
Graphical model selection for air quality time series

L. Paci1,∗ and G. Consonni1

1 Department of Statistical Sciences, Università Cattolica del Sacro Cuore; lucia.paci@unicatt.it,
guido.consonni@unicatt.it;
∗Corresponding author

Abstract. We propose an objective Bayes approach based on graphical models for learning depen-
dencies among multiple air quality time series within the framework of Vector Autoregressive (VAR)
models. Using a fractional Bayes factor approach, we obtain the marginal likelihood in closed form
and construct an MCMC algorithm for Bayesian graphical model determination with limited compu-
tational burden. We apply our method to study the interactions between four air pollutants over the
municipality of Milan (Italy).
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1 Introduction

Air pollution is a major global environmental risk to human health. Because humans are simultaneously
exposed to a complex mixture of air pollutants, many organizations are moving toward a multi-pollutant
approach to air quality [4]. Key aspects of such approach are the estimation of the health risk of mul-
tiple pollutants, the setting of regulatory standards and the design of compliance strategies for multiple
pollutants. For example, a strategy to reduce levels of one pollutant, say particulate matter, may also
affect the levels of other pollutants, say ozone. To take on these challenges, a better understanding of the
interactions between air pollutants is required.

Pollutant measurements or numerical model estimates usually arise a multivariate time series col-
lected at fixed locations or aggregated over a given spatial domain. Vector Autoregressive (VAR) models
offer a suitable framework for analyzing multiple time series, such as air quality data. VAR models can
be naturally represented by graphs, with directed edges reflecting the autoregressive structure over time
while undirected edges describe the contemporaneous interactions among variables.

In this paper we describe an objective Bayes methodology to learn dynamic and contemporaneous
dependencies among multiple pollutants modeled through a graphical VAR. Using a fractional Bayes
factor approach, we are able to obtain the marginal likelihood in closed form and perform Bayes graph-
ical model selection with limited computational burden because we focus on marginal likelihood, and
disregard inference on model parameters. We apply our method to analyze the time series of four pollu-
tants over the municipality of Milan (Italy). Results offer helpful insights about the relationship between
these pollutants.
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1.1 VAR model

Let yt be a (q×1) vector of observations collected at time t, t = 1, . . . ,T . The reduced form of a stable
VAR of order k, VAR(k), is given by

yt =
k

∑
i=1

Biyt−i +εt , t = 1, . . . ,T, (1)

where Bi are (q× q) matrices of coefficients or lag matrices, determining the dynamics of the system
and εt is a (q×1) dimensional white noise process, that is εt |Σ ∼ Nq(0,Σ), independently over time.
The observation vector at time t depends linearly on the previous k observations, where k is assumed to
be known. The intercept and exogenous variables can be added to the model, leading to straightforward
modifications of the results shown here; for simplicity we omit details. Let zt = (y′t−1, . . . ,y′t−k)

′ denote
the (kq×1) vector of lagged observations at time t and B′ = (B1, . . . ,Bk) be the (q×kq) matrix obtained
by collecting together the corresponding coefficient matrices. Let Y = (y1, . . . ,yT )

′ be the (T ×q) matrix
collecting all observations and Z be the (T × kq) matrix containing all the lagged variables, i.e., Z =
(z1, . . . ,zT )

′. Equation (1) can be rewritten in matrix form as

Y = ZB+E, (2)

where E = (ε1, . . . ,εT )
′ is the (T ×q) matrix of errors following a Matrix Normal distribution with zero

mean, cross-covariance matrix between vector column j and vector column j′ of Y equal to σ j j′IT and
covariance matrix of vector row i equal to Σ, which we write E |Σ∼NT,q(0,IT ,Σ).

2 Model selection for graphical VAR

Let G = (VT S,E), be a graph with node set VT S =V ×Z, V = {1,2, . . . ,q}, and edge set E, whose edges
have at most k lags and which is invariant under translation. If (Bi)vw is the (v,w)-element of matrix
Bi in (1) and (Ω)vw is the (v,w)-entry of precision matrix Σ−1, then the VAR model with the following
constraints on the parameters

i) (v, t− i)→ (w, t) ∈ E ⇔ (Bi)vw 6= 0 i = 1, . . . ,k

ii) (v, t) — (w, t) ∈ E ⇔ (Σ−1)vw 6= 0 t = 1, . . . ,T
(3)

represents a VAR(k,G) model [6]. It follows from (3) that nonzero elements in B correspond to directed
edges in the graph reflecting the recursive structure of the time series, while nonzero elements in Σ−1

correspond to undirected edges that specify conditional independencies at any given time t. In other
words, learning the dynamic structure of a graphical VAR translates into a variable selection problem
while learning the interactions among variables translates into a covariance selection problem.

Let Γ the binary connectivity matrix such that (Γ)vw = 1⇔ (B)vw 6= 0. Let Gu = (VT S,Eu) de-
note the undirected graph corresponding to the contemporaneous dependencies. We assume that Σ is
Markov with respect to Gu, i.e., condition ii) is satisfied. We confine our analysis to the class of decom-
posable graphs for all time points, although we provide posterior graph summaries that go beyond this
assumption. Given Γ and Gu, we denote B(Γ) the associated coefficient matrix and Σ(Gu) the associated
covariance matrix. Then the likelihood of a graphical VAR(k,G) factorizes as

f
(

Y | B(Γ),Σ(Gu)
)
=

∏C∈C f
(

YC | B
(Γ)
C ,Σ

(Gu)
CC

)
∏S∈S f

(
YS | B

(Γ)
S ,Σ

(Gu)
SS

) , (4)
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where C and S denote the set of cliques and separators of the undirected decomposable graph, while B(Γ)
C

and B(Γ)
S are the matrices whose columns contain the nonzeros coefficients of the selected responses YC

and YS, respectively. Notice that the set of cliques C and separators S depend on Gu, which is omitted
for simplicity.

In this work, we employ an objective approach for model selection based on the Fractional Bayes
Factor (FBF), originally presented in [2]. The idea of the FBF is to train a noninformative, typically
improper, prior using a small fractional power b of the likelihood, thus converting the noninformative
prior into a proper prior. The latter is then used to compute the marginal likelihood based on the comple-
mentary fractional power (1−b) of the likelihood.

We start with a prior for
(
B(Γ),Σ(Gu)

)
that is a limiting form of a Matrix Normal Hyper-Inverse

Wishart distribution. Combining such prior with a fraction b= T0/T of likelihood (4), we obtain the frac-
tional prior of a VAR(k,G) that is a Matrix Normal Hyper-Inverse Wishart distribution, M N H I W

(
B̂(Γ),C,d,R

)
,

where B̂(Γ) is the ordinary least square estimate of nonzero coefficients, C = T/T0 (Z′Z)−1, d = T0− kq
and R = T0/T Ê′Ê with Ê = Y−ZB̂(Γ). Hence, the fractional prior factorizes as

pF
(

B(Γ),Σ(Gu)
)
=

∏C∈C Nkq,|C|

(
B(Γ)

C ,C,Σ
(Gu)
CC

)
I W |C| (d + |C|−1,RCC)

∏S∈S Nkq,|S|

(
B(Γ)

S ,C,Σ
(Gu)
SS

)
I W |S| (d + |S|−1,RSS)

. (5)

Because of conjugacy of prior (5), we can write

mF(Y | Γ,Gu) =
∏C∈C mF (YC | Γ)
∏S∈S mF (YS | Γ)

, (6)

where, mF(YC | Γ) and mF(YS | Γ) can be obtained in closed form using the results in [5].

2.1 Computational details

Posterior inference on the space of decomposable graphs is carried out through Markov Chain Monte
Carlo (MCMC) methods. In particular, at each step of our collapsed Gibbs sampling, we locally modify
Γ and Gu and then update through the following Metropolis-Hasting steps:

• we move from Γ to Γ∗ with acceptance probability r(Γ,Γ∗) = min
{

1, mF (Y |Γ∗,Gu)p(Γ∗)q(Γ|Γ∗)
mF (Y |Γ,Gu)p(Γ)q(Γ∗|Γ)

}
;

• we move from Gu to Gu
∗ with acceptance probability r(Gu,Gu

∗) = min
{

1, mF (Y |Γ,Gu
∗)p(Gu

∗)q(G
u|Gu
∗)

mF (Y |Γ,Gu)p(Gu)q(Gu
∗|Gu)

}
.

We compute mF(Y |Γ∗,Gu) using (6) while a multiplicity-correction prior for both the directed dynamic
graph and the undirected contemporaneous graph is assumed [5]. Finally, q(Γ∗ |Γ) = α when adding an
edge, and q(Γ∗ | Γ) = 1−α when deleting an edge; same proposal is employed for Gu, see [1].

Given the MCMC output we can approximate the posterior inclusion probability of edge (v,w) as
the proportion of MCMC iterations, after the burn-in, wherein the edge (v,w) appears. A variety of
summaries of the MCMC output can be adopted to estimate the data generating graph. Here, we employ
a Bayesian version of the (approximate) expected false discovery rate (FDR; [3]), i.e., we estimate the
graph considering those edges whose posterior probability of inclusion is greater than 1− r, where r is
determined so that the FDR is at most 5%.
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3 Analysis of air quality data

We analyze a 4-dimensional time series of air pollutants from January 2016 to December 2018 over the
municipality of Milan (Italy). Data are provided and aggregated by the air quality system of ARPA (the
regional environmental protection agency of Lombardia). In particular, we study the time series of daily
average of nitrogen dioxide (NO2), daily 8-hour maximum ozone (O3), daily particulate matter (PM10)
and daily fine particulate matter (PM2.5). Left panel of Figure 1 displays such time series, highlighting
the cyclical pattern of the pollutants.

A VAR(1,G) is fitted using the approach described in Section 2. Daily average of temperature and
precipitation over the city are employed as covariates. Preliminary results of the variable selection al-
gorithm applied to these variables show that temperature is a relevant predictor for both NO2 and O3
while precipitation is relevant for particulate matter and nitrogen dioxide. Right panel of Figure 1 shows
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Figure 1: Left panel: daily averages of the pollutants. Right panel: estimated VAR graph.

the estimated VAR graph obtained using the FDR criterion described in Section 2. Some of the links of
the graph can be explained by the chemical and physical transformation of the pollutants, e.g., NO2 is
a precursor to ozone while particulate matter and NO2 are both indicators of urban pollution. However,
interactions between air pollutants are very complex and require further investigations.
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