly t-Student
distributed.

Remark. The underestimation of ∆CoVaR computed using linear τ -quantiles is more severe
for t-Student with lower degrees of freedom ν.
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D.2 List of banks considered in the empirical analysis

TABLE D.1: List of the banks studied in the empirical analysis.

Institution Country
BANCO SANTANDER SA Spain
BANCO BILBAO VIZCAYA Spain
BANCO SABADELL Spain
INTESA SANPAOLO SPA Italy
UNICREDIT SPA Italy
BANCA MONTE PASCHI Italy
BANCO BPM SPA Italy
UNIONE DI BAN Italy
AIB GROUP PLC Ireland
BANK OF IRELAND Ireland
BANK OF GREECE SA Greece
CREDIT SUISSE GROUP Switzerland
UBS GROUP AG Switzerland
DANSKE BANK A/S Denmark
JYSKE BANK A/S Denmark
NORDEA BANK Denmark
DNB ASA Norway
SKANDINAVISKA ENSK Sweden
SV. HANDELSBANKEN AB Sweden
SWEDBANK AB Sweden
HSBC HOLDINGS PLC United Kingdom
LLOYDS BANKING GROUP United Kingdom
BARCLAYS PLC United Kingdom
ROYAL BANK United Kingdom
STANDARD CHARTERED United Kingdom
KOMERCNI BANKA, A.S. Czech Republic
BNP PARIBAS SA France
CREDIT AGRICOLE SA France
STE. GENL. DE FRANCE France
NATIXIS France
ING GROEP N.V. Netherlands
DEUTSCHE BANK AG Germany
COMMERZBANK AG Germany
KBC GROUP NV Belgium
ERSTE GROUP BANK AG Austria
RAIFFEISEN BANK Austria
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D.3 Optimal communities identified in the networks

TABLE D.2: Communities in 2007–12. The number and order of the
communities is selected automatically by the algorithm. We matched

the most similar ones across networks to simplify the comparison.

Community Banks (∆CoVaR) Banks (median QGM)

1

Credit Suisse Group (CH), Bank
Of Greece Sa (GR), UBS Group
Ag (CH), ING Groep N.V. (NL),

Deutsche Bank Ag (D),
Commerzbank Ag (D), Erste

Group Bank Ag (A), Raiffeisen
Bank (A)

Bank Of Greece Sa (GR), ING
Groep N.V. (NL), Erste Group
Bank Ag (A), Raiffeisen Bank

(A), KBC Group Nv (B)

2

AIB Group Plc (IRL), Bank Of
Ireland (IRL), Hsbc Holdings

Plc (GB), Lloyds Banking Group
(GB), Barclays Plc (GB), Royal

Bank (GB), Standard Chartered
(GB), KBC Group Nv (B)

AIB Group Plc (IRL), Bank Of
Ireland (IRL), Hsbc Holdings

Plc (GB), Lloyds Banking Group
(GB), Barclays Plc (GB), Royal

Bank (GB), Standard Chartered
(GB)

3

Danske Bank A/S (S), Jyske
Bank A/S (S), Nordea Bank (S),
DNB Asa, Skandinaviska Ensk,

Sv. Handelsbanken Ab,
Swedbank Ab, Komercni Banka,

A.S. (CZ)

Danske Bank A/S (S), Jyske
Bank A/S (S), Nordea Bank (S),
DNB Asa, Skandinaviska Ensk,

Sv. Handelsbanken Ab,
Swedbank Ab, Komercni Banka,

A.S. (CZ)

4
BNP Paribas Sa (F), Credit

Agricole Sa (F), Ste. Genl. De
France (F), Natixis (F)

BNP Paribas Sa (F), Credit
Agricole Sa (F), Ste. Genl. De

France (F), Natixis (F)

5

Intesa Sanpaolo Spa (I),
Unicredit Spa (I), Banca Monte
Paschi (I), Banco BPM Spa (I),

Unione Di Ban (I)

Intesa Sanpaolo Spa (I),
Unicredit Spa (I), Banca Monte
Paschi (I), Banco BPM Spa (I),

Unione Di Ban (I)

6
Banco Santander Sa (E), Banco

Bilbao Vizcaya (E), Banco
Sabadell (E)

Banco Santander Sa (E), Banco
Bilbao Vizcaya (E), Banco

Sabadell (E)

7
Credit Suisse Group (CH), UBS
Group Ag (CH), Deutsche Bank
Ag (D), Commerzbank Ag (D)
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TABLE D.3: Communities in 2013-18. The number and order of the
communities is selected automatically by the algorithm. We matched

the most similar ones across networks to simplify the comparison.

Community Banks (∆CoVaR) Banks (median QGM)

1

Bank Of Greece Sa, Credit
Suisse Group (CH), UBS Group

Ag (CH), Hsbc Holdings Plc
(GB), Lloyds Banking Group

(GB), Barclays Plc (GB), Royal
Bank (GB), Standard Chartered

(GB), Deutsche Bank Ag (D),
Commerzbank Ag (D)

Hsbc Holdings Plc (GB), Lloyds
Banking Group (GB), Barclays

Plc (GB), Royal Bank (GB),
Standard Chartered (GB)

2

AIB Group Plc (IRL), Danske
Bank A/S (S), Jyske Bank A/S

(S), Nordea Bank (S), DNB Asa,
Skandinaviska Ensk, Sv.

Handelsbanken Ab, Swedbank
Ab, Komercni Banka, A.S. (CZ)

Danske Bank A/S (S), Jyske
Bank A/S (S), Nordea Bank (S),
DNB Asa, Skandinaviska Ensk,

Sv. Handelsbanken Ab,
Swedbank Ab, Komercni Banka,

A.S. (CZ)

3

Bank Of Ireland (IRL), BNP
Paribas Sa (F), Credit Agricole
Sa (F), Ste. Genl. De France (F),

Natixis (F), ING Groep N.V.
(NL), KBC Group Nv (B), Erste
Group Bank Ag (A), Raiffeisen

Bank (A)

Bank Of Ireland (IRL), BNP
Paribas Sa (F), Credit Agricole
Sa (F), Ste. Genl. De France (F),

Natixis (F), ING Groep N.V.
(NL), KBC Group Nv (B), Erste
Group Bank Ag (A), Raiffeisen

Bank (A)

4

Intesa Sanpaolo Spa (I),
Unicredit Spa (I), Banca Monte
Paschi (I), Banco BPM Spa (I),

Unione Di Ban (I)

Intesa Sanpaolo Spa (I),
Unicredit Spa (I), Banca Monte
Paschi (I), Banco BPM Spa (I),

Unione Di Ban (I)

5
Banco Santander Sa (E), Banco

Bilbao Vizcaya (E), Banco
Sabadell (E)

Banco Santander Sa (E), Banco
Bilbao Vizcaya (E), Banco

Sabadell (E), AIB Group Plc
(IRL)

6

Bank Of Greece Sa, Credit
Suisse Group (CH), UBS Group

Ag (CH), Deutsche Bank Ag
(D), Commerzbank Ag (D)
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