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Abstract

We show in this article that there exists no H-fractional Brownian field indexed by
the cylinder S1×]0, ε[ endowed with its product distance d for any ε > 0 and H > 0.
This is equivalent to say that d2H is not a negative definite kernel, which also leaves
us without a proof that many classical stationary kernels, such that the Gaussian
and exponential kernels, are positive definite kernels – or valid covariances – on the
cylinder.

We generalise this result from the cylinder to any Riemannian Cartesian product
with a minimal closed geodesic. We also investigate the case of the cylinder endowed
with a distance asymptotically close to the product distance in the neighbourhood of a
circle.

As a consequence of our result, we show that the set of H such that d2H is
negative definite behaves in a discontinuous way with respect to the Gromov-Hausdorff
convergence on compact metric spaces.

These results extend our comprehension of kernel construction on metric spaces,
and in particular call for alternatives to classical kernels to allow for Gaussian mod-
elling and kernel method learning on cylinders.
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1 Introduction

The study of fractional random processes has been a very active topic since the
article of Mandelbrot and Van Ness on fractional Brownian motion [18], from which
they have proven to be major random models in a variety of applications. In order to
model geological phenomena Mandelbrot considered in [17] fractional Brownian motion
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Nonexistence of fractional Brownian fields indexed by cylinders

indexed by the Euclidean spaces. In [11], Istas stresses out the need for fractional
random fields indexed by nonflat spaces and defines the H-fractional Brownian field
indexed by any metric space. It is a natural generalisation of the classical fractional
Brownian motion from which it inherits key properties such as stationary increments
with respect to the isometry group of the index space, long range memory, and often
local H-self-similarity.

Alas, it does not always exist. Moreover, it is in general not easy to check if it does,
as one needs to prove the positive definiteness of the corresponding covariance kernel,
which depends on the distance d of the index metric space. This question has been of
interest earlier in some special cases: Lévy proved the existence of the Brownian field
(corresponding to H = 1/2) indexed by the Euclidean spaces and the spheres [14, 13]. He
used direct geometrical constructions, generalised later by Chentsov and Morozova [20],
Lifshits [16] and Takenaka [22]. Others authors have tackled this question with harmonic
analysis: Molchan extensively studied the existence of the Brownian field indexed by
symmetric spaces [19]. The works by Gangolli [8] on Lévy-Schoenberg kernels and
by Faraut and Harzallah [5] on Hilbertian distances are also strongly connected to
the question. Authors on fractional Brownian fields indexed by Riemannian manifolds
includes Istas [9, 10, 11], Cohen and Lifshits [3], who considered hyperbolic spaces and
spheres.

The existence of the H-fractional Brownian field indexed by a metric space (E, d) is
equivalent to the negative definite property of the kernel d2H , where d is the distance
on the index space (E, d). Istas [11] noticed that there exists a fractional index βE > 0

depending on (E, d) such that d2H is a negative definite kernel if and only if 2H ≤ βE . It
is clear from Faraut and Harzallah [5] that any Hilbert space and thus Euclidean spaces
enjoy fractional indexes equal to 2, and Istas showed that this is the maximum value of βE
for a Riemannian manifold ([11]). However the spheres and the real hyperbolic spaces
have fractional index 1 (see Istas [11]). As βE < 2 for any Riemannian manifold with
at least one point of positive curvature (Istas [11]) and βE < 1 for any ellipsoid which
is not a sphere (Chentsov and Morozova [20]), existence of fractional Brownian fields
seems to be a rather fragile property. Results on fractional index related to curvature
and topology are given in [6] and [23].

Furthermore the negative definiteness of d2H on a metric space also gives the positive
definiteness of the kernels of the form F (d2H), where F is a completely monotone
function (see for instance [1]). This method gives the existence of stationary Gaussian
random fields indexed by the metric space. The associated kernels include the Gaussian
and exponential kernels, and are crucial to allow for “kernel method” machine learning
of nonlinear data (see for example [21]).

We show in this paper that the cylinder S1×]0, ε[ endowed with its canonical Rieman-
nian product metric has fractional index 0. In other terms, for every positive H and ε,
d2H
S1×]0,ε[ is not a negative definite kernel, hence there exist no H-fractional Brownian

field indexed by the cylinder (see Theorem 3.2).

We then generalise this result to the product of two Riemannian manifolds M ×N
endowed with the Riemannian product distance, as long as it contains a minimal closed
geodesic (see Theorem 4.1).

It is remarkable that the cylinder exhibits an obstruction to the negative definiteness
of d2H which relies entirely on its global structure: indeed the cylinder and the Euclidean
plane share the same local flat metric, but as one enjoys a negative definite kernel
d2H for every H ≤ 1, the other admits none. To the knowledge of the author the only
other known examples of spaces with fractional index 0 are a class of non Euclidean
normed vectorial spaces (see [12]) and the quaternionic hyperbolic space endowed with
its geodesic distance (Faraut [5]).
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However this global characteristic of the result contrasts with a local aspect. The
result is given for a cylinder as short as wanted: the fractional index of S1×]0, ε[ is zero
for every positive ε. We use this “locallity around the circle” to investigate the case
of metric spaces with a distance asymptotically close to the cylinder distance in the
neighbourhood of a circle (see Section 5) and obtain upper bounds for the fractional
index in this setting. In particular we look into the case of surfaces of revolution and
give an example with zero fractional index (see Theorem 5.7), which indicates that our
argument does not depend on the product structure.

This local feature of our result brings out a discontinuous behaviour of the fractional
index, since S1 × [0, ε] has fractional index 0 when ε is positive and 1 when ε = 0.
We show in particular that the fractional index is not continuous with respect to the
Gromov-Hausdorff convergence of compact metric spaces (see Section 6).

The proof on the cylinder (Theorem 3.2) is done through a direct method by exhibiting
for everyH < 1/2 a collection of points (PHi,n)i≤n and of coefficients (ci) such that

∑
ci = 0

and

lim
n→∞

n∑
i,j=1

cicjd
2H(PHi,n, P

H
j,n) = +∞, (1.1)

which by definition prevents the kernel d2H to be negative definite. We start by in-
vestigating a collection of points on the circle, which we afterwards duplicate on two
horizontal circles of the cylinder. Finally we consider the same collection of points on
a number of circles depending on n. The behaviour of lim

n→∞

∑n
i,j=1 cicjd

2H(PHi,n, P
H
j,n)

when n → ∞ is governed by the asymptotic regime of the distance zn between two
consecutive circles, which should be chosen carefully in order to obtain the desired
divergence towards infinity. This adequate regime depends on H. In particular every
point converges towards the circle at height zero so that the proof works for every ε, but
at a rate slow enough so that the quantity we consider in (1.1) does not asymptotically
behave as if the points were on a circle. Our other results all rely on Theorem 3.2.

Outline of the article In Section 2 we recall some generalities and detail our
motivations. In Section 3 we give the main statement and its proof. In Section 4 we
extend our result to Riemannian products. In Section 5 we consider distances close to
the product distance on the cylinder. In Section 6 we deduce that the fractional index is
discontinuous with respect to the Gromov-Hausdorff convergence.

2 Generalities

In this article we consider metric spaces (E, d) and study the negative definiteness
property for the functions d2H(x, y), where H is a positive parameter.

The metric spaces we consider are cylinders (Section 3) or are close to cylinders in
various ways (product spaces with a minimal closed geodesic in Section 4, spaces which
are asymptotically close to a cylinder in Section 5).

In practice, we are looking for the fractional index βE of the metric space, which is
defined as the supremum of the parameters H such that d2H is negative definite. This
index is of particular interest because the function d2H is negative definite if and only if

2H ≤ βE . (2.1)

This problematic is motivated by existence problems for fractional Brownian fields and
stationary random fields indexed by (E, d), which depend on the negative definiteness
of d2H . This property also gives the positive definiteness of kernels that are crucial for
machine learning of nonlinear data.

In this section we recall some generalities and give details about these motivations.
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Positive and negative definite kernels Given a set S, we say that a symmetric
function f : S × S → R is a positive definite kernel if for every x1, · · · , xn ∈ S and every
λ1, · · · , λn ∈ R,

n∑
i,j=1

λiλjf(xi, xj) ≥ 0. (2.2)

Positive definite kernels are the covariances of random fields indexed by S. In
particular, there exists a centred Gaussian random field indexed by S with covariance f
if and only if f is a positive definite kernel (see for instance [15]). Furthermore they are
a key ingredient to machine learning of nonlinear data, as the positive definiteness of f
is equivalent to the existence of an Hilbert space H and a map Φ : S → H (the “feature
map”) such that

f(x, y) = 〈Φ(x),Φ(y)〉H, (2.3)

which guaranties that f can play the role of a scalar product to allow for every linear
machine learning method (see [21]).

Positive definite kernels are closely related to negative definite kernels (see for
example [1]): a symmetric function f is said to be a negative definite kernel if for every
x1, · · · , xn ∈ S and every c1, · · · , cn ∈ R such that

∑n
i=1 ci = 0,

n∑
i,j=1

cicjf(xi, xj) ≤ 0. (2.4)

Fractional Brownian fields Given a metric space (E, d) and H > 0, we recall that an
H-fractional Brownian field indexed by E is a centred, real-valued, Gaussian random
field (Xx)x∈E such that

∀x, y ∈ E, E (Xx −Xy)
2

= [d(x, y)]
2H

. (2.5)

This definition does not yield uniqueness (in law) of the field. Indeed for N a centred
Gaussian random variable, if (Xt) is an H-fractional Brownian field indexed by E then so
is (N +Xt). It is classical to define for any point O ∈ E the H-fractional Brownian field
with origin in O by requiring also that XO be equal to 0 almost surely. If it exists one can
check that the covariance is then

E(XxXy) =
1

2

(
d2H(O, x) + d2H(O, y)− d2H(x, y)

)
, (2.6)

hence the uniqueness of the law of the field. Moreover the existence of the fractional
Brownian field with origin in O is equivalent to the positive definiteness of (2.6). A
theorem of Schoenberg (see for example [11]) proves that it is the case if and only if d2H

is a negative definite kernel. Notice that this property does not depend on the origin O,
and that any Gaussian field verifying (2.5) is obtained by addition of a normal random
variable to an H-fractional with origin in an arbitrary O ∈ E: the negative definiteness of
d2H is equivalent to the existence of every H-fractional Brownian field indexed by (E, d).

Remark 2.1. In [11] Istas define an α-stable H-fractional field indexed by a metric space.
Unlike in the Gaussian case, positive definiteness of the covariance is not sufficient to
guaranty the existence of this field, but it is still necessary that d2Hα be negative definite.
Studying the negative definiteness of the powers of d is also a first step for fractional
non Gaussian modelling.
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Stationary kernels Furthermore when d2H is negative definite, for every completely
monotone function F : R+ → R+,

(x, y) 7→ F
(
d2H(x, y)

)
(2.7)

is a positive definite kernel (see for instance [1]). Let us recall that a function F is
completely monotone if and only (−1)nF (n)(t) ≥ 0 for every t ∈ R+ and n ∈ N. Since
the kernels in (2.7) depend only on the distance, they are the covariances of stationary
Gaussian random fields. These are first-choice random models for functions over E,
whose random behaviour is homogeneous with respect to the geometry of (E, d).

Positive definite kernels that are functions of a distance are also of crucial importance
in kernel machine learning, since by replacing a scalar product in learning methods
a kernel plays the role of a “proximity measure”. Examples of completely monotone
functions include t 7→ e−λt for every positive λ. In particular, when they are positive
definite e−λd(x,y) and e−λd

2(x,y) generalise the exponential and the Gaussian kernel
families.

Fractional index It is a striking fact that for every metric space (E, d) there exists βE
in [0,+∞] such that for every positive H, d2H is negative definite if and only if (see Istas
[11])

2H ≤ βE . (2.8)

The number βE is called the fractional index of (E, d) and is in general not easy to
compute. Let us stress out some general facts which follow directly from the definition
of βE , and that we will use later.

Remark 2.2. Given a metric space (E, d) and F ⊂ E, if we consider F as a metric space
endowed with the restriction d|F of the distance d to F , we have βF ≥ βE .

Remark 2.3. For a positive λ, multiplying the distance on E by λ does not change the
fractional index βE .

General assumptions on Riemannian manifolds Most of the time we will consider
as index space a Riemannian manifold M endowed with the geodesic distance dM
associated to its Riemannian metric 〈 , 〉M . Following [7] we consider only C∞, connected,
and countable at infinity manifolds in this whole document. Furthermore we assume the
manifolds to be connected and without boundary, with the notable exception of S1 × [0, ε]

in the proof of Theorem 6.1.

Remark 2.4. Given a Riemannian manifold M and a submanifold N of M , it is possible
to consider the restriction dM |N of the geodesic distance dM to N . On the other hand,
one can consider the Riemannian manifold N endowed with the restriction 〈 , 〉M |N of
the inner product of M to N , which gives a geodesic distance dN . In general those two
distances are not equal, because the minimal geodesics in M from points of N take
values in the whole of M . In particular it is not possible to deduce the value of βM from
local aspects of M only, in spite of Remark 2.2.

Minimal closed geodesics Let us recall that a minimal closed geodesic γ in a Rie-
mannian manifold M is a closed curve with values in M such that for every points P,Q
on γ there exists a minimal geodesic joining P to Q that is included in γ. In this case
the two distances dM |γ and dγ are equal, and γ is isometric to a circle of length L(γ). In
particular for a Riemannian manifold with a minimal closed geodesic, βM ≤ βS1 = 1 (see
Remarks 2.2 and 2.3).
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3 Main result

In this section we consider the cylinder S1 ×R endowed with its Riemannian product
metric

〈 , 〉S1×R = dθ2 + dz2. (3.1)

The expression of the associated geodesic distance is

dS1×R((θ1, z1), (θ2, z2)) =
(
dS1(θ1, θ2)2 + |z1 − z2|2

)1/2
, (3.2)

where dS1 is the geodesic distance on S1, given by

dS1(θ1, θ2) = min(|θ1 − θ2|, 2π − |θ1 − θ2|). (3.3)

Remark 3.1. In the cylinder the geodesics are given by arcs of helices. In particular
all the geodesics in S1 ×R between points of S1×]0, ε[ stay at all time in S1×]0, ε[. As a
consequence, the restriction of dS1×R to S1×]0, ε[ and the geodesic distance associated
to the metric (3.1) on S1×]0, ε[ coincide.

Theorem 3.2 (Main result). For every ε > 0 and H > 0, d2H
S1×]0,ε[ is not negative definite,

hence there exists no H-fractional Brownian field indexed by the cylinder S1×]0, ε[. In
other terms,

βS1×]0,ε[ = 0.

3.1 Proof of the main result

Let us give an outline of the proof of the theorem. To prove the result we exhibit for
every 0 < H < 1/2 a sequence of configurations

((PH1,n, · · · , PHn,n), (c1, · · · , cn))n∈N

such that
∑n
i=1 ci = 0 and

lim
n→∞

n∑
i,j=1

cicjd
2H
S1×]0,ε[(P

H
i,n, P

H
j,n) = +∞,

which shows that d2H
S1×]0,ε[ is not a negative definite kernel. Hence there exists no H-

fractional Brownian field indexed by S1×]0, ε[ for every 0 < H < 1/2. To conclude for
every H > 0 we recall that if d2H is not negative definite then d2H′ is not negative definite
for every H ′ ≥ H (see (2.8)).

We carry the proof with a cylinder of radius 1
2π in order to get parallel circles of

perimeter 1 and lighten the computations. Doing so only multiplies the distance dS1×R
by a positive constant, therefore the fractional index remains the same (see Remark 2.3).

In Section 3.1.1 we work on a sequence of configurations with points on one circle.
Section 3.1.2 deals with the same sequence duplicated on two parallel circles of the
cylinder. We finish the proof in Section 3.1.3 by considering the same sequence of
configurations on a diverging number of parallel circles of the cylinder.

3.1.1 A configuration on the circle

Let us consider a circle S of perimeter 1, parametrised by arc length s ∈ [0, 1[. In this
chart we have an explicit formula for the geodesic distance,

dS(s, s′) = min(|s− s′|, 1− |s− s′|).
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For every N ∈ N and 1 ≤ i ≤ 4N we define

Pi,N :=
i

4N
∈ S,

and the coefficients
ci = (−1)i.

Notice that for every N we have
4N∑
i=1

ci = 0,

so that ((P1,N , · · ·P4N,N ), (c1, · · · , c4N )) is a configuration of 4N points in S.
We now deal with the asymptotic behaviour of

AN :=

4N∑
i,j=1

cicjd
2H
S (Pi,N , Pj,N ). (3.4)

Lemma 3.3 (Asymptotic of the circle term). For every H ∈]0, 1/2[,

AN ∼
N→∞

N1−2H

42H−1

∞∑
p=0

[
(2p)2H − 2(2p+ 1)2H + (2p+ 2)2H

]
.

Proof. We write Pi instead of Pi,N when there is no ambiguity. The terms dS(Pi, Pj)

appearing in the sum AN are of the form k
4N for k ∈ {1, · · · , 2N}. Each one appears 8N

times except the term for k = 2N . This last terms only appears 4N times corresponding
to pairs of antipodal points.

Moreover cicj depends only on dS(Pi, Pj), therefore

AN = 8N

2N−1∑
k=1

(−1)k
(
k

4N

)2H

+ 4N

(
1

2

)2H

= 8N

(
N−1∑
p=1

(
2p

4N

)2H

−
N−1∑
p=0

(
2p+ 1

4N

)2H
)

+ 4N

(
1

2

)2H

= 4N

(
N−1∑
p=1

(
2p

4N

)2H

− 2

N−1∑
p=0

(
2p+ 1

4N

)2H

+

N−2∑
p=0

(
2p+ 2

4N

)2H
)

+ 4N

(
1

2

)2H

= 4N

N−1∑
p=0

[(
2p

4N

)2H

− 2

(
2p+ 1

4N

)2H

+

(
2p+ 2

4N

)2H
]

= (4N)1−2H
N−1∑
p=0

[
(2p)2H − 2(2p+ 1)2H + (2p+ 2)2H

]
.

Because

(2p)2H − 2(2p+ 1)2H + (2p+ 2)2H = O

(
1

p2−2H

)
and H < 1/2, the series above converge and we get the result.

Remark 3.4. For H < 1/2 the sum of the series appearing in (3.3) is nonpositive by
concavity of x 7→ x2H , hence lim

N→∞
AN = −∞. Because βS = βS1 = 1, it is clear that no

choice of configuration on the circle will give a positive result. It is then necessary to
consider points at different heights on the cylinder in order to obtain our result. We start
by duplicating our configuration on two circles.
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3.1.2 Duplicating the circle configuration

We now turn to the cylinder S×R, considering again a circle S of perimeter 1 parametrised
by arc length. In the entire proof of Theorem 3.2 we denote by d the geodesic distance
dS×R. Given two points (s1, z1), (s2, z2) ∈ S ×R we have

d((s1, z1), (s2, z2)) =
(
dS(s1, s2)2 + |z1 − z2|2

)1/2
.

Let us now consider a sequence of positive numbers (zN )N∈N, and for every N ∈ N,

Pi,N :=

{ (
i

4N , 0
)

if 1 ≤ i ≤ 4N,(
i

4N , zN
)

if 4N + 1 ≤ i ≤ 8N.

We set for every 1 ≤ i ≤ 8N

ci = (−1)i,

and notice again that

∀N ∈ N,
8N∑
i=1

ci = 0,

so that ((P1,N , · · ·P8N,N ), (c1, · · · , c8N )) is a configuration of 8N points in S ×R.
This time we deal with the asymptotic behaviour of

CN :=

8N∑
i,j=1

cicjd
2H(Pi,N , Pj,N ). (3.5)

We write again Pi instead of Pi,N when there is no ambiguity. Let us split

CN =

4N∑
i,j=1

(−1)i+j [d(Pi, Pj)]
2H +

8N∑
i,j=4N+1

(−1)i+j [d(Pi, Pj)]
2H

+

4N∑
i=1

8N∑
j=4N+1

(−1)i+j [d(Pi, Pj)]
2H +

8N∑
i=4N+1

4N∑
j=1

(−1)i+j [d(Pi, Pj)]
2H .

We now write
CN = 2AN + 2BN (zN ),

with AN as in (3.4) and

BN (zN ) :=

4N∑
i=1

8N∑
j=4N+1

(−1)i+j [d(Pi, Pj)]
2H . (3.6)

Since we know from Lemma 3.3 how AN behaves it remains to work on BN under proper
assumptions on the regime zN . Because AN is non positive, we aim to get a positive
contribution from BN . Asymptotic order of BN is also crucial in order to dominate AN ,
which we have proven to have asymptotic order N1−2H . From our investigations it seems
that

• if zN converges too quickly to zero BN tends to behave like AN . In particular
setting

zN =
z0

N
yields

BN ∼
N→∞

C(z)N1−2H ,

with C(z0) continuous in z0. Since setting z0 = 0 gives BN = AN , it is clear that
C(z0) is non positive for small values of z0, which is problematic because we aim at
considering cylinders of the form S×]0, ε[ with ε as small as desired.
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• Choosing zN with slower regimes yields positive contribution from BN at the
expense of a less important asymptotic order. In particular setting

zN = z0 > 0

yields

BN −→
N→∞

H

2

(
1

4
+ z2

0

)H−1

which is negligeable in front of |AN |.

We now give a class of regimes for zN under which BN (zN ) converges to a positive
constant independent of zN , with uniform speed in zN . We will later take advantage of
this fact to consider an infinite number of circles and recover a dominant asymptotic
order for BN (zN ).

Lemma 3.5 (Asymptotic of the two circles cross term). Let us denote by Zα,α the set of
all sequences of positive numbers (zN )N≥0 such that

zNN
α −→
N→∞

0 (H1)

and
zNN

α −→
N−→∞

∞. (H2)

For every 0 < H < 1/2 and α, α such that 0 < α < α < 1 we have

lim
N→∞

sup
(zN )N≥0∈Zα,α

∣∣∣∣BN (zN )− H

2 · 4H−1

∣∣∣∣ = 0.

Notations We introduce some notations we use in the whole proof of Lemma 3.5.
Let us write

αN = − ln(zN )
ln(N) ,

ϕ : x 7→ (x2 + 1)H ,

xp = 2p+1
4N1−αN ,

h = 1
4N1−αN ,

θl = αN (l − 1− 2H)− l + 2.


(3.7)

Because we aim for a result with uniformity in zN , from now on we denote by

• a(N, zN ) = Ou(b(N, zN )) the existence of C > O and N0 such that for every zN ∈
Zα,α and N ≥ N0, |a(N, zN )| ≤ C|b(N, zN )|.

• In a similar way, a(N, zN ) = ou(b(N, zN )) means that ∀ε > 0, ∃N0, ∀zN ∈ Zα,α,
|a(N, zN )| ≤ ε|b(N, zN )|.

To prove Lemma 3.5 we proceed through Lemma 3.7, Lemma 3.8, and Lemma 3.9 to
a Taylor-like expansion of BN (zN ) on the powers Nθl . Observe that for every l we have
Nθl+1 = o

(
Nθl

)
. Indeed

Nθl+1

Nθl
= NαN−1 =

1

zNN
=

1

zNNα
× Nα

N

converges towards zero when N goes to infinity (use (H2) and α < 1).
Let us now give Lemma 3.6 which we will use to estimate the asymptotic order of

some remainders in the expansion.
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Nonexistence of fractional Brownian fields indexed by cylinders

Lemma 3.6 (Controlling some remainders). With the notations from (3.7), for every
H < 1/2, every integer q ≥ 2 and

yp = xp + hδp,N ,

where δp,N is any double-indexed sequence with values in [−1, 1] ,

N−1∑
p=0

|ϕ(q)(yp)| = Ou
(
N1−αN

)
.

Proof. Along the proof we use the positive constants C1, · · · , C6. We claim that they exist
and are independent of N and the choice of zN ∈ Zα,α, though some may depend in q

and H without altering the result. We have

ϕ(q)(t) =
t→∞

O
(
t2H−q

)
,

from which we obtain

N−1∑
p=0

|ϕ(q)(yp)| ≤
bN1−αN c∑
p=0

||ϕ(q)||∞ + C1

N−1∑
p=bN1−αN c+1

(yp)
2H−q,

and

(yp)
2H−q = x2H−q

p

(
1 +

hδp,N
xp

)2H−q

≤ C2 x
2H−q
p

because (
1 +

hδp,N
xp

)
=

(
1 +

δp,N
2p+ 1

)
is bounded and away from 0 as long as p > 0.

Finally

N−1∑
p=0

|ϕ(q)(δp)| ≤ (bN1−αN c+ 1)||ϕ(q)||∞ + C1C2

N−1∑
p=bN1−αN c+1

(
2p+ 1

4N1−αN

)2H−q

≤ C3N
1−αN + C4

1

(N1−αN )
2H−q

N−1∑
p=bN1−αN c+1

p2H−q.

Since H < 1/2 we have 2H − q < −1 and we can bound by

C3N
1−αN + C5

1

(N1−αN )
2H−q

(
N1−αN

)2H−q+1

= Ou
(
N1−αN

)
.

Lemma 3.7 (A first decomposition of the cross term). Under the assumptions (H1), (H2)
and with the notations (3.7) we have for every M ≥ 2

BN (zN ) =

M∑
n=2

bnB
n
N +Ou

(
NθM+1

)
,

with

BnN := Nθn

N−1∑
p=0

1

2N1−αN
ϕ(n)(xp) (3.8)

and

bn :=
8

n!4n
(1 + (−1)n). (3.9)
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Nonexistence of fractional Brownian fields indexed by cylinders

Proof. We start by reordering the terms in BN (zN ) in a similar way as we did for AN in
the proof of Lemma 3.3:

BN (zN ) = 4Nz2H
N + 8N

2N−1∑
k=1

(−1)k

[(
k

4N

)2

+ z2
N

]H
+ 4N

[
1

22
+ z2

N

]H

= 4N

N−1∑
p=0

[( 2p

4N

)2

+ z2
N

]H
− 2

[(
2p+ 1

4N

)2

+ z2
N

]H
+

[(
2p+ 2

4N

)2

+ z2
N

]H
= 4N

N−1∑
p=0

[( 2p

4N

)2

+
1

N2αN

]H
− 2

[(
2p+ 1

4N

)2

+
1

N2αN

]H
+

[(
2p+ 2

4N

)2

+
1

N2αN

]H
=

4N

N2αNH

N−1∑
p=0

[(2p+ 1− 1

4N1−αN

)2

+ 1

]H
− 2

[(
2p+ 1

4N1−αN

)2

+ 1

]H
+

[(
2p+ 1 + 1

4N1−αN

)2

+ 1

]H
= 4N1−2αNH

N−1∑
p=0

[ϕ (xp − h)− 2ϕ (xp) + ϕ (xp + h)] ,

Taylor expansions of ϕ up to an arbitrary order M give the following approximation
of BN (zN ):

4N1−2αNH
N−1∑
p=0

M∑
n=2

[
(−h)

n ϕ
(n)(xp)

n!
+ hn

ϕ(n)(xp)

n!

]

= N1−2αNH
N−1∑
p=0

M∑
n=2

bn
2 (N1−αN )

nϕ
(n)(xp)

=

M∑
n=2

bn N
θn

N−1∑
p=0

1

2N1−αN
ϕ(n)(xp), with the remainder

RM+1 := N1−2αNH
N−1∑
p=0

CM
N (1−αN )(M+1)

[
ϕ(M+1)(yp,1) + (−1)(M+1)ϕ(M+1)(yp,2)

]
,

where
yp,1 ∈]xp − h, xp[

and
yp,2 ∈]xp, xp + h[ .

Using Lemma 3.6 with yp = yp,1 and again with yp = yp,2 shows that

RM+1 = Ou
(
NθM+1

)
.

Lemma 3.8 (Recurring formulas for subterms). Under the assumptions (H1), (H2) and
with the notations (3.7), for every n ≥ 3 and M ≥ n :

BnN =

M−n∑
k=0

dkN
θn+kϕ(n+k−1)(0) +

M−n∑
k=1

ak B
n+k
N +Ou

(
NθM+1

)
+ ou (1) , (3.10)

while for every M ≥ 2 :

B2
N =

H

4H−1
+

M−2∑
k=0

dkN
θ2+kϕ(2+k−1)(0) +

M−2∑
k=1

ak B
2+k
N +Ou

(
NθM+1

)
+ ou (1) , (3.11)
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Nonexistence of fractional Brownian fields indexed by cylinders

with dk := − 1

4kk!
, (3.12)

ak := − 1

2k(k + 1)!
. (3.13)

Proof. Let us write

BnN = Nθn

N−1∑
p=0

1

2N1−αN
ϕ(n)(xp) = Nθn

N−1∑
p=0

∫ xp+1

xp

ϕ(n)(xp)dt.

Proceeding to a Taylor expansion up to the order M − n of ϕ(n)(t) for any t ∈ [xp, xp+1],
we write, calling RnM+1 the remainder from the Taylor expansion:

BnN = Nθn

(
N−1∑
p=0

∫ xp+1

xp

[
ϕ(n)(t)−

M−n∑
k=1

(t− xp)k

k!
ϕ(n+k)(xp)

]
dt

)
+RnM+1

= Nθn

([
ϕ(n−1)(t)

]xN
x0

−
M−n∑
k=1

1

2k(k + 1)!
· 1

N (1−αN )k

N−1∑
p=0

1

2N1−αN
ϕ(n+k)(xp)

)
+RnM+1 . (3.14)

For every p and t ∈ [xp, xp+1], there exists yp(t) in ]xp, xp+1[ and continuous in t such that

RnM+1 = Nθn

(
−
N−1∑
p=0

∫ xp+1

xp

(t− xp)M−n+1

(M − n+ 1)!
ϕ(M+1)(yp(t))dt

)
.

We have

∣∣RnM+1

∣∣ ≤ Nθn

N−1∑
p=0

max
t∈[xp,xp+1]

∣∣∣ϕ(M+1)(yp(t))
∣∣∣ ∫ xp+1

xp

(t− xp)M−n+1

(M − n+ 1)!
dt

= Nθn

N−1∑
p=0

∣∣∣ϕ(M+1)(y′p)
∣∣∣ Ou (N (αN−1)(M−n+2)

)
for some y′p ∈ argmax

t∈[xp,xp+1]

∣∣∣ϕ(M+1)(yp(t))
∣∣∣

Using Lemma 3.6 again we obtain∣∣RnM+1

∣∣ = Ou
(
NθM+1

)
. (3.15)

Coming back to (3.14),

• for n = 2 it is easy to see that

Nθnϕ(n−1)(xN ) = Nθ2ϕ′(xN ) =
H

4H−1
+Ou

(
z2
N

)
+ ou (1) .

Using (H1) we obtain

Nθnϕ(n−1)(xN ) =
H

4H−1
+ ou(1) (3.16)

• while for n ≥ 3

Nθnϕ(n−1)(xN ) = ou (1) . (3.17)
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Nonexistence of fractional Brownian fields indexed by cylinders

In both cases, expanding ϕ(n−1) up to the order M − n and using Lemma 3.6 again to
deal with the remainder we get

−Nθnϕ(n−1)(x0) =

M−n∑
k=0

−N
θn+k

4kk!
ϕ(n+k−1)(0) +Ou

(
NθM+1

)
. (3.18)

It remains in (3.14) the term

NθN

(
−
M−n∑
k=1

1

2k(k + 1)!
· 1

N (1−αN )k

N−1∑
p=0

1

2N1−αN
ϕ(n+k)(xp)

)

=

M−n∑
k=1

− 1

2k(k + 1)!
Bn+k
N . (3.19)

Putting together all the pieces of (3.14) from (3.15), (3.18), (3.19), and (3.16) or (3.17)
whether n = 2 or n ≥ 3, we get the result.

Lemma 3.9 (A Taylor-like expansion of the cross term). Under the assumptions (H1),
(H2) and with the notations (3.7), for every M ′ ≥ 2 we have

BN (zN ) =
H

2 · 4H−1
+

M ′−1∑
l′=1

C2l′+1N
θ2l′+1ϕ2l′(0) +Ou

(
Nθ2M′+1

)
+ ou (1) ,

with

Cl :=

bl/2c∑
n′=1

l−2n′∑
k=0

b2n′ Al−2n′−k dk, (3.20)

where A0 := 1 and for every p ≥ 1,

Ap :=

p∑
q=1

∑
m1,··· ,mq>0
m1+···+mq=p

am1 · · · amq . (3.21)

Proof. Using (3.10) and (3.11) from Lemma 3.8 we get

BN (zN ) = b2

(
H

4H−1
+

M−2∑
k=0

dkN
θ2+kϕ(2+k−1)(0) +

M−2∑
k=1

ak B
2+k
N

)

+

M∑
n=3

bn

(
M−n∑
k=0

dkN
θn+kϕ(n+k−1)(0) +

M−n∑
k=1

ak B
n+k
N

)
+Ou

(
NθM+1

)
+ ou (1) ,

gathering terms and using b2 = 1
2 we obtain

BN (zN ) =
H

2 · 4H−1
+

M∑
n=2

bn

(
M−n∑
k=0

dkN
θn+kϕ(n+k−1)(0) +

M−n∑
m=1

am Bn+m
N

)
+Ou

(
NθM+1

)
+ ou (1) .

We now recursively apply (3.10) to obtain an explicit expansion of BN (zN ): all the
asymptotic terms of the form Ou

(
NθM+1

)
and ou (1) gather because we only use (3.10) a

finite number of times. Apart from H
2·4H−1 , we only obtain terms of the form CNθlϕl−1(0).

Furthermore:

1. if the term was obtained without using (3.10), C = bndk for some n and k such that
n+ k = l,
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Nonexistence of fractional Brownian fields indexed by cylinders

2. if the term was obtained after using (3.10) q times, C = bnam1
· · · amqdk with

n+m1 + · · ·+mq + k = l.

Hence the total constant before Nθlϕl−1(0) equals

Cl =

l∑
n=2

l−n∑
k=0

bn Al−n−k dk.

Let us notice that bn = 0 for odd n and ϕ(l−1)(0) = 0 for even l. We therefore write
n = 2n′, l = 2l′ + 1 and M ′ = dM/2e and obtain the result.

Proof of Lemma 3.5. We will now show that all the coefficients C2l′+1 in Lemma 3.9 are
vanishing. Let us write

Cl =

bl/2c∑
n′=1

b2n′Zl−2n′

with

Zr =

r∑
k=0

Ar−kdk

for every r ≥ 1. We are going to prove that Zr = 0 when r is odd, which implies that
Cl = 0 when l is odd. We do so by finding a formal power series associated to (Zr)r≥1

and showing that it converges to an even function.

Zr =

r−1∑
k=0

Ar−kdk +A0dr =

r−1∑
k=0

r−k∑
q=1

∑
m1,··· ,mq>0

m1+···+mq=r−k

am1 · · · amq

 · dk + dr,

then we can write the formal expansion

∞∑
r=1

Zrz
r =

( ∞∑
q=1

( ∞∑
n=1

anz
n

)q)
·

( ∞∑
k=0

dkz
k

)
+

∞∑
r=1

drz
r.

It is easy to see that all series on the right side of the equality converges for z small
enough and to compute explicitly

∞∑
r=1

Zrz
r =

z

2
(
e−z/4 − ez/4

) + 1

which is an even function of z.
Since all the coefficients in the expansion given in Lemma 3.9 are equal to 0 we get

that

∀M ∈ N, BN (zN ) =
H

2 · 4H−1
+Ou

(
NθM

)
+ ou(1).

Let us now write

Ou
(
NθM

)
= Ou

(
NαN (M−1−2H)−M+2

)
= Ou

(
z2H+1−M
N N−M+2

)
.

From (H2) we have

z−1
N = ou(Nα),

EJP 24 (2019), paper 75.
Page 14/26

http://www.imstat.org/ejp/

https://doi.org/10.1214/18-EJP256
http://www.imstat.org/ejp/
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therefore if we choose M large enough we have

Ou
(
NθM

)
= ou

(
Nα(M−2H−1)−M+2

)
= ou(1).

Finally

BN (zN ) =
H

2 · 4H−1
+ ou (1)

and Lemma 3.5 is proven.

3.1.3 Final steps of the proof

Proof of Theorem 3.2. In the cylinder S×R we now consider a number of parallel circles
depending on N. Each circle bears again the same configuration of points. Precisely, we
choose

0 < β < γ < 1

and take bNβc circles at the heights

k

Nγ
, k ∈ {1, · · · , bNβc} .

We put on the k-th of these circles 4N points (P ki )4N
i=1 of coordinates(

i

4N
,
k

Nγ

)4N

i=1

.

We associate to those points the usual coefficients

cki = (−1)i

and consider

QN =

bNβc∑
k,l=1

4N∑
i,j=1

cicj d
2H(P ki , P

l
j)

=

bNβc∑
k=1

4N∑
i,j=1

cicjd
2H(P ki , P

k
j ) +

bNβc∑
k,l=1,k 6=l

4N∑
i,j=1

cicjd
2H(P ki , P

l
j)

=bNβcAN +

bNβc∑
k,l=1,k 6=l

BN

(
zk,lN

)
,

with

zk,lN =
|k − l|
Nγ

.

Let us observe that all the zk,lN verify

1

Nγ
≤ zk,lN ≤

bNβc
Nγ

and recall that 0 < β < γ < 1, hence we can apply Lemma 3.5, since all zk,lN verify (H1)
together with (H2) as long as we choose α, α such that

0 < α < γ < 1

and
0 < γ − β < α < 1 ,
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which is always possible.
In the end we get that

QN =bNβcAN +
bNβc

(
bNβc − 1

)
2

(
H

2 · 4H−1
+ o(1)

)
.

Recall from Lemma 3.3 that

AN ∼
N→∞

N1−2H

42H−1

∞∑
p=0

[
(2p)2H − 2(2p+ 1)2H + (2p+ 2)2H

]
,

therefore if we choose β > 1− 2H we obtain

QN ∼
N→∞

H

4H
·N2β −→

N→∞
+∞ as we wanted. (3.22)

Let us remark that for every positive ε the points Pi,N belongs to S×]0, ε[ for N large
enough: Theorem 3.2 is proven.

4 Extension of the result to Riemannian products

Let us recall some facts about Riemannian products. Given two differential manifolds
M and N , the Cartesian product M ×N has a natural structure of differential manifold.
Furthermore for every (p, q) in M ×N ,

T(p,q)(M ×N) = TpM × TqN. (4.1)

For every u ∈ T(p,q)(M × N) we will write u = (uM , uN ). The Riemannian product of
two Riemannian manifolds M and N is the manifold M ×N endowed with the product
Riemannian metric, given for every u, v ∈ T(p,q)(M ×N) by

〈u, v〉M×N = 〈uM , vM 〉M + 〈uN , vN 〉N . (4.2)

The geodesics in the Riemannian product M×N are exactly the curves g(t) = (m(t), n(t))

with m and n geodesics in M and N . The same is true for minimal geodesics. As a
consequence we have the following equality between the geodesics distances:

dM×N ((p1, q1), (p2, q2)) =
√
dM (p1, p2)2 + dN (q1, q2)2. (4.3)

Theorem 4.1 (Generalisation to Riemannian products). For every Riemannian manifolds
M and N such that M contains a minimal closed geodesic, the Riemannian product
M ×N has fractional index

βM×N = 0.

Proof. Let us consider
γ : [0, 2π]→M

a minimal closed geodesic and
g : [0, T ]→ N

any minimal geodesic in N , which we choose to parametrise by arc-length. Since γ is a
minimal closed geodesic γ([0, 2π]) is isometric to the circle of radius L(γ)

2π . In the same
way, g minimal geodesic implies that g(]0, T [) is isometric to ]0, T [. From (4.3) we deduce
that

γ([0, 2π])× g(]0, T [) ⊂M ×N

is isometric to the cylinder of radius L(γ)
2π and height T . The fractional exponent of this

cylinder is the same as β
S1×]0, 2πTL(γ) [

(see Remark 2.3), which is null from Theorem 3.2.

From Remark 2.2 we deduce that βM×N is also null.
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Example 4.2. For every d ≥ 2 the d-dimensional flat torus Td := S1 × · · · × S1︸ ︷︷ ︸
d times

has

fractional index 0.

Example 4.3. For every n ≥ 1, Sn ×R has fractional index 0.

5 Perturbation of the product distance

In the following section we look at S1×]0, ε[ endowed with a distance which is not
the product distance, but which converges to dS1×R as z ∈]0, ε[ is close to 0. We give in
Theorem 5.1 a bound on the fractional index in this case, which depends on some rate of
convergence towards the cylinder distance. In Section 5.1 we consider some surfaces of
revolution as examples.

Theorem 5.1 (Perturbation of the product distance). Let us consider a distance d′ on
S1×]0, ε[ and denote by E′ the resulting metric space. We define for very h ∈]0, ε[

∆(h) := sup
z1,z2≤h

sup
θ1,θ2∈S1

|d′[(θ1, z1), (θ2, z2)]− d[(θ1, z1), (θ2, z2)]| . (5.1)

where d denotes the classical distance on the cylinder. We call

δE′ := sup

{
δ ≥ 0, ∆(h) =

h→0+
O
(
hδ
)}

.

If δE′ > 0 we obtain that the fractional index of E′ βE′ verifies

βE′ ≤
3

δE′ + 1
,

and if δE′ = +∞,
βE′ = 0.

Remark 5.2. Under the assumption that δE′ is positive or equal to +∞, the distance d′

converges in some sense towards the cylinder distance when ε goes to zero. Vaguely
speaking, the border of E′ when ε goes to zero is a circle S1, and from this we can prove
that

βE′ ≤ βS1 . (5.2)

Since βS1 = 1 (see Istas [11]), our result is clearly uninteresting for δE′ ≤ 2. We now
prove (5.2):

On the circle S1, parametrised by arclength θ ∈ [0, 2π[, consider P1 = 0, P2 = π/2,
P3 = π, P4 = 3π/4, together with c1 = c3 = 1 and c2 = c4 = −1. We have

4∑
i,j=1

cicjd
2H(Pi, Pj) = 4π2H − 8

(π
2

)2H

= 4π2H
(
1− d1−2H

)
, (5.3)

which is negative as long as H < 1/2. Under the assumption that δE′ is positive or equal
to +∞, ∆(h) (defined in (5.1)) tends to zero when h goes to zero: In particular for every
H < 1/2, if we consider ε > 0 small enough and P εi = (Pi, ε), for i ∈ {1, · · · , 4} we will
have all the d′(P εi , P

ε
j ) close enough to the d(Pi,j ) so that

4∑
i,j=1

cicjd
′2H(P εi , P

ε
j ) < 0. (5.4)

This proves for every H < 1/2 that d′2H is not positive definite, hence that βE′ ≤ 1.
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Proof. In view of the previous remark we may assume that δE′ > 2. Let us assume there
exists δ > 0 such that

∆(h) =
h→0+

O
(
hδ
)

which is true whether δE′ is finite or +∞. We consider δ < δE′ and

1

2
> H >

3

2(δ + 1)
. (5.5)

We now apply the exact scheme of the proof of Theorem 3.2, with the new distance d′.
Let us recall that the proof of Theorem 3.2 lies on the existence of β and γ such that

1− 2H < β < γ < 1. (5.6)

Our assumption (5.5) allows us to choose β and γ such that besides (5.6) we have

δ(β − γ) < 2H − 3, (5.7)

which will be useful later. With the notations of Section 3.1.3 we consider

Q′N : =

bNβc∑
k,l=1

N∑
i,j=1

cjcj
[
d′(P ki , P

l
j)
]2H

(5.8)

=

bNβc∑
k,l=1

N∑
i,j=1

cjcj
[
d(P ki , P

l
j) + d′(P ki , P

l
j)− d(P ki , P

l
j)
]2H

=

bNβc∑
k,l=1

N∑
i,j=1

cjcj
[
d
(
P ki , P

l
j

)]2H [
1 +

d′(P ki , P
l
j)− d(P ki , P

l
j)

d(P ki , P
l
j)

]2H

. (5.9)

As the maximum altitude of all points considered is
bNβc
Nγ , using (5.7) we obtain for every

i, j, k, l ∣∣d′(P ki , P lj)− d(P ki , P
l
j)
∣∣ ≤ ∆

(
Nβ−γ) = O

(
Nδ(β−γ)

)
= o

(
N2H−3

)
, (5.10)

moreover

d(P ki , P
l
j) ≥

1

4N
(5.11)

so that
d′(P ki , P

l
j)− d(P ki , P

l
j)

d(P ki , P
l
j)

tends towards 0 as N goes to infinity for every i, j, k, l.

Taylor expansions yields

Q′N = QN +O

bNβc∑
k,l=1

N∑
i,j=1

cjcj2Hd
2H−1(P ki , P

l
j)
(
d′
(
P ki , P

l
j

)
− d

(
P ki , P

l
j

)) .

We compute

|Q′N −QN | = O

bNβc∑
k,l=1

N∑
i,j=1

Hd2H−1(P ki , P
l
j) ∆

(
Nβ−γ)

= O

(
bNβc2(4N)2

(
1

N

)2H−1
)

∆
(
Nβ−γ) ,
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Nonexistence of fractional Brownian fields indexed by cylinders

using (5.11) again and (5.10) we obtain

|Q′N −QN | = O
(
N2β+2−2H+1

)
o
(
N2H−3

)
= o

(
N2β

)
. (5.12)

Now given (5.6) and because H < 1/2 we still have (see (3.22))

QN ∼
N→∞

H

4H
·N2β ,

hence

Q′N =
N→∞

H

4H
·N2β + o

(
N2β

)
is positive for N large enough, which implies that (d′)

2H is not negative definite and
therefore βE′ < 2H. Since this is true for every δ < δE′ and every H > 3

2(δ+1) , the
theorem is proven.

We now turn to the case of some Riemannian surfaces in a given chart.

Theorem 5.3 (Perturbation of the product metric). Let I be an open real interval such
that there exists ε > 0, ]0, ε[⊂ I and consider the case where E′ is S1 × I endowed with
the Riemannian metric

〈 , 〉′ = (1 + f1(θ, z))dθ2 + (1 + f2(θ, z))dz2,

with f1 and f2 C
∞ functions with values in ]− 1,+∞[.

Let us assume that the Riemannian manifold E′ is complete, and that

sup
P,Q∈S1×]0,ε[

sup

{
max

(∫
γd′

|dθ|,
∫
γd′

|dz|

)
,
γd′ minimal geodesic in

E′ between P and Q

}
<∞ (5.13)

For every h ∈ I we define

z+(h) := sup
P,Q∈ S1×]0,h]

inf

{
max
t

(z(t)) such that t 7→ (θ(t), z(t)) is a

minimal geodesic in E′ between P and Q

}
, (5.14)

z−(h) := sup
P,Q∈ S1×]0,h]

sup

{
min
t

(z(t)) such that t 7→ (θ(t), z(t)) is a

minimal geodesic in E′ between P and Q

}
,

F1(h) := sup
z∈]z−(h),z+(h)[

max
θ∈ S1

√
|f1(θ, z)|, δ1 := sup

{
δ > 0, F1(h) =

h→0+
O
(
hδ
)}

,

F2(h) := sup
z∈]z−(h),z+(h)[

max
θ∈ S1

√
|f2(θ, z)|, δ2 := sup

{
δ > 0, F2(h) =

h→0+
O
(
hδ
)}

.

If min(δ1, δ2) is finite we have

βE′ ≤
3

min (δ1, δ2) + 1
,

and if δ1 = δ2 = +∞,
βE′ = 0.

Proof. Let us consider P1 = (θ1, z1) and P2 = (θ2, z2) in S1×]0, ε[. Let us denote by γd′ a
minimal geodesic between P1 and P2 in E′, and by γd a minimal geodesic between the
same points in the cylinder endowed with its classical distance d. We also set

C = sup
P1,P2∈ S1×]0,ε[

sup
γd,γd′

max

{∫
γd

|dθ|,
∫
γd

|dz|,
∫
γd′

|dθ|,
∫
γd′

|dz|

}
.
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Nonexistence of fractional Brownian fields indexed by cylinders

Let us notice that C is finite from hypothesis (5.13). Indeed the curves γd are minimal
geodesics between points in S1×]0, ε[, hence

∫
γd
|dz| < ε and

∫
γd
|dθ| < π. We now assume

that z1, z2 ≤ h and compute

d′(P1, P2) =

∫
γd′

(
〈γ′d′ , γ′d′〉

′
)1/2

≤
∫
γd

(
〈γ′d, γ′d〉

′
)1/2

=

∫
γd

(
(1 + f1(θ, z))dθ2 + (1 + f2(θ, z))dz2

)1/2

≤
∫
γd

(
(1 + max |f1 ◦ γd|)dθ2 + (1 + max |f2 ◦ γd|)dz2

)1/2

,

using twice (a+ b)1/2 ≤ a1/2 + b1/2 for a, b > 0 :

≤
∫
γd

(
dθ2 + dz2

)1/2
+ max |f1 ◦ γd|1/2

∫
γd

|dθ|+ max |f2 ◦ γd|1/2
∫
γd

|dz|

≤ d(P1, P2) + C
(

max |f1 ◦ γd|1/2 + max |f2 ◦ γd|1/2
)
,

from which we deduce

d′(P1, P2) ≤ d(P1, P2) + C(F1(h) + F2(h)). (5.15)

In a similar way and with

f−i (θ, z) := −min(fi(θ, z), 0) :

d′(P1, P2) =

∫
γd′

(
(1 + f1(θ, z))dθ2 + (1 + f2(θ, z))dz2

)1/2

≥
∫
γd′

(
(1− f−1 (θ, z))dθ2 + (1− f−2 (θ, z))dz2

)1/2

using (a− b)1/2 ≥ a1/2 − b1/2 for a > b > 0 :

≥
∫
γd′

(
dθ2 + dz2

)1/2 −max |f1 ◦ γd′ |1/2
∫
γd′

|dθ| −max |f2 ◦ γd′ |1/2
∫
γd′

|dz|

≥
∫
γd

(
dθ2 + dz2

)1/2 − C (max |f1 ◦ γ′d|1/2 + max |f2 ◦ γ′d|1/2
)
,

hence
d′(P1, P2) ≥ d(P1, P2)− C(F1(h) + F2(h)). (5.16)

Finally for every P1 = (θ1, z1) and P2 = (θ2, z2) with z1, z2 ≤ h we have

|d(P1, P2)− d′(P1, P2)| ≤ C (F1(h) + F2(h)) ,

hence
∆(h) ≤ C (F1(h) + F2(h)) .

This implies that δE′ (defined in Theorem 5.1) is such that

δE′ ≥ min(δ1, δ2),

and we apply Theorem 5.1 to conclude.

Remark 5.4. Assumption (5.13) is for example verified if E′ is a metric space of finite
diameter and f1 and f2 are bounded below by m > −1. Indeed for every P,Q in S1×]0, ε[

and γd′ a minimal geodesic from P to Q in E′ we have∫
γd′

(
(1 + f1(θ, z))dθ2 + (1 + f2(θ, z))dz2

)1/2
= d(P,Q),
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Nonexistence of fractional Brownian fields indexed by cylinders

hence ∫
γd′

(
(1 + f1(θ, z))dθ2

)1/2 ≤ d(P,Q),

from which we deduce ∫
γd′

|dθ| ≤ d(P,Q)

inf(1 + f1(θ, z))1/2
.

The same argument gives ∫
γd′

|dz| ≤ d(P,Q)

inf(1 + f2(θ, z))1/2
.

Remark 5.5. Let S be a complete, orientable Riemannian manifold of dimension 2, with

γ : [0, 2π]→ S

a minimal closed geodesic. Without loss of generality (see Remark 2.3) we assume that
the minimal geodesic has length L(γ) = 2π and is parametrised by arc-length. If we
choose a C∞ vector field v along γ such that for every θ, ‖v(θ)‖S = 1 and 〈v(θ), γ′(θ)〉S =

0, and define

Φ : S1 ×R→ S

(θ, z) 7→ Expγ(θ)(zv(θ)),

it is possible to check that there exists ε > 0 such that the restriction of Φ to S1×]− ε, ε[
is a C∞ diffeomorphism onto its image

Vε = Φ(S1×]− ε, ε[).

Furthermore Vε is a neighbourhood of γ. For every p ∈ Vε we get the coordinates
(θ, z) = Φ−1(p), and one can check that the inner product of S is given by

〈 , 〉S = (1 + f1(θ, z)) dθ2 + dz2,

where f1 is a C∞ function with values in ]− 1,+∞[ such that f1(θ, 0) = 0 for every θ.
However it is not possible to apply Theorem 5.3 without global assumptions on S.

Indeed imposing some conditions on the inner product in a neighbourhood of γ is not
enough to control the geodesic distance, as minimal geodesics between points close to γ
may take values in the whole of S (see Remark 2.4).

In this case we need that all the minimal geodesics between points close enough to γ
take values in Vε, in order to have z+(h) and z−(h) properly defined. Furthermore if we
don’t have lim

h→0
z+(h) = lim

h→0
z−(h) = 0, we don’t have

lim
h→0

F1(h) = lim
h→0

F2(h) = 0,

hence δ1 = δ2 = −∞ and Theorem 5.3 claims nothing. In the next section we consider
surfaces of revolution with increasing generating function and apply Theorem 5.3.

5.1 Some surfaces of revolution as examples

In all that follow, we consider a C∞ function r : R+ → R+
∗ and we call the surface of

revolution with generating function r the surface Γ of R3 admitting the parametrisation

XΓ : (θ, z) 7→

 r(z) cos(θ)

r(z) sin(θ)

z

 . (5.17)
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Lemma 5.6 (Control of geodesics). Let Γ be a surface of revolution with generating
function r. If r is increasing, for every geodesic

g : [0, T ]→ Γ

t 7→ (θ(t), z(t))

and for every t ∈ [0, T ],

z(t) ≤ max(z(0), z(T )).

In particular for every h ≥ 0,
z+(h) = h,

with z+ defined as in (5.14).

Proof. We will use Clairaut’s relation (see [4]) which states that along a given geodesic
of a surface of revolution

r(z(t)) cos(ϕ(t)) = const. , (5.18)

where ϕ(t) ∈ [0, π/2] is the acute, nonoriented angle that makes the geodesic with
the parallel that intersects it at t = 0.

Since any geodesic is differentiable, so is t 7→ z(t). Let us assume that z(t) has a
global maximum in t0 ∈]0, T [ and that there exists t1 ∈]0, T [ such that z′(t1) 6= 0. Since
z(t0) is a maximum we have z′(t0) = 0, which is equivalent to ϕ(t0) = 0. Because
z′(t1) 6= 0, ϕ(t1) ∈]0, π/2]. We have

cos(ϕ(t1)) < cos(ϕ(t0)) = 1.

Using r increasing and z(t1) ≤ z(t0) maximum, we obtain

r(z(t1)) cos(ϕ(t1)) < r(z(t0)) cos(ϕ(t0)),

which contradicts Clairaut’s relation (5.18).
In the end, either z′(t) = 0 for every t ∈]0, T [, which means z(t) = const. and the result

is clear, either the global maximum of z over [0, T ] (which exists since z is continuous) is
reached in t = 0 or t = T . We have proven for every geodesic t 7→ (θ(t), z(t)) that

∀t ∈ [0, T ], z(t) ≤ max(z(0), z(T )).

Given the definition of z+ (see Theorem 5.3) it is clear that z+(h) = h for every h. The
lemma is proven.

Theorem 5.7 (Surfaces of revolution). Let Γ be a surface of revolution with C∞ gen-
erating function r such that r is increasing. If there exists p > 4 and c ∈ R such
that

r(z)− r(0) =
z→0

czp + o (zp) (5.19)

then

βΓ ≤
6

p+ 2
.

If for every p ∈ N
r(z)− r(0) =

z→0
o (zp) , (5.20)

then
βΓ = 0.
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Proof. Let us assume that r(0) = 1. This assumption is done without loss of generality,
as we may consider an homothety of a general surface of revolution Γ to have r(0) = 1,
without changing the fractional index (see again Remark 2.3).

We compute

∂XΓ

∂θ
=

 −r(z) sin(θ)

r(z) cos(θ)

0

 ,

∂XΓ

∂z
=

 r′(z) cos(θ)

r′(z) sin(θ)

1

 ,

and deduce the coefficients of the first fundamental form of Γ:

EΓ =

〈
∂XΓ

∂θ
,
∂XΓ

∂θ

〉
R3

= r2(z),

FΓ =

〈
∂XΓ

∂θ
,
∂XΓ

∂z

〉
R3

= 0,

GΓ =

〈
∂XΓ

∂z
,
∂XΓ

∂z

〉
R3

= r′(z)2 + 1.

We get the expression of the Riemannian metric

〈 , 〉Γ = r2(z)dθ2 +
(
1 + r′(z)2

)
dz2. (5.21)

Let us now fix a positive ε and apply Theorem 5.3 to E′ = S1×]0, ε[ endowed with
the inner product 〈 , 〉Γ. It is clear that E′ is isometric to the Riemannian manifold
Γε := XΓ

(
S1×]0, ε[

)
endowed with 〈 , 〉Γ.

Let us now check assumption (5.13), using Remark 5.4. It is clear that the Riemannian
manifold Γε = XΓ

(
S1×]0, ε[

)
endowed with 〈 , 〉Γ is a metric space of finite diameter. We

have

f1(θ, z) = r2(z)− 1,

f2(θ, z) = r′(z)2.

Since r(0) = 1 and r increasing we have f1(θ, z) ≥ 0 > −1 and clearly f2(θ, z) ≥ 0 > −1.

From Remark 5.4, assumption (5.13) is verified.
Recall that z+(h) = h from Lemma 5.6, and clearly z−(h) = 0. Since f1 and f2 do not

depend on θ we get

F1(h) = (r2(h)− 1)1/2,

F2(h) = max
z∈[0,h]

|r′(z)|.

Now under assumption (5.19), it is clear that we have

F1(h) = (2c)1/2hp/2 + o
(
hp/2

)
,

hence

δ1 ≥ p/2. (5.22)

Since r′ is continuous, there exists ẑ(h) ∈ [0, h] such that

F2(h) = max
z∈[0,h]

|r′(z)| = |r′(ẑ(h))|.
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From (5.19) we get

F2(h) = |r′(ẑ(h))| = pcẑ(h)p−1 + o
(
(ẑ(h)p−1

)
,

and since x 7→ xp−1 is decreasing,

F2(h) ≤ pchp−1 + o
(
hp−1

)
,

hence
δ2 ≥ p− 1. (5.23)

Since p > 4 from (5.22) and (5.23) we have min(δ1, δ2) ≥ p/2, and applying Theorem
5.3 we get

βΓε ≤
3

p/2 + 1
=

6

p+ 2
. (5.24)

Under assumption (5.20) instead of (5.19), the same reasoning gives

Γε = 0. (5.25)

Now since from Lemma 5.6 we have z+(h) = h, every geodesic in Γ between points
of Γε = XΓ(S1 × [0, ε]) stays in Γε, hence the geodesic distances dΓ and dΓε coincide on
Γε. This allows to extend the conclusions (5.24) and (5.25) from βΓε to βΓ (see Remark
2.2).

Remark 5.8. Notice that the assumption p > 4 is not essential. However for lower
values of p the same reasoning gives a bound of βΓ greater than 1, and we already know
that βΓ ≤ βS1 = 1 since the parallel at height z = 0 in Γ is isometric to a circle (see
Remark 2.2).

Example 5.9. As we can see the bound obtained in Theorem 5.7 is the smaller as the
order of the contact between the surface Γ and the cylinder is great. In particular if we
consider the generating function r(z) = 1 + e−

1
z whose all derivatives at z = 0 are zero,

we obtain
βΓ = 0, (5.26)

which indicates that our argument does not depend on the product structure of the index
space.

6 Gromov-Hausdorff discontinuity of E 7→ βE

We recall that it is possible to endow the setM of all isometry classes of compact
metric spaces with the Gromow-Hausdorff distance dGH .

Given two closed sets A,B in a metric space (E, dE), the Hausdorff distance between
A and B is

dH(A,B) := max{sup
x∈A

dE(x,B), sup
y∈B

dE(y,A)}. (6.1)

We now give the definition of the Gromov-Hausdorff distance between two isometry
classes of compact metric spaces Ē and F̄ ,

dGH(Ē, F̄ ) := inf
i,j
dH(i(E), j(F )), (6.2)

where E and F are any two representatives of Ē and F̄ , i and j run through all isometrics
embeddings of E and F into any ambient metric space (X, d), and dH denotes the
Hausdorff distance on closed sets of (X, d).

It is known that (M, dGH) is a metric space (see [2]).
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Theorem 6.1 (Gromov-Hausdorff discontinuity of the fractional index). The map

(M, dGH)→ R+

E 7→ βE

is not continuous at E = S1.

Proof. Let us consider S1 × [0, ε] endowed with the Riemannian product metric (3.1),
which is nothing more than S1 × [0, ε] endowed with the restriction of dS1×R. (All that we
say about S1×]0, ε[ in Remark 3.1 is true for S1 × [0, ε].)

It is clear that the isometry class of S1× [0, ε] converges towards the isometry class of
S1 regarding the Gromov-Hausdorff distance. Indeed if we denote by Cε = i(S1 × [0, ε])

the canonical embedding of S1 × [0, ε] in
(
S1 ×R, d

)
,

dGH
(
S1,S1 × [0, ε]

)
≤ dH (C0, Cε)

= max

(
sup
y∈Cε

d(x,C0), sup
y∈C0

d(y, Cε)

)
= max(ε, 0) = ε.

Recall that βS1 = 1. From Theorem 3.2 we know that for every ε > 0, βS1×[0,ε] = 0. The
discontinuity at E = S1 is proven.
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