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Abstract

We study the invariants (in particular, the central inv. “ants) of suitable Poisson pencils
from the point of view of the theory of bi-H _ "*~nian reduction, paying a particular
attention to the case where the Poisson penci: is .xact. We show that the exactness
is preserved by the reduction. In the Dr? feld-S. kolov case, the same is true for the
characteristic polynomial of the pencil, wh. n “lay, a crucial role in the definition of
the central invariants. We also discuss the b, Harniltonian structures of a generalized
Drinfeld-Sokolov hierarchy and of the L. mass.. * .olm equation.

Keywords: Drinfeld-Sokolov reduction; Poiss. 1 pencils of hydrodynamic type; central
invariants; integrable PDEs; exact »* Hamiltonian manifolds.

1 Introduction

Deformations of Poisson pencils . — A % of hydrodynamic type

k

P =g (w)o, + FZ{G(W)MI, ,j=1,..,n, a=1,2 (1)

(see next section for m rre ¢ stailed definitions), play a crucial role in the study of integrable
hierarchies of PDEs [19, zc, 15]. In the semisimple case, this important class of Poisson
pencils is paramet izec by .2 arbitrary functions of one variable. Part of these functions
(namely, n2 — n* ".bel 5. iisimple Poisson pencils of hydrodynamic type [21] (see also [35]).
The remaining n funct >ns, called central invariants, label Miura equivalent deformations of
the same Pri-son . .1l of hydrodynamic type.

The n ost imp rtant examples are those for which the dispersionless limit is an exact
Poisson penc.’ - .d the central invariants are constant [17]. They include the Poisson pencils
of the 1 vin 2la-Sokolov (DS) hierarchies [12] corresponding to (the loop algebra of) a simple
finite-dime sional Lie algebra g. In this case, it has been shown in [16] that the dispersionless

limit coincides with the Poisson pencil of hydrodynamic type associated with the flat pencil




of metrics defined on the orbit space of the corresponding Weyl group (obtain .d u. g the
Dubrovin-Saito construction [14, 38, 39] for Coxeter groups), the central inve .a. “s are con-
stant and their values coincide with the square of the lenghts of the roots oi , For instance,
in the simply laced case all the roots have equal lengths and, consequently, *he associated
integrable hierarchies are of topological type [19].

The aim of this paper is twofold. On one hand, we want to study the c. ~' ral invariants from
the point of view of the theory of bi-Hamiltonian reduction (that “.clude~ the DS case). We
will focus on the class of Poisson pencils which, after reduction, get “he forr i of a deformation
of a Poisson pencil of hydrodynamic type. In particular, in *ne DS case we will show that
it is possible to define a set of invariants of the unreduced , .cil t' at, once restricted on
the reduced manifold, define a set of functions which are equ. ~lent to Dubrovin-Liu-Zhang
central invariants of the reduced pencil.

On the other hand, we will focus on the case of ex -t Poisson pencils, showing that
the reduction process preserves the exactness of the nencil. Combining this result with the
main result of [20], relating the constancy of the ~entral n.variants with the exactness of the
Poisson pencil, we have that the central invariant. f,r the DS Poisson pencils are constant,
in agreement with the Dubrovin-Liu-Zhang re. .

o

The paper is organized as follows. In “~~tion. 2 we recall various definitions concerning
Poisson pencils of hydrodynamic type and the '~ deformations. Section 3 is devoted to the
bi-Hamiltonian reduction. In Section “ .. show that the exactness of a pencil is preserved by
reduction. In Section 5 we collect ¢ me basi facts about the DS reduction, while in Section
6 we show that in this case the ¢! aracter.. .c polynomial of the reduced pencil coincides with
the one of the unreduced penci. Tr the .nal section we consider two examples going beyond

the DS framework.

2 Invariants cr 1’oisson pencils

We briefly summaris : some .. sic notions about pencils of N-component infinite-dimensional

Poisson brackets. ‘~us der '19, Section 2] the following class of local Poisson brackets on the

manifold of RY ...ued 1w .ctions w(x) = (wl(z),...,w™(x)) over the unit circle S,
_ k1
wi @)=Y EY A (wowa, o w)dE T (@ —y), (2)
k>—1 =0

where AZJ , are "Lerential polynomials of degree [ (i.e., they are polynomials in the derivatives,

whose ¢ eff cieuts are functions of w), and deg f(w) = 0, deg(w(;)) = I. One can associate to




(2) the differential operator

k+1

9 = Z ZAZJZ w Wx,...,w(l))al;_l'ﬂ,

k>—1 =0

uniquely characterized by the relation {w’(z), w’ (y)} = II¥§(z—y). The ao: - seneral group of

transformations preserving the form of the bracket (2) is the group of 1.1 « transformations.

An element of this group is a transformation w — w = (@, ..., %", where
OF¢ . ;
=Fy(w)+ Y Fi(w,wa, . wiy),  det <aﬁ> ~ 0 oKl =k (3)
k>1

The Miura group can be described [27] as the semi-direct ; “oduct »” the subgroup of diffeo-

morphisms Dif f (RN ) and the subgroup of Miura transformation starting from the identity:

' :wi+ZekF,i(w7w$,...,w(k)), degF} = k. 4)
k>1
The latter subgroup plays an important role in the classw. zation theory of Poisson brackets:
to prove that two brackets of type (2) are equivalen. 1 .der a Miura transformation of type (3)
one first looks for a (local, in general) diffeom. . “isn. mapping the leading term (k = —1) of
the first bracket to the second, and then ~~nlies ¢ tranformation of type (4) — which leaves
the leading term invariant — to obtain the se. ‘nd bracket.

1

After a transformation of type (3" ‘e form of the Poisson bracket will be given by the

operator
o~ (L*)iIreri, (5)

where L and its adjoint L* are a.“1ed s

i ow'
L\ "" wk (L )k = owk 05
(3) s (s)
A pair of Poisson brac.. *s 1 the form (2),
k+1
{w'@),wi (@) = Y ZAk (W Way W) )6 @ —y), a=1,2, (6)

.‘\ 1

is said to be ¢ mpatibl. if the pencil {-,-}(n) = {-,-}2 — AM{+,-}1 is a Poisson bracket for any
value of A. ™ thi, _use the bracket {-,-}(5) is said to be a Poisson pencil. Given a pair of
Poisson b ackets (1) one can consider the action of the Miura group (3) on the pencil and
define a set v. " _.ariants by means of the following recipy [16, 9]. Introducing the differential

operatc s
k+1

Hflj = Z ZAkla w Wm,...7W(l))a§7l+17 a=1,2, (7)

k>—1  1=0




then one defines the following power series! in the parameter p:

mpiw) = Y AlywpFT, a=1.2. (®)
k>—1
Note that (8) is strictly related (but it is not equal) to the symbol of (7), nd that the

coefficients of (8) do not depend on the derivatives of w. The rule (5° indr _e. *he following

transformation on the pencil 71'A = 7T2 )\77? under Miura transformatio. - (3):
~17 hk
Y = L)k 1 (~p), (9)

where

i OF}, 4
lj(P):Z . p.

aw(k)
Since by definition (3) we have that deg F} = k, then ti. quantil es l; (p) may depend on w

but not on the derivatives. Consider now the characteri>. = powynomial of the Poisson pencil,

R(p, Aiw) = det (3 — A7) = det Z(A,m\v Mo W) P (0)

which is a polynomial, of degree say M, with ~specv ‘o A. In general, M does not need to be
equal to the dimension N. Due to the above cons. "uc.’on, the functions A (w,p),i =1,..., M,
which are defined to be the A—roots of the e, ation R(p, \; w) = 0, are invariant under Miura
transformations of type (4), while they behave as scalars (0—tensors) with respect to the whole

Miura group (3).

Example 1 Consider the Poiss' n pencu

0 =2 H(wt = N) e tw? -0,
Lw' —A) —20, —2¢ 1w (11)
- 'w? -0, 2 tw? 0
in the variables (w'. v*,w > (We will see in Section 5 that it is the particular case of (45)

corresponding to s' 2)) The power series associated to this pencil is

0 —2(w! =X w?2-p
2(w! — \) —2p 2w |, (12)
—w?—p w3 0

50 that the cio.. wcteristic polynomial (10), restricted at the points with w3 =1, is

1
R(p, \; w, w?) = 2p> — 8 <w1 + i (w2)2 — )\> p. (13)

! Note that our definition of (8) differs from the one given in [16] by a multiplicative factor p.




We will see in Example 8 that it projects (up to a multiplicative constant) to the ¢ wara. “ristic

polynomial (24) of the KdV Poisson pencil.

In the remaining part of this section we will recall some important fects a. ~t Poisson
pencils of the form (2) admitting semisimple dispersionless limit. Some p~~limin. ~v results of

[9] suggest that part of this theory might be generalized in the non-se .isir ple . ctting.

Dispersionless limit. We now consider a special class of Poissc 1 brack ts (2), namely the

class
k41

{w'(z),w (y)} _Z ZAkl W, Wgy ..o, W )55 N —y), (14)

k>0 =0

where for consistency with the rest of the paper the number ¢ components is now denoted
by n rather than N, so that w = (w!,...,w™). The clas. ~f brack :ts (14) admits the limit as

€ — 0, known as dispersionless limit, and the leading te1.. of the bracket,
Ao (wW)d' (@ = y) + AFy (w, W) (w — y) = g7 (w) 7' (e — y) + T} (W)wid(z —y),  (15)

is called Poisson bracket of hydrodynamic type. 'L us the dispersionless limit of a bracket of
type (14) is a bracket of hydrodynamic type (1. . Tn t. » case where the matrix g% is invertible,
it defines a contravariant (pseudo)metric on R™, which is flat and has sz as contravariant
Christoffel symbols [18].

For Poisson brackets of the form (14} an analogue of the classical Darboux theorem holds
true, as these brackets can be redu ed to ti > constant form 1" é’(z — y) by means of Miura
transformations (3). For Poissor braca."s of hydrodynamic type, the Darboux coordinates
are flat coordinates of the met ic ¢ In ihe case of general Poisson brackets (14), in order
to reduce the bracket to con cant tv. » one needs to reduce the bracket to its dispersionless
limit. The existence of thic rea. “ng transformation — which is of type (4) — was proved in
[22, 8, 19].

In analogy to the gc. ~v 1 case, we also consider compatible Poisson brackets of the form

nt1
{w'(z),w (y)) = ZAHGwwz,...,w(l))6(’“_l+1)(x—y), a=1,2, (16)
C

\

with
Ao oW1 — )+ A o (W, wo)d(z — y) = g (W) (& — y) + T (w)wkod(z —y), (17)

and the co. -espon .ing pencil {-,-}n) = {-,-}2— M+, -}1. The dispersionless limit of this pencil
is knc .. . Poisson pencil of hydrodynamic type. The compatibility of the Poisson brackets

implies t. .t the pencil of contravariant metrics

95, = 95 — Ay’ (18)




is flat for any A and that the contravariant Christoffel symbols of gg) are given ' y tu. nencil
[y — AT}, of the contravariant Christoffel symbols. A pencil of contravariz . “at metrics
satisfying these conditions is called a flat pencil of metrics. In general, it is ~of possible to
reduce a Poisson pencil (16) to its dispersionless limit by means of Miura tra. ~formations. If

this happens, the pencil is said to be trivial.

Example 2 Let us consider the second order deformations of the -alar ~isson pencil of
hydrodynamic type
2(u — N (2 — y) + uzd(z — y).

Using Miura transformations they can be reduced to the follow ~, forr ,
2(u—N\)8' (x—y)Furd(x—y)+e (2c(u)d” (x — y) + 3¢.0" (x —y) 1 coud’ (x —y))+O(eY), (19)

where c(u) is an arbitrary function. It turns out that any .. n vanishing function c(u) defines

a non trivial deformation [28].

Semisimplicity and central invariants. A .2t pencil of metrics (18) and the corre-
sponding Poisson pencil of hydrodynamic ty . are said to be semisimple if the A-roots
ul(w),...,u"(w) of

det (g5 (w)  Agi’(w))

are pairwise distinct and nonconste (t. 1. this case, they form a set of coordinates u =

(ul,...,u™), known as canonical cou. “nate:, in which the two metrics are diagonal:
g7 (W = f)é;,  gd(n) =u'f ()b, (20)

for some functions ff(u). » o. that by construction the functions fi(u) are invariant under
Miura transformations of ‘- me (4). In the semisimple n-component case the triviality of the
pencil (16) is controll { by n functions of a single variable, called central invariants and
defined in the follow ag way '16]. Due to (14) and (15), the determinant R(p, A; w) defined
in (10) reads

R(p,. :w) =c:t (wéj - )wrij) = det Z (AZOQ(W) — )\Afj;o;l(w)) prtt
k>0

= p" det (g3 (w) = Mg (w) ) + O +).

Asin ©  ~eneral case, the roots A = \i(p;w) of the equation R(p, \;w) = 0 are invariant
with resy -t to Miura transformations of type (4). Under the semisimplicity assumption, it

can be shown [16] that the formal power series obtained expanding A(p; w) at p = 0 contain



only even powers of p (this is not true anymore in the non-semisimple case [9]), .nd " 2t the

leading terms u® of the above series are the canonical coordinates:
N(pw) = u'(w) + X (w)p? + O(p"),  i=1,...n. (21)

All coefficients appearing in the series above are invariant under Mi' ra r ., » of type (4).
Recall that the functions f?, i = 1,...,n, appearing in (20) are also . affected by Miura

transformations. The central invariants of the Poisson pencil are ¢ efined s

o — Ab(w)
C3W) mw(w) @)

and are thus an equivalent set of invariants. Once written "~ terr< Lf the canonical coordi-
nates, the function ¢; turns out to depend only on the coordinate u’. Trivial Poisson pencils
are characterized by the vanishing of all central invari. ~ts. .."~~_ generally, it turns out that
in the semisimple case two Poisson pencils are related hv  Miura transformations if and
only if they have the same dispersionless part (in canow. =l coordinates) and the same central

invariants [15] (see also [4] for an alternative pro. *).

Example 3 Let us consider the well known F “1s.~n pencil of the KdV hierarchy:

R 1
{u(@), u(y) h = —28"(z - y), {u(@),uly), = —uzd(x —y) —2ud'(z —y) + 5625”'(96 —y).
(23)
We have that
1
Rp; Au) =m3 - 2r' = —2up+ op° + 22p, (24)

so that (21) takes the form A - u — . Since f'(u) = —2 and Ny(u) = —%, the central
invariant is given by c¢1(u) = 3. In u.e scalar case (see Exvample 2), up to a constant factor,

the central invariant coinci.des w..™ the function c(u) appearing in formula (19).

Notice that (24) is '/4 of the characteristic polynomial (13) obtained in Example 1, if
u = w!+ % (w2)2. As we 1l show in Section 6 (in the general context of the Drinfeld-
Sokolov reduction), “hr reas n is that the Poisson pencil in Example 3 is the reduction of the

one in Example ..

3 Sor .. tac.s about bi-Hamiltonian reduction

In this sect. n we .ecall a general reduction theorem for bi-Hamiltonian manifolds (see [7, 30,
36] for teva . 1d proofs), and we prove a crucial result in order to show the equality between
the chara. -eristic polynomials (10) of the reduced and unreduced bi-Hamiltonian structures

of the form (6).




Let (M, {-,-}1,{",-}2) be a bi-Hamiltonian manifold. The first step is to _ons.'~r the
(generalized) integrable distribution D = P(Ker P;), where P, is the Poissr . . nsor asso-
ciated with {-, -}, by means of {F,G}, = (dG, P,dF). Then we choose a sy ~v ectic leaf S
of P; and we introduce the distribution on S given by E = DNTS. If the ~uoticnt space
N = S/E (whose points are the integral leaves of the distribution F) *, rey »'ar, then it is a
bi-Hamiltonian manifold. We call (P], P) the reduced Poisson pair, a. 1 ({-,-}1, {+,-}5) the

corresponding Poisson brackets. They are given by

{f7 g}:z(ﬂ—(w)) = {Fv G}a(w)a a=1,2, w =S (25)

where m : & — N is the projection on the quotient manif 1d .ad 7, G are extensions of
fom,gomon M such that (dF)w, (dG)w vanish on the tang nt vo_.ors in Dy, for all w € S.
If an explicit description of the quotient manifold is »nt availa le, the following technique
can be very useful. Suppose Q to be a submanifold of S\ hich .. .ransversal to the distribution

FE, in the sense that
TwQ® Ey =TS for a.. w € Q. (26)

Then Q also inherits a bi-Hamiltonian structure 1 7r. M. The reduced Poisson brackets on
Q are given by

{f, g} (w) ={F, G} (w), a=1,2, weE Q, (27)
where F, G are extensions of f, g on M such the (dF)y, (dG) vanish on the tangent vectors
in Dy, for all w € Q. If the quotien* ,v "~ a manifold, then there is a local diffeomorphism
from Q to (an open subset of) N, ¢ nnectin ; the Poisson pairs of the two manifolds. Notice
however that we can define a rec aced Poi..on pair directly on Q, even in the case where the
quotient N is not a manifold.

In terms of the pencil of " “oisson teasors Py = P> — APy, the construction of the reduced
Poisson structure on Q goes as to. ~ws. Given w € Q and v € T3 Q, we look for an extension
v € Ty M of v such the, (F &>)w Vv € Tw Q. The existence of such a v has been shown in [7].
The proof of its unicuenc ' can be found in [6], under the assumption that ker P, N ker Py
is trivial at the po'ats - £ Q which is true if there is no common Casimir (this situation is
sometimes referred to °s t'.e non-resonant case). Independently of the uniqueness of v, the
reduced Poissc 1 penci. is given by (P(/A))w v = (P()\))W v.

Now let us 1. ‘rodr e coordinates on M adapted to the transversal submanifold @. More
precisely, " ne firsi »art of the coordinates can be seen as coordinates on Q, which is found by
setting to . >ro th  second part of them. Correspondingly, the matrix representing FP(y) can

be dec ‘uy 7

as

Ay By
Coy Doy




For simplicity, we will sometimes use the same notations for geometric object: anu matri-

ces/vectors representing them in the chosen coordinate system.
Proposition 4 Suppose that (ker Py)w N (ker Pa)w = {0} for all w € Q. Then
a) The matriz Dy is invertible.
b) The matriz representing the reduced Poisson pencil P(’A) is given hy A fB(A)D(;\l)C()\).

¢) The identity

Pl Buy do0)

} (28)
-1
0 Duy) \DG\Cn 1

Py =

holds true, where Id is the identity matriz of the appropria. > order.

Proof. a) As we wrote above, it was shown in [6] that t.. ve is a unique extension v € T M
of a given v € T Q such that (P(A))WQ € TwQ, ‘uaer the assumption that (ker P;)w N
(ker P2)w = {0}. In [10] it is shown that the uni~meness o. the extension is equivalent to the
invertibility of D(y). For the ease of the reader, wc v port here the proof.

Given v € T Q, let v be its components and (y 1. = th. components of an extension v € T M

such that (P(y)), V € TwQ. Then

P('/\)U _ v /A’X) By v Apyv + BV

\%4 \C(k) D(k) Vv C()\)U+D()\)V
so that P(’)\)v = Apyv+ BV ad’ = Cpyv + DiyyV. This shows that V' is unique if and

only if Dy is invertible.
b) follows from the prer.ou equations.

c) follows from b). O

Remark 5 As we v cote 1. the previous proof, in [10] it was shown that the uniqueness
of the extension is equ vale t to the invertibility of D). Moreover, in the same paper it
was proved that *hese - ditions are equivalent to item b), and that its meaning is that
the bi-Hamiltc 1ian rec 1ction amounts to a Dirac reduction. In the particular case of the
Drinfeld-Sok~lov . - _tion, this is related to the paper [1], where the DS reduction is shown
to be a D rac red. -tion. For the purposes of our paper, it is more convenient to start with
the hypothe. = +* 4t the kernels of the Poisson tensors have trivial intersection, and the most
import. nt 1 »swe in Proposition 4 is the identity (28). We will use it in Section 6 to show that,
in the DS -ase, the A-roots of the characteristic polynomials of the reduced and unreduced

bi-Hamiltonian structures coincide.



We end this section by noticing that (28) entails a general result in linear alg :bra, "nown
as Schur determinant identity:

Ay By

det = det (A()\) — B()\)D(_)\I)C(A)) det D(A). (29)

Coy Doy
In our setting, it means that the determinants of (the matrices repres. * ng) Py and P(’ )
are related by
det P()\) = (det D(,\))(det P(//\)) (30)

4 Reduction of exact bi-Hamiltonian *.an folds

A bi-Hamiltonian manifold (M, Py, P») is said to be ezact if the. » exists a vector field Z on
M such that Ly P; =0 and Lz P, = P;. In terms of tl.~ cori. ™ ading Poisson brackets, this

means that
Z{F,G},—{ZF,G}, —{F,ZG}, =0, Z{F Yo -7, G2 —{F, ZG}s = {F,G}; (31)

for all functions F'; G on M. The vector field 7 is c« ed the Liouville vector field of the exact
bi-Hamiltonian manifold. Exact bi-Hamiltonian ma. folds have been studied in, e.g., [11, 40].

We now show that under a mild assumy. *ou ¢.. 7, the reduced bi-Hamiltonian manifold is
exact too. Combining this with a result of [20], s.ating that the central invariants of an exact
semisimple Poisson pencil are consta .c, we btain a criterion for proving the constancy of the
central invariants of the reduced pen.! previded that it admits a semisimple dispersionless
limit. This in particular applies ¢o t'.e case of Drinfeld-Sokolov considered in [16], for which
we obtain an alternative proo® o1 . e ccastancy of the central invariants (relying on the fact,
proved in [16], that the red .. ~1 DS pencil has a semisimple dispersionless limit — see next

section).

Proposition 6 Suppos. (A, Py, P3) to be an exact bi-Hamiltonian manifold, and the Liou-

ville vector field Z /) be tangent to the symplectic leaf S. Then
a) The restriction .7 .0 S projects onto a vector field Z' on the quotient manifold N .
b) The redu ed bi-Hi miltonian manifold (N, Py, P3) is ezact, with Liowville vector field Z'.

Proof. 2, We ¢ uote with Z(®) the restriction of Z to S, and we recall that Z() can be
projected < 'ong th > (integral leaves of the) distribution E if and only if L) (F) C E. This
inclus! w. - ~ ~onsequence of the fact that Z is tangent to S and that Lz (D) C D. The last

assertion an be checked as follows. If F' is a Casimir of Py, then

Ly(PydF) = (LzPy)dF + Pyd (LzF) = PydF + Pyd(LzF) = Pyd (LzF) € D, (32)

10




since it is easily seen that LzF is also a Casimir of P;. Indeed, Pid (LzF) =71 (L, 7F) =
Lz (PidF) — (LzPy)dF = 0. Hence there exists a vector field Z’ on N such t'av 'Z'f)om =
ZS)(f o) for all functions f on N.

b) Let f, g be functions on A/, and let F, G be extensions on M as explain. ' in Section 3.
First, we notice that ZF is an extension of (Z'f) o 7 and that its differ :ntiz' -~nishes on the
tangent vectors in Dy, for all w € S. Indeed, (Z'f)(n(w)) = (Z©S)(f ¢ ) (w) = (ZF)(w)
for all w € S, meaning that ZF extends (Z’f) ow. Moreover, if Y s a vec or field in D, then
Ly(ZF)=(LyZ)F + Z(LyF) =0 since LyZ = —LzY is also in 0.

Hence, for a = 1,2, we have that

(Z'{f.g}a) (m(w)) ={Z'f, g}o(m(w)) = {f, <" 2¥,(- 1))
= (Z9{f,g¥oom) (W) —{ZF.G} (W) —{ , ZG}a(w) (33)
= (Z{F7 G}a) (W) - {ZFa G}a(w) - Iﬁ ZG}G(W)7
so that
Z/{fvg}ll - {Zlfvg}ll - {fa Zlg}ll =0, Z/{jmw}IQ - 1L{Ifag}/2 - {f> Zlg}/Z = {fvg}ll (34)
O

As we will see in the next section, an 1.. "orva..t case where this result can be applied is

the Drinfeld-Sokolov (DS) reduction.

5 Drinfeld-Sokolov su. - ict ires

In this section we recall the L. He niltc aian structure related to the (untwisted) Drinfeld-
Sokolov (DS) hierarchies [12°. and the corresponding result about its central invariants [16].
We will not use the origina. DS rc¢ "miction, but an alternative (although equivalent) procedure
based on the general res ucti m theorem for bi-Hamiltonian manifolds discussed in Section 3.
We refer to [24] for the v. ¢ facts concerning simple Lie algebras (see also the Appendix).
To obtain the / edv ed) DS Poisson pair, the starting point is the loop algebra M of
functions w(z) from . ~ ur ¢ circle S! to a simple finite-dimensional Lie algebra g. We choose
a Cartan suba! jebra [, of g, we consider the corresponding principal gradation, and we select

Chevalley (som. “imes uso called Weyl) generators {X;, H;,Y;}i=1.. » (where n is the rank

of g) with degree 1,0, and -1, respectively. One can identify the cotangent spaces and the
tangent sp. ~es at cvery point w € M with M itself, by means of the ad-invariant bilinear
form (1, O = [qu(wi(x), wa(x))g dz, where (-, )4 is the normalized Killing form. Then one

introduce the Poisson pair

(P),v=c", Al (P),v=eo,u] + ., (35)

w
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where A € g is an element of maximal degree. It is easily checked, see (45), that the ™isson
pair (35) has the form (6). Moreover, the symplectic leaves of P; are affine .uL vaces over
the vector space of maps from S! to ker(ad A)*, where ker(ad A) is the iso. ~» algebra of
A and the orthogonal is taken with respect to (-, -)4. An explicit description . ¢ ker(ad 4)= is
provided in the Appendix.

We choose the symplectic leaf S containing the element 7 = """, .” Then the reduced
bi-Hamiltonian manifold A/ turns out to be parametrized by n sc aar-va'uea functions, and
the reduced Poisson pair coincides [7, 37] with the DS one. We refe. to [10] or an extension of

this result to the so-called generalized DS structures (an exam ste wi'l be discussed in Section
7).

Example 7 Let us consider the simplest case, g = sl(2) leading . » the bi-Hamiltonian struc-
ture of the KAV hierarchy. The normalized Killing fc *m 1s “= ply the trace of the product,

and we choose the Chevalley generators

Hence
sw?  w! [v 1 00
, A= 1= , (37)
wb —Lluw? \ 00 10
so that the generic element w of tF - symple tic leaf S and the vectors of the distribution D

(at w) are given by

; (38)

%7 2 wnl ek ky — e twik
b
2 0 —e 1k

\
where k : S* — R is ans fun tion. In this particular case, D C TS and so E = D. Then it is
easily shown that the vroy. rion m: S — N is given by u = m(w', w?) = w' + 1 (w2)2 —tew?,

and that the reduce . Po ssop. pair turns out to be
. 1
(Il/u = 28777 (PQ/)u = Uy + 2uaw - 56283337337 (39)
that is, the one <soci ced to the Poisson brackets (23).

In the DS case the choice of a transversal submanifold Q corresponds to the choice of a

“canonical for... of the matrix Lax operator [12]. For example, in the KdV case, we can take

0 wu
Q= |lueC™(SR) 3. (40)
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Example 8 To illustrate the use of a transversal submanifold in a more complicr .ed c. “mple,
we recall the case of s0(5), already treated in [7]. Notice however that th: . vice of the
Chevalley generators is different here — it is the same as in [12]. In particu. . s50(5) is the
Lie algebra of 5 x 5 matrices such that wS = —Sw?, where S = diag(1,—1,- * —1,1). A set
of Chevalley generators is given by

X1 =ea+ess, Yi=X{, Hy=—-en+exn- uto-,

(41)
X9 = €32 + €43, Y, =2X7T, Hy = 2(eqq —e2:),

4

where e;; is the matriz whose unique nonzero entry is (i, j), wh' his * The principal gradation

is completed by the 1-dimensional subspaces with degrees 2.-2,.,-3, ge .erated respectively by
X3 =—e31 +ess, Ys=-2X1, Xg=r+es, Yi=4X].

The normalized Killing form is (w1, w2)so(5) = %Tr(wlwg). To define the Poisson pair (35),
we can choose A = Xy4. Its isotropy algebra is spann.? by X1, Xo, X3, X4, H1, Y1, so that
the symplectic leaf S is the space of maps

= w(2) Xy + w(2) Xo + (0 7+ Ha)(Hy + Hy) + Y1 + Ya.

A possible choice for the transversal subma. ow = he subset Q C S of the maps with w?(x) =

w(x) = 0. Then the reduced structures turn our to be given by

3€208 — 2020, -w? 2, (P3)1n (P12

Pl/ = ) PQ/ = ) (42)

20, 0 (P3)21 (P3)22

with

(P11 = —1—16668; + %64102 2 Betwiot + €2 (%wl — (w?)? + 262wfm) o2

+e? (Jwy = 3ww? + 1w, ) 95 + (—2w'w? + E(=§(w))? + Fwy, — 2wwl,) + Fetwl,,,) 0.

ko — e + @ golw, + dul, - Jwtel,,) + bl

(Py)12 = —1€*05 - e*v 03 - 1e2w202 + 2w' 0, + Jw)

(Py)a1 = f%e‘“x‘ + €240l + 36271)02062 + (211)1 + 262w§m) Oy + %w; + %EQw?Em

(P2 = =520} + w? )y + fw?

The for ~wing "mportant results on the DS structures were shown in [16]:

1. ti> (" 2auced) DS Poisson pair has the form (14), and its dispersionless part is given
by a emisimple flat pencil of metrics (described in [38]) on the orbit space h/W of the
Weyl group W of the Lie algebra g;

13



2. its central invariants are constant; more precisely, they are given by

1

AT

< (Hi, Hi)g. (43)

From our point of view, the constancy of the central invariants can he pic -=d with the
help of the results of Section 4 and item 1 above. Indeed, it is easily seen ouc..' the Poisson
pair (35) is exact, with the Liouville vector field simply given by Z,, = A. This vector field is
tangent to every symplectic leaf of Py, since A = [h, A] for a suite Hle elen. »nt h € h. (Notice
that this property is true for every root vector in g). Hence we can ¢ el e that the reduced
bi-Hamiltonian manifold is exact too. Thanks to the results o [20] . corresponding central

invariants are constant.

Example 9 Using the same notations as in Example ,, the Lic wille vector field Z on the
(unreduced) manifold M is Z,, = (3 §). It is immediate .~ verify that it is tangent to S, can
be projected to N, and its projection is Z!, = 1. It i. -usv easuy checked that Z' is a Liouville
vector field for the (reduced) manifold N .

6 Invariants of DS structu,..~

In this section we use the same notations a. " .. previous one, and we show the equality of
the characteristic polynomials (10) of the reduced and unreduced DS bi-Hamiltonian struc-
tures. In Section 7 we will discuss .he ex. mples of a generalized DS hierarchy and of the
Camassa-Holm equation, showing the the quality holds in more general contexts than the
DS reduction.

Let us introduce a basis { '} ¢ *he _ie algebra g, with [ = 1,..., N. If

lef, e Zc” L g7 = (e',el)q, (44)
then we can write the Po.. on pencil (35) in the form, analogous to (6),
{w'(z), () =—"> ¢ (w = AA)s(z —y) — g7 (x —y), (45)
=1

where v! = (v, 1), for iy v € g. According to (8) and (10), we associate to the DS (unre-
duced) Po’ son pencil (45) on M the A-polynomial

N
Rm(p, A;w) det( ch wh — AAY gijp>. (46)

=1
Note that .he above polynomial is explicitly written in terms of Lie algebra objects; this is in

general not so for the characteristic polynomial of the reduced pencil. However, we have:
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Theorem 10 The A-roots of the characteristic polynomial are preserved by the bi dan. ™*onian

reduction. More precisely, if w € S, then
R (p; A mo(w)) = FRa(p, A w), (47)

where mg : & — N is the e-independent part of the projection @ : S — ,/ on the reduced
bi-Hamiltonian manifold, R is the characteristic polynomial of the -> uced) DS Poisson

pair on N, and F is a non vanishing function, independent of \.

In terms of the reduced Poisson pair on a transversal manifold ¢, The rem 10 admits the

following equivalent form:

Theorem 11 Let Q be a transversal submanifold of the L. <ym, .ctic leaf S, and Rg the

characteristic polynomial associated with the reduced Poi~son pair m Q. Then, for allw € Q,
Ro(p, A w) = FoRm(p, A, -, (48)
where Fg is a non vanishing function, independent of .

In the examples we considered, F' and Fg do . 7" even depend on p and on w, i.e., they

are constant depending only the choice of the . 4.~ {e }. We guess that this is a general fact.

Proof of Theorem 11. Proposition ¢ ..~ he applied in our case, since the condition
(ker Py)q N (ker Py),, = {0} for all w € Q is » *isfied. This was shown in [6, Proposition
3.2]. (In that paper, the case g = sl”..) . °s considered, but the proof is the same for every
simple Lie algebra. For the reader’s ~onveni nce, we explicitly provide such general proof in
Appendix A.2). Then formula /:8) holds, and for the corresponding power series in p, see

(8), we obtain

Ty ,3()\) Id 0
/I'()\) B { » L (49)
\ 0 (5()\) 5(_)\)’)/0\) Id
Indeed, let P and R bc N > N matrices of differential operators with entries
- Ll - k1
P S S T S E NI S o)
o—1 =0 E>—1 1=0
where A?;l(w, Ve, ..., 7() and B,i‘{l (W, Wg,...,w() are differential polynomials of degree I,

asin (2). If 7 ai.’ » = e the corresponding matrices with entries
= 3T AR e = DT B (wpt,
k>—1 k>—1
then it ‘s easuy shown that the matrix associated to PR is mp. This implies that if P is
invertible | °s a matrix differential operator), then also 7 is invertible (as a matrix), and the

matrix associated to P~1 is 7~ 1.
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Therefore, from (49) it follows that
det m(y) = (det d(x))(det m(y)), (50)
where det d5y never vanishes. Hence
Ram(p, Ay w) = (det dx))Ra(p, A w) (51)

for all w € Q, and we are left with showing that det d(5y does not depena »n A. This follows
from the fact that the degree in A of both R (p, A\;w) and Ro(p,. ) i, equal to the rank
n of the Lie algebra g. As far as Ro(p, A\;w) is concerned it i a veneral property of n-
field semisimple flat pencils of metrics. The result concerr ing R4, A\;w) is proved in the
Appendix and makes use of Lemma 15, which in turn follows fro 1 [32] (see also [33]).

O

Example 12 Consider once more the case g = sl as in FExample 7. In the coordinates
(wh, w?, w®) (that is, using the basis e} =Y, " ~ H. e = X) the matriz polynomial (8)
associated to the Poisson pencil (45) is given by (1%, see Example 1, so that the corresponding
characteristic polynomial, evaluated at the poun.ts ¥ tre symplectic leaf S, is
¢ 1

R (p, N w', w?) = 2p 8(w1+4(w2)2—/\> D. (52)
Since mo : (w', w?) = u=w'+1 (v )2 and Ra(p, \;u) is given by (24), we see that (47) is
satisfied with F = 1.

Example 13 In the case of 500" see J zample 8, we have that the characteristic polynomial

R, evaluated at the points of the trunsversal manifolds Q, is

256 Ro(p, Avw', w?) =4 (-320+p' = 8pPu? + 320! +16 (w?)”) (81 +p* — 4pPw? — Su').

(53)

7 Beyond Of, structures

In this final se tion we discuss two examples, in order to support the claim that Theorem 11
holds in more ge. ~v=' contexts than the DS reduction. The first one is related to the W3(2)
conformal algebra of [34], i.e., to the so called fractional KdV hierarchy 5[:(32) discussed in [2].
It has been T'rea”y treated from the bi-Hamiltonian point of view in [5], and belongs to the
class ¢ ger .. 'ized DS bi-Hamiltonian structures (see [2, 10]). The second example is the

Poisson p. ‘v of the Camassa-Holm (CH) equation [3].
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We consider again the Poisson tensors (35), with g = sl3 and

0 10
A=1|0 0 1 (54)
0 00

0 0 0
I=10 0 0 (55)
1 00
It can be checked that its elements are
Po Uy us \
P11 Uo —PpPo U2 : ’ (56)
1 P o)

and that a transversal submanifold Q is given by ~n -= p; = 0. The reduced Poisson pencil
£ 2

is
20, e Mur—A) e (—us+A) —3 (€02 + ug0y + uoy,)
Y —1
P = % 0 (N2 2(un — A0 +u, + 26 ug(ug — A) o)
* * 0 (UQ — )\)81 + U, — 26711,4()(71/2 — )\)
* * * ( (/A))44
where

P 23 = 683 + g0 + 2ug, + et 2’LL02 — Uus
7y (2 ) -

(P{\y)aa = =3 203 = Leuop0p + 2 (uz + §u0”) 8y — §eUoas + SUoUoy + Uy
Notice that the rea. ~e . Po’ .son pair, like the unreduced one, is exact but it does not admit a
dispersionless Ii .ut. However, one can check that the characteristic polynomial (46), computed
at the points 0. Q, coir jides with —3Rg(p, A; ug, u1, U2, us), so that Theorem 11 holds in this
case with 7'y = —3.
Now w pass t the CH case. First of all, we need a brief summary of the fact [29] that

the CH Poissou pair can also be obtained by reduction from a Poisson pair on loop algebras,

very sin. e to (35).

2The form.lae written in [5] contain a misprint. Those given in the present paper are correct.
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Consider again the loop algebra M of functions w(z) from S! to s[(2), endov »d n. - with

the Poisson pair

(P1),v= e o, w), (P),v= e v, Al + vy, (59)

where A = X +Y = (9}). Also in this case, the Poisson pair has the form (v, We choose
the symplectic leaf of P, given by § = {w € M | detw = 0}. Since .he ¢ a0, nt AN is not

easy to parametrize, we introduce the transversal submanifold

0 u
Q= |u e C®(S",R),u(z) #0Vr e .’ (60)
0 0

The reduced Poisson brackets turn out to be the ones of ti. Carn.  _sa-Holm hierarchy, that

is,

{u(z),u(y) 1 = —ud(z —y) = 2ud’(x —y),  {u(@),uly,, =-20(x—y)+ %625”’(3: - ),
(61)

to be compared with (23). The corresponding ¢! ... *~ristic polynomial is thus
Rolp, \su)=—-o b %'ﬁ + 2\up. (62)

Let us compute now the characteristic po., noui. of the (unreduced) CH structure. In the

same coordinates (w',w?, w?) used in Example 7, the matrix polynomial (8) associated to

the Poisson pencil (59) is

0 SAwt -1 —xw?-p
20w 1) —2p 20w? —1) | (63)
AnZiep 20w —1) 0

so that the correspondir s c. aracteristic polynomial is
Roaa(p, \yw' w? w™ =2p3 —2p {(410111)3 + (w2)2) N — 4wt + W)\ + 4} . (64)
Since Q is defined by ! = u, w? = w® = 0, we have that
1
Ro(p, \ju) = ERM (p, A;1,0,0). (65)

We can cc aclude hat also in the CH case a relation of the form (48) holds.

App =Y

In this app.adix we collect some facts, concerning simple Lie algebras, used in the paper.

18




A.1 The symplectic leaves of P,

Let g be a simple Lie algebra of rank n over C. Fix a Cartan subalgebr . h, denote by
A C b* the root space of g, and for every @ € A denote by E, € g a norzero ~ctor in the

corresponding root space, so that g decomposes as

g=bhe P CE,.

aEA

Fix a base of simple roots II = {a1,...,a,} C A, and denote by Ay (resp. A_) the corre-

sponding set of positive (resp. negative) roots. Denote by n. — @D CE,, from which

YEAL
the decomposition g = n_ & b @ ny follows. Given o € A, ¢ » e by ht(«) the height of «
relative to I, and extend this to g by setting ht(E,) = ht(a,, v € A, and ht(h) =0, h € b.

Let hY be the dual Coxeter number of g, and introduce e norm Jized Killing form
1 N
<‘T7y>g = WTr(adxady), T €g.

Let 6 € A be the highest root of g, and consider *he corresponding root vector Ey (this is a
possible choice of the element A entering definitior. ~ the Poisson structure P; in Section 5).

To describe the symplectic leaf
ker(ad Eg)™ ={zx €g| . y)y =0Vy € ker(ad Ep)}

in more detail, we introduce the fol’ swi, gradation. Let v : h — bh* be the isomorphism
of vector spaces given by (v(z),y)  (x,y),, z,y € b, and let §¥ = v=1(f) € h. Then g
decomposes as follows, ,
=P,
i=—2

where g' = {z € g | [#V,2] =ix}. The subalgebra g° is a reductive subalgebra which contains
b, while g! @ g2, (resp g~ @ g~2) is a nilpotent subalgebra contained in n, (resp. n_).
Moreover, it can be show.. '31] that dimg' = dimg~! = 2(hY — 2) and g*? = CEL,.

Lemma 14 We he = hat er(ad Eg)~ = C0Y @ g' @ g. In particular, dim (ker(ad Eg)*) =
2hY — 2.

Proof. We firs, '~ _ribe the subspace ker(ad Fy). It is clear that for x € ny then z €
ker(ad Ey . For = = b, since = € ker(ad Ey) if and only if (f,x) = 0, and since (0,0Y) = 2, it
follows that e “artan subalgebra decomposes into the (orthogonal) direct sum b = E@(CGV7
where . = . - b | (x,0) =0}. If z € g° Nn_, then we have both [z, Fy] € g2 = CEp and
ht ([z, Eg|, < ht(Ey), which implies [z, Ey] = 0. For = € g*, i = —1, =2, then [E_y, [z, Ey]] =
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—[z,[Eg, E_g]] — [Fo,[E—_s,z]] = [x,0Y] = —ix, so that [z, Fy] = 0 if and only if c = . Thus
for i = —1,—2 we have g' Nker(ad Ep) = {0}, and we proved that

ker(ad Ey) = g° @ g' @ ¢, (66)

where 3° = (g Nn_) @ § @ (g° Nny). Note in particular that g° = g" » C#", and that
dimker(ad Ep) = dim g° — 1+dim g* +dim g? = dim g° +dim g'. From (%) and the properties
of the Killing form it is easy to show that C6Y @ g' @ g% C ker(ad _g)*. Tt remains to prove
that the latter inclusion is in fact an equality. Since dimg = dim ° + 2 mg' 4+ 2 we have
dim (ker(ad Ep)*) = dim g — dim (ker(ad Ey)) = (dim g° +2dir 1 g* +2) — (dim g° + dim g*) =
dimg! + 2, from which the thesis follows. Moreover, since ~.mg! = 2(hY — 2), we get

dim (ker(ad Ep)*) = 2hY — 2. O

We remark that the characterization of the sympl-ctic . af "er(ad Ey)* provided in the
above lemma is not necessary for the results of present pa. ~r. We believe however that it
is a nice piece of information, which easily follows fro. the results of [31] and which to our
knowledge has never appeared in the literature be nic. ~ Table 1 the dimension of ker(ad Ey)~+

is summarized for every finite-dimensional sir-nle L. * algebra.

Table 1: Coxeter numbers, dual Coxeter n.. ~we.. ~ d the dimension of ker(ad Ey)~ for simple
Lie algebras.

g An Bn ‘ Cn Dn E6 E7 E8 F4 G2
[

h n+1 2n 2n 2n—2 | 12 | 18 | 30 | 12 | 6

hY n+ Il n-1L|n+1|2n—-2 |12 | 18 | 30 | 9 4

dim (ker(ad Ep)*) || "™» | 4n—4 | 2n | 4n—6 | 22 | 34 | 58 | 16 | 6

A.2 The intersecu.~r of the kernels in the DS case

Let us denote by } the Cox-ter number of g and by N its dimension. Then N = n(h + 1).
Let {X;,Y;, H;}. . <hevalley generators of g, satisfying the relations

[Hi ] =0, [Hy, X;] =Ci; X5, [Hi, Y] =—=CyY;,  [Xi,Y)] = 6i; H;,

where C : : (Cyj),, =1,...,n is the Cartan matrix of g. Define the principal gradation of g by
setting deg .- = - degY; =1, for every i = 1,...,n, and extending it uniquely to a gradation
of the 1gew . "y setting deg[z,y] = degz + degy. Then we have

—1

9= @ 9i where g, ={zx € g|degx =1i}.
i=1—h
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Note in particular that for every i = 1,...n we have X; € g1, Y; € g_; and that d mg,, - = 1.
The principal gradation is induced by the adjoint action of the element

n

Pl = Z (C_l)kj Hj e,

J.k=1

so that we can equivalently write g; = {z € g| ad,v « = iz}.

Denote I = )", Y; the principal nilpotent element and let A Ey € , ,_1. The other
notations are as in Sections 5 and 6. We will show that the intersec ion betv een (ker P )., and
(ker Py),, is trivial for all w € S (more generally, for all w € T ! EBZ:J vi)- Indeed, suppose
that v € (ker Pp), N (ker P2),, and decompose it with resp ‘ct o tl 2 principal gradation:
v = Z?:_fih v;. Since v € (ker Py),, every v; commutes . ‘th .. .nd therefore v;_; = 0.
Decomposing also w = I + Z?:_& wj, imposing that » € (ker ™), and considering the
minimal degree element, we obtain that [va_p,I] = 0. ™ fou..s that va_j commutes both
with A and I, so that vao_;, = 0 (see [7]). In the o~ -
i=3—h,... h—1.

_, one proves that v; = 0 for all
A.3 The )\-degree of the characteristic >olynomial

This part of the appendix is devoted to the pro f tuat the degree in A of the characteristic
polynomial Raq(p, \;w) is equal to the ram. m ot g, if w belongs to the symplectic leaf S.

First of all, we notice that
Ra(ps Asw) = ot (g7 det (—pld — ad(w — AA)),

so that we just need to compu = th: de cee of det (pId + ad(w — AA)) in the adjoint repre-
sentation.

Denote I = Z?zl Y; tue pi. ~ipal nilpotent element, let Ey € gn_1 and denote A, =
I —XEyg=1—XA. We “rst :ompute the degree in \ of the characteristic polynomial

Ci(p) =det (pId +ad Ay).

It is known [25] thay he tement Ay = I — Ey is a regular semisimple element of g. The

following easy emma . a special case of [32, Lemma 4.1]:

Lemma 1F fp w wn eigenvalue for Ay, then )\%p is an eigenvalue for Aj.

Proof. S.cel ¢ g_1 and Ey € g1 we have

h—1

AT Ny = ARO[ £ By = \TRT — \TF B = AT Ay,

proving the lemma.
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Now A; is semisimple and therefore diagonalizable, and its characteristic polyno- iial .. of the

form .
Ci(p) =p" [ [ - ps),
1=1

for certain p; € C\ {0}, ¢ = 1,...,hn. In particular, the contribution = .1 the polynomial
above is due to the fact that A; is regular. Due to the previous ler. ma. che characteristic

polynomial Cy(p) of A, is given by

hn
1
Ca(p) =p" (0= A"pi),
i=1
which is a polynomial of degree % = n with respect to .

Now consider the general case, i.e., the element Ay +wi =1+ wy —AA = w — AA, where

w € S and
h—1
T TR
i=0
Then we obtain
X h—1
1 \2 — 7
ATERPT (AN +wy ) = AR - AN T By + Z AT R w;
=0
=, (AL - AT M (A wy)), (67)

where for fixed w4 the function M (A wy, ‘s a polynomial in A~#. It then follows that — for
a fixed value of A — p(A) is an eigen. ~lue of .y +w if and only if )\%p()\) is an eigenvalue for
A+ )\_%M(A; wy). From [23, T 1eor=m b.3.12] we obtain that for any simple eigenvalue p of
Ay, then there exists a unique ei, " alue p(\) of Ay + )\_%M()\; wy ), admitting the expansion

p(,/‘zp—i-O()\*%) as A\ — oo.
Therefore A% p(A) is an cige' value of Ay + w,, with the asymptotic behaviour
)\%p\)\) :)\%p—I—O()\_%) as A — oo.

Since Ay +wy _ I+ v, chen Ay + wy is a regular element [25]. Then, its characteristic

polynomial in he adjo. 1t representation is given by

nh

det(pId + Ay +wy) =p" Y (p— Aipi(N)), (68)
=1

where , (A — i + O(/\f%) and the p; are simple eigenvalues of A;. From the representation

(68), it fo. »ws that it is a polynomial in A of degree n.
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