
Zone-based Formal Specification and Timing Analysis
of Real-time Self-adaptive Systems

Matteo Camillia,∗, Angelo Gargantinib, Patrizia Scandurrab

aDept. of Computer Science, Università degli Studi di Milano, Italy
bDept. of Management, Information and Production Engineering (DIGIP), Università degli Studi di Bergamo, Italy

Abstract

Self-adaptive software systems are able to autonomously adapt their behavior at run-time to react to inter-
nal dynamics and to uncertain and changing environment conditions. Formal specification and verification
of self-adaptive systems are tasks generally very difficult to carry out, especially when involving time con-
straints. In this case, in fact, the system correctness depends also on the time associated with events.

This article introduces the Zone-based Time Basic Petri nets specification formalism. The formalism
adopts timed adaptation models to specify self-adaptive behavior with temporal constraints, and relies on
a zone-based modeling approach to support separation of concerns. Zones identified during the modeling
phase can be then used as modules either in isolation, to verify intra-zone properties, or all together, to verify
inter-zone properties over the entire system. In addition, the framework allows the verification of (timed)
robustness properties to guarantee self-healing capabilities when higher levels of reliability and availability
are required to the system, especially when dealing with time-critical systems. This article presents also
the ZAFETY tool, a Java software implementation of the proposed framework, and the validation and
experimental results obtained in modeling and verifying two time-critical self-adaptive systems: the Gas
Burner system and the Unmanned Aerial Vehicle system.

Keywords: Self-adaptation, Real-time Systems, Petri Nets, Formal Verification, Timing Analysis

1. Introduction

Modern advanced software systems are required to perceive important structural and dynamic changes
of their operational environment as well as of their internal status, and to adapt to these continuous changes
autonomously [1, 2, 3]. They aim at achieving better quality of service and ensuring the required functionality
in a fail-soft manner even in hostile or error conditions realizing the so called self-* properties [4], such as
self-optimizing (when operating conditions change), self-reconfiguration (when a goal changes), self-healing
(that allows the system to perceive that it is not operating correctly and therefore make the necessary
adjustments to restore itself to normal operation autonomously), and so forth. Moreover, another main
concern in the construction of self-adaptive software systems is the uncertainty [5, 6, 7] underlying the
knowledge used for decision making. In fact, due to unpredictable changes, for example in the environment,
a self-adaptive system may have no control over new unexpected processes that influence the environment
and the system’s organization itself that (especially in a distributed setting) may fluctuate dynamically.

The development of self-adaptive systems is extremely challenging and demands new formal approaches
that can efficiently tackle the problems of expressing autonomicity requirements and ensuring the functional
correctness of the system’s adaptation logic both at design-time and at run-time. However, the survey

∗Corresponding author.
Email addresses: matteo.camilli@unimi.it (Matteo Camilli), angelo.gargantini@unibg.it (Angelo Gargantini),

patrizia.scandurra@unibg.it (Patrizia Scandurra)

Preprint submitted to Science of Computer Programming April 23, 2018

in [8] and the Dagstuhl seminar [9] show that, although the attention for self-adaptive software systems is
gradually increasing, the number of studies that employ mathematically-based specification and verification
techniques from the area of formal methods remains low. In particular, specification and verification of self-
adaptive systems are very difficult to carry out when involving time constraints. The functional correctness
of the system and of its adaptation logic depends, in fact, also on the time associated with events. Most
of the existing techniques are not effective when dealing with real-time constraints, because quantitative
temporal aspects are not taken into account. Responsiveness is in fact a crucial property in real-time
software systems, hence the need for models of timed adaptation that treat timing requirements (such as
duration and overhead) of the adaptation as first class entities [1].

In this article, we present a formal framework to specify and verify the behavior of real-time self-adaptive
systems. In particular, our main target systems are self-adaptive systems that exhibit a self-healing behavior
[10] under time constraints. We define a specification formalism based on the Time-Basic Petri nets (or
simply TB nets) [11], a particular timed extension of Petri nets. The proposed formalism, called Zone-based
TB Petri nets, provides some enhancements to the TB nets formalism to model self-adaptive systems with
real-time constraints. In particular, we adopt and extend the adaptation models – one-point adaptation,
overlap adaptation, and guided adaptation – originally presented in [12, 13] to realize self-adaptation (SA)
with temporal constraints in TB nets. To this purpose, the proposed specification formalism supports
separation of concerns by allowing dividing the system’s TB net model into zones1. The proposed framework
supports a formal verification technique through the symbolic execution of the system’s TB net, thus allowing
also the verification of timed adaptation2. Zones of the TB net identified during the modeling phase can
be used as modules (TB subnets) either in isolation, to check intra-zone properties, or all together, to check
inter-zone properties of the overall system model.

The framework has been implemented as a Java software tool, called ZAFETY3, and validated for
modeling and verifying the self-healing behavior of time-critical systems. As running example to illustrate
the framework, we present the Unmanned Aerial Vehicle (UAV) case study.

The definition of Zone-based TB nets and the supported verification technique to assure the correctness
of these models were already presented in [15]. Starting from preliminary results presented in that work,
the current contribution: (i) improves the definition of the framework to specify and verify the functional
behavior of a self-adaptive system with real-time constraints; (ii) presents a more complex case study,
a UAV system, showing all forms of adaptation models supported by our framework; (iii) describes the
complexity evaluation of the main algorithms adopted by the proposed verification technique to assure
correctness of a real-time self-adaptive system, including timed adaptation requirements; (iv) describes the
current implementation of the proposed formal framework – the ZAFETY software tool – including some
experimental results; (v) provides a more accurate comparison with the state of the art according to generally
agreed key features for SA.

The proposed framework is primarily tailored to the formalization and timing verification of self-adaptive
systems with time constraints in order to provide guarantees of correctness of adaptation at design time.
Currently, we support the modeling of external uncertainty [5], mainly due to lack of knowledge on the
environment. We do not consider modeling of non-functional requirements of self-adaptive systems, and
we do not yet support runtime verification. Specifically, we contribute with the following key aspects:
(i) definition of a formalism for modeling self-adaptive behavior with real-time constraints; (ii) modular and
incremental modeling and verification process due to separation in zones (e.g., adaptation/functional logics);
(iii) verification technique for checking adaptation requirements satisfaction, including timed adaptation;
(iv) approach able to map zones defined upon the model into regions of the system state space, thus
allowing the identification of different behaviors (normal behavior, undesired behavior, adaptive behavior,
etc.) upon the state space structure, and the verification of properties of interest with respect to SA that, as

1The term zone is here to be intended differently from the forward zone-based reachability analysis of Time Petri Nets [14],
where a zone stands for a finite convex union of regions (i.e., a representation of clock values using equivalence classes).

2Timed adaptation concerns how specifying time-triggered adaptation coupling the design of adaptation concerns with
time-dependent constraints. Support for modeling time must regard sparse and dense models for time separately.

3Zone-based specificAtion and veriFication of rEaltime self-adapTive sYstems.

2

advocated in [8], typically map to transitions between different zones. These aspects, as discussed in Sect. 7,
are advantages over previous works that do not cover all these features or cover them only partially.

This article is organized as follows. Sect. 2 provides background concepts on the TB Petri nets and
also describes the adaptation models that we adopt for realizing SA in TB Petri nets. Sect. 3 presents the
UAV system adopted throughout the article as running example. Sect. 4 presents the proposed zone-based
TB nets formalism for modeling real-time self-adaptive systems. Sect. 5 presents a verification technique to
verify structural and behavioral properties of real-time self-adaptive systems, and the results of applying this
verification technique on the running case study. Sect. 6 presents the tool ZAFETY and the experimental
results obtained during the verification of two case studies, including the UAV system. Sect. 7 presents
related works with respect to formal methods for modeling and analyzing time-dependent self-adaptive
systems. Sect. 8 discusses some threats to the validity of our work. Sect. 9 concludes the article and outlines
future directions of our work. Finally, Appendix A reports the complete formal specification of the UAV
example.

2. Background

This section provides background concepts on the TB net formalism and existing adaptation models that
we adopted as reference models to realize SA in TB nets.

2.1. Time Basic Petri nets
TB nets belong to the category of Petri nets [16] in which system time constraints are expressed as linear

functions associated to each transition, representing possible firing instants computed since transition’s
enabling. Tokens, atomically produced by the firing of a transition, are thereby associated to time-stamps
with values ranging over a determined set. With respect to the well-known representative of this category,
(i.e., Time Petri nets [17]), interval bounds in TB nets are linear functions of timestamps in the enabling
marking, rather than simple numerical constants. We chose to adopt such a modeling formalism because it
supports both time and functional extensions in a semantically clear and rigorous way. Thus it represents
an effective formal model to deal with specification of time-critical systems. Although other modeling
formalisms such as timed-automata [18] or finite-state-machines [19] support the modeling of temporal
or behavioral aspects, PNs-based approaches can be more concise [20] and more scalable with respect to
other formalisms for specifying highly concurrent systems [21]. Furthermore, aspects such as messaging,
communication protocols, which are commonly used in concurrent or distributed systems, can be difficult
to model with the language primitives of timed-automata [22, 21]. Moreover, TB nets are supported by
powerful off-the-shelf open source software tools able to perform simulation, model checking [23, 24, 25, 26],
model-based testing, and runtime verification [27, 28].

The structure of a Time Basic net extends the P/T net structure (P, T, F), where P is a finite set of
places, T a finite set of transitions such that P ∩ T = ∅, and F ⊆ (P × T) ∪ (T × P) a set of arcs (or flows)
connecting places to transitions and transitions to places. Let v ∈ P ∪ T : •v, v• denote the backward and
forward adjacent sets of v according to F , respectively, also called pre/post-sets of v. A time-stamp tuple
of t ∈ T is an association en : •t → R≥0. Moreover, each transition t is associated with a time function ft
which maps a tuple of time-stamps en of t to a (possibly empty) set of R≥0 values. ft(en) represents the
possible firing times of t.

A marking (state) is a mapping m : P → Bag(R≥0), where Bag(X) represents the set of multiset over
X. According to the weak (or non-urgent) semantics [11, 29, 30], t can fire at any instant τ ∈ ft(en). The
strong (or urgent) interpretation [11, 31] states that t must fire at an instant τ ∈ ft(en), unless it is disabled
by the firing of any conflicting transitions at an instant no greater than the latest firing time of t. Letting
en be an enabling tuple of t, a pair (en, τ), τ ∈ ft(en), is said a firing instance of t. The firing of (en, τ)
produces the new marking m′, such that:

• ∀p ∈ •t \ t• m′(p) = m(p)− en(p)

• ∀p ∈ t• \ •t m′(p) = m(p) + {τ}

3

saveObjective

flightCondition flightActEv

radar

threatActEv

noThreat

threat

maneuverActEv

maneuver

camPreparation

positionReadyActEv

camReadyActEv

mission

shooting

missionTimeout

resetPeriod

Initial marking: flightCondition{T0} noThreat{T0}
Initial constraint: 0 ≤ T0 ≤ 10

Time-Functions:
flightActEv [flightCondition + 0.5, flightCondition + 2.0]
threatActEv [radar + 30.0, radar + 30.5]
resetPeriod [radar + 30.0, radar + 30.5]
maneuverActEv [saveObjective + 1.0, saveObjective + 60.0]
positionReadyActEv [maneuver + 0.5, maneuver + 60.0]
camReadyActEv [camPreparation + 0.5, camPreparation + 1.5]
missionTimeout [mission + 0.2, max(mission + 0.2, shooting) + 60.0]

Figure 1: Simplified UAV TB net model. Weak transitions are depicted in gray.

• ∀p ∈ t• ∩ •t m′(p) = m(p)− en(p) + {τ}

• for all remaining places, m′(p) = m(p)

Hereafter, we denote a time function ft with a pair of linear functions [lbt, ubt], denoting parametric interval
bounds.

An example of TB net to illustrate concepts is shown in Figure 1. It models a simplified fragment of
the UAV system’s behavior described later in Sect. 3. The places in this TB net denote the main phases
and high level actions in progress of the system. The initial marking represents the system flying after the
takeoff phase (the marked place flightCondition). Once the flightActEv transition fires, the UAV starts
an observation mission in a dynamic, partially known and unsafe environment. The observation mission
starts by setting a new objective (the marked place saveObjective) and proceeds by performing the proper
maneuver and reaching the point of interest (transition maneuverActEv and transition positionReadyActEv,
respectively). At the same time, the UAV prepares the camera to perform the photo shoot operation
(transition camReadyActEv). The time function associated with the transition missionTimeOut can be
interpreted as follows. It cannot fire before 0.2 time units since the appearance of a token in the place
mission (i.e., the minimum time required by a very short photo shoot operation). Moreover, the firing time
cannot exceed 60 time units plus the maximum between the time-stamp of the token in the place shooting
and the time-stamp of the token in the place mission plus 0.2.

During the observation mission, the flight path can intersect any unknown entity that represents a threat
such as hostile presences but also bad weather areas or no-fly zones. Thus the system is equipped with a
radar (the marked place radar) sensed every 30 time units. Once the radar is sensed, the system can
either reset the sensing period, or recognize a threat. This latter case is modeled by the weak transition
threatActEv. Whenever a threat is established, a recovery procedure should take control of the system in
order to avoid invalid behavior in this degraded situation. However, this procedure is not modeled in this
simplified fragment of the UAV system.

2.2. Time Reachability Graph
The Time Reachability Graph (TRG) [32] is an abstract state-transition system which covers the infinite

state space associated with a TB net model. The TRG construction, implemented by the Graphgen

4

S0

S61

flightActEv
1.5-2.0

S63

resetPeriod
30.0-30.5

S57

maneuverActEv
0.0-30.5

resetPeriod
30.0-30.0

maneuverActEv
0.0-30.0

S62

threatActEv
30.0-30.0

S7

threatActEv
0.0-1.2

S9

resetPeriod
0.0-1.2

S25

positionReadyActEv
0.5-1.2

S26

camReadyActEv
0.5-1.2

maneuverActEv
0.0-30.0

Figure 2: A portion of the time reachability graph constructed from the simple UAV model in Figure 1.

software tool [32, 33], relies on the symbolic state notion and the symbolic firing mechanism.
Let TS = {Ti}i≥0, be the set of time-stamp symbols. A TRG node is a symbolic state S = 〈M,C〉,

whereM (symbolic marking) maps places into elements of Bag(TS) and C (constraint) is a logical predicate
formed by linear inequalities defined in terms of TS ∪ {TL}, where the special symbol TL represents the
state creation instant (i.e., the last time-stamp produced in S). The symbolic constraint C contains relative
time dependencies between timestamps.

For instance, the initial symbolic state of the simple UAV (Figure 1) is represented by S0 = 〈M0, C0〉,
where:

M0 := flightCondition{T0}, noThreat{T0}
C0 := T0 ≥ 0 ∧ T0 ≤ 10

An ordinary marking m belongs to S = 〈M,C〉 if and only if m is obtained from M through a numerical
replacement of time-stamps being a solution of C.

We say that S ⊆ S′ (where S = 〈M,C〉 and S′ = 〈M ′, C ′〉), if and only if all the ordinary markings
belonging to S belong also to S′. A sufficient condition for S ⊆ S′ is M = M ′ and C ⇒ C ′ 4.

The TRG construction starts from the initial symbolic state S0. Whenever a successor S′ of S is
generated, we check the existence of any node S′′ such that either S′ ⊆ S′′ or S′ ⊃ S′′ (in the latter case S′
absorbs S′′).

During the TRG building we can recognize timestamp symbols that have been shown irrelevant for the
model’s time evolution from a given state. Thus, they are replaced in the marking by TA symbols (i.e.,
anonymous time-stamps), then eliminated from the constraint [32, 29].

Hereafter, we refer to the TRG structure, computed from the model PN = 〈P, T, F 〉, with the notation
TRG(PN) = 〈N,E, S0〉, where N is the set of reachable symbolic states, E ⊆ N ×N is the set of symbolic
edges, and S0 is the initial symbolic state.

The TRG edges are labeled differently, depending on the property which has been assessed between a
state S and its successor S′. The possible relations between directly connected symbolic states are reported

4The Floyd-Warshall [34] and the Simplex [35] algorithms are used for variable elimination and satisfiability checking,
respectively.

5

below. Let e be the edge relation of the underlying ordinary state space. Every symbolic edge satisfies the
condition EE (#—� 5) [36, 37], i.e.:

• ∀〈S, S′〉 ∈ E, ∃m ∈ S,∃m′ ∈ S′ : 〈m,m′〉 ∈ e

• ∀〈m,m′〉 ∈ e, ∀S ∈ N : m ∈ S, ∃S′ ∈ N : m′ ∈ S′ ∧ 〈S, S′〉 ∈ E

The first part avoids two abstract states from being connected, if no corresponding ordinary states are. The
second part ensures that each path in the ordinary state space has a representative in the abstract one.
Graphgen is able to (locally) recognize stricter conditions: in such cases TRG arcs are suitably labelled,
as follows. Let 〈S, S′〉 ∈ E.

EA (#—�) ⇐⇒ ∀m′ ∈ S′, ∃m ∈ S : m→ m′

AE (—�) ⇐⇒ ∀m ∈ S,∃m′ ∈ S′ : m→ m′

AA (—�) ⇐⇒ EA ∧ AE,

where the symbol → represents the one-step reachability relation between ordinary markings, i.e., m′ is
reachable from m by firing a single transition.

Figure 2 shows a portion of the TRG computed from the model in Figure 1, using Graphgen. For
the sake of readability we do not show the entire structure (composed of 41 reachable symbolic states and
81 edges). Elliptic states have different outgoing edges (not shown in Figure 2) connecting them to other
elements of the graph. The edges between symbolic states are labeled with the firing transition and two
numeric values representing the local minimum and the local maximum temporal distance between directly
connected symbolic states, respectively. Edges can be of different types following the above notation. For
example, the AE edge 〈S0, S61〉 declares that only a subset of the concrete states represented by S61 is
reachable from S0.

2.3. Adaptation models
This Section discusses the main characteristics of the state space (i.e., the TRG in case of TB nets) of a

system exhibiting self-adaptive behavior.
The TRG reported in Figure 2 shows the behavior over time of the simple UAV example operating in

its own main domain (i.e., the observation mission). In general, a self-adaptive system operates in different
domains and changes its behavior at run-time in response to changes of the domain. Therefore, its reachable
states can be separated into disjoint regions each of which operates in a different domain and exhibits a
different steady-state behavior [38, 13].

Figure 3 depicts the simplified state space of a self-adaptive system. S and T are two regions representing
the system operating in two different domains, while A (i.e., the adaptation set) represents the set of states
and edges connecting S to T . Since we address real-time self-adaptive systems, we enrich the adaptation
set with a temporal constraint τ , in order to ensure the adaptation within a proper temporal deadline. The
adaptation set between the source and the target domains can describe different kind of adaptive behaviors.

Three common types of adaptive behavior are: one-point adaptation, guided adaptation, and overlap
adaptation [12, 13].

One-point adaptation. The one-point adaptation process completes with a single edge e (i.e., the adaptation
set A contains only the e element). Thus the steady-state behavior S ends within e and the steady-state
behavior T starts immediately after e [12, 13]. The source states suitable for adaptation, with outgoing
adaptive transitions, are called quiescent states.

5A visual representation of a TRG arc satisfying the EE property.

6

!

TS A

Figure 3: Two regions and an adaptation set with time
constraints upon transitions.

normal
behavior

undesired
behavior

recovery
behavior

invalid
behavior

Figure 4: State space regions denoting different behaviors of a
self-adaptive system.

Overlap adaptation. During the overlap adaptation process, the target behavior starts immediately after
reaching A, and the source behavior stops when the system leaves A and enters the region T . At this point
the system exhibits only the target steady-state behavior [12, 13]. This means that within the boundaries
of A the source and the target behaviors overlap. The adaptive system must always satisfy the adaptation
integrity constraint : once the adaptation process starts, it should eventually end and reach a state belonging
to the target region. Violations of this constraint result in an inconsistent state of the system that is not
designed for the target region, and there are no means to ensure its correctness.

Guided adaptation. The guided adaptation process starts when the system receives an adaptation request in
a non quiescent state. Therefore, the system should enter a restricted mode, where some of its functionalities
are usually blocked in order to reach a quiescent state and perform the adaptation as fast as possible [12, 13].
In this case, from the region S the system reaches A that represents the restricted mode. Entering the
restricted mode A ensures that the system will reach a quiescent state, from which one-point adaptation
takes the system to T . To specify a guided adaptation, we should determine the functionalities that should
be blocked in the restricted mode, and identify the quiescent states of the system in the restricted mode.

In section 4, we incorporate these adaptation models into the TB nets formalism and extend them to
support timing constraints and different temporal semantics.

3. A running example: the Unmanned Aerial Vehicle

UAVs [39] usually fly in a very dynamic environment that requires dynamic changes to the flight plan,
therefore it represents a very common real-time self-adaptive system example. In fact, the usage of UAVs
over conventional aircraft has many advantages [40], such as reduced operating costs and better flight
performance. Moreover, there is a strong interest in UAVs for military applications, although civilian
applications are expected to become more common [41], as the UAV technology advances.

Our interest is to model and verify the management of an observation mission for UAVs in a dynamic,
partially known and unsafe environment. The objectives of the observation mission are to join several points
of interest and to carry out a photo shoot operation there. The typical phases of this mission are:

• planning computation and takeoff,

• navigation to the next point of interest until they are all visited,

• operation on the mission area,

• return to the ground station and landing.

7

idle

planningStart

planningAlg savePlan takeoffActEv takeoff

climbActEv

climbing

maneuverActEv

maneuver

flightActEv
askTrajectory

retrieveNextPoi saveDestination

flightCondition
camReady

radar

navEnd

circleMode

photoShootActEv

photoShootcircleTimeout

sense

dataReady

threatAssesment

evaluation

noThreat

landingStart

landingPositiondescentPath

landingActEv
groundActEv

groundidleActEv

radarShutDownReqturnRadarOff

#Normal

planningEnd

Initial marking: idle{T0}
Initial constraint: 0 ≤ T0 ≤ 10

Time-Functions:
planningStart [idle, idle+∞] planningEnd [planningAlg + 0.2, planningAlg + 0.5]
takeoffActEv [savePlan + 1.5, savePlan + 2.0] climbActEv [takeoff + 0.5, takeoff + 0.8]
maneuverActEv [climbing + 10, climbing + 100] retrieveNextPoi [askTrajectory, askTrajectory + 0.5]
landingStart [flightCondition, flightCondition+∞] flightActEv [maneuver, max(maneuver, saveDestination) + 1.2]
sense [radar + 30, radar + 30.5] turnRadarOff [radar + 0.1, max(radar, radarShutdownReq) + 0.5]
threatAssesment [dataReady + 0.5, dataReady + 0.8] noThreat [evaluation + 1.5, evaluation + 1.8]
photoShootActEv [cameraReady + 0.5, cameraReady + 0.8] circleTimeout [photoShoot + 60, max(photoShoot + 60.5, radar)]
idleActEv [ground, ground + 1.5] landingActEv [landingPosition + 0.5, landingPosition + 0.8]
groundActEv [descentPath + 10, descentPath + 100] navEnd [flightCondition + 10, flightCondition+∞]

Figure 5: The nominal behavior of the UAV case study.

During the nominal behavior, the flight path can intersect any unknown entity that represents a threat such
as hostile presences but also bad weather areas or no-fly zones. Therefore the UAV should adapt itself and
eventually change the flight plan in order to take a detour around the threats.

Figure 5 shows the nominal behavior of the UAV system, i.e., the general behavior of the vehicle from
its takeoff until its landing. The places indicate the main phases of the mission and the high level actions
in progress. The meaning of the box named #Normal will be discussed in section 4.

The initial marking represents the idle phase, where the brakes maintain the vehicle still on ground
until the mission starts. During this phase, a real system should also perform some pre-flight tests. At the
beginning of the mission, before the takeoff phase, the system starts the first calculation of the plan through
the planning program. The purpose of the planning program is to build a feasible flying path by taking
into account the constraints of the vehicle (e.g., fuel, flight maximum altitude, etc.), the environment (e.g.,
weather areas, no-fly zones, etc.) and the mission (e.g., mission range, position of points of interest, etc.).
Once the trajectory has been saved, the takeoff phase starts (the transition takeoffActEv fires). Once the
expected takeoff position is reached, the UAV is steered in the runway direction and then full throttle is set
until the takeoff speed is reached. When the transition climbActEv fires, the takeoff is considered finished
and the climbing phase starts. The climbing phase keeps the vehicle in the takeoff direction and sets a fixed
climb rate that allows it to reach a desired altitude. During the climbing, the first point of interest (POI) is
retrieved and then saved as destination. When the right altitude is reached (the transition maneuverActEv

fires), the maneuver phase takes the UAV in the direction of the first POI. After the maneuver, a flight
condition is entered (the transition flightActEv), and the travel phase begins. It basically sets a great-
circle route (shortest distance between two points on a sphere) between the current position and the intended
destination, at the specified speed and altitude. After the target position is reached (the transition navEnd

fires), a circle mode waypoint is set: four waypoints forming a diamond are calculated around the target

8

Requirement Description Type

R1: Path optimization The planning program must select a flying path minimizing the
difference between the costs and the revenues.

Performance,
energy

R2: Timed takeoff Once the trajectory has been computed, it is always possible to
reach the takeoff phase in t1 time units.

Liveness,
bounded-
response time

R3: Timed threat sensing Once the radar is sensed, either a threat is detected in t2 time
units, or no threat is detected.

Bounded-
response time

R4: Emergency condition
When the UAV is in flight condition, a recovery procedure must
always follow an undesired situation to avoid an emergency con-
dition.

Safety

R5: Timed threat avoid-
ance

Once a threat has been established, the recovery procedure must
adjust the flight plan taking at most t3 time units. The distance
between the UAV and the threat area center must be sufficient to
avoid intersection.

Safety, robust-
ness, bounded-
response time

R6: Timed landing Once the last POI has been reached, the UAV must always start
a landing phase in t4 time units.

Liveness,
bounded-
response time

Table 1: UAV adaptation requirements.

position. The UAV then cycles through those in a clockwise (or anti-clockwise) direction until the specified
time limit is reached. During the circle mode, the UAV prepares the camera and actuates a photo shoot to
gather information about the current POI. When the time limit is reached (the transition circleTimeout

fires), the next POI is retrieved and a new maneuver and then a new travel phase is executed. Whenever
the UAV ends the main mission and reaches the expected landing position (the transition landingStart

fires), the UAV descends at a specific angle, then performs a flare maneuver when close to the ground, and
finally stops when ground contact has been established (the transition groundActEv fires). After the landing
phase, the UAV returns in idle mode.

In order to make the UAV system robust to possible exceptions of its operating context, we want to
endow it with a SA logic [42], i.e., we want to add a self-healing behavior [43, 44] in charge of handling
disruption and restore the system to normal conditions within hard deadlines. Therefore, the system should
be able to diagnose itself and react to faults or failures within strict time constraints such that a satisfactory
mode of operation is restored avoiding great loss, such as damaging the surrounding physical environment
or even threatening human lives. Table 1 lists some examples of adaptation requirements, typically found
in this application domain. The next section introduces our zone-based TB net formalism and shows its use
for modeling the adaptive behavior of the UAV during its mission.

4. Zone-based TB nets

The TB net shown in Figure 5 models the nominal behavior of the UAV without any exception (e.g.,
hostile presences or bad weather conditions). In order to endow the UAV system with the ability to (au-
tomatically) diagnose and fix in real-time various problems arising in its operating context, a self-healing
subsystem must be added to the UAV to detect undesired behavior and then adapt itself to restore the
normal behavior within strict time constraints.

Inspired by the model introduced in [8], the state space of a self-adaptive system should be characterized
by different disjoint regions representing the steady-state behaviors of the system. These regions, sketched
by Figure 4, are the normal behavior, where the system performs its main functionality without failures; the
undesired behavior, which represents an exception where adaptation is required in order to avoid invalid states
to be reached; the recovery behavior, where the system adapts itself to deal with the undesired behavior;
and the invalid behavior that represents all the states where the system should never be (e.g., deadlocks or
loss of functionality). Among these regions, “adaptation sets” (sets of states and arcs represented by dashed

9

#Normal #Restricted

#RecoveryT #UndesiredT#RecoveryG#UndesiredG

#Invalid

Figure 6: High-level schema of the zone-based model of the UAV case study.

lines in Figure 4 and connecting regions) captures the adaptation logic of the system and therefore carry
out the behavioral adaptation of the system controller from the source to the target domains using different
adaptation models (as introduced informally in Sect. 2.3).

In order to be able to build the state space of a self-healing system with these structural properties, we
propose a zone-based modeling approach using the TB net formalism. This technique aims at identifying and
isolating different modules (i.e., TB sub-nets) of the system representing different steady-state behaviors.
Source modules and target modules should not include information about each other, or about the adapta-
tion. The source and target modules should be verified against the local requirements for the source and
target domains, respectively, and then all together along with the adaptation models to verify adaptation
requirements. To this end, zones are used to identify different state space regions and adaptation sets, used
in turn to verify the proper correctness properties. The following subsections exemplify and formalize this
approach. First, Sect. 4.1 directly introduces the formalism trough the UAV case study, and then Sections
4.2, 4.3 and 4.4 formalize the underlying concepts.

4.1. Zone-based specification of the UAV system with self-healing capabilities
Figure 6 shows the high-level schema of the zones of the UAV model with self-healing capabilities. The

zones are represented by white boxes named using the notation #<ZoneName>. Zones are interconnected by
different adaptation models represented by dashed arrows. The zone-based specification allow us to deal with
different mission concerns separately and to integrate new adaptive behaviors easily and in a modular way.
Specifically, the UAV system can adapt itself in two different phases of the zone #Normal to change the flight
plan and avoid invalid behavior. Path adjustments during the mission evaluation (while the UAV is still on
ground) are modeled by the zones #UndesiredG and #RecoveryG, while the path adjustments during the
travel are modeled by the zones #Restricted, #UndesiredT, and #RecoveryT. The zone #Invalid models
loss of functionality from which the recovery is no longer possible.

The complete zone-based TB net of the UAV system is reported in Appendix A. It details the vehicle
behavior during the mission in nominal mode (normal zone) and in the degraded situations (zones undesired,
restricted, recovery, and invalid). Below, we describe separately the different TB net zones of the UAV model.
Intuitively, zones (e.g., see the zones #UndesiredG and #RecoveryG shown in Figure 7) are compositions
of places and transitions grouped within white boxes. Cross-zone transitions, i.e. the transitions with
incoming/outgoing dashed arcs outside the boundaries of the boxes, realize the mechanism of “adaptation
sets”. We will formalize the concepts of zones and cross-zone transitions later in this Section.
• The zone #Normal: It corresponds to the TB net shown in Figure 5. It represents the general behavior

of the vehicle from its takeoff until its landing as described in Section 3. Beside the nominal behavior, the
UAV can exhibit different undesired ways of acting. For instance, before the takeoff and during the first
calculation of the plan (the marked place planningAlg), the planning program has to select and order the

10

fxPositive

showTrajectory
degradedCondAlarm

checkpoint

waitForUserChoice

startAnyway

waitActEv

doNotStart
#UndesiredG

startActEv

recoveryGAlarm

planModification

planErasure

failureLog

startCondition

modifiedActEv

erasedActEv

idleActEv

#RecoveryG

savePlan idle takeoff

#Normal

radar

Time-Functions:
fxPositive [avePlan + 0.2, savePlan + 0.5] waitActEv [askPosition + 0.1, askPosition + 0.5]
startAnyway [planningAlg, planningAlg + 1.2] doNotStart [showTrajectory, showTrajectory + 0.1]
modifiedActEv [planModification, planModification + 0.5] erasedActEv [planErasure, planErasure + 0.5]
idleActEv [failureLog + 0.5, failureLog + 1.0] startActEv [startCondition + 0.1, startCondition + 0.5]

Figure 7: The #UndesiredG and #RecoveryG zones of the UAV system, along with cross-zone transitions. Weak transitions are
depicted in gray.

best sub-set of objectives and to determine the arrival date at each POI, minimizing the difference between
the costs and the revenues obtained on the selected path (i.e., a costs-revenues criterion). The costs include
the consumption, the danger, and the duration of the mission. The total revenue is a reward associated with
information gathered from the objective areas. If the costs are lower than revenues, the path is accepted
and saved to start the mission. On the contrary, if the criterion is positive, the system has to handle this
exceptional behavior, represented by the zone #UndesiredG.
After the takeoff, during the execution of the main mission (the marked places circleMode and photoShoot),
the radar of the UAV continuously verifies whether the current flight path intersects any unknown threat.
The radar is sensed every 30 time units and after the data became ready (the marked place dataReady)
the threat evaluation starts. The evaluation algorithm calculates the shortest distance between the threat
area center and the flight path, and then compares it to the threat area radius to determine whether they
intersect or not. If an intersection is detected, the UAV enters a degraded situation (the zone #UndesiredT)
that should be handled by carrying out the proper operations in charge of changing the flight plan in order
to take a detour around the threat. If the threat is detected in a non quiescent state, the UAV should
interrupt the operation in progress (through the zone #Restricted) as fast as possible and bring itself into
a state from which the adaptation can be safely applied.
• The zone #UndesiredG: It represents a degraded situation that can manifest before the takeoff. If the

costs-revenues criterion obtained on the selected path is positive (transition fxPositive), the system moves
into the zone #UndesiredG represented by the corresponding TB net shown on the left of Figure 7. This
undesired behavior simply models the user interaction that has to choose either to start anyway the mission
(transition startAnyway) or abandon the mission (transition doNotStart).
• The zone #RecoveryG: Once the zone #RecoveryG (see Figure 7) is accessed, the recovery procedure

allows the plan to be modified or erased, depending on the user choice. In the latter case the recovery
procedure logs the failure. If the maximum number of retries (i.e., planning program failures) is reached,
the system accesses the zone #Invalid. Otherwise, the system goes back into the nominal behavior by firing

11

flightCondition

#Normal

threatActEv

degradedTrajAlarm

pathAdjustReady

threat
retrieveTrajectory

replanningStart

#UndesiredT

repairTrajectory
repairOk

repairFail

saveTrajectoryR

askPositionRplanningAlgR

savePlanR

planRecovery

planRepairEnd

planningOkR

planningFailR

recoveredActEv

#RecoveryT

askTrajectory maneuver

attempting

evaluationradarShutDownReq

Time-Functions:
planningFailR [planningAlgR + 1.5, planningAlgR + 1.5] repairFail [repairTrajectory + 1.5, repairTrajectory + 1.5]
planRepairEnd [savePlanR + 0.5, savePlanR + 0.8] repairOk [repairTrajectory + 1.2, repairTrajectory + 1.5]
planningOkR [planningAlgR + 1.2, planningAlgR + 1.5] planRecovery [askPositionR+0.02, askPositionR+0.05]
retrieveTrajectory [threat + 0.8, threat + 1.2] recoveredActEv [trajectorySavedR + 0.1, trajectorySavedR + 0.5]
threatActEv [max(evaluation, flightCondition) + 1, max(evaluation, flightCondition) + 1.8]

Figure 8: The #RecoveryT and #UndesiredT zones of the UAV system, along with cross-zone transitions. Weak transitions are
depicted in gray.

either the transition startActEv or the transition idleActEv.
• The zone #UndesiredT: It represents a degraded situation that can manifest after the takeoff. Once

the threat has been established, the zone #UndesiredT (see Figure 8) raises an alarm and it retrieves the
current trajectory to be passed to the recovery procedure. The transition replanningStart makes the
system able to access the zone #RecoveryT, where the system tries to recover by adding a new waypoint to
the flight plan.
• The zone #RecoveryT: Once the UAV adapts into this module (see Figure 8), it starts to adjust the

flight path to avoid the current threat. In particular, a new waypoint is placed along the perpendicular to
the original flight path passing through the threat area center, at a distance sufficient to avoid intersection.
If the recovery procedure succeeds (transition planningOkR fires), the new flight plan is saved and the
system goes back into the zone #Normal (transition recoveredActEv fires). If the recovery procedure fails
(i.e., the attempting time limit ends), the system turns itself into the zone #Invalid trough the transition
attemptTimeout, where the system cannot be recovered anymore (see Figure 10).
• The zone #Restricted: Whenever an occurring threat is detected in a non quiescent state of the

nominal behavior, the UAV should interrupt the operation in progress as fast as possible and bring itself
into a state from which the adaptation can be safely applied. The zone #Restricted (see Figure 9) models
the interruption of different operations currently in execution (e.g., camera preparation through the firing
of the transition abortCamPreparation, or photo shoot operations through the firing of the transition
abortPhotoShoot) in order to bring the system into a state suitable for adaptation (i.e., the marked place
flightConditionRes).
• The zone #Invalid: It represents loss of functionality (see Figure 10) from which the system recovery

is no longer possible. The zone is reachable from degraded situations when the UAV is either on ground or
after the takeoff (i.e., from the zones #UndesiredG and #UndesiredT, respectively). In particular, the invalid
behavior is accessed from the zone #RecoveryG (through the firing of the transition tooManyFailures)
whenever the maximum number of planning program failures has been reached. Therefore, the UAV shuts
down itself (the transition shutdownActReq) and it requires human interaction to be restarted. Otherwise,

12

restrictActEv1

restrictActEv2
circleModeRes

camReadyRes

photoShootRes

abortCamPreparation

abortPhotoShoot

flightConditionRes

#Restricted

cameraReady

circleMode

photoShoot

evaluation

radarShutDownReq

#Normal

degradedTrajAlarm

threat

threatResAcEv

#UndesiredT

Time-Functions:
abortCamPreparation [camReadyRes, camReadyRes + 0.2] abortPhotoShoot [photoShootRes, photoShootRes + 0.2]
restrictActEv [max(evaluation, operationReady) + 1.0, max(evaluation, operationReady) + 1.8]
restrictActEv2 [max(evaluation, cameraReady) + 1.0, max(evaluation, cameraReady) + 1.8]

Figure 9: The #Restricted zone of the UAV system, along with cross-zone transitions. Weak transitions are depicted in gray.

if the invalid behavior is accessed from the zone #RecoveryT, an occurring threat cannot be avoided (the
marked place emergencyCondition). Thus the UAV detonates itself (the transition detonationActEv fires)
before the impact to avoid possible damages to the surrounding environment or possible threats to human
lives.

4.2. Zone-based TB nets formalization
Intuitively, a zone is a subnet of the entire model such that all its elements are connected only to elements

of the same zone, except for transitions belonging to its own preset or postset allowing the connection among
different zones. The following definitions formalize this intuition.

Definition 1. Subnet (and subnet preset/postset). Given a TB net 〈P, T, F 〉, a subnet is a triplet
〈PS , TS , FS〉 s.t. PS ⊆ P , TS ⊆ T , FS ⊆ F , PS 6= ∅, TS 6= ∅, and FS 6= ∅. Given a subnet z, the preset •z
is the set of transitions that connect places outside z to places belonging to z. Given a subnet z, the postset
z• is the set of transitions that connect places of z to places outside z.

Definition 2. Zone. Given a TB net 〈P, T, F 〉, a zone is a subnet z = 〈PS , TS , FS〉 s.t. the structure
〈PS , T

′, F ′〉, constructed by applying i and ii, identifies a weakly connected6 TB net, where:

i T ′ = TS ∪ •z ∪ z•

ii F ′ = FS ∪ {(t, p) ∈ F : t ∈ •z ∧ p ∈ PS} ∪ {(p, t) ∈ F : p ∈ PS ∧ t ∈ z•}

As an example, consider the TB subnet #UndesiredG shown in Figure 7 along with its own preset
{fxPositive} (with outgoing egdes), and its own postset {startAntway, doNotStart} (with incoming
edges). In this case, we obtain a weakly connected Petri net, therefore the #UndesiredG TB net mod-
ule is a valid zone.

Definition 3. Cross-zone transition. Given a TB net 〈P, T, F 〉, a cross-zone transition is a transition
t ∈ T s.t. there exists one and only one zone z, s.t. t ∈ z• and there exists at least a zone z′ s.t. t ∈ •z′.

6A Petri net is weakly connected iff. foreach two elements x and y, there exists an undirected path leading from x to y.

13

attemptTimeout

emergencyCondition

detonationActReq

stop

detonationActEv

#Invalid

tooManyFailures

userInteractionReq

shutdownReq

failureLog

#RecoveryG #RecoveryT

attempting

3

shutdownActEv

Time-Functions:
shutdownActEv [shutdownReq, shutdownReq + 1.0] detonationActEv [emergencyCondition, emergencyCondition + 0.5]
tooManyFailures [failureLog, failureLog + 0.4] attemptTimeout [attempting + 30, max(attempting, askPositionR) + 30.5]

Figure 10: The #Invalid zone of the UAV system, along with cross-zone transitions. Weak transitions are depicted in gray.
The arc labeled with 3 represents a shortcut which stands for 3 arcs with the same source and target.

Considering the UAV case study, the set of all cross-zone transitions is {fxPositive, startAnyway,
doNotStart, startActEv, recoveredActEv, restrictActEv1, restrictActEv2, threatActEv, idleActEv,
replanningStart, attemptTimeout, tooManyFailures, threatResActEv}. The arcs connecting zones to
cross-zone transitions are depicted with dashed arrows.

Definition 4. Zone-based TB net. A zone-based TB net PNZ is a TB net 〈P, T, F 〉, composed of a non
empty set of zones Z, s.t.:

i ∀p ∈ P, ∃!z ∈ Z : p ∈ z.

ii ∀t ∈ T, ∃!z ∈ Z : (t ∈ z ∨ t is cross-zone).

iii ∀z ∈ Z, •z ∪ z• 6= ∅.

Back to our running case study, we can individuate seven disjoint zones, introduced early in Figure 6.
There are no places outside these zones and transitions are either inside zones or cross-zone. Moreover, all
the zones have at least a non empty preset or postset, connecting them to the rest of the system. Therefore,
the UAV model follows the definition of zone-based TB net.

A labeling function λ is used to associate a firing transition, representing an action or an event, with a
specific zone representing a steady-state behavior.

Definition 5. Zone labeling function. Given a zone-based TB net PNZ , the zone labeling function λ
takes as input a transition t and returns a zone z, s.t.:

λ(t) = z, iff. t ∈ z or t ∈ z•

4.3. Timed Adaptation Models formalization
In our framework, we realize adaptation models by means of cross-zone transitions, along with their own

temporal functions used to compute temporal constraints upon the dynamically adaptive behavior.

14

4.3.1. Timed One-point adaptation
The timed one-point adaptation is modeled by the pair (t, ft) composed of a cross-zone transition (either

weak or strong) and its associated temporal function that connects the source zone zS and the target zone
zT , such that places of •t belong to zS and there exists at least one place in t• that belongs to T . When
the adaptation transition t fires, it performs the transformation between the source and the target zones by
consuming the enabling tuple in zS and producing new tokens in zT . The firing of t can produce tokens
into places belonging to multiple zones (zS itself included). The firing of the transition causes zS to stop
its execution and zT to start. No other zones are allowed to start their execution, although some places
belonging to these zones are marked.

The quiescent states of the zone zS are those reachable symbolic states that enable a cross-zone tran-
sition, while the adaptation set of a timed one-point adaptation transition is composed of a single edge e
connecting quiescent states to another region of the state space. Temporal information attached to e (i.e.,
local minimum-maximum firing times) constitutes the temporal constraint τ .

The temporal semantics associated with the transition t can be either weak or strong. For instance,
the transition between the zones #Normal and #UndesiredG (see Figure 7) have weak semantics because
the undesired behavior could happen but it is not forced to. Instead, the transition replanningStart

between the zones #UndesiredT and #RecoveryT (see Figure 8) has strong semantics because we force the
system to adapt itself in order to handle a degraded situation. This transition models a timed one-point
adaptation between the undesired zone and the recovery zone. In fact, its firing consumes tokens from places
degradedTrajAlarm and pathAdjustReady (belonging to the source zone) and it produces tokens in place
repairTrajectory (belonging to the target zone). Once the transition fires, the recovery behavior is the
only executable zone.

4.3.2. Timed Overlap adaptation
The timed overlap adaptation is modeled by a cross-zone transition (either weak or straong) connecting

the source zone zS to the target zone zT . The timed overlap adaptation involves the parallel execution of
both the source zone and the target zone. The firing of a cross-zone transition consumes tokens in zS and
produces tokens into some places belonging to zS and some places belonging to zT (anyway, it is possible to
mark also some places belonging to other zones). Once fired, zS and zT execute in parallel. No other zones
are allowed to start their execution, although some places belonging to these zones are marked. This kind
of adaptation is very common in multi-threaded or multi-process programs, where the system spawns a new
thread able to deal with the changing execution domain, while another thread finishes its own tasks to reach
a consistent state. Moreover, different threads can independently adapt to the target behavior through a
one-point adaptation resulting in a overlap adaptation [12].

As an example, consider the cross-zone transition threatActEv in Figure 8. It models a timed overlap
adaptation between the #Normal zone and the #UndesiredT zone. Its firing produces tokens into the
place radarShutDownReq belonging to the source zone and into the places degradedTrajAlarm and threat

belonging to the target zone. Once fired, the source and the target zone execute in parallel, in fact, both
the transitions turnRadarOff and retrieveTrajectory are enabled.

4.3.3. Timed Guided adaptation
In order to define the timed guided adaptation, we should create a zone to model the restricted mode.

The restricted zone behaves similarly to the original zone except that it has some blocked functionalities
that allow reaching a quiescent state faster with respect to the original zone. For instance, the restricted
zone can be constructed from the original one by removing some transitions that prevent the system to reach
a quiescent state. Once defined both the functionalities that should be blocked and the restricted zone, we
define a set G = {(t, ft)}, where each t is a cross-zone transition with weak semantics. Each transition, along
with the temporal function, connects places belonging to the original zone with places belonging to the
restricted zone. We can therefore model the possibility for the original behavior to turn into the restricted
mode depending on the presence of an adaptation request. It is worth noting that, the larger is |G|, the
more is the responsiveness of the system because we increase the number of states able to handle adaptation
requests.

15

Any restricted zone must not violate any global invariant and must not reach deadlock states before
reaching a state of quiescence (on due time).

Figure 9 shows this particular form of adaptation in the UAV case study. Whenever an adaptation re-
quest caused by a threat happens in a non quiescent state of the #Normal behavior. The #Restricted zone
interrupts the current mission to bring the system into the flight condition which represents a quiescent
state. At this point the the system adapts itself to restore the nominal functionality through the usual
undesired-recovery cycle.

It is worth noting that the weak semantics of cross-zone transitions is used to model external uncertainty
(i.e., a form of uncertainty arising from the lack of knowledge on the environment or domain in which the
software is deployed). For example, external uncertainty for the UAV system may include the unknown
presence of bad weather conditions or other threats along the flying path. For example, the cross-zone
transition threatActEv in Figure 8 has weak semantics, meaning that the system can (but it is not forced
to) adapt itself to handle a degraded situation, depending on the evaluation performed at runtime on the
data retrieved from the radar component.

4.4. State space construction
Once all the zones in the TB net model of the system are created and connected by means of cross-zone

transitions, we can construct the state space (i.e., the TRG) and then mechanically identify regions and
adaptation sets. During the state space exploration we associate reachable symbolic states with steady-
state behaviors. Moreover, we map timed adaptation models into adaptation sets following specific rules
depending on the adaptation type.

In order to identify the regions, we formally introduce the concept of active zone mapping :

Definition 6. Active Zone Mapping. Given a zone-based TB net PNZ , and the structure TRG(PNZ) =
〈N,E, S0〉, the active zone mapping Λ is a function that accepts as input a reachable state S and it returns
a set of zones in Z, s.t.:

Λ(S) = {z : ∃〈S, t, S′〉 ∈ E s.t. λ(t) = z}

The rationale of this function is to use firing transitions to identify the current behavior of the system.
In particular, we identify the steady-state behavior associated to a reachable state by looking at the zone
responsible of an occurring event. For instance, given the following initial state of the UAV example:

S0 = 〈idle{T0}, checkpoint{T0}; T0 ≥ 0 ∧ T0 ≤ 10〉,

the evaluation of Λ(S0) returns a set of zones containing only the zone #Normal. In fact the only enabled
transitions in S0 is missionStart that maps into the normal behavior zone. Indeed, it represents a normal
event.

The concept of region, informally introduced in section 2.3 (Figure 4), is formally defined as follows:

Definition 7. Region. Given a zone-based TB net model PNZ , its state space TRG(PNZ), and the active
zone mapping function Λ, a region is a set of reachable states H, s.t.:

i ∀S, S′ ∈ H : S 6= S′, Λ(S) = Λ(S′) and ∀z ∈ Λ(S), z is not restricted

ii H locates in TRG(PNZ) a weakly connected7 component.

The concept of adaptation set (informally introduced in section 2.3) can be formally characterized using
the definitions of active zone mapping function and region.

7A component is weakly connected if replacing all of its directed edges with undirected edges produces a connected (undi-
rected) graph.

16

M: checkpoint{TA} savePlan{T0}
C: TL = T0
#Normal

M: degradedCondAlarm{T1}
checkpoint{TA}
C: TL = T0

#UndesiredG

fxPositive
0.2-0.5

S3

S5

A

Figure 11: Example of timed one-point adap-
tation set between the #Normal region and the
#UndesiredG region.

M: checkpoint{TA} evaluation{T2} flightCondition{T0} radar{T1}
C: T1≥T0+30.0 ⋀ T1≤ T0+30.5 ⋀
TL≥T1+0.5 ⋀ TL≤T1+0.8 ⋀ TL=T2

#Normal

M: checkpoint{TA} radar{T0} radarShutdownActReq{T1}
threat{TA} degradedTrajAlarm{T1}

C: TL≥T0+1.5 ⋀ TL≤T0+2.6 ⋀ TL=T1
#Normal #UndesiredT

threatActEv
1.0-1.8

M: checkpoint{TA} threat{TA;} degradedTrajAlarm{T0}
C: TL≥T0+0.1 ⋀ TL≤T0+0.5

#UndesiredT

turnRadarOff
0.1-0.5

S25

S35

S60

A

Figure 12: Example of timed overlap adaptation set between
the #Normal region and the #UndesiredT region.

Definition 8. Timed Adaptation Set. Given a zone-based TB net PNZ , the state space TRG(PNZ) and
two different regions S and T , a timed adaptation set A is a set of weakly connected TRG(PNZ) elements
(states and edges) connecting S to T .

Definition 9. Timed One-point Adaptation Set. A timed one-point adaptation set is a timed adaptation
set A s.t. A contains a single edge labeled with a cross-zone transition connecting the two different regions
S and T .

Definition 10. Timed Overlap Adaptation Set. A timed overlap adaptation set is a timed adaptation
set composed of a set of states H and a set of edges I connecting the two different regions S and T , s.t.:

i ∀S ∈ H, |Λ(S)| > 1

ii I contains all the outgoing edges departing from states in H, and the incoming edges of states in H
departing from states outside H.

Definition 11. Timed Guided Adaptation Set. A timed guided adaptation set is a timed adaptation set
composed of a set of states H and a set of edges I connecting the two different regions S and T , s.t.:

i ∀S ∈ H, ∀z ∈ Λ(S), z is a restricted zone

ii I contains all the outgoing edges departing from states in H, and the incoming edges of states in H
departing from states outside H.

Figure 11 shows an example of timed one-point adaptation set. Two disjoint regions reifying the #Normal
and the #UndesiredG behaviors, respectively, are connected by a single edge labeled with the firing transition
and temporal information. The zone names upon states are the results of the evaluation of the Λ function.

17

The adaptation set A of a timed overlap adaptation transition is composed of a set of states and edges
connecting quiescent states of S to states of T . Each state in A maps to both the source and the target
regions. The temporal constraint τ is identified by the set of temporal information attached to the edges in
A. Figure 12 shows an example of timed overlap adaptation set. The adaptation set is composed of the set
of states {S35} along with the proper edges labeled with the firing transitions and temporal information.
Symbolic states in the adaptation set A belong to the normal behavior and undesired behavior regions at
the same time, therefore the system exhibits multiple steady-state behaviors.

Finally, Figure 13 shows an example of timed guided adaptation set. The adaptation set is composed
of the set of states {S56, S82, S105,} that map through the Λ function into a restricted zone, along with the
proper edges labeled with the firing transitions and temporal information. The outgoing boundaries of A
are made up by a one-point adaptation leading from A into the target region (i.e., the #UndesiredT region).

M: checkpoint{TA} circleMode{TA} evaluation{T1}
camReady{T2} radar{T0}

C: T1≥T0+0.5 ⋀ T1≤T0+0.8 ⋀ TL≥T1 ⋀ TL≤T1+1.8 ⋀ TL=T2

#Normal

M: checkpoint{TA} circleModeRes{TA} camReadyRes{T1}
radar{T0} radarShutdownReq{T1}

C: TL≥T0+1.5 ⋀ TL≤T0+2.6 ⋀ TL=T1
#Normal #Restricted

M: checkpoint{TA} circleModeRes{TA} camReadyRes{T0}
C: TL≥T0+0.1 ⋀ TL≤T0+0.2

#Restricted

restrictActEv1
1.0-1.8

S33

S56

S82

turnRadarOff
0.1-0.2

M: checkpoint{TA} flightConditionRes{T0}
C: TL≥T0 ⋀ TL≤T0+0.45

#Restricted

M: checkpoint{TA} threat{TA} degradedTrajAlarm{T0}
C: TL=T0

#UndesiredT

abortCamPreparation
0.0-0.1

S105

threatResActEv
0.05-0.8

S109

A

Figure 13: Example of timed guided adaptation set between the #Normal region and the #UndesiredT region.

5. Formal verification

Based on the specification formalism described in the previous Section, we are able to verify the cor-
rectness of real-time self-adaptive systems by essentially inspecting the TRG . In this Section, we describe
all types of properties, structural and behavioral, supported by our verification approach. This Section is
divided into two main parts. Subsection 5.1 introduces the syntax and the semantics of all the available

18

properties, along with examples of property verification from the UAV case study. Subsection 5.2 introduces
the main verification algorithms along with their time and space complexity evaluation.

5.1. Verifiable properties
Our framework supports the verification of three categories of properties: structural properties, adaptation

meta-properties and system behavioral properties.

5.1.1. Structural properties
These properties aim at validating a zone-based TB net model w.r.t. the expected subdivision in zones.

Indeed, each zone must satisfy the structural properties introduced in Definition 2, Section 4. The syntax
accepted by our software tool is:
$ zonecheck(#z)

where z is the name of a zone of the considered TB net model.
Example of properties verified for the zones of the UAV model are reported below (SP1-SP4).

$ zonecheck(#Normal) SP1
$ zonecheck(#UndesiredT) SP2
$ zonecheck(#RecoveryG) SP3
$ zonecheck(#Invalid) SP4

If the property holds for the target zone, the software tool returns a positive answer and lists both the
incoming and the outgoing cross-zone transitions.

5.1.2. Adaptation meta-properties
These properties do not depend on the specific modeled system. They are general properties related

to adaptation and any self-* system (self-healing in our case) should satisfy them. They are divided into
four categories: cross-zone transitions meta-properties, safety meta-properties, robustness meta-properties,
timed meta-properties.
• Cross-zone transition meta-properties. They aim at checking the conformance of the generated adap-

tation sets w.r.t. the intended adaptation models. For each cross-zone transition t of the model, t must
connect two disjoint regions z and z′ with the proper adaptation set, depending on the specific employed
timed adaptation model. The syntax accepted by our software tool is:
$ onepoint(#z, t, #z’)
$ overlap(#z, t, #z’)
$ guided(#z, t, #z’)

where z and z′ are the names of zones and t the name of a cross-zone transition of the considered TB net
model. These commands, one for each adaptation model, are used to verify the characterizing properties of
the adaptation models as described in section 4.3. For instance, the onepoint meta-property checks if the
regions z and z′ are connected through a single edge labeled with t. Moreover, they prove the adaptation
integrity constraint.

Some cross-zone properties verified upon the UAV model are reported below (AP1-AP3).
$ onepoint(#Normal, fxPositive, #UndesiredG) AP1
$ guided(#Normal, restrictActEv1, #Restricted) AP2
$ overlap(#Normal, threatActEv, #UndesiredT) AP3

• Safety meta-properties. These properties are used to verify whether the system can reach an invalid
state (i.e., either a deadlock state or a state that belongs to the invalid behavior region). The syntax of the
property is as follows:
$!(#z ?> #Invalid)

where “a ?> b” is used to verify that “whenever a holds, there exists a path leading to b”. An example of
safety meta-property, verified upon the UAV model, is the following:

19

$!(#Normal ?> #Invalid) AP4
FALSE
S0(#Normal) [0.0,100.0] S1(#Normal) [0.1−0.5] ... S173(#RecoveryT) [0.0,0.05] S176(#Invalid)

Since the property does not hold (FALSE), the verification framework returns a feasible path as a coun-
terexample. The path contains information about regions associated with states and temporal information
attached to edges (local minimum-maximum firing times).

An important observation, emerging from the evaluation of property AP4, is that the invalid behavior
cannot be completely avoided. In fact, the re-planning task modeled in the #RecoveryT zone calculates a new
trajectory in order to take a detour around the threats, if possible. This means that the constraints imposed
by multiple threats areas could make this computation unfeasible, thus leading the planning algorithm to a
failure. This eventuality is modeled by the weak transition planningFailR that can (but is not forced to)
fire before the planningOkR transition.
• Robustness meta-properties. Robustness properties are specific reachability properties used to verify

that the system is able to recover from a failure. These properties must be verified to ensure self-healing
capability of the system. The following robustness meta-properties (AP5-AP7) were verified upon the UAV
model:
$ #Normal ?> #UndesiredT AP5
$ #UndesiredT −> #RecoveryT AP6
$ #RecoveryT ?> #Normal AP7

Note that the property “a –> b” is used to verify that “whenever a holds, eventually b will happen”. The
three properties examples reported above prove that there exists a path connecting a normal state to an
undesired state (AP5); for each undesired state, we always reach a recovery state (AP6); for each recovery
state, is always possible to reach a normal state (AP7).

The evaluation of the following properties (AP8-AP11) proves that the undesired behavior is reachable
from the normal behavior either directly or passing through the restricted mode.
$ #Normal ?> #UndesiredG AP8

TRUE
S0(#Normal) [0.0,100.0] S1(#Normal) [0.1,0.5] S2(#Normal) [0.0,1.2] S3(#Normal) [0.2,0.5] S5(#UndesiredG)

$ #Normal ?> #UndesiredT AP9
TRUE
S0(#Normal) [0.0,100.0] S1(#Normal) [0.1,0.5] ... S84(#Normal) [0.0,0.0] S89(#UndesiredT)

$ #Normal ?> #Restricted AP10
TRUE
S0(#Normal) [0.0,100.0] S1(#Normal) [0.1,0.5] S65(#Normal) [1.0,1.8] ... S78(#Normal, #Restricted)

$ #Restricted −> #UndesiredT AP11
TRUE

The evaluation of the properties AP12-AP13 proves that once the system reaches an undesired behavior, it
always adapts itself to work in recovery mode.
$ #UndesiredG −> #RecoveryG AP12

TRUE

$ #UndesiredT −> #RecoveryT AP13
TRUE

Once the recovery behavior is accessed, it is possible to restore the normal functionality. This is proven by
the following properties (AP14-AP15):
$ #RecoveryG ?> #Normal AP14

TRUE
S10(#RecoveryG) [0.1,0.5] S0(#Normal)

$ #RecoveryT ?> #Normal AP15
TRUE
S86(#RecoveryT) [1.2,1.5] S90(#RecoveryT) [0.1,0.5] S93(#Normal)

20

• Timed meta-properties. The previous properties can be extended by adding temporal constraints. This
is particularly useful to check whether the adaptation behavior is carried out within a specific temporal
deadline t, i.e., there exists a feasible path from the source zone to the target zone, taking at most t time
units. For instance, the properties AP16 and AP17 have been verified in order to assess the time required
by the system to restore the normal functionality from different undesired zones.
$ #UndesiredG ?> #Normal, 0.8 AP16

TRUE
S7(#UndesiredG) [0.5,100.0] S11(#RecoveryG) [0.2,0.5] S14(#RecoveryG) [0.1−0.5] S4(#Normal)

$ #UndesiredT ?> #Normal, 1.8 AP17
TRUE
S70(#UndesiredT) [0.5,0.8] S86(#RecoveryT) [1.2,1.5] S90(#RecoveryT) [0.1,0.5] S93(#Normal)

Whenever the property holds, the tool supplies a feasible path as a proof of correctness.
Another interesting timed property verified upon the UAV is (AP18):

$ #UndesiredT −> #RecoveryT, 2.1 AP18
TRUE

This allows us to prove the maximum response-time bound of the system in a particular degraded situation,
i.e., the #UndesiredT zone, in charge of recognizing and evaluating an occurring threat.

5.1.3. System behavioral properties
These properties go into finer detail and require specific knowledge on the system to analyze. They are

divided into intra-zone properties and inter-zone properties.

Intra-zone properties. These properties aim at verifying the correctness of zones in isolation. In particular,
we can verify invariant, safety, and liveness properties. The properties in this category can be verified by
inspecting the TRG computed only on the zones of interest.
• Invariant properties. Invariants should be preserved for each reachable state of the zone. We can express

invariants by means of a boolean combination of conditions on the number of tokens in places. For instance,
the BP1 invariant has been verified upon the #Normal zone in order to prove that for each reachable state
(operator A), the radar place is marked whenever at least one place among flightCondition, circleMode
and landingPosition is marked (indeed, for each reachable state of the normal zone, the radar is active
when the vehicle is either in flight condition, circle mode or landing position).
$ A(radar!=1 || (flightCondition==1 || circleMode==1 || landingPosition==1)) BP1

Similar invariants have been proven also for the askTrajectory (BP2) and the saveDestination (BP3)
places.
$ A(askTrajectory!=1 || (takeoff==1 || climbing==1 || maneuver==1)) BP2
$ A(saveDestination!=1 || (takeoff==1 || climbing==1 || maneuver==1)) BP3

Other examples of invariants involving other zones are reported below (BP4, BP5).
$ A(checkpoint==1 || waiting==1) BP4
$ A(degradedTrajAlarm!=1 || (pathAdjustReady==1 || threat==1)) BP5

The BP4 invariant verifies that for each reachable state of the #UndesiredG zone, either the checkpoint

place or the waiting place is marked. The BP5 invariant is used to prove that for each reachable state of
the #UndesiredT zone, if the trajectory alarm is active, then a threat has just been recognized or the system
is ready to start the recovery procedure.
• Safety properties. Safety properties are used to verify that “something bad will never happen”. Prop-

erties BP6 and BP7 are examples of intra-zone safety properties verified on the #Normal behavior zone.
$!E(dataReady>1) BP6
$!E(evaluation>1) BP7

21

These properties are used to prove that it does not exist (E operator) a reachable state of the normal
behavior zone such that unprocessed data produced by the radar component is accumulated during the
threat assessment procedure.

Additional examples of intra-zone safety properties are reported below (BP8-BP10).
$!E(degradedCondAlarm==1 && showTrajectory==0) BP8
$!E(planModification==1 && planErasure==1) BP9
$!E(attempting==1 && savePlanR==1) BP10

The BP8 property is used to verify that it does not exist a reachable state of the #UndesiredG zone such
that the alarm is active and the current trajectory is not displayed to the system user. The BP9 property
verifies that the #RecoveryG zone does not reach a state where the plan is both modified and erased. The
BP10 property is used to prove that in the #RecoveryT zone it is not possible to compute a new trajectory
and save the plan at the same time. In fact, the latter operation can be performed only after the planning
algorithm succeeded, therefore the attempting place must be empty.
• Liveness properties. We can verify two different types of liveness properties characterized by the two

different operators “a –> b” and “a ?> b” (already introduced in section 5.1.2), also including temporal
constraints.

Some examples of (timed) liveness properties verified upon the #Normal zone in isolation are reported
below (BP11-BP13).
$ saveTrajectory==1 −> takeoff==1, 1.5 BP11

TRUE

$ saveTrajectory==1 −> climbing==1, 3.8 BP12
TRUE

$ saveTrajectory==1 ?> (flightCondition==1 && radar==1), 12.8 BP13
TRUE
S4(#Normal) [1.5,2.0] S6(#Normal) [0.5,0.5] S8(#Normal) [0.0,0.0] S13(#Normal) [10.0−100.0] S16(#Normal)
[0.8,1.2] S17(#Normal)

The BP11 property is used to verify that is always possible to reach the takeoff phase once the trajectory
has been computed within 1.5 time units. The BP12 property is used to verify that is always possible to
reach the climbing phase once the trajectory has been computed within 3.8 time units. The BP13 property
is used to prove that the flight condition, along with the radar activation, is reachable within 12.8 time units
from the trajectory computation.

Other examples of similar liveness properties verified upon the #Restricted and the #RecoveryT zones,
respectively, are reported below (BP14, BP15).
$ circleModeRes==1 −> circleModeRes==0 && flightConditionRes==1, 0.31 BP14

TRUE

$ attempting==1 ?> savePlanR==1, 1.7 BP15
TRUE
S94(#RecoveryT) [1.2,1.5] S97(#RecoveryT) [0.5,0.8] S90(#RecoveryT)

Inter-zone properties. These properties aim at verifying the correctness of the behavior of the entire system.
In particular we can verify interesting invariant, safety, and liveness properties on the TRG built from the
whole system model.
• Invariant properties. Two examples of inter-zone invariant properties are reported below (BP16-BP17).

They are used to verify the proper mutual exclusion between two specific marked places representing the
normal and the restricted mode behaviors, respectively.
$ A(circleModeRes!=1 || circleMode==0) BP16
$ A(circleMode!=1 || circleModeRes==0) BP17

Indeed, the circleMode place should never be marked at the same time with circleModeRes.
• Safety properties. The properties BP18 and BP19 represent two examples of inter-zone safety properties.

22

$!E(degradedCondAlarm==1 && recoveryGAlarm==1) BP18
$!E(degradedCondAlarm==1 && degradedTrajAlarm==1) BP19

The BP18 property is used to verify that it does not exist a reachable state where the #UndesiredG and
#RecoveryG behaviors overlap. In fact, the former zone adapts into the latter one through a one-point
adaptation, therefore the alarm cannot be activated by the two zones at the same time. The BP19 property
verifies that it does not exist a reachable state where the two different alarms (i.e., the #UndesiredG and
the #UndesiredT alarms) are active at the same time.
• Liveness properties. Inter-zone liveness properties can be verified similarly to the intra-zone ones, but

they involve conditions defined upon multiple zones. Some examples of (timed) inter-zone liveness properties
follow below (BP20, BP21).
$ radar==1 && threat==1 −> radar==0, 0.1 BP20

TRUE

$ evaluation==1 && flightCondition==0 ?> trajAlarm==1 && threat==1, 1.1 BP21
TRUE
S29(#Normal) [1.0,1.8] S48(#Restricted, #Normal) [0.0,0.2] S67(#Restricted, #Normal) [0.0,0.5] S85(#Restricted)
[0.0,0.8] S89(#UndesiredT)

The BP20 property is used to verify that once a threat has been accessed, the radar component is turned
off within 0.1 time units. The BP21 property proves that the threat assessment during the flight condition
can lead to a threat alarm after 1.1 time units.

5.2. Algorithms and complexity evaluation
In the following we report the main verification algorithms divided for each category along with time

and space complexity evaluation.

5.2.1. Structural properties
The implementation of the zonecheck procedure uses the Tarjan’s algorithm [45] to find the weakly

connected components of the zone-based TB net model with structure 〈P, T, F 〉. Therefore, both the worst
case time complexity and space complexity of this procedure are O(|P + T + F |), i.e., linear in the size of
the TB net structure.

5.2.2. Adaptation meta-properties
• Cross-zone transition meta-properties. The software implementation evaluates these properties (e.g.,

AP1-AP3) through a depth first exploration procedure of the TRG = 〈N,E, S0〉 to verify the structure of
the target adaptation set (section 4.3). Therefore, the worst case time complexity and space complexity of
this procedure are O(|N + E|) and O(|N |), respectively.
• Safety, Robustness and Timed meta-properties. Safety properties (e.g., AP6-AP7) and robustness

properties (e.g., AP8-AP15), that make use of the “?>” and the “–>” operators, correspond to specific
Computation Tree Logic (CTL) [46] formulas. In particular, the semantics of the following formulas:

φ ?> ψ (1) φ –> ψ (2)

can be expressed by using CTL operators respectively as follows:

AG(φ→ EFψ) (3) AG(φ→ AFψ). (4)

Intuitively, the formula (3) means that foreach path (i.e., the universal path operator A), globally (i.e.,
the path-specific operator G), whenever φ holds, there exists a path (i.e., the existential path operator E)
where ψ eventually (i.e., the path-specific operator F) holds. The formula (4) mans that foreach path,
globally, whenever φ holds, ψ eventually holds foreach path. Thus, (3) and (4) are semantically equivalent
to (1) and (2), respectively.

Timed meta-properties (e.g., AP16-AP18) are used to write bounded-response time properties, such as:

23

φ ?> ψ, t (5) φ –> ψ, t′. (6)

In this case, the semantics of (5) and (6) can be expressed by means of specific formulas in Timed
CTL, or simply TCTL [47] (i.e., an extension of the classical untimed branching time logic CTL with time
constraints), respectively as follows:

AG(φ→ EF≤tψ) (7) AG(φ→ AF≤t′ψ). (8)

The meaning of (7) and (8) is similar to safety and robustness formulas, respectively, except for the time
constraints t and t′ in R≥0 on the path-specific operator F .

The software tool verifies safety, robustness and timed properties by means of classic TCTL model
checking procedures [48, 49] able to work on the TRG structure. The model checking problem for TCTL is
PSPACE-Complete [47]. In particular, the worst case time complexity of these procedures is O(|Φ|·|N+E|),
i.e., linear in the size of the Φ formula (due to the recursive descent over the parse tree of Φ) and in the
size of the 〈N,E, S0〉 structure of the TRG . The worst case space complexity is O(|N + E|), which is the
memory required to maintain the entire TRG structure.

5.2.3. System behavioral properties
The software tool verifies the properties in this category by means of classic TCTL model checking

procedures able to work on the TRG structure. Therefore, time and space complexity analysis follow the
observations reported above.
• Invariant and Safety properties. Like the safety adaptation meta-properties, both intra- and inter-

zone invariant properties (e.g., BP1-BP10) and safety properties (e.g., BP16-BP19), correspond to specific
CTL formulas. In particular, the syntax of these two types of property are reported below:

A(φ) (9) !E(ψ). (10)

The semantics of (9) and (10) can be expressed by using CTL operators, respectively, as follows:

AG(φ) (11) ¬EF (φ). (12)

The formula reported in (11) means that foreach path, globally, the proposition φ (i.e, a Boolean combi-
nation of conditions on the number of tokens in places) holds. The formula reported in (12) mans that does
not exist a path, where the proposition φ eventually holds. Thus, (11) and (12) are semantically equivalent
to (9) and (10), respectively.
• Liveness properties. Like the robustness and timed adaptation meta-properties, both intra- zone

liveness properties (e.g., properties BP1-BP10) and inter-zone liveness properties (e.g., properties BP16-
BP19) make use of the bounded-response time “–>” and “?>” operators, therefore they correspond to specific
TCTL formulas. Similarly to invariant and safety behavioral properties, both the sub-formulas φ and ψ
occurring in (7) and (8) are propositions composed of a set of Boolean conditions on the number of tokens
in places.

6. The ZAFETY software tool

The formal framewotk described in this article has been implemented as a software tool set written in
Java, so called ZAFETY8. This tool extends Graphgen [32], in order to support both the specification
phase, through a graphic editor, and the verification phase, through the exploration of regions and adaptation
sets of the TRG structure.

8The source code and the executable binaries of the ZAFETY editor and the ZAFETY engine, along with runnable
examples can be found at: http://camilli.di.unimi.it/zafety.

24

Graphgen

DataLayerAnalysis

ZAFETY engine

TRG
builder

formal
verification

ZAFETY editor

customized
PIPE2

TRG viewer

graphviz

.pnml file

.dot file

.graph
file

Figure 14: The main components of ZAFETY.

The tool architecture (see Figure 14) includes different interconnected components that communicate by
means of proper files.

The ZAFETY editor is a customized version of the PIPE2 open source tool [50]. It supplies a graphical
user interface to create and edit arbitrary complex zone-based TB net models. A drawing toolbar (including
places, transitions, arcs and tokens) allows the user to draw a model into the main canvas through simple
drag and drop gestures (see Figure 15).

Figure 15: The main window of the ZAFETY zone-based TB nets editor.

Figure 16 shows the place editor window. As we can see, it allows the item to be annotated with the
place name, the zone name, the number of tokens, and the variables representing the symbolic timestamps
associated with tokens. Figure 17 shows the transition editor window. In this case it is possible to change
the transition name, the name of the zone, the parametric time interval bounds tmin (lbt), tmax (ubt), and
the temporal semantics. The user interface of the editor also permits to export a graphical view (as PNG or
PostScript file) and to save the PNML [51] representation of the model (as a XML file) for further analysis
through the ZAFETY engine.

The ZAFETY engine has been implemented on top of Graphgen [32], a Java software tool for the
reachability analysis of TB nets. In fact, the TRG builder exploits the functionality of the Analysis and
the DataLayer modules of Graphgen in order to create the reachable symbolic states of a TB net model.

25

Figure 16: The place editor window of the ZAFETY
zone-based TB nets editor.

Figure 17: The transition editor window of the ZAFETY
zone-based TB nets editor.

Given a PNML file, it generates as output the TRG (enriched with regions and adaptation sets) in binary
format that can be used in turn by the formal verification module. The tool can also create an annotated
DOT text format, used by the GraphViz software tool [52] to generate a graphical visualization of the
TRG.

The formal verification module can be used to verify a number of correctness properties (introduced in
section 5). It grants the possibility of verifying specific requirements upon adaptation through by means of
cross-zone transition properties. Moreover, it supports the verification of timed properties in order to check
real-time constraints, and it supports the verification of robustness properties to verify time-constrained
self-healing behaviors.

6.1. Performance evaluation
In order to evaluate the performance of the TRG builder and the formal verification components of the

ZAFETY tool, we report in the following some measurements performed during the verification of two case
studies: the self-adaptive UAV system (i.e., the running example of this article) and the self-adaptive Gas
Burner (GB) system (i.e., a smaller example introduced in our previous work [15]). We ran our experiments
on a machine equipped with a Intel Xeon E5-2630 at 2.30GHz CPU, 32GB of RAM, the Ubuntu 14.04.3 LTS
(GNU/Linux 3.13.0-39-generic x86_64) operating system, and the Java HotSpot 1.8 64-Bit Server virtual
machine.

Table 2 reports the performance of the TRG builder component used to analyze our case studies. In
particular, we report the model size in terms of number of places |P | and number of transitions |T |; the
TRG size in terms of number of created states and number of erased states (i.e., those states found equals or
included into other states during the TRG building); the execution time in seconds; and the average memory
consumption in Kylobytes. The GB is a simple model and generates a small TRG (31 symbolic states).
This computation takes approximately 1 second and the average memory consumption is approximately 28
Megabytes. The UAV is instead a more complex system that generates a TRG of 2096 symbolic states.
This computation takes approximately 2 minutes and the average memory consumption is approximately
240 Megabytes.

Table 3 reports the performance of the formal verification component. For each type of property we report
the worst case time and space complexity (discussed in section 5), the average execution time (in seconds)
and the average memory consumption (in Kylobytes) during the verification of a number of correctness
properties on each case study.

26

case study |P|, |T| created states erased states exec. time (s) memory (KB)
GB 26, 20 49 18 1,041 28846
UAV 49, 52 6754 4658 130,189 241321

Table 2: Evaluation of the TRG builder component.

Clearly, both the average execution time and the average memory consumption, is higher in the UAV case
study for each category, because of the larger TRG size and the larger model size. The structural properties
usually take less time and consume less memory, in fact both the time and space complexity depend on
the model size instead of the TRG size. Intra-zone properties usually need less resources (both time and
memory) than the inter-zone ones. In fact, although they have the same worst case time complexity and
space complexity, they search in a single region, which is usually far smaller than the entire TRG . However,
the average execution time needed to verify the properties of each category, is very small in both the case
studies (few milliseconds). Moreover the average memory consumption is negligible (few Kylobytes).

GB UAV
Properties time complexity space complexity execution

time (s)
memory

(KB)
execution
time (s)

memory
(KB)

structural O(|P + T + F |) O(|P + T + F |) 0,014 5667 0,017 6334
Cross-zone transition O(|N+E|) O(|N |) 0,018 6204 0,039 8760

Robustness O(|Φ| · |N + E|) O(|N + E|) 0,019 7741 0,038 9522
Timed O(|Φ| · |N + E|) O(|N + E|) 0,022 8125 0,063 11566

Intra-zone Invariants O(|Φ| · |N + E|) O(|N + E|) 0,010 8334 0,055 10334
Intra-zone safety O(|Φ| · |N + E|) O(|N + E|) 0,008 8628 0,027 12182
Intra-zone liveness O(|Φ| · |N + E|) O(|N + E|) 0,006 8360 0,020 13786
Inter-zone Invariants O(|Φ| · |N + E|) O(|N + E|) 0,045 15197 0,081 16148
Inter-zone safety O(|Φ| · |N + E|) O(|N + E|) 0,031 13510 0,073 15182
Inter-zone liveness O(|Φ| · |N + E|) O(|N + E|) 0,019 9380 0,054 16786

Table 3: Evaluation of the formal verification component.

7. Comparison with the state of the art

SA has been widely studied in the software architecture community [53]. Various mechanisms and frame-
works for handling adaptation have been proposed, such as (to name a few): SA with aspect-orientation, Dy-
namic Reconfiguration, Model-Driven Development frameworks for SA, and frameworks for self-optimization
(including the adaptation cost itself) [1, 2, 54, 55, 56, 57].

Here we focus on the main formal frameworks for the design and analysis of SA with time constraints. In
Subsection 7.1, we review the main approaches existing in the literature, while in Subsection 7.2 we briefly
compare them (including our framework) with respect to generally agreed key features.

7.1. Related work
The framework presented in this article has been influenced by some previous works on formal spec-

ification and verification of self-adaptive systems with time constraints. In particular, we focus on those
approaches adopting model checking as main verification technique.

In [13], J. Zhang and B. Cheng propose a modeling approach based on Petri Nets and a model check-
ing technique based on LTL (Linear Temporal Logic) to verify correctness of adaptation and robustness
properties. According to specific adaptation models – one-point adaptation, overlap adaptation, and guided
adaptation – a set of adaptations realize transitions among steady-state programs in response to environ-
mental changes.

27

Another Petri Net-based approach, called Learning Petri Nets, has been recently presented in [58] to
model and verify self-adaptive systems. This formalism is proposed as an extension of hybrid Petri nets that
embed some special transitions with neural network algorithms. This formalism can describe both discrete
states of the system behavior and continuous states of environment changes through continuous transitions,
which generate environmental values at run time. Their models are adaptive through the learning ability of
neural network and can be used to optimize decision making at run-time when the run-time environment
data is available. However, the proposed approach does not deal with verification of time properties.

In [59], Timed Automata are used to model a decentralized Traffic Monitoring self-adaptive system
by adopting the MAPE-K control loop model [3, 60] for autonomic and self-adaptive software systems.
A network of Timed Automata allows specifying the behavior of MAPE-K components that synchronize
through clock variables and interact via channels. The Uppaal model checker is used to verify flexibility
and robustness properties expressed in timed computation tree logic (TCTL) – a computational tree logic
extended with clock variables. In [61], D. G. de la Iglesia and D. Weyns adopt the Timed Automata-based
formalization approach described above to realize the self-adaptive layer of a Mobile-Learning Application in
order to make the application more robust w.r.t. insufficient GPS accuracy. The Uppaal’s TCTL was used
to specify and verify four groups of properties: functional correctness, GPS service adaptation, self-healing,
and MAPE loops interference.

The framework ActivFORMS (Active FORmal Models for Self adaptation) [62] allows continuous verifi-
cation of adaptation goals at run-time as well as dynamic updates of the formal models in order to support
unanticipated changes and assure that the adaptation goals verified at design-time are guaranteed also at
run-time. The framework allows modeling MAPE-K feedback loops explicitly in terms of networks of Timed
Automata [63]. The approach is evaluated with a small scale system in which robots perform transportation
tasks in a warehouse environment. The model of the feedback loop is executed by a virtual machine. The
virtual machine has an internal clock that is incremented by time steps. For each time step, the virtual
machine identifies the enabled node for each automaton and checks whether the time step would invalidate
the time invariants of the enabled nodes. The virtual machine then execute tasks associated with these
invalidated nodes in non-deterministic order. The Uppaal model checker is used to verify flexibility and ro-
bustness properties expressed in TCTL. This approach ensures at run-time that adaptation behavior starts
on due time, but it does not supply a means to verify that correct actions complete within specific deadlines.

MechatronicUML [64] addresses the challenge of designing embedded real-time self-optimizing systems
by proposing a coherent and integrated model-driven development approach which supports the modeling
and verification of safety guarantees for systems with reconfiguration of software components at run-time.
Modeling is based on a syntactically and semantically rigorously defined and partially refined subset of the
UML. Verification is based on a special type of decomposition and compositional model checking to make
it scalable.

In [65], the SA-CIRCA (self adaptive cooperative intelligent real-time control architecture) architecture
for intelligent autonomous systems is proposed. SA-CIRCA automatically synthesizes its control programs or
plans from primitive descriptions of the system it is controlling, the system objectives, and the environment
in which the system operates. The synthesis process itself can be managed to conform to real-time deadlines
that may constrain the time available for reconfiguration.

M. Zeller and C. Prehofer in [66] address the problem of run-time adaptation in networked embedded
systems with tight real-time constraints. For such systems, they aim at adapting the placement of software
components on networked hardware components at run-time without violating real-time constraints. An
adaptation process is formalized in terms of a state transition system with time constraints. Then, they
adopt and compare two approaches for finding solutions in the resulting search space for adaptations. One
approach is based on planning algorithms and the other one is based on constraint solving. The planning-
based approach starts from the current configuration and aims at finding a sequence of migrations as well
as a valid configuration, but it scales poorly. The constraint solving approach first finds a solution and then
checks for a possible sequence of migrations.

Filieri et al. in [67] present a mathematical framework for run-time probabilistic model checking that,
given a reliability model and a set of requirements, statically generates a set of expressions, which can
be efficiently used at run-time to verify system requirements. This work focuses on computing efficiently

28

reliability properties in frequently changing and uncertain environments. Probabilistic model-checking plays
a crucial role in evaluating reliability properties, typically expressed in PCTL, over a Discrete Time Markov
Chain (DTMC) model of the running system.

In [68], Cámara et al. presents a formal verification approach at design-time based on model checking
of stochastic multiplayer games (SMGs) in which adaptation latency is considered explicitly – proactive
latency-aware adaptation. In [69], the approach is also brought to run-time and takes into account the
inherent uncertainty of the environment predictions needed for looking ahead. Adaptation decisions in the
model are left underspecifed through nondeterminism; a probabilistic model checker then resolves the non
deterministic choices to deal with the infeasibility of adaptation options due to the latency or conflicts
between them. The same mechanism allows the adaptation decision to select multiple adaptation strategies
to execute in parallel when they do not interfere with each other.

The framework SCADE [70] allows modeling and verifying adaptive systems. The Lustre language, a
typed synchronous dataflow language with a discrete time model, is used to specify functional requirements
of the system. These are then verified by the SCADE Suite. Only safety and liveness properties can be
checked directly.

In [71], a framework for modeling and analyzing distributed adaptive real-time systems using the process
calculus Timed CSP (Communicating Sequential Processes) is presented. The framework allows to differen-
tiate between functional data and adaptive control data. It also allows the modular verification of functional
and adaptation behavior using the notion of process refinement in Timed CSP.

We divide approaches of the state of the art dealing with uncertainty in self-adaptive systems in two
main groups: 1) those based on runtime automated verification, and 2) those based on runtime simulation.
Representative works of the first category (runtime verification-based techniques) are [67] and [69] (already
mentioned above) that allow reasoning stochastically about uncertainty. Essentially, they propose to equip
the self-adaptive system with a stochastic system model that maintains up-to-date knowledge about the
relevant qualities and uncertainties of the environment at run-time. Runtime verification of this stochastic
model enables to calculate expected quality properties (e.g., likelihood of failures, expected response times)
for different adaptation options, allowing the system to identify system configurations that comply with
the required goals and to adapt itself accordingly. Simulation-based techniques for providing guarantees
for self-adaptive systems at runtime have not been well studied yet [72]. A representative work of such a
category is the modular approach presented in [73] for decision making in self-adaptive systems. It extends
some of the concepts in [61, 62] to deal with run-time concerns and account also for probabilistic aspects in
behavior to support on-the-fly changes of adaptation goals (changing goals at runtime is a challenging type of
uncertainty). Essentially, it adopts distinct models for each relevant system quality combined with runtime
simulation of the models and statistical techniques to select an adaptation option that satisfies the system
goals. In summary, exhaustive verification suffers from the state space explosion problem. Simulation is
less time and resource consuming than exhaustive verification. However, the tradeoff is that the guarantees
are bounded to a certain level of accuracy [73]. In spite of these recent advances, managing uncertainty in
real-time self-adaptive systems is still an impervious engineering problem.

7.2. A comparison of frameworks for timed SA
Our work has been influenced mostly by the work of J. Zhang and B. Cheng [13]. Our framework extends

the adaptation models originally presented in [12] and then instantiated using Petri Nets in [13] to deal with
concerns associated with time. In particular, we include temporal constraints in the modeling phase and
different semantics associated with events in order to model both mandatory actions (strong events, e.g.,
recovery after undesired behavior) and actions that may occur but are not forced to (weak events, e.g.,
undesired behavior). Therefore, starting from [13], we instantiated our timed adaptation models with TB
nets, that represent a very expressive formalism for describing real-time or even time-critical systems. We
then introduced a particular analysis technique able to construct the overall reachability graph with temporal
information upon events, partitioned into disjoint regions representing different steady-state behaviors of
a self-adaptive real-time system. By means of cross-zone transition properties, we allow therefore the
verification of properties of interest with respect to SA that, as advocated in [8], typically map to transitions
between different zones.

29

To compare our approach and the other frameworks described in Subsection 7.1, we adopt the following
main and generally agreed features9 of a formalism for specifying and verifying self-adaptive systems with
time constraints:

• Basis: The underlying adopted formalism.

• Time model: discrete or continuous.

• Support for feedback control loops: feedback loops for adaptation (such as the MAPE-K control
loop [3]) are considered cornerstones for the design of self-adaptive systems [4, 60, 9], since it is
generally agreed that feedback loops facilitate the identification of the core phenomena to control
and the realization of compositional verification techniques that can be applied incrementally along
the adaptation loop [60]. Therefore, a formal framework should allow their modeling and analysis
explicitly.

• Support at design-time and/or at run-time: formal methods are applied during system design or
maintenance activities (offline), or even used by the system itself at run-time.

• Types of properties for formal verification: structural properties (that can be determined from the
structure of the model without executing it); behavioral properties such as safety, liveness, reachabil-
ity, deadlock, and some of their variations specific to adaptation (i.e. desired characteristics of the
adaptation logic, such as robustness for self-healing systems).

• Support for uncertainty: the ability of approaches for the specification and analysis of self-adaptive
software systems to explicitly incorporate the uncertainty underlying the adaptation.

Framework Basis Time model Feedback
loops

Design/
run-time

Structural
prop.

Behavioral
prop.

Uncertainty

J. Zhang and B. Cheng
[13]

P/T nets, LTL 7 7 design-
time

7 3 7

D. G. de la Iglesia and
D. Weyns [61]

Timed-automata,
TCTL

continuous 3 design-
time

7 3 7

ActivFORMS [62] Timed-automata,
TCTL

discrete 3 run-time 7 3 7

Mechatronic UML [64] UML continuous 7 design-
time

7 3a 7

SA-CIRCA approach
[65]

non-deterministic fi-
nite automaton

continuous
(by the
real-time
scheduler)

7 run-time 7 3b 7

M. Zeller and C. Pre-
hofer [66]

state transition sys-
tems

continuous 7 run-time 7 3c 7

Run-time probabilistic
model checking [67]

DTMCs, PCTL discrete 7 both 7 3d 3

SCADE [70] Lustre discrete 7 design-
time

7 3e 7

Timed CSP-based
Framework [71]

Timed CSP continuous 7 design-
time

7 3 7

Proactive latency-aware
adaptation [69]

Markov decision
processes (MDPs)

discrete 3 run-time 7 3 3

Model-based simulation
at runtime [73]

stochastic timed au-
tomata (STA)

continuous 3 run-time 7 7 3

ZAFETY framework
(our approach)

TB nets, TCTL continuous 7 design-
time

3 3 3f

a In the general form of hybrid systems considered here reachability is undecidable. b Safety and Reachability.
c Domain-specific adaptation properties. d No adaptation properties. e Safety and Liveness.
f Limited to external uncertainty.

Table 4: A comparison of formal frameworks for timed SA.

9We did not attempt an exhaustive list of features for reviewing existing approaches, but only those features we consider
relevant for our research goal.

30

Table 4 below summarizes the results of such a comparison by reporting the main features of the frame-
works we considered in our work (see Subsection 7.1), including our proposal (the ZAFETY framework).

As main observation, we cannot identify a clear trend in the use of different formal modeling languages
(e.g., transition systems, automata, state machines, Petri nets, Markov models, graphs, and process algebras)
because they are roughly equally diffuse.

Some approaches adopt a discrete time model, others adopt a continuous time model. Clearly, this latter
choice is more appropriate for specifying and verifying real-time systems.

Most of the formalization approaches mentioned above (including our framework) do not support the
explicit modeling of feedback loops for SA and their properties. The actual feedback control loops are hidden
or abstracted.

Some approaches use formal methods at design-time (offline), others at run-time or in combination. We
also observed that a number of approaches exploit tools conceived for offline analysis to perform run-time
analysis. This observation suggests that there is a lack of light-weight pluggable tools to support formal
verification at run-time of SA with time constraints. Our primary research focus was grounded in providing
assurances for system requirements at design time, but we want to extend the approach to deal also with
run-time concerns.

The use of formal methods for providing correctness of system structural properties (like in our approach)
is usually not considered. Most of the verification approaches focus on checking the classical range of
behavioral properties, while the number of approaches that consider behavioral properties specific to the
adaptation concerns remains limited.

Managing uncertainty and also account for timing aspects is very challenging. Most of the promising
approaches dealing with uncertainty in self-adaptive systems are based on stochastic behaviors (such as
works [67] and [69]) for making decisions under probability theory. Probabilistic, nondeterministic and real-
time characteristics seem to be essential for modeling self-adaptive systems; however probabilistic models
are known to be computationally expensive for execution, which makes them unsuitable for use at runtime,
where often decisions have to be made very fast [74]. Runtime simulation-based techniques, such as the
approach in [73], have not been well studied yet [72].

In general, the use of timed formalisms for modeling and verifying real-time requirements of self-adaptive
systems remains limited. This indicates that current research on formal methods in real-time self-adaptive
systems requires further investigation.

8. Threats to validity

Regarding threats to the validity of our work, we have identified and tried to address the following issues.
First, there is the risk that the algorithms and the tool mistakenly prove the system requirements expressed
through both structural and behavioral properties. Thus, we applied intensive unit testing and integration
testing activities to mitigate this risk. Moreover, the ZAFETY software tool has been developed starting
from a consolidated framework (i.e., the Graphgen software tool [32, 75]).

Regarding the validity of the generalization of our approach, having defined our adaptation models in
terms of state space (TRG for TB nets) reduces the risk that our formalization holds only thanks of the
used notation. There is the risk that the proposed zone-based methodology can be applied only to few
examples (or to a very limited form of adaptation). We have addressed this risk by applying our method
to different case studies including two very common and representative real-time system examples (i.e., the
GB system [15] and the UAV system, introduced in this article). Moreover, we compared our work with
many other successful state-of-the-art approaches, borrowing some consolidated concepts from them. We
believe that the PN-based formal specification technique is general enough to be successfully used to design
(distributed) real-time self-adaptive systems, with the desired level of abstraction. Moreover, the proposed
adaptation models are well accepted in the literature [12, 13], so the risk that they are biased by our running
examples is reduced. In general, we believe our zone-based setting for modeling adaptation can be easily
integrated with any transition-based formalism (e.g., different PN extensions or different automata-based
formalisms).

31

9. Conclusion and future directions

This article presents a formal framework for specifying and verifying the behavior of real-time self-
adaptive systems. The framework introduces the Zone-based TB Petri nets formalism that combines a
zone-based specification approach with timed adaptation models. These last have been defined by extending
the adaptation models presented in [13] with temporal constraints and different temporal semantics for
modeling both mandatory and optional timed events.

Our zone-based modeling approach allows functional aspects to be kept separated from adaptation as-
pects. Zones, describing different steady-state behaviors of the system, can then be used either in isolation
to verify non-adaptive behavior by means of intra-zone properties, or all together, to verify global system
requirements through inter-zone properties. The verification of timing requirements is supported through
timed properties, able to check that both functional aspects and adaptation comply with specific temporal
deadlines. In addition, the framework supports interesting (timed) robustness properties, to ensure self-
healing capability that represents a very important issue when dealing with real-time or even time-critical
systems.

The proposed framework has been implemented as a Java software tool, called ZAFETY. We have
shown the effectiveness of our framework by modeling and verifying the self-healing behavior of some time-
critical systems. Here, we presented a significant case study: the UAV system, used as running example
to illustrate how our formal framework can prove correctness of functional, adaptation, self-healing, and
temporal aspects.

The research presented in this article focuses on providing functional requirements assurance for real-time
self-adaptive systems at design-time. Developing new run-time verification techniques or revising existing
verification techniques that work mainly at design-time (e.g., model checking) is still challenging [76]. We
are currently investigating on techniques enabling run-time verification of real-time programs by checking
conformance of timed events through a simultaneous execution of the corresponding TB net model. Our
goal is to exploit this run-time verification technique to enable the use of the proposed formal framework
also at run-time for a continuous verification of the run-time adaptation within predetermined time con-
straints. Preliminary results are promising. In particular, work presented in [27] introduces MahaRAJA,
i.e., an event-based runtime verification framework that makes use of TB Petri nets. Experiments show that
MahaRAJA is highly scalable and it introduces bounded overhead and effectively reduces the involvement
of the monitor at run time by using negligible auxiliary memory [77].

As future work, we want also to extend our zone-based modeling approach in order to incorporate feed-
back loops (such as the MAPE-K control loop model [3, 60]) explicitly in our TB net models. Modeling
feedback loops as zones would facilitate the identification of the core phenomena to control as they provide
real separation of concerns between the domain and the adaptation concerns. To this purpose, we want to
take inspiration from the recent results presented in [78] aiming at formally specifying decentralized adap-
tation control of MAPE-K feedback loops in terms of multi-agent Abstract State Machines [79]. Feedback
loops would also allow the realization of compositional verification techniques, including timing constraints,
that could be applied incrementally along the adaptation loop structure [60]. It would be therefore possible
to verify properties of the feedback loops under time constraints. To this last purpose, we want to combine
the proposed zone-based TB net formalism with the run-time verification framework already presented in
[27].

Finally, in the future we would like also to extend our framework to manage a more comprehensive
form of uncertainty in real-time self-adaptive systems. To this purpose, we want to combine our zone-based
modeling technique with purely stochastic formalisms to express and verify soft real-time constraints in
presence of uncertainty. A modeling formalism of choice in this field is Generalized Stochastic Petri Nets
(GSPNs) [80]. In this case, we map regions and adaptation sets into a Continuous Time Markov chain [81]
(i.e., the reachability graph of a GSPN model). Alternatively, we could exploit approaches that combine
techniques from both fields of real-time verification and probabilistic verification. In particular we could
exploit timed extensions of Petri nets with stochastic evolution rules, such as Stochastic Timed Petri Nets
(STPNs) [82]. This would allow the specification and verification of both hard timing constraints (i.e.,
temporal deadlines) and randomized delays.

32

References

[1] B. H. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic,
et al., Software engineering for self-adaptive systems: A research roadmap, Springer, 2009.

[2] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl, G. Tamura, N. M. Villegas,
T. Vogel, et al., Software engineering for self-adaptive systems: A second research roadmap, in: Software Engineering for
Self-Adaptive Systems II, Springer, 2013, pp. 1–32.

[3] J. O. Kephart, D. M. Chess, The vision of autonomic computing, IEEE Computer 36 (1) (2003) 41–50.
[4] M. C. Huebscher, J. A. McCann, A survey of autonomic computing – degrees, models, and applications, ACM Comput.

Surv. 40 (3) (2008) 7:1–7:28.
[5] N. Esfahani, S. Malek, Uncertainty in self-adaptive software systems, in: R. de Lemos, H. Giese, H. A. Müller, M. Shaw

(Eds.), Software Engineering for Self-Adaptive Systems II - International Seminar, Dagstuhl Castle, Germany, October
24-29, 2010 Revised Selected and Invited Papers, Vol. 7475 of Lecture Notes in Computer Science, Springer, 2010, pp.
214–238.

[6] D. Perez-Palacin, R. Mirandola, Uncertainties in the modeling of self-adaptive systems: A taxonomy and an example
of availability evaluation, in: Proceedings of the 5th ACM/SPEC International Conference on Performance Engineering,
ICPE ’14, ACM, New York, NY, USA, 2014, pp. 3–14.

[7] M. Camilli, A. Gargantini, P. Scandurra, C. Bellettini, Towards Inverse Uncertainty Quantification in Software Develop-
ment (Short Paper), Springer International Publishing, Cham, 2017, pp. 375–381. doi:10.1007/978-3-319-66197-1_24.

[8] D. Weyns, M. U. Iftikhar, D. G. de la Iglesia, T. Ahmad, A survey of formal methods in self-adaptive systems, in: B. C.
Desai, E. Vassev, S. P. Mudur, B. C. Desai (Eds.), C3S2E, ACM, 2012, pp. 67–79.

[9] R. de Lemos, D. Garlan, C. Ghezzi, H. Giese, Software Engineering for Self-Adaptive Systems: Assurances (Dagstuhl
Seminar 13511), Dagstuhl Reports 3 (12) (2014) 67–96.

[10] G. D. Rodosek, K. Geihs, H. Schmeck, B. Stiller, Self-Healing Systems: Foundations and Challenges, no. 09201 in Dagstuhl
Seminar Proceedings, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, Dagstuhl, Germany, 2009.

[11] C. Ghezzi, D. Mandrioli, S. Morasca, M. Pezzè, A unified high-level Petri net formalism for time-critical systems, IEEE
Trans. Softw. Eng. 17 (1991) 160–172.

[12] J. Zhang, B. H. C. Cheng, Specifying adaptation semantics, SIGSOFT Softw. Eng. Notes 30 (4) (2005) 1–7.
[13] J. Zhang, B. H. C. Cheng, Model-based development of dynamically adaptive software, in: Proc. of the 28th International

Conference on Software Engineering, ICSE ’06, ACM, New York, NY, USA, 2006, pp. 371–380.
[14] G. Gardey, O. H. Roux, O. F. Roux, State space computation and analysis of time petri nets, Theory Pract. Log. Program.

6 (3) (2006) 301–320.
[15] M. Camilli, A. Gargantini, P. Scandurra, Specifying and verifying real-time self-adaptive systems, in: 26th IEEE Interna-

tional Symposium on Software Reliability Engineering, ISSRE 2015, Gaithersbury, MD, USA, November 2-5, 2015, IEEE,
2015, pp. 303–313.

[16] J. L. Peterson, Petri nets, ACM Computing Surveys 9 (3) (1977) 223–252.
[17] B. Berthomieu, M. Diaz, Modeling and verification of time dependent systems using time Petri nets, IEEE Trans. Softw.

Eng. 17 (1991) 259–273.
[18] J. Bengtsson, W. Yi, Timed automata: Semantics, algorithms and tools, in: Lectures on Concurrency and Petri Nets:

Advances in Petri Nets, Springer Berlin Heidelberg, 2004, pp. 87–124.
[19] Y. Gurevich, Sequential abstract-state machines capture sequential algorithms, ACM Trans. Comput. Logic 1 (1) (2000)

77–111.
[20] C. Ramchandani, Analysis of asynchronous concurrent systems by timed Petri nets, Tech. rep., Massachusetts Institute

of Technology, Cambridge, MA, USA (1974).
[21] W. J. Lee, S. D. Cha, Y. R. Kwon, Integration and analysis of use cases using modular petri nets in requirements

engineering, Software Engineering, IEEE Transactions on 24 (12) (1998) 1115–1130.
[22] D. G. D. L. Iglesia, D. Weyns, Mape-k formal templates to rigorously design behaviors for self-adaptive systems, ACM

Trans. Auton. Adapt. Syst. 10 (3) (2015) 15:1–15:31.
[23] M. Camilli, C. Bellettini, L. Capra, M. Monga, CTL model checking in the cloud using mapreduce, in: Symbolic and

Numeric Algorithms for Scientific Computing, SYNASC 2014, IEEE CS Press, Los Alamitos, CA, USA, 2014, to appear.
[24] M. Camilli, Formal verification problems in a big data world: Towards a mighty synergy, in: Companion Proceedings of

the 36th International Conference on Software Engineering, ICSE Companion 2014, ACM, New York, NY, USA, 2014,
pp. 638–641. doi:10.1145/2591062.2591088.
URL http://doi.acm.org/10.1145/2591062.2591088

[25] C. Bellettini, M. Camilli, L. Capra, M. Monga, Distributed ctl model checking using mapreduce: Theory and practice,
Concurr. Comput. : Pract. Exper. 28 (11) (2016) 3025–3041. doi:10.1002/cpe.3652.
URL https://doi.org/10.1002/cpe.3652

[26] M. Camilli, C. Bellettini, L. Capra, M. Monga, A formal framework for specifying and verifying microservices based process
flows, in: A. Cerone, M. Roveri (Eds.), Software Engineering and Formal Methods, Springer International Publishing,
Cham, 2018, pp. 187–202.

[27] M. Camilli, A. Gargantini, P. Scandurra, C. Bellettini, Event-based runtime verification of temporal properties using time
basic petri nets, in: C. Barrett, M. Davies, T. Kahsai (Eds.), NASA Formal Methods - 9th International Symposium,
NFM 2017, Moffett Field, CA, USA, May 16-18, 2017, Proceedings, Vol. 10227 of Lecture Notes in Computer Science,
Springer International Publishing, 2017, pp. 115–130.

33

[28] M. Camilli, C. Bellettini, L. Capra, Design-time to run-time verification of microservices based applications, in: A. Cerone,
M. Roveri (Eds.), Software Engineering and Formal Methods, Springer International Publishing, Cham, 2018, pp. 168–173.

[29] M. Camilli, C. Bellettini, L. Capra, M. Monga, Coverability analysis of time basic petri nets with non-urgent behavior, in:
J. H. Davenport, V. Negru, T. Ida, T. Jebelean, D. Petcu, S. M. Watt, D. Zaharie (Eds.), 18th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2016, Timisoara, Romania, September 24-27,
2016, IEEE Computer Society, 2016, pp. 165–172.

[30] L. Pan, Z. J. Ding, M. C. Zhou, A configurable state class method for temporal analysis of time petri nets, IEEE
Transactions on Systems, Man, and Cybernetics: Systems 44 (4) (2014) 482–493. doi:10.1109/TSMC.2013.2258907.

[31] M. Boyer, O. H. Roux, Comparison of the Expressiveness of Arc, Place and Transition Time Petri Nets, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007, pp. 63–82. doi:10.1007/978-3-540-73094-1_7.

[32] C. Bellettini, L. Capra, Reachability analysis of time basic Petri nets: A time coverage approach, 2011 13th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing 0 (2011) 110–117.

[33] C. Bellettini, M. Camilli, L. Capra, M. Monga, Symbolic state space exploration of RT systems in the cloud, in: Symbolic
and Numeric Algorithms for Scientific Computing, SYNASC 2012, IEEE CS Press, Los Alamitos, CA, USA, 2012, pp.
295–302.

[34] R. W. Floyd, Algorithm 97: Shortest path, Commun. ACM 5 (6) (1962) 345–.
[35] J. Horen, Linear programming, by katta g. murty, john wiley & sons, new york, 1983, 482 pp, Networks 15 (2) (1985)

273–274.
[36] H. Boucheneb, R. Hadjidj, CTL* model checking for time Petri nets, Theor. Comput. Sci. 353 (1) (2006) 208–227.
[37] C. Bellettini, M. Camilli, L. Capra, M. Monga, Mardigras: Simplified building of reachability graphs on large clusters, in:

P. Abdulla, I. Potapov (Eds.), Reachability Problems, Vol. 8169 of LNCS, Springer Berlin Heidelberg, 2013, pp. 83–95.
[38] R. Allen, R. Douence, D. Garlan, Specifying and analyzing dynamic software architectures, in: E. Astesiano (Ed.),

Fundamental Approaches to Software Engineering, Vol. 1382 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 1998, pp. 21–37.

[39] G. Vachtsevanos, B. Ludington, Unmanned aerial vehicles: Challenges and technologies for improved autonomy, in:
Proceedings of the 10th WSEAS International Conference on Systems, ICS’06, World Scientific and Engineering Academy
and Society (WSEAS), Stevens Point, Wisconsin, USA, 2006, pp. 56–63.

[40] P. Schaefer, R. Colgren, R. Abbott, H. Park, A. Fijany, F. Fisher, M. James, S. Chien, R. Mackey, M. Zak, T. Johnson,
S. Bush, Reliable autonomous control technologies (react) for uninhabited air vehicles, in: Aerospace Conference, 2001,
IEEE Proceedings., Vol. 2, 2001, pp. 2/677–2/684 vol.2.

[41] P. Gunetti, T. Dodd, H. Thompson, Simulation of a soar-based autonomous mission management system for unmanned
aircraft, Journal of Aerospace Information Systems 10 (2) (2013) 53–70.

[42] M. Salehie, L. Tahvildari, Self-adaptive software: Landscape and research challenges, ACM Trans. Auton. Adapt. Syst.
4 (2) (2009) 14:1–14:42.

[43] R. de Lemos, J. L. Fiadeiro, An architectural support for self-adaptive software for treating faults, in: Proceedings of the
First Workshop on Self-healing Systems, WOSS ’02, ACM, New York, NY, USA, 2002, pp. 39–42.

[44] P. Robertson, R. Laddaga, Model based diagnosis and contexts in self adaptive software, in: O. Babaoglu, M. Jelasity,
A. Montresor, C. Fetzer, S. Leonardi, A. van Moorsel, M. van Steen (Eds.), Self-star Properties in Complex Information
Systems, Vol. 3460 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2005, pp. 112–127.

[45] R. Tarjan, Depth-first search and linear graph algorithms, in: Switching and Automata Theory, 1971., 12th Annual
Symposium on, 1971, pp. 114–121.

[46] E. Clarke, E. Emerson, Design and synthesis of synchronization skeletons using branching time temporal logic, in: D. Kozen
(Ed.), Logics of Programs, Vol. 131 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 1982, pp. 52–71.

[47] R. Alur, C. Courcoubetis, D. Dill, Model-checking in dense real-time, Inf. Comput. 104 (1) (1993) 2–34.
[48] P. Bouyer, Model-checking timed temporal logics, Electronic Notes in Theoretical Computer Science 231 (2009) 323 – 341.
[49] H. Boucheneb, G. Gardey, O. H. Roux, Tctl model checking of time petri nets, J. Logics and Computing 19 (6) (2009)

1509–1540.
[50] N. J. Dingle, W. J. Knottenbelt, T. Suto, Pipe2: a tool for the performance evaluation of generalised stochastic Petri nets,

SIGMETRICS Perform. Eval. Rev. 36 (4) (2009) 34–39.
[51] L. M. Hillah, F. Kordon, L. Petrucci, N. Trèves, Pnml framework: An extendable reference implementation of the petri

net markup language, in: Proceedings of the 31st International Conference on Applications and Theory of Petri Nets,
PETRI NETS’10, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 318–327.

[52] E. R. Gansner, S. C. North, An open graph visualization system and its applications to software engineering, SOFTWARE
- PRACTICE AND EXPERIENCE 30 (11) (2000) 1203–1233.

[53] R. Allen, R. Douence, D. Garlan, Specifying and analyzing dynamic software architectures, in: FASE, 1998, pp. 21–37.
[54] J. O. Kephart, D. M. Chess, The vision of autonomic computing, Computer 36 (1) (2003) 41–50.
[55] B. Morin, O. Barais, G. Nain, J. Jézéquel, Taming dynamically adaptive systems using models and aspects, in: 31st

International Conference on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Proceedings, IEEE,
2009, pp. 122–132. doi:10.1109/ICSE.2009.5070514.
URL http://dx.doi.org/10.1109/ICSE.2009.5070514

[56] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. L. Presti, R. Mirandola, MOSES: A framework for qos driven
runtime adaptation of service-oriented systems, IEEE Trans. Software Eng. 38 (5) (2012) 1138–1159.

[57] R. Mirandola, P. Potena, P. Scandurra, Adaptation space exploration for service-oriented applications, Science of Computer
Programming 80, Part B (0) (2014) 356–384.

[58] Z. Ding, Y. Zhou, M. Zhou, Modeling self-adaptive software systems with learning petri nets, IEEE Trans. Systems, Man,

34

and Cybernetics: Systems 46 (4) (2016) 483–498.
[59] M. U. Iftikhar, D. Weyns, A case study on formal verification of self-adaptive behaviors in a decentralized system, in:

Proc. 11th International Workshop on Foundations of Coordination Languages and Self Adaptation, FOCLASA 2012,
Newcastle, U.K., September 8, 2012., Vol. 91 of EPTCS, 2012, pp. 45–62.

[60] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu, H. Müller, M. Pezzè, M. Shaw, Software
engineering for self-adaptive systems, in: B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee (Eds.), Software
Engineering for Self-Adaptive Systems, Springer-Verlag, Berlin, Heidelberg, 2009, Ch. Engineering Self-Adaptive Systems
Through Feedback Loops, pp. 48–70.

[61] D. G. de la Iglesia, D. Weyns, Guaranteeing robustness in a mobile learning application using formally verified MAPE
loops, in: M. Litoiu, J. Mylopoulos (Eds.), Proceedings of the 8th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2013, San Francisco, CA, USA, May 20-21, 2013, IEEE Computer Society,
2013, pp. 83–92.

[62] M. U. Iftikhar, D. Weyns, Activforms: Active formal models for self-adaptation, in: Proceedings of the 9th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2014, ACM, New York, NY, USA,
2014, pp. 125–134.

[63] J. Bengtsson, W. Yi, Timed automata: Semantics, algorithms and tools, in: J. Desel, W. Reisig, G. Rozenberg (Eds.),
Lectures on Concurrency and Petri Nets, Vol. 3098 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2004, pp. 87–124.

[64] H. Giese, W. Schäfer, Assurances for Self-Adaptive Systems: Principles, Models, and Techniques, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2013, Ch. Model-Driven Development of Safe Self-optimizing Mechatronic Systems with
MechatronicUML, pp. 152–186.

[65] D. J. Musliner, Imposing real-time constraints on self-adaptive controller synthesis, in: in Proc. Int’l Workshop on Self-
Adaptive Software, Springer-Verlag, 2000, pp. 143–160.

[66] M. Zeller, C. Prehofer, Timing constraints for runtime adaptation in real-time, networked embedded systems, in: H. A.
Müller, L. Baresi (Eds.), 7th International Symposium on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS 2012, Zurich, Switzerland, June 4-5, 2012, IEEE, 2012, pp. 73–82.

[67] A. Filieri, C. Ghezzi, G. Tamburrelli, Run-time efficient probabilistic model checking, in: Proceedings of the 33rd Inter-
national Conference on Software Engineering, ICSE ’11, ACM, New York, NY, USA, 2011, pp. 341–350.

[68] J. Cámara, G. A. Moreno, D. Garlan, Stochastic game analysis and latency awareness for proactive self-adaptation, in:
G. Engels, N. Bencomo (Eds.), 9th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS 2014, Proceedings, Hyderabad, India, June 2-3, 2014, ACM, 2014, pp. 155–164.

[69] G. A. Moreno, J. Cámara, D. Garlan, B. R. Schmerl, Proactive self-adaptation under uncertainty: a probabilistic model
checking approach, in: E. D. Nitto, M. Harman, P. Heymans (Eds.), Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015, ACM, 2015, pp.
1–12.

[70] M. Gudemann, A. Angerer, F. Ortmeier, W. Reif, Modeling of self-adaptive systems with scade, in: Circuits and Systems,
2007. ISCAS 2007. IEEE International Symposium on, 2007, pp. 2922–2925.

[71] T. Göthel, V. Klös, B. Bartels, Modular design and verification of distributed adaptive real-time systems based on
refinements and abstractions, EAI Endorsed Trans. Self-Adaptive Systems 1 (1) (2015) e5.

[72] D. Weyns, N. Bencomo, R. Calinescu, J. Cámara, C. Ghezzi, V. Grassi, L. Grunske, P. Inverardi, J.-M. Jezequel, S. Malek,
R. Mirandola, M. Mori, G. Tambrrellii, Perpetual assurances for self-adaptive systems, in: R. de Lemos, D. Garlan,
C. Ghezzi, H. Giese (Eds.), Software Engineering for Self-Adaptive Systems (SEfSAS) 3, no. 9640 in Lecture Notes in
Computer Science, Springer, 2017, to appear.

[73] D. Weyns, M. U. Iftikhar, Model-based simulation at runtime for self-adaptive systems, in: 2016 IEEE International
Conference on Autonomic Computing (ICAC), IEEE, 2016, pp. 364–373.

[74] N. Esfahani, S. Malek, Uncertainty in self-adaptive software systems, in: R. de Lemos, H. Giese, H. A. Müller, M. Shaw
(Eds.), Software Engineering for Self-Adaptive Systems II: International Seminar, Dagstuhl Castle, Germany, October
24-29, 2010 Revised Selected and Invited Papers, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 214–238.

[75] M. Camilli, Petri nets state space analysis in the cloud, in: Software Engineering (ICSE), 2012 34th International Confer-
ence on, 2012, pp. 1638–1640.

[76] R. Calinescu, S. Kikuchi, Foundations of Computer Software. Modeling, Development, and Verification of Adaptive Sys-
tems: 16th Monterey Workshop 2010, Redmond, WA, USA, March 31- April 2, 2010, Revised Selected Papers, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011, Ch. Formal Methods @ Runtime, pp. 122–135.

[77] The MahaRAJA framework, https://maharajaframework.bitbucket.io/, accessed: Dec. 2017.
[78] P. Arcaini, E. Riccobene, P. Scandurra, Formal design and verification of self-adaptive systems with decentralized control,

ACM Transactions on Autonomous and Adaptive Systems 11 (4) (2017) 25:1–25:35.
[79] E. Borger, R. F. Stark, Abstract State Machines: A Method for High-Level System Design and Analysis, Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 2003.
[80] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis, Modelling with Generalized Stochastic Petri Nets, 1st

Edition, John Wiley & Sons, Inc., New York, NY, USA, 1994.
[81] J. Norris, Markov Chains, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press,

1998.
[82] G. Juanole, L. Gallon, Formal modelling and analysis of a critical time communication protocol, in: Factory Communica-

tion Systems, 1995. WFCS ’95, Proceedings., 1995 IEEE International Workshop on, 1995, pp. 107–115.

35

idle

planningStart

planningAlg savePlan takeoffActEv takeoff

climbActEv

climbing

maneuverActEv

maneuver

flightActEv
askTrajectory

retrieveNextPoi saveDestination

flightCondition
camReady

radar

navEnd

circleMode

photoShootActEv

photoShootcircleTimeout

sense

dataReady

threatAssesment

evaluation

noThreat

landingStart

landingPositiondescentPath

landingActEv
groundActEv

groundidleActEv

radarShutDownReqturnRadarOff

#Normal

planningEnd

fxPositive

showTrajectory
degradedCondAlarm

checkpoint

waitForUserChoice

startAnyway

waitActEv

doNotStart
#UndesiredG

startActEv

recoveryGAlarm

planModification

planErasure

failureLog

startCondition

modifiedActEv

erasedActEv

idleActEv

#RecoveryG

restrictActEv1

restrictActEv2

circleModeRes

camReadyRes

photoShootRes

abortCamPreparation

abortPhotoShoot

flightConditionRes

#Restricted

threatResAcEv

degradedTrajAlarm

pathAdjustReady

threat
retrieveTrajectory

replanningStart

#UndesiredT

repairTrajectory
repairOk

repairFail

saveTrajectoryR

askPositionRplanningAlgR

savePlanR

planRecovery

planRepairEnd

planningOkR

planningFailR

#RecoveryT
attempting

recoveredActEv

attemptTimeout

emergencyCondition

detonationActReq

stop

detonationActEv

#Invalid

tooManyFailures

userInteractionReq

shutdownReq

3

shutdownActEv

threatAcEv

Initial marking: idle{T0}, checkpoint{T0}
Initial constraint: 0 ≤ T0 ≤ 10

Figure A.18: The zone-based TB net model of the UAV case study. Weak transitions are depicted in gray.

Appendix A. The Complete UAV zone-based formal specification

This appendix contains the complete formal specification of the UAV system, used as running example
throughout the article. In particular, Figure A.18 shows the complete zone-based TB net model for the
management of an observation mission. Our zone-based approach is used to model the vehicle behavior.
During the nominal behavior (i.e., the zone #Normal), the flight path can intersect any unknown entity that
represents a threat such as hostile presences but also bad weather areas or no-fly zones. Therefore the UAV
adapts itself to work in different degraded conditions, i.e., it eventually changes the flight plan in order to
take a detour around the threats. Path adjustment during the mission planning (while the UAV is still on
ground), are modeled by the zones #UndesiredG and #RecoveryG, while the path adjustment during the
travel are modeled by the zones #Restricted, #UndesiredT, and #RecoveryT. The zone #Invalid models
loss of functionality from which the recovery is no longer possible.

36

