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Abstract We present a two-stage stochastic program for a distribution logistic sys-
tem with transshipment and backordering under stochastic demand and we first ar-
gue that it is NP-hard. Then, we perform a computational analysis based on a dis-
tribution network. In the case with two retailers, we show that modeling uncertainty
with a stochastic program leads to better solutions with respect to the ones provided
by the deterministic program, especially if limited recourse actions are admitted. Al-
though there are special cases in which the deterministic and the stochastic solutions
select the same retailers towards which sending items, in general, the deterministic
solution cannot be upgraded in order to find the optimal solution of the stochastic
program. Finally, in the case with four retailers, transshipment can provide more
flexibility and better results.

Keywords: Optimization under Uncertainty, Transshipment, Backordering, Stochas-
tic solution analysis

1 Introduction

In recent years, competition pressure has increased and logistics has become more
and more crucial for the success of companies due to its impact on costs and service
levels. An efficient distribution system is fundamental to satisfy customers’ requests
with reduced lead times and with a good service level. Traditionally, the distribution
network is organized as a hierarchical process in which the flow of goods is shipped
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from the uppermost level of the distribution chain to the lowest. One of the purposes
of this paper is to study a more flexible distribution network, where the shipment of
products between locations at the same level of the distribution system is admitted.
This strategy is called transshipment and it allows companies to reduce stock out
risks, to share surplus stocks and to improve warehouses management, coping with
demand uncertainty.

Based on the inventory system, ordering and transshipment characteristics, [12]
present a complete review of the transshipment literature. Examples of stochastic
transshipment problems are [5], where fixed replenishment costs are taken into ac-
count, while [11] considers the unidirectional transshipment problem, where loca-
tions have different backordering and stockout costs. Backordering is not consid-
ered in [15], while [16] studies the multi-location transshipment problem including
lead times. Finally, [14] proposes a stochastic transshipment model for humanitarian
emergencies.

Our contribution is to provide insights about the importance of considering un-
certainty in a distribution system with transshipment and backordering.

The remainder of the paper is organized as follows. Sect. 2 presents the problem
description and formulation. Sect. 3 shows our computational results and, finally, in
Sect. 4, conclusions and research perspectives are outlined.

2 Problem Description and Formulation

The analyzed problem deals with a single echelon distribution system composed of
a single supplier and a set I of M retailers with a centralized decision making.
Transshipment is admitted and, in order to keep track of the origin and destina-
tion of product flows, we represent retailers performing transshipment by index i
and retailers receiving transshipped quantities by index j (i ∈ I , j ∈ I ). In this
problem transshipment is intra-level (since it involves only retailers), bi-directional
(each retailer can both transship products to other retailers and receive products
from them) and reactive (it is performed in emergency situations, after demand re-
alization). We deal with a single product complete pooling transshipment (retailer i
can not keep any inventory quantity if retailer j has a shortage of product), where
the priority principle is respected (each retailer satisfies its demand at first and then
transshipment is performed if necessary), backordering to supplier is allowed and,
consequently, the demand can potentially be covered with supplied quantities, with
transshipment quantities and with backordered quantities. The unsatisfied demand
represents a lost sale. Since retailers are supposed to be close to each other, lead
times are considered negligible. Our problem is described on two time intervals: t0,
which represents the time at which we have to take the decision about the quantities
to ship from the supplier to retailers and t1, in which, after demand realization, we
decide the quantities to transship and the quantities to backorder.

Moreover, the problem is characterized by risk presence: the demand is a phe-
nomenon which can not be exactly forecast, but it is stochastic. We denote by d all
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possible values for the demand, that is a random variable having discrete (mutually
indipendent) probability distributions Di, defined over the support U1 = {d, . . . ,d},
where 0< d ≤ d. Furthermore, we represent by S the set of scenarios s, s= 1, . . . ,S
and by prs the probability of each scenario s ∈ S , so that ds

i denotes the demand
realization for retailer i in scenario s. The measure adopted to evaluate the system
performance is the total expected cost.

At time t0, the decision variables of this model are xi, which represent the de-
cisions to take at the first stage, i.e. the quantity to ship from the supplier to each
retailer i, taking into account the supplier’s total inventory availability q and the
associated unit inventory cost h0. We introduce a capacity Ci for each vehicle em-
ployed in the shipment of units from the supplier to retailer i and an integer variable
vi, standing for the number of total vehicles used to serve retailer i by direct ship-
ping. The transportation cost between the supplier and each retailer is represented
by a variable cost fi, proportional to the number of shipped units and by a fixed
component Fi, paid for each vehicle used.

If retailer j has to face a demand ds
j greater than the initial inventory level Ii0 plus

the quantity xi received from the supplier, transshipment and/or backordering can
be used to avoid stock-out. Thus, at t1 the decision variables are represented by ys

i j
which stand for the quantity to transship from retailer i to retailer j, for each possible
scenario s, after the demand realization ds

i and by bs
i which represent the quantity to

backorder from the supplier for each retailer and for each possible scenario s, after
demand realization ds

i . On one hand, we introduce a capacity CT for vehicles used
to transship units (note that the capacity of vehicles used to ship units from supplier
to retailers is typically bigger than the capacity of vehicles used for transshipment)
and integer variables V s

i j representing the number of vehicles employed for trans-
shipment from retailer i to retailer j for each scenario s. The total transshipment
cost is composed of a unit cost ti j for each transshipped unit and a fixed cost Ti j for
each vehicle used. On the other hand, backordering is done by using vehicles with
the same capacity Ci of vehicles used for the shipment from the supplier to retailer
i and we represent the number of vehicles used for backordering with the variables
rs

i . The total backordering cost is composed of a unit backordering cost gi for each
backordered unit and a fixed cost Gi for each vehicle used. Finally, the variables Is

i
represent the balance quantity at each retailer i for each scenario s and they are given
by the sum of the initial inventory level Ii0 plus the quantity received from the sup-
plier, the quantity received through transshipment and through backordering minus
the sum of the customers’ demand and of the transshipped units. If this quantity is
positive, it stands for the inventory level and the associated unit cost is represented
by hi. If the quantity is negative, then the balance quantity stands for the stock-out
quantity and retailer j has to pay a unit penality cost p j. In particular, if the product
surplus at retailer i is transshipped to retailer j, but it is not sufficient to fully cover
the shortage of product of retailer j, and no quantities are backordered, retailer i
has neither inventory nor stock-out costs, while retailer j has to face stock-out costs
for the unsatisfied demand. We also consider the warehouse capacity Qi for each
retailer i.
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Consequently, we formulate the following integer non linear two stage stochastic
programming model.

Model T

min h0(q− ∑
i∈I

xi)+ ∑
i∈I

( fixi +Fivi)+

+ ∑
s∈S

prs[h0(q− ∑
i∈I

xi − ∑
i∈I

bs
i )+ ∑

i∈I

(gibs
i +Girs

i )+

+ ∑
i∈I

hi max{Is
i ,0}+ ∑

i∈I
∑

j∈I :i6= j
(ti jys

i j +Ti jV s
i j)− ∑

j∈I

p j min{Is
j ,0}]

(1)

s.t.
∑

i∈I

(xi +bs
i )≤ q s ∈ S (2)

Is
i = Ii0 + xi +bs

i −ds
i + ∑

j∈I :i6= j
(ys

ji − ys
i j) i ∈ I , s ∈ S (3)

Is
i ≤ Qi i ∈ I , s ∈ S (4)

xi ≤Civi i ∈ I (5)

bs
i ≤Cirs

i i ∈ I , s ∈ S (6)

ys
i j ≤CTV s

i j i ∈ I , j ∈ I : j 6= i, s ∈ S (7)

xi ≥ 0 integer i ∈ I (8)

ys
i j ≥ 0 integer i ∈ I , j ∈ I : j 6= i, s ∈ S (9)

bs
i ≥ 0 integer i ∈ I , s ∈ S (10)

vi ≥ 0 integer i ∈ I (11)

rs
i ≥ 0 integer i ∈ I , s ∈ S (12)

V s
i j ≥ 0 integer i ∈ I , j ∈ I : j 6= i, s ∈ S (13)

Is
i f ree i ∈ I , s ∈ S (14)

where the objective function (1) represents the minimization of the total expected
cost, obtained through the sum of the supplier’s inventory cost, the total shipment
costs from supplier to retailers, the expected supplier’s inventory costs, the total
expected backordering cost, the total expected retailers’ inventory cost, the total
expected transshipment costs and the expected stock-out costs. Constraints (2) im-
plies that the total quantity shipped from the supplier to all retailers (through usual
shipment and backordering) cannot be greater than the supplier’s initial inventory.
Constraints (3) are the balance constraints. Constraints (4) imply that the balance
quantity (computed as in (3)) cannot exceed the warehouse capacity Qi for each re-
tailer i. Constraints (5), (6) and (7) link together the decision variables xi, bs

i and ys
i j

with the respective integer variables vi, rs
i and V s

i j so that if the first ones are positive,
these quantities are splitted in a certain number of vehicles represented by the latter
ones, considering the respective vehicles capacities Ci and CT and, consequently, the
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associated fixed costs Fi, Gi and Ti j are charged in the objective function. Finally,
constraints from (8) to (14) are variables definition constraints. Due to the non-
linearity of Model T , we linearize it following the approach described in [4] and
we call the linearized problem “Model T L ”. Finally, we notice that Model T L

can be reduced to the Fixed Charge Transportation Problem (see [6] and [13]) and
hence, it is NP-hard.

3 Computational results

Model T L was implemented in Python 3.6.1 using the Gurobi 7.5.1 solver, and run
on an Intel Core i7-7500U 2.70 GHz and 8GB RAM personal computer. Due to the
complexity of Model T L , the running is stopped when a 1% relative gap to the
optimal solution or a time limit of 1 hour is reached.

We first consider the case with two retailers (i.e. | I |=2). Our instances are
inspired by a real case presented in [1], in which the uncertain demand of pallets
should be satisfied by using trucks with limited capacity. The support of the demand
probability distribution is in the set of integer numbers in the interval [30,130], while
the probability distribution is given by a Beta distribution (α , β ), where α=20 and
β=16, having average demand E(d) = 85.55556 pallets. The supplier’s inventory
level q is equal to 200 pallets, the capacity Ci of the vehicles used for shipment and
backordering to all retailers is equal to 34 pallets, the capacity CT of the vehicle
used for transshipment is 17 pallets, while the retailers’ warehouse capacity Qi is
equal to 170 pallets. Furthermore, we define the value P of a pallet to be equal to
1053 Euros, and since the unit inventory costs approximatively correspond to 5% of
the value of a pallet of 100 kilograms, we set the supplier’s inventory cost equal to
5% P, and the retailers’ inventory costs equal to 6% P. Moreover, since the penalty
cost corresponds to a lost sale and to a reputation damage, we let p j equal to 1.5
P. As in [1], we consider a unit shipment cost of a pallet with 100-200 kilograms
weight on a distance up to 500 kilometers equal to 93.60 Euros and a fixed shipment
cost equal to fiCi

θ , where θ = 0.5. Finally, considering that the fixed transshipment
and backordering costs are computed as a function of the unit transshipment and
backordering costs, 25 different instances are generated by combining all possible
values, as displayed in Table 1. We notice that Model T L can be reduced into
different special cases, which facilitate a trade-off analysis. In particular, in the “Ex-
tremely High case”, obtained by assigning to transshipment and backordering costs
a very high value (for example, equal to infinity), we get one instance in which both
transshipment and backordering are not allowed, four instances in which only back-
ordering is allowed and four instances in which only transshipment is allowed. The
same parameters are considered also in the case with four retailers, (i.e. | I |= 4),
apart from q which is equal to 350 pallet.

In order to determine the right number of scenarios which have to be considered
for the stochastic setting, we perform the in-sample stability analysis identifying as
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Table 1 Transshipment and backordering fixed and unit costs

Cost Extremely Low case (EL) Low (L) Medium (M) High (H) Extremely High case (EH)
ti j 0 0.75 fi

2 = 35.1 fi
2 = 46.8 1.25 fi

2 = 58.5 +∞
Ti j 0 ti jCT

0.5 = 1193.4 ti jCT

0.5 = 1591.2 ti jCT

0.5 = 1989 +∞
gi 0 0.75 fi = 70.2 fi = 93.6 1.25 fi = 117 +∞
Gi 0 giC

0.5 = 4773.6 Fi = 6364.8 giC
0.5 = 7956 +∞

benchmark scenario tree, the one with 500 scenarios. The out-of-sample stability
analysis in the benchmark tree is obtained with 300 scenarios.

3.1 Stochastic solution analysis

In this section, we perform the stochastic solution analysis considering the bench-
mark scenario tree with 500 scenarios and computing the indicators presented in
[10]. Table 2 displays the average results for the two retailers case, where with
“Other” we refer to instances not belonging to any special case (i.e. the ones in
which both transshipment and backordering are allowed). First, the availability of
a perfect information about the future is more important if recourse decisions (i.e.
backordering and transshipment) are not allowed or just transshipment is admitted
with an EV PI of 12.07% in the first case and approx. 10% in the second. The case
in which only backordering is allowed is the most flexible with an EV PI of 1.72%,
as new quantities can be introduced in the system through the recourse decision,
while when only transshipment is allowed, there can be a flow of goods between
retailers, but further quantities are not available. Concerning the Value of Stochastic
Solution, VSS, results show there are more advantages in including stochasticity in
the cases where no recourse actions are admitted or only less flexible recourse ac-
tions are allowed (i.e. transshipment). In order to understand why the deterministic
solution is worse compared to the stochastic one, we compute the LUSS and the
LUDS indicators. Through the LUSS, we see that in the cases where no recourse
decisions or just one of them are admitted, the deterministic solution identifies the
same retailers selected by the stochastic solution, but with wrong delivered quan-
tities. In the other cases, the retailers receiving zero quantities are different in the
stochastic and in the deterministic solution and, as a consequence, the poor perfor-
mance is due both to the selection of retailers and to the selection of the quantities.
Through the LUDS, we notice that the solution is perfectly upgreadable only if both
backordering and transshipment are not allowed, meaning that these quantities are
always lower or equal to the ones suggested by the stochastic program. For all other
cases, the LUDS is not null, meaning that the deterministic solution is only partially
upgreadable (at least in one case, the stochastic solution delivers a lower number of
pallets than the one suggested by the deterministic solution).

Finally, we focus on the case with four retailers. Due to the computational com-
plexity of the problem, with the exception of the case “No transshipment, No back-
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Table 2 Average values for the stochastic solution analysis indicators for every special case with
two retailers

Cases RP WS EVPI EEV VSS ESSV LUSS EIV LUDS
No transshipment
No backordering 56941.68 50066.85 12.07% 57688.54 1.31% 56941.68 0.00% 56941.68 0.00 %

Only backordering 40856.24 40153.84 1.72% 40956.26 0.25% 40856.24 0.00% 40876.56 0.05%
Only transshipment 53557.80 48337.35 9.75% 54600.35 1.95% 53557.80 0.00% 53567.35 0.02%

Other 39487.43 38979.73 1.29% 39723.29 0.60% 39512.12 0.06% 39504.06 0.04%

ordering”, we analyze only the instances whose costs of the allowed strategy are set
at a “Medium” level (i.e. only one instance for each case is considered). Results are
displayed in Table 3. We specify that after 549090 seconds, the gap to the optimal
solution of the RP for the “Other” case was not closed and we calculate only the
EVPI and the VSS, since the other indicators require further constraints which make
the model even more difficult to get solved to optimality. Differently from Table 2,
now, if only backordering is allowed the cost is higher than the case in which only
transshipment is admitted, while for the EVPI, the previous results are confirmed.
Concerning the VSS, the results are now different, as there are more advantages
in including stochasticity in the case where only backordering is allowed. Even if
with only backordering, the quantities delivered in the first stage are fewer, trans-
shipment is cheaper if only few quantity adjustments are needed and the presence
of more retailers provides more flexibility to the distribution system.

Table 3 Values for the stochastic solution analysis indicators for every special case with four
retailers and “Medium” cost level

Cases RP WS EVPI EEV VSS
No transshipment
No backordering 120144.82 109191.65 10.03% 131098.04 9.12%

Only backordering 112319.31 109191.65 2.86% 122822.55 9.35%
Only transshipment 107613.10 103077.98 4.40% 111960.39 4.04%

Other 105432.62 (2.27%) 103077.98 2.28% 106535.91 1.05%

4 Conclusions

We presented a real problem arising in logistics and after modeling it with an integer
stochastic program, we stated that this is NP-hard. Furthermore, we show that with
two retailers, a decision-maker has a greater advantage by including uncertainty,
especially if no recourse actions or only transshipment is admitted. We also show
that in some cases, the selection of retailers to which quantities should be delivered
is the same both in the deterministic and in the stochastic solution. Nevertheless, the
deterministic solution can be upgrated only in the special case where no recourse
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actions are allowed. Conversely, with four retailers, transshipment provides more
flexibility. Future research could be devoted to analyze the multistage version of
this problem by exploiting lower bounds (see [7]-[8]) and, as in [1], to compare the
stochastic solution to the one obtained through a rolling-horizon heuristic. Another
stream of research could be analyzing robust optimization approaches (see [9]) or
adapting approaches presented in [2].
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