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Abstract— This paper proposes the use of a change
detection algorithm to monitor the degradation of mechanical
components of Electro-Mechanical Actuators (EMA) employed
in the aerospace industry. Contrary to the standard on-line
application of change detection methods, the presented
approach can be applied in a batch mode, leveraging on the
knowledge of when the data were collected. The methodology is
applied to data measured during an endurance test campaign
on a real EMA employed in aerospace, by means of a developed
test bench, progressively bringing the EMA to failure. Three
rationales for building an indicator of degradation are tested.
Results show how the method is able to assess the degradation
of the actuator over time, constituting a first step towards a
condition monitoring solution for the more-electric-aircraft of
the future.

I. INTRODUCTION

The envisioned future for the aerospace industry is
towards the the More Electric Aircraft (MEA) initiative
[1]. The aim is to replace the current hydraulic actuation
[2] with an electro-mechanical one. This would lead to
both environmental and efficiency benefits [3]. However,
limited in-service experience of EMAs requires intensive
research in order to show that they match the superior
reliability levels of hydraulic systems. In order to pursue this
objective, companies and universities are working together
in synergy. One of the main topics where those subjects
are focusing is the field of Condition Monitoring (CM) of
Electro-Mechanical Actuators (EMA) [4].

These joint collaborations are often promoted and
incentivized by the European Union (EU) or by the United
States (US). As recent examples, authors in [5], [6],
[7] provided several different solutions for fault detection
of EMAs used in airliner applications, using a large
experimental test campaign. The works were related to the
FP7 EU-funded HOLMES (Health OnLine Monitoring for
Electro-Mechanical actuator Safety) project. In the same
way, the NASA funded several projects of fault detection
in aerospace using a flyable test-bed [8], [9].

The present work is developed in the context of the H2020
EU-funded REPRISE (Reliable Electromechanical actuator
for PRImary SurfacE with health monitoring) project [10].
The aim of the project is to support the improvement of the
Technological Readiness Level (TRL) for a Flight-Control
System (FCS) of small aircrafts, bringing it to TRL 5. A
critical part of the work is the development of a condition

G. Pispola and N.Porzi are with the company UMBRAGROUP spa,
06034 Foligno (PG), Italy. M. Mazzoleni, M. Scandella, Y. Maccarana
and F. Previdi are with the Department of Management, Information and
Production Engineering, University of Bergamo, Via G. Marconi 5, 24044
Dalmine (BG), Italy. Email to: mirko.mazzoleni@unibg.it.

monitoring strategy, able to provide a continuous assessment
of the EMA health state, tracking the progressive faults
degradation. In order to purse this goal, an extensive
endurance experimental activity has been performed on a
1:1 scale EMA employed in aerospace. Experimental data
have been measured in order to develop CM algorithms. The
proposed monitoring algorithm leverages on the information
acquired from the test bench, in order to assess the
progressive degradation.

Condition monitoring approaches for EMAs already faced
in the literature are, in addition to those aforementioned ones,
presented in [11], [12], [13]. In the first work, the authors
proposed a model-based approach tracking the estimates
of a model’s parameters. In the second work, the health
monitoring strategy is based on EMAs’ position-tracking
performance. The last work employs a fault detection
strategy based on vibration analysis.

The work presented in this paper differs from the
previously cited ones, since it relies on an unsupervised
nonparametric data-driven method, using only features
computed from phase-current measurements. The method
employed here is a change-detection algorithm based on
density-ratio estimation [14]. The rationale of the method
consists into assessing if a change occurred between the
probability distributions of data samples over past and
present intervals. The assumption is to relate the motor
degradation to a distributional change in its measured data.

Change-point detection methods are usually classified
into real-time [15] and retrospective detection [16]. The
difference lies in the immediate response of the former
methodologies, with respect to the greater accuracy and
higher computation times of the latter ones. Other change
detection methods relies instead on ideas from subspace
methods, usually employed in system identification [17].

In its basic form, the algorithm employed in this paper
belongs to the retrospective category. However, we propose
to use the method in a batch manner, with respect to
the on-line fashion. This is possible by planning regular
checks of the mechanical component, and comparing the
previously measurements with the currently performed ones.
If the system detects that the data distribution is changed
between the two known time instants, than we can suspect
a degradation of the EMA functionalities in the meantime.
By comparing measured data with a “gold standard” set of
measures (for example a healthy dataset at the beginning
of actuator’s life), it would be also possible to detect small
changes that, with the standard on-line methods, would be
more difficult to recognize. A first version of this algorithm
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that works in an on-line manner has been presented in [18].
The remainder of the paper is organized as follows.

Section II presents the experimental setup deployed for
the performed endurance tests on the EMA. Section III
formulates the change-detection problem. In Section IV, the
density-ratio change detection method is adapted to perform
the batch condition monitoring of the EMA under study,
discussing also experimental results on data measured from
an endurance test campaign. Lastly, Section VI is devoted to
concluding remarks and future developments.

II. EXPERIMENTAL SETUP

A test bench is employed to perform the endurance tests on
the EMA, see Figure 1. The EMA is a three-phases brushless
DC motor, capable to operate even in case of one supply
loss. A LVDT sensor is used for the position control loop.
A ballscrew transmission, with 8 circuits with 1 turn each
transforms the rotational motion in the linear one. The three
phase currents are measured by means of LEM sensors. A
linear motor provides the simulated load.

Fig. 1. Schematic of the test bench. (Yellow)) linear motor, (Green) EMA,
(Pink) load cell, (Blue) absolute linear optical encoder.

Reference position profiles employed during the test were
sinusoidal. The rationale for this choice is that, during
operation, the EMA has to actuate forward and backward the
main flight control surfaces. The bandwidth of the position
control loop is about 1.5Hz. The used sinusoids’ amplitudes
ranged from 5mm to 30mm. The used sinusoids’ frequencies
ranged from 0.1Hz to 10Hz. In order to accelerate the
degradation process of EMA, 3 out of 8 balls circuits
were used. This increased the pressure at the contact points
between the balls and the screw thread. Then, the EMA
undergone heavier conditions than standard operating ones.
Furthermore, the EMA has been connected to the linear
motor so that the 17% of the axial load force will generate
also a radial component. The chosen load conditions are:
i) H0 (nominal) condition, 300N of constant load; ii)
H1 (overload) condition, 800N of constant load; iii) H1b
(overload) condition, 1200 of constant load. These loads
were chosen after a Finite Element Method (FEM) analysis,

that showed the pressures undergone by the steel balls
inside the ballscrew. The overload conditions correspond to
loads where the balls are over-stressed. The EMA suffered
fatigue tests at conditions H1 and H1b. Measurements for
the condition assessment were taken after every endurance
sessions, in the H0 condition. Three different testing regimes
were envisaged, with a different degree of lubrication.
The Normal lubrication regime consisted in the nominal
operating condition, that is, with the lubricant normally
employed in this type of mechanical transmissions. The Poor
lubrication regime was characterized by partially removing
the lubricant. The No lubrication regime completely removed
the lubricant. These choices were motivated by considering
that the loss of lubricant could be a possible scenario, leading
to malfunctioning of the EMA.

Figure 2 reports the performed tests since April 2017,
showing both the number of revolutions done by the
ballscrew, and the distance that it traveled performing the
tests. The motor performed 2.582.933 ca. revolutions in
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Fig. 2. Performed test conditions with number of revolutions and distance
performed during six months.

H0 condition; 5.130.369 ca. in H1 condition; 1.850.274 ca.
in H1b condition; 3.732.531 ca. in other loads conditions.
These are referred to tests performed at different loads, for
examples to compute the bode diagram (under no load) or
tests related to assess the bench functionalities. In total,
the EMA performed 13.296.113 revolutions. When reporting
these numbers, we discarded decimals of revolutions.
These numbers were computed by carefully considering the
dynamic response of the system. This was possible after
an estimation of the Bode diagram of the system, via a
sinusoidal input sweep. As additional information, the motor
traveled 42, 215km ca.

III. CHANGE DETECTION VIA RELATIVE DENSITY-RATIO
ESTIMATION

A. Problem statement

The proposed algorithm is a density-ratio estimation
method known as Relative unconstrained Least-Squares
Importance Fitting (RuLSIF) [19], [14]. The assumption
is that the estimation of the ratio of two densities is
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Fig. 3. Schematic representation of the notation for a one-dimensional time
series, for illustrative settings such that d = 1, t = 1, n = 5 and k = 3.

substantially easier than estimating the two densities in a
separate way [20]. In our setting, the two densities represents
kernel estimates of the time series data distribution, before
and after a certain time instant. Then, using a suitable
divergence, it is possible to estimate how the two densities
differ. Let y(t) ∈ Rd×1 be a d-dimensional time-series
sample at time t. Let’s define

Y (t) ≡
[
y(t)T, y(t+ 1)T, · · · , y(t+ k − 1)T]T ∈ Rd·k×1

as a “subsequence” 1 of time-series of length k, at time t.
The subsequence Y (t) is treated as a single data sample. We
then define the quantity Y(t) as the matrix composed by n
of the dk-th dimensional samples Y (t), starting from t:

Y(t) ≡ [Y (t), Y (t+ 1), · · · , Y (t+ n− 1)] ∈ Rd·k×n.

The matrix Y(t) forms a Hankel matrix, playing a key role
in change-point detection based on subspace learning [17].
Consider now two consecutive segments Y(t) and Y(t+n).
The change-detection problem is then solved by computing
a certain dissimilarity measure between Y(t) and Y(t+ n).
The higher the dissimilarity measure is, the more likely the
two distributions differ. The entire notations are depicted
schematically in Figure 3.

B. Divergence measures

Denote now the probability distributions of the samples in
Y(t) and Y(t + n) as P and P ′, respectively. The Pearson
divergence is defined as [21]:

PE (P ‖P ′) ≡ 1

2

∫
p′(X) ·

(
p(X)

p′(X)
− 1

)2

dX, (1)

where X denotes the generic dk-th dimensional random
variable, and p(X), p′(X) are the probability density
functions of P and P ′, respectively.

Let now {Yi}ni=1 and
{
Y′j
}n
j=1

be a set of samples
drawn from p(X) and p′(X). In order to compute (1), we
will employ an estimate of the density-ratio p(X)

p′(X) , using
proper sets of samples which are representative of the two
distributions. The samples {Yi}ni=1 are those belonging to

1For higher-dimensional time-series, Y (t) concatenates the subsequences
of all dimensions into a one-dimensional vector.

Y(t). The samples
{
Y′j
}n
j=1

are those belonging to Y(t+n).

The density-ratio value p(X)
p′(X) in (1) could be unbounded,

depending on the condition of the denominator density
p′(X). To overcome this problem, the α-relative Pearson
divergence measure was introduced in [14], for 0 ≤ α < 1:

PEα (P ‖P ′) ≡ PE (P ‖αP + (1− α)P ′)

=
1

2

∫
p′α(X) ·

(
p(X)

p′α(X)
− 1

)2

dX,
(2)

where p′α(X) = αp(X) + (1− α) p′(X) is the α-mixture
density. The α-relative density-ratio is then defined as:

rα(X) =
p(X)

p′α(X)
=

p(X)

αp(X) + (1− α) p′(X)
, (3)

which reduces to plain density-ratio when α = 0, and it
is bounded above by 1/α for α > 0, even when the plain
density-ratio p(X)

p′(X) is unbounded.
It is important to notice that neither (1) nor (2) are metrics,

since they are not symmetric and the triangular inequality
does not hold. To cope with the first problem, authors in
[14] proposed to use the symmetrical divergence:

PEα (P ‖P ′) + PEα (P ′‖P ) , (4)

where each term is estimated separately. However,
divergence (4) still not satisfies the triangle inequality.

C. Learning algorithm

The α-relative density-ratio is modeled as:

g (X;θ) ≡
n∑
l=1

θl ·K (X,Yl) , (5)

where θ = [θ1, . . . , θn]
T ∈ Rn×1 are unknown parameters,

K (· , ·) is a kernel basis function, and Yl refers to the l-th
data sample in Y(t). In our experiments, we employ the
Gaussian kernel such that:

K (Y1,Y2) = exp
(
−‖Y1 −Y2‖2

2δ2

)
, (6)

where δ > 0 is the kernel width. The parameters’ vector θ
is learned by minimizing the squared loss:

J(θ) =
1

2

∫
p′α(X)

(
rα(X)− g(X;θ)

)2
dX

=
1

2

∫
p′α(X)r2α(X) dX−

∫
p(X)g(X;θ) dX

+
α

2

∫
p(X)g(X;θ)2 dX+

1− α

2

∫
p′(X)g(X;θ)2 dX

(7)

where the computations were made by expanding the square
and employing the definition of p′α(X).

The first term of (7) can be discarded since it does
not depend on the unknown parameters. By substituting
g(X;θ) with the definition (5), and approximating the
expectations with empirical averages, it is possible to obtain
the following minimization problem (with the addition of the
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Ridge regularization term λ
2θ

Tθ):

θ̂ = arg min
θ∈Rn

[
1

2
θTĤθ − ĥ

T
θ +

λ

2
θTθ

]
, (8)

where Ĥ ∈ Rn×n, ĥ ∈ Rn×1 and λ > 0 controls the
regularization strength. The element in position (l,m) of Ĥ
is given by:

Ĥ(l,m) =
α

n

n∑
i=1

K(Yi,Yl) ·K(Yl,Ym)

+
1− α
n

n∑
j=1

K(Y′j ,Yl) ·K(Y′j ,Ym).

(9)

The element in position l of ĥ is given by:

ĥ(l) =
1

n

n∑
i=1

K(Yi,Yl). (10)

The solution to problem (8) can expressed as:

θ̂ =
(
Ĥ + λIn

)−1
· ĥ, (11)

where In is n-th dimensional identity matrix. The density
ratio estimator assumes thus the form of:

ĝ (X) =

n∑
l=1

θ̂l ·K(X,Yl). (12)

D. Computing the divergence

In order to use (12), it is first necessary to rewrite the
Pearson divergence (2) as:

PEα (P ‖P ′) = 1
2

∫
p′α(X) ·

(
p(X)

p′α(X)
− 1

)2

dX

=
1

2

∫
p′α(X) ·

(
p(X)2

p′α(X)2 − 2 p(X)
p′α(X) + 1

)
dX

=
1

2

∫ (
p(X)2

p′α(X) − 2p(X) + p′α(X)
)
dX

=
1

2

∫ (
p(X)

p′α (X)

)
· p(X) dX− 1

2
,

(13)

where the simplification in the last step follows since
probability distributions integrate to one. Substituting the
estimator (12) in (13), and approximating the integrals with
empirical averages, leads to the following approximation of
the α-relative divergence:

P̂Eα =
1

2n

n∑
i=1

ĝ (Yi)−
1

2
. (14)

The final computed score is then, as reported by (4), the
quantity Π ≡ P̂Eα(P ‖P ′) + P̂Eα(P ′ ‖P ).

IV. CONDITION MONITORING

A. Feature extraction

The aim of this work is to not use standard vibration
measurements to detect mechanical faults. Instead, we relied

only on currents signals. The inputs for the change detection
algorithm are, therefore, features computed from phase
current measurements. The rationale is that a degraded motor
will drain more current to perform the same operations.
Notice that, since the EMA is closed-loop controlled, until
the power supply can provide enough energy, we do not see
any degradation in position tracking. Monitoring the control
actions, in this case the phase currents, helps into identifying
possible causes of malfunction.

Consider now the three phase currents, ia(t), ib(t), ic(t),
measured during an experiment. Since the measured position
is a sinusoid with period T = 2π/ω, with ω the frequency
measured in rad/s, it is possible to write the current signal
of the x-th phase as:

ix(t), (τ − 1) · T ≤ t ≤ τ · T, (15)

with x = a, b, c and τ = 1, . . . , Np, being Np the
total number of periods in the considered experiment. For
each period, various indicators are computed. If the change
detection algorithm detects that the sampling distribution
of the indicators is changed, this is a symptom that the
system degraded its functioning. We computed the Root
Mean Square (RMS) value and the Crest Factor (CF) from
currents signals. The RMS is computed for each phase
current x = a, b, c over a single period τ = 1, . . . , Np as:

σx(τ) =

√√√√ 1

T
·

τ ·T∑
t=(τ−1)·T

i2x(t). (16)

For each experiment, it is possible compute a mean RMS
value at every period τ = 1, . . . , Np as:

Σ(τ) =
1

3
·
(
σa(τ) + σb(τ) + σc(τ)

)
∈ R (17)

The CF index is computed, for (τ − 1) · T ≤ t ≤ τ · T as:

γx(τ) =
max (|ix(t)|)

σx (τ)
. (18)

For each experiment, it is possible compute a mean CF value
at every period τ = 1, . . . , Np as:

Γ(τ) =
1

3
·
(
γa(τ) + γb(τ) + γc(τ)

)
∈ R (19)

A variation of the algorithm described in Section IV-B is
applied to the features Σ(τ) and Γ(τ). These features have
been computed for operating frequencies of 0.1Hz, 0.3Hz,
0.5Hz, 0.8Hz, 0.9Hz and 1Hz. These range of frequencies is
those for which the EMA has been designed. In the present
work, we reported the application of the change-detection
method to the chosen frequency of 1Hz.

B. Batch change detection for EMA

As stated in the Section I, we applied the change detection
algorithm of Section III in a batch fashion, instead of
an on-line one. Thus, the algorithm compares the features
computed on the new experiment with past ones. The
rationale of applying a batch procedure is mainly due to the
certainty that external conditions at which the experiments

1750



are made can be set to remain the same every time this
procedure is carried on. As an example, it is difficult to
reliably estimate the load when the EMA operates in flight.
Variations in load conditions can alter the decision of an
on-line condition monitoring algorithm, that was designed
to work on controlled test conditions. Another factor of
variation can be the temperature, that can reach very low
values at high altitudes. Obviously, the method requires a
policy to chose the “reference measures” to be compared
with the new acquired ones. In the following, three different
rationales are compared, that is:

• Always Healthy (AH): always compare with the
healthy dataset

• Always Previous (AP): always compare with the most
recent dataset

• Last Change (LC): always compare to the last dataset
that triggered a predetermined threshold. The method
generates a score, defined as the number of threshold
violations.

For the application of the proposed methodology, we
consider a total of Q = 11 experiments, performed at
1Hz with 10mm of position amplitude, in the H0 condition.
The first two of these tests can be considered as healthy
state experiments. Tests 3 and 4 have been performed
after endurance sessions with poor lubricant. The remaining
tests have been performed after endurace sessions with no
lubricant at all. Contrary to the standard method of Section
III, the proposed approach applies the algorithm not with
a sliding window, but directly comparing measures acquired
during one date to measurements acquired on a different date.
The batch version of the method is represented in Figure 4.

Time1 2 3 4 1 2 3 4 5 6 7

1 2 3 1 2 3

2 3 42 3 4

5 6 7

1

𝒴 𝒴

′ 2

1
′

1

2

2

′

Fig. 4. Condition assessment via the batch RuLSIF method, with a
one-dimensional time series, d = 1, and k = 3, n1 = 2 and n2 = 7.

Here there is not a continuous progression of the time
series, since now the data are considered in a separate way,
and not as a continuous stream of information. Thus, even
the time indexes t and t′ are different. The parameter k
maintain its previous role. We denote with Y the first dataset,
and with Y ′ the second one. Notice how Y and Y ′ do not
depend on the time anymore. The number of observations
in the two datasets, that depend on k, can be different.
We denote with n1 the number of observations in Y , and
with n2 the number of observations in Y ′. Apart from these

considerations, the method computes the divergence between
Y and Y ′ as previously described.

The considered time series has dimensionality d = 2. Each
sample y(τ) ∈ R2×1 is a vector which elements are Σ(τ)
and Γ(τ). The same reasoning can be done with the data from
Y ′. The parameter k plays the role of a “memory” which
usually appears in dynamic systems. Since we computed the
value of the considered time series as independent indicators
at each period τ , we choose to set k = 1. Thus, we have
that:

Y (t) = y(t) ∈ R2·1×1; Y ′(t′) = y′(t′) ∈ R2·1×1. (20)

The hyperparameters δ and λ are chosen via κ-fold
cross-validation. Since we follow the heuristic rule to have at
least 10·m data points, where m is the number of parameters
to tune, it follows that we need at least 20 samples per fold.
For this reason, we chose κ = 5. The heuristic condition was
always met for all the datasets that we compared. We then
adhered to the default value α = 0.5 as in [14].

Figure 5 show the results of applying the batch change
detection algorithm to the three different policies.

0 95 190 285 380 475 570 665 760 855 950
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0 95 190 285 380 475 570 665 760 855 950
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0

0.5

1

0 95 190 285 380 475 570 665 760 855 950
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4

Fig. 5. Condition assessment via the different batch strategies. The last
plot depicts also the threshold η (dashed gray line) and the degradation
score ρ(q) (dotted red line). Vertical light gray bars represent the different
experiments.

V. DISCUSSION OF THE RESULTS

The first two plots represent the computed values of RMS
and CF. Light gray vertical lines separate one experiment
from another. Each experiment is performed in a different
date and in the same (nominal) load condition of 300N,
after sessions of poor lubricant or no lubricant fatigue tests.
Then, the scores Π(q) of the change detection algorithm
were computed for each dataset’s comparison q. Since we
have Q = 11 experiments, if follows that q = 2, . . . , Q.
In the “Always Healthy (AH)” policy, all tests from q = 2
are compared with the first healthy test. The AH strategy
detects an increasing deviation over time from the healthy
dataset, given by the increasing value of the score Π(q).
The drawback is that this policy does not give a degradation
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index. In fact, if the EMA remains damaged with the same
severity for multiple tests, the AH policy tells that there
are changes with respect to the healthy test, but this is not
an information about how much the EMA is degrading its
functionalities. The policy “Always Previous (AP)” compares
each dataset with the previous one. While solving the
problem of the AH strategy, this rationale is not sensitive
to slow changes in the EMA degradation. In fact, always
comparing to the previous experiment in time can lead to
little deviation from the previous data, and so the score will
be low as well. To solve this, we propose the “Last Change
(LC)” strategy. By comparing each new experiment with the
last one that gave a significant value of the score Π(q), we
are able to assess even slow degradations. To define what
significant means, we chose to set a threshold η at two
times the value of the first score Π(2). This is the detected
difference from two consecutive healthy datasets. Notice how
this threshold can be refined in various ways, such averaging
more scores from different healthy sets. It is then possible to
define a “degradation counter” ρ(q), which tells how many
tests of the LC policy are greater than the threshold η. This
counter is represented in the last plot of Figure 5, and it
is coherent with the motor degradation shown by the phase
currents’ indicators.

VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

This paper introduced the application of the change
detection algorithm RuLSIF to perform condition monitoring
of an electro-mechanical actuator, employed in aerospace
environment. The RuLSIF method, usually employed in an
on-line fashion, has been here used in a batch mode. The
reason for this choice was to guarantee, up to a certain
extent, that the conditions with which the experiments are
carried out are the same. This will ensure that the condition
monitoring application is able to detect changes due to a
degradation of the EMA and not due to external factors. We
then proposed three different policies of how this method
should the interpreted to perform condition assessment. Out
of the three, we found that the best strategy is that which
compares a new dataset to the last one which gave a
significant difference of the data distributions. Therefore, we
built a simple degradation index to assess the overall EMA
health state. Future research is devoted to perform a new test
campaign with a new EMA of the same type, and testing the
proposed method more extensively.
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