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Abstract: In this paper we review recent results on the groundstate energy spectra
of magnetic knots and links and compare these results with new results on bending
energy of tight knots and links obtained by using RIDGERUNNER data on curvature. Re-
markable similarities between the two systems are found. Comparative analysis be-
tween magnetic and bending energy at groundstate energy level shows that informa-
tion based on bending energy provides a very good proxy for magnetic end-states.
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13.1 Introduction

In recent years much progress has been done in applications of knot theory to mathe-
matical physics, from classical to quantumfield theory, and in physical and biological
sciences as well. This has led mathematical research to explore new territories at the
cross-roadof several, different disciplines. One interestingproblemhere is the studyof
minimum energy states of physical knots and links subject to continuous relaxation
(through diffeomorphisms) of some energy functional. Magnetic relaxation of knots
and links embedded in an ideal fluid provides indeed a prototype example of mini-
mization useful to explore and understand similar features present, for instance, in
elastic systems. Here we present a brief review of results on the groundstate energy
spectra of magnetic knots and links (published in J. Phys. A: Math. & Theor. [20]) that
sheds light on similar aspects when we consider elastic, rather than magnetic knots
and links. Indeed proof of how good this analogy can be is given by comparing, as
we do here, those results with new results based on bending energy estimates of tight
knots and links obtained by using data readily available from RIDGERUNNER [1].

The material is presented as follows. In Sec. 13.2 we consider magnetic knots and
links as tubular embeddings in idealmagnetohydrodynamics and introduce basic def-
initions. The prototype problem ofmagnetic relaxation under constraints is discussed
in Sec. 13.3. A solution to the problem of magnetic relaxation of (zero-framed) knots
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and links is presented in Sec. 13.4. By using RIDGERUNNER data the groundstate mag-
netic energy spectra of the first 250 prime knots and 130 prime links are presented
(Sec. 13.5). Similar spectra for the bending energy of tight knots and links are pre-
sented in Sec. 13.6. A comparative analysis of these results ismade in Sec. 13.7. Finally,
conclusions are drawn in Sec. 13.8.

13.2 Magnetic knots and links in ideal conditions

We consider magnetic knots and links in an ideal, incompressible, perfectly conduct-
ing fluid in S3 (i.e. R3 ∪ {∞}, simply connected). Let u = u(x, t) be the fluid velocity,
smooth function of the position vector x and time t, with∇ · u = 0 in S3 and u = 0 at
infinity. The magnetic field B = B(x, t) is frozen in the fluid and has finite energy, that
is

B ∈ {∇ · B = 0, ∂tB = ∇ × (u × B), L2−norm} . (13.2.1)

A magnetic knot is a magnetic flux tube prescribed by the knot type K and the mag-
netic field B, defined on a regular tubular support T(K) centered onK. We assumeK
to be a C3-smooth, closed loop (i.e. a submanifold of S3 homeomorphic to S1), sim-
ple (i.e. non-self-intersecting) and parametrized by arc-length s. The tube T = K⊗ S,
given by the cartesian product of K and the circular disk S, is centered on the knot,
whose total length is L = L(K) (hence s ∈ [0, L]), local radius of curvature ρ > 0, and
cross-sectional area A = πR2 of radius R > 0.

Since the magnetic knot is a physical tube, it is useful to introduce the volume
V(T), the magnetic flux Φ and the magnetic energy M. The total volume is given by
V = V(T) = πR2L, with tubular boundary ∂T a magnetic surface, i.e.

supp(B) := T(K) , B · 𝜈⊥ = 0 on ∂T , (13.2.2)

where 𝜈⊥ is a unit normal to ∂T. The existence and regularity of non-self-intersecting
nested tori, support of themagnetic field inside T, is guaranteed by the tubular neigh-
borhood theorem [22], provided ρ ≥ R all along K. The magnetic flux Φ is defined
by

Φ =
∫︁
S

B · 𝜈 d2x , (13.2.3)

where now 𝜈 is the unit normal to S; the magnetic energy M is given by

M = 1
2

∫︁
V(T)

‖B‖2 d3x . (13.2.4)
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13.3 The prototype problem

For a magnetic knot, whose field is confined to a single tube of signature (V ,Φ),
the combined action of magnetic stresses and Lorentz force induces the field lines
to shrink like elastic bands, by shortening the knot, while conserving volume and
flux [12]. Magnetic energy gets gradually converted into kinetic energy, and eventu-
ally dissipated by viscosity or other dissipative effects, if present. As the relaxation
progresses, the average cross-section increases proportionately, and the tubular knot
becomes thicker and tighter, until knot topology prevents any further adjustment: the
final state is ultimately reached when the relaxation comes to a complete stop (see
figure 13.1). During this process the knot is also gradually deformed by the action of
a signature-preserving flow (through diffeomorphisms), that governs the relaxation
from the initial configuration. Since the tight configuration of the end-state resembles
that of an ideal knot of platonic features [23], magnetic relaxation provides physical
mechanism to investigate optimal geometric properties of ideal knots.

Let (r, ϑR , s) denote an orthogonal, curvilinear coordinate system centered on K

(see [11]); r ∈ [0, R] and ϑR ∈ [0, 2π] are the radial and azimuthal coordinates in the
cross-sectional plane of S, with origin O at s = 0 and ϑR = 0 given by the direction
of the principal normal toK at O. The metric is orthogonal, with scale factors hr = 1,
hϑR = r

2, hs = 1 − cr cos ϑ, where c = c(s) is curvature,

ϑ = ϑ(ϑR , s) = ϑR −
s∫︁

0

τ(s̄) ds̄ , (13.3.1)

and τ = τ(s) torsion.Orthogonality is ensuredby eq. (13.3.1),whichprovides theneces-
sary correction to the standard azimuthal angle by the torsion contribution (see details
in [11], Sec. 3). The results presented here are derived by using this metric.

The magnetic field Bmay be decomposed into meridian and longitudinal compo-
nents, that is

B = (0, BϑR (r), Bs(r)) , (13.3.2)

and in general we assume that the longitudinal field is far greater than the meridian
field, i.e. Bs ≫ BϑR . This is consistent with the usual definition of twisted flux tube,
whose field lines wind around the knot axis in the longitudinal direction. By using
the solenoidal condition ∇ · B = 0, the magnetic field can be expressed in terms of
poloidal (meridian) and toroidal (longitudinal) fluxes ΦP and ΦT , i.e.

B =
(︂
0, 1L

dΦP
dr , 1

2πr
dΦT
dr

)︂
+

(︃
0, ∂

̃︀ψ
∂s , −

∂̃︀ψ
∂ϑR

)︃
, (13.3.3)

where the total field is given by the sumof an average field plus a fluctuating fieldwith
zero net flux, in terms of the flux function ̃︀ψ = ̃︀ψ(r, ϑR , s). The twist h = ΦP/ΦT of the
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Fig. 13.1: Ideal relaxation of a magnetic trefoil knot and a Hopf link.

field lines provides the magnetic field framing given by (2π)−1 times the turns of twist
required to generate poloidal field from toroidal field, starting from ΦP = 0.

According to the process described above, knot topology dictates a lower bound
on the relaxation of magnetic energy M, which must be bounded from below by a
minimum Mmin > 0, that on dimensional grounds is given by (see [13])

Mmin = m(h)Φ2V−1/3 , (13.3.4)

where m(h) is a positive, dimensionless function of the internal twist h. Of particular
interest is the value of h for which m(h) is minimal (mmin). A fundamental problem is
this:

Problem 1 ([14]). Determine mmin for knots of minimum crossing number 3, 4, 5, . . . .

If cmin denotes the topological crossing number of the knot and h = 0 (a condition
referred to as zero-framing), one can prove the following result:

Theorem 1 ([16]). Let K be a zero-framed magnetic knot with signature {V ,Φ}. We
have m(0) = (2/π)1/3cmin; hence

Mmin =
(︂
2
π

)︂1/3
cminΦ2V−1/3 . (13.3.5)

For a signature-preserving flow, eq. (13.3.5) establishes a correspondence between
minimum energy levels and topology. However, Mmin ∝ cmin is a rather loose result.
From a direct inspection of the knot table (see, for instance, the standard tabulation
in [21]) with the exception of the trefoil and the 4-crossing knot, for all other values of
cmin > 4 there are several distinct knot types for each given cmin, and the number gets
exponentially large for increasing values of cmin (2 for cmin = 5, 3 for cmin = 6, 7 for
cmin = 7, 21 for cmin = 8, and so on). Hence, the question is to determine whether a
one-to-one relationship between energyminima and different knot types of same cmin
may exist or not.
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13.4 Relaxation of magnetic knots and constrained
minima

To explore this problem let us consider the relaxation of a magnetic flux tube in some
generality. Let Vr = πr2L be the partial volume of the tubular neighborhood of radius
r; the ratio of thepartial to total volume is givenbyVr/V(T) = (r/R)2. Now, let f (r/R) be
a monotonically increasing function of r/R; for example f (r/R) = (r/R)𝛾 , with 𝛾 > 0;
𝛾 = 2 defines the standard flux tube. A detailed analysis of the relaxation of mag-
netic flux tube with twist is done in [11]. By using the orthogonal, curvilinear system
(r, ϑR , s) and the magnetic field decomposition given by (13.3.3), standard minimiza-
tion of (13.2.4) is carried out and under the periodicity of ϑR and s, subject to these
assumptions:

(i) {V ,Φ} is invariant;
(ii) the circular cross-section is independent of s;
(iii) ̃︀ψ is independent of s;
(iv) the knot length is independent of h.

We have:

Theorem 2 ([11]). LetKbe an essentialmagnetic knotwith signature {V ,Φ} andmag-
netic field given by (13.3.3). Constrained minimization of magnetic energy yields

M* =

(︃
𝛾2L*2

8(𝛾 − 1)V + 𝛾πh2
2L*

)︃
Φ2, (13.4.1)

where L* is the minimal tube length of the tight knot.

For a standard flux tube (𝛾 = 2), (13.4.1) reduces to

M* =

(︃
L*2

2V + πh
2

L*

)︃
Φ2. (13.4.2)

This result is equivalent to the eq. (4.2) of [7] (coefficients left undetermined). Note that
because of the constraints, for any given knot family we have that ⟨M*⟩cmin ≥ Mmin,
where angular brackets denote averaging over the number of knots of the same cmin
family.

In order to investigate the relation between energy and knot topology, let us refer
to standard flux tubes; it is useful to rewrite eq. (13.4.2) in terms of ropelength, a useful
measure of knot complexity [4]: this is defined by λ = L*/R*, where L* is the minimal
length and R* themaximal cross-sectional radius of the knot in tight configuration. In
the case of the unknot, the least possible value of λ (say λ0) is that given by the tight
torus; hence λ ≥ λ0 = 2π. By using V = πR*2L* = cst., and after some straightforward
algebra, we have

M* =

(︃
λ4/3

2π2/3
+ π

4/3h2

λ2/3

)︃
Φ2V−1/3 . (13.4.3)
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Fig. 13.2: Influence of twist h on the energy function m(λ, h), plotted against ropelength λ, accord-
ing to eq. (13.4.4). The absolute minimum is given by the tight torus, for which λ = λ0 = 2π and
m∘ ≈ 2.70 (from [20]).

By comparing (13.3.4) and (13.4.3), andunder the above assumptions,we can state that

m(λ, h) = λ4/3

2π2/3
+ π

4/3h2

λ2/3
, (13.4.4)

showing the explicit dependence of minimum energy on ropelength and framing

13.5 Groundstate magnetic energy spectra

Let us first investigate the minima mmin = mmin(h) by plotting (13.4.4) against λ for
h = 0, 1, 2, 3, . . . (see figure 13.2). The absolute minimumm∘ corresponds to the zero-
framed unknot (tight torus), given by h = 0 and λ = λ0 = 2π: m∘ = (2π2)1/3 ≈ 2.70.
The groundstate energy of zero-framed flux tubes provides the absolute minimum en-
ergy level;m(h) remains a monotonic increasing function of λ for h ≤ 2: at λ0 = 2π we
have m(h = 1) = 4.05 and m(h = 2) = 8.11. For h ≥ 2 the energy minima are attained
at h = λ/π; thus, by substituting the optimal value λ = πh in (13.4.4), we have

mmin(h) =
3
2π

2/3h4/3 (h ≥ 2) . (13.5.1)

For h > 2 (and λ ≥ λ0) the functional dependence of m(h) on λ ceases to be mono-
tonic. The same h4/3 power–law of eq. (13.5.1) was also found by [7] (p. 206, eq. 4.15,
by scaling arguments).

The minimum energy spectra of the first prime knots and links is determined by
setting h = 0 in (13.4.4) and by using ropelength data (λK) of each knot/link type K ob-
tained by RIDGERUNNER, a tightening algorithm developed by [1]. A particularly simple
expression is obtained by normalizing m(λK , 0) with respect to the minimum energy
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Fig. 13.3:Magnetic energy spectrum m̃ = m̃(#K ) of tight knots (top) and tight links (bottom) plot-
ted against the knot/link number #K , given by the position of the knot/link K listed according to
increasing value of ropelength λK = λ(#K ) (from [20]).

value m∘ of the tight torus; thus, we have

m̃(K) = m(λK , 0)m∘
=
(︂
λK
2π

)︂4/3
, (13.5.2)

that gives a one-to-one relationship between minimum energy level and knot rope-
length. Since the relation λK = λ(K) is not known analytically, it must be recon-
structed fromnumerical data.We take λK = λ(#K),where #K denotes thepositionof the
knot/link K listed according to increasing values of ropelength given by RIDGERUNNER.
Hence, instead of tabulating energy levels as function of the knot/link position given
by standard knot tabulation, by taking λK = λ(#K) we plot m̃ = m̃(#K), according to in-
creasing ropelength data. The energy spectra are shown in figure 13.3 for the first 250
prime knots up to 10 crossings (top diagram) and 130 prime links up to 9 crossings
(bottom diagram). Remarkably, magnetic energy levels of knot and link types seem
to follow an almost identical logarithmic law given by the best fit curve shown in the
plots.
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Fig. 13.4: Bending energy spectrum ẽ = ẽ(#K ) of tight knots (top) and links (bottom) plotted against
the knot/link number #K , given by the position of the knot/link K listed according to increasing
values of ropelength λK = λ(#K ).

13.6 Bending energy spectra

It is interesting to compare groundstate magnetic energy spectra with the correspond-
ing bending energy spectra obtained by considering bending energy in place of mag-
netic energy. Since magnetic relaxation is driven by the Lorentz force, that is mainly
a curvature force, computation of the elastic energy due solely to curvature (bending
energy) provides an interesting comparison. Bending energy is defined by

Eb =
1
2

∮︁
C

Kb[c(s)]2 ds , (13.6.1)

where Kb is bending rigidity and c(s) is local curvature. By normalizing this quantity
with respect to the reference value E∘ = πKb/R* = Kb21/3π5/3 of the tight torus, we
have the normalized bending energy given by

ẽ = EbE∘
=
∮︀
C
[c(s)]2 .ds
24/3π5/3

. (13.6.2)

By using curvature data of tight knots obtained by RIDGERUNNER, we can easily plot the
energy spectrum ẽ = ẽ(#K) according to increasing ropelength data. The correspond-
ing energy spectra are shown in figure 13.4. Remarkably, and similarly to themagnetic
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Fig. 13.5: Ratio of magnetic to bending energy χ = m̃/ẽ of tight knots (top) and tight links (bottom)
plotted against the knot/link number #K , given by the position of the knot/link K listed according to
increasing value of ropelength λK = λ(#K ).

case, bending energy levels of knot and link types seem to follow an almost identical
logarithmic law given by the best fit curve shown in the plots.

13.7 Magnetic energy versus bending energy

Let us compare the energy values by taking the ratio of magnetic to bending energy
χ = m̃/ẽ and plot for comparison χ = χ(#K) according to increasing ropelength data.
Results are presented in figure 13.5. As we see, with a few exceptions, ratios tend to
level up around a constant value that for sufficiently large cmin for tight knots is given
by χ̄ = 21.62 and for tight links is given by χ̄ = 21.42. Thus, on average, for complex
topologies we see that information on bending energy is proportional to magnetic en-
ergy. This is actually in good agreement with expectations: since magnetic relaxation
is driven by the Lorentz force, which to a first approximation is a curvature force, it is
not so surprizing to discover that relaxedmagnetic states are, on average, proportional
to bending energy end-states of tight knots and links. Departure from average values
is greater at lower cmin, where, probably, the constraints imposed by the assumptions
affect the most the results.

Let us now re-examine a common feature of the plots of figures 13.3-13.4. The
curves dotted by circles results from a linear fit made over each cmin–family, while
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the continuous curve is the best-fit interpolation over all available data. To the first
decimal digit, we find that best-fit interpolations follow an almost identical logarith-
mic law, given by

m̃(#K) = a ln #K + b , (13.7.1)

with a = 4.5, b = 10.5 for magnetic knots and a = 4.5, b = 9.3 for magnetic links,
and similarly

ẽ(#K) = a ln #K + b , (13.7.2)

with a = 0.2, b = 0.6 for elastic knots and a = 0.2, b = 0.5 for elastic links. These
unexpected results are quite remarkable and call for some justification.

Ropelength is certainly an increasing function of topological complexity (given by
cmin), also because an increasing number of crossings implies an increasing minimal
length necessary to tie a flux tube into a knot or a link. Results on ropelength bounds
[4, 6, 8, 9] show that

O(c3/4min) ≤ λK ≤ O(cmin ln5 cmin) , (13.7.3)

where O(·) denotes order of magnitude. From (13.5.2) we have that m̃(#K) ∝ [λ(#K)]4/3;
by combining this with (13.7.2), we have

[λ(#K)]4/3 ∝ a ln #K + b . (13.7.4)

Now, ifwe assume that thenumber of knots grows exponentiallywith cmin (a plau-
sible assumption), then #K ∼ Ccmin for some constant C. Hence, by (13.7.4) we have
[λ(#K)]4/3 ∝ cmin, or

λ(#K) ∝ c3/4min , (13.7.5)

a result that, if not true in full generality, is certainly in good agreement with the lower
estimate given by (13.7.3). Furthermore, let us set (for simplicity) V = Φ = 1 in (13.3.5),
and define

m(cmin) ≡
Mmin
m∘

= 1
π cmin . (13.7.6)

We can then relate (13.3.5) to (13.5.2), and write

⟨m̃(K)⟩cmin ≥ m(cmin) =
1
π cmin , (13.7.7)

since for any given K m̃(K) can be further decreased to its actual minimumby relaxing
the constraints (i)-(iv) of Theorem 2. Similar considerations apply to ẽ(K). By writing
(13.5.2) in terms of #K and substituting this latter into the above equation, we have

⟨λ(#K)⟩cmin ≥ 2π1/4c3/4min , (13.7.8)

that gives a new relation between ropelength, averaged over each cmin–family, and
cmin. Note that the coefficient 2π1/4 ≈ 2.66 is independent of the knot family, and this
result, in good agreement with (13.7.3), is still one of the best analytical results valid
for any cmin to date (see, for instance, [4]).
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13.8 Conclusions

By using analytical results for the constrained minimum energy of magnetic knots
obtained in [11], we have established a general functional relationship between min-
imum energy levels of knots and links and internal twist h, given by an h4/3-power
law. In the case of standard flux tubes our result is in good agreement with an earlier
result by [7] obtained by a scaling argument. By using ropelength data obtained by the
RIDGERUNNER tightening algorithmdevelopedby [1]wehave computed the groundstate
energy spectra of the first 250 prime knots and 130 prime links; we have shown that
the two spectra follow an almost identical logarithmic law. We have then extracted
data on curvature and by computing the bending energy we have comparedmagnetic
andbending energy spectra, finding a remarkable proportionality between end-states.
By assuming that the number of knot types grows exponentially with the topological
crossing number cmin, we have shown that this generic behavior can be justified by
a general relationship between ropelength and crossing number, that is independent
of the number of components (knots or links). Moreover, by considering ropelength
averaged over a given knot family, we have established a new relation between this
averaged ropelength and c3/4min, valid for knots/links of any cmin. However, as recent
analytical work shows [9], these results cannot be considered fully general and fur-
ther improvements are expected. In the context ofmagnetic relaxation, corrections are
expected to come from finer realization of the analytical constraints (for instance, by
allowing the cross-section to adapt to optimal shape) and from further improvements
of the tightening procedure. In any case, our results demonstrate the great potential
of magnetic energy methods to investigate and establish new relationships between
energy contents and topological properties of complex systems. Moreover, by using
curvature information of tight knots and links we can also estimate optimal proper-
ties of 3D–packing and global geometry. These results can find useful applications
in many disparate fields, from the study of structural complexity of physical and bi-
ological filamentary systems [10, 18, 5], to applications in plasma physics and solar
physics [15, 19]. They may also provide new insight into the ongoing search for funda-
mental aspects in the mass-energy relations of high-energy theoretical physics [3, 2].

Acknowledgment: R.L.R. wishes to express his gratitude to the FondsNational Suisse
(FNS) for financial support.
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