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Abstract. In recent years, the interest in natural resources management is increased. In this context,
control charts, developed to monitor and maintain quality in industrial processes, are a useful moni-
toring and decision tool.
In this paper, the behavior of an agro-metereological variable, named evapotranspiration, in an area
of the northern part of Italy during a 25-year span (from 1992 to 2016) is studied through a nonpara-
metric spatio-temporal geostatistical analysis and multiple CUSUM control charts. In particular, the
probability that the variable registers an “out of control” is estimated over the area of interest, for
three decades from the 10th to the 30th of January 2017.
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1 Introduction

The sustainable management of natural resources is an increasingly complex issue for environmental
sciences. Hence, monitoring represents an important activity for decision-making procedures. In this
context, the control charts might be useful for natural resources management, although they were devel-
oped as a tool in the Statistical Process Control (SPC) for improving industrial processes. On the basis of
the classical approach, these SPC techniques are a representation of the quality characteristic measured
in a sample or in several samples of an industrial process and allow pointing out if the process is “out of
control” and it should be stopped (Montgomery, 2009).
The convenience of using the control charts approach in different fields such as environmental, eco-
nomics, financial, social and healthcare sciences was discussed in several studies. In particular, the
interest in SPC techniques to analyze environmental phenomena is increasing (Paroissin et al., 2016;
Garthoff and Otto, 2016). On the other hand, few attempts to integrate the control charts with Geostatis-
tics have been made, such as in Grimshaw et al. (2013). However, the geostatistical methods applied in
the above mentioned papers were not used in a joint way in the space and in the time.
In this paper, the Cumulative Sum (CUSUM) charts, introduced by Page (1961), are used to study an
agro-meteorological variable, i.e. evapotranspiration (ET0), in 26 stations of Veneto region, in the period
1992-2016. In particular, the CUSUM charts technique has been integrated with nonparametric spatio-
temporal geostatistical methods in order to predict the probability that the CUSUM chart signals that the
variable is “out of control”. These results could be useful to plan adequate water management strategies,
since the ET0 monitoring plays an important role in irrigation scheduling, watershed level budgeting, as
well as climate and weather models.
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2 CUSUM charts and geostatistical framework

In environmental field, the detection of changes in a phenomenon could represent a useful tool to define
management and controlling plans. Hence, the CUSUM charts, based on the cumulative sums of devia-
tions of the analyzed values from a target value (µ0), might be a convenient technique for monitoring this
variability. Neverthless, it is worth noting that the variables under study are usually nonstationary, so the
residuals must be considered (Montgomery and Mastrangelo, 1991).
The residual values of a spatio-temporal environmental phenomenon, recorded at different time points
and spatial locations, can be considered as a realization of a second-order stationary spatio-temporal ran-
dom function (ST RF), {Y (u),u = (s, t) ∈ D×T}, where D⊆ Rd and T ⊆ R.
In particular, for each spatial location, the chart is obtained by plotting over the time the cumulative val-
ues CS(s, t) = ∑

t
j=1 [Y (s, j)−µ0] = [Y (s, t)−µ0]+CS(s, t−1), where CS(s,0) = 0. On the other hand,

the CUSUM could be expressed in the form of decision-interval, based on the cumulative sums of posi-
tive and negative deviations from the target value µ0 that are greater than a reference value indicated with
K, respectively:

CS+(s, t) = max[0,Y (s, t)− (µ0 +K)+CS+(s, t−1)],

CS−(s, t) = max[0,(µ0−K)−Y (s, t)+CS−(s, t−1)],

with starting values CS+(s,0) =CS−(s,0) = 0. The CUSUM chart is obtained by plotting these statistics
over the time. In particular, if measurements are above the reference value, the upper CUSUM CS+

shows an upward trend; likewise, the lower CUSUM CS− exhibits a downward trend if the phenomenon
is consistently below the reference value.
Finally, the parameters K and H must be fixed. K is related to the size of the smallest shift in the level of
the reference value that can be detected; while H is the threshold that CS+ and CS− should not exceed in
order to consider the phenomenon “in-control”.
In a nonparametric context, given the fixed threshold z = H and the CS+ and CS− computed from resid-
uals, a spatio-temporal indicator random field (ST IRF),

{I(u,z),u = (s, t) ∈ D×T}

can be defined as follows:

I(u,z) =
{

1 if CS+(u)≥ z or CS−(u)≥ z ,
0 otherwise.

(1)

Under the second-order stationarity, the spatio-temporal indicator variogram, which describes the corre-
lation, depends on the threshold z and the lag vector h, i.e. 2γI (h;z) = Var [I(u+h;z)− I(u;z)], where
h = (hs,ht).
In this context, the empirical spatio-temporal indicator variogram can be modelled through the following
generalized product-sum model (De Iaco et al., 2001), selected among different spatio-temporal models
proposed in literature:

γI (hs,ht ;z) = γI (hs,0;z)+ γI (0,ht ;z)− kγI (hs,0;z)γI (0,ht ;z), (2)

where γI (hs,0;z) and γI (0,ht ;z) are, respectively, spatial and temporal valid bounded marginal vari-
ograms and k ∈]0,1/max{sillγI (hs,0;z),sillγI (0,ht ;z)}] is the parameter of spatio-temporal interaction.
For a second-order stationary ST IRF I, a linear prediction of the probability that the CS+ or CS− is
greater than the threshold z, that means that the phenomenon is “out of control”, can be obtained by us-
ing a linear combination of neighbouring indicator variables, expressed by the spatio-temporal indicator
kriging predictor Î(u;z) = ∑

n
α=1 λα(uα;z)I(uα;z), where I(uα;z), α = 1,2, . . . ,n represent the indicator

random variables at the sampled points uα ∈D×T and λα(uα;z) are the kriging weights, determined by
solving the indicator kriging system (Journel, 1983).
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3 Case study

The control of ET0 levels in a geographic area is an important tool for water management and planning,
since this variable is a very crucial factor in river discharge, irrigation water requirement and soil moisture
contents (Mohan and Arumugam, 1996).
In the present case study, the ET0 levels (expressed in mm) provided by an Italian web system, named
SCIA (Desiato et al., 2007), for 26 agro-meteorological stations located in the northeastern part of Italy
(Veneto Region) have been analyzed. Note that selected data are averaged every ten days and refer to a
25-year span (from 1992 to 2016).
ET0 is characterized by a periodic behavior: high levels registered in autumn and in winter are in contrast
to low measurements in the other seasons. Hence, in order to remove the periodic component exhibited
by the data, the FORTRAN program REMOVEMULT described in De Iaco et al. (2010) has been used;
consequently the residual data have been used in the steps of the analysis.
From residuals, for each spatial location positive (CS+) and negative (CS−) CUSUM have been computed
by fixed the parameters K = 2σ and H = 3σ, where σ is the global standard deviation equals to 0.359.
Hence, by considering the parameter H = 1.077 as the threshold z, a nonparametric analysis has been
conducted on the indicator variable I(u;z), in order to estimate the probability that the CUSUM CS−

exceeds the threshold z and to predict the probability that the ET0 is “out of control” for three future time
points, that is the 10th, 20th and 30th of January 2017.
After computing the sample spatio-temporal indicator variogram (Fig.1), the space-time correlation of
the indicator variable has been modeled through the following product-sum model:

γI (hs,ht ;z) = Ns + cs Exp(‖hs‖;as)+Nt + ct Exp(ht ;at)− k{[Ns + cs Exp(‖hs‖;as)] · [Nt + ct Exp(ht ;at)]}

where Ns and cs are, respectively, the nugget and the sill contribution of the spatial marginal indicator
variogram model which is γI (hs,0;z) = 0.015+ 0.019Exp(‖hs‖;as), while Nt and ct are, respectively,
the nugget and the sill contribution of the temporal indicator variogram model which is γI (0,ht ;z) =
0.012+0.097Exp(ht ;at), with spatial range as equals to 80 km and temporal range at equals to 55 days.
Note that the parameter k, which is equals to 7.104, is such that the admissibility condition is satisfied
and the global sill, equals to 0.117, is fitted.
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Figure 1: a) Sample indicator spatio-temporal variogram surface, b) marginal spatial variogram and fitted
model, c) marginal temporal variogram and fitted model.

The reliability of the fitted spatio-temporal model is evaluated through cross-validation technique and
some fitting indexes. The linear correlation coefficient between the observed values and the estimates
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from cross-validation, equals to 0.8, confirms the goodness of the fitted model. Moreover, the Mean Error
(ME) and the Root Mean Square Error (RMSE) computed on the fitting errors between the empirical
surface and the model, equal to 0.007 and 0.005, respectively, confirm the accuracy of the fitted spatio-
temporal model.
Finally, these models have been applied in order to obtain spatio-temporal indicator kriging predictions
over the area of interest for three decades, from the 10th to the 30th of January 2017, through a modified
GsLib routine (De Iaco et al., 2011). Then, the probability maps of the negative CUSUM CS− exceeding
the fixed threshold have been obtained. The results highlight that, in the analyzed area, there are low
probabilities that the CUSUM exceeds the fixed threshold. Hence, the ET0 behavior will be “in-control”
in these three decades.
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