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Abstract 

Oscillating droplets have been an object of various theoretical studies for more than a century and is one of the 

classic problems in fluid dynamics. A considerable number of theoretical models have been developed and many 

numerical simulations were conducted to investigate oscillating drops. However, the interplay between analytics 

and numerics is still not considered sufficiently and is capable of improvement. Thus, the main idea of this work is 

to extract data from numerical simulations to obtain an extensive comparison between numerics and the available 

analytical solutions. We present a method to extract surface coordinates of oscillating droplets from numerical 

simulations and perform a spectral decomposition into Legendre polynomials, in order to derive the different 

oscillation modes. Various simulations are performed with deviation of the initial droplet shape as well as varying 

viscosity. In addition, frequencies of the different modes are investigated and compared to analytical models. The 

method and the numerical results should serve as a basis to improve analytics and to motivate the development of 

more detailed oscillation models. 
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Introduction 

Although it is an inconspicuous small event, oscillations of droplets play a significant role in our daily life and 

determine various processes in our environment. From raindrops to other weather phenomena to the dripping bottle 

edge of a red wine, the interaction between surface tension, momentum and viscosity leads to diverse shapes of 

droplets and to different oscillation behavior. Thus, droplet oscillation has been part of extensive studies in the last 

century. Nowadays, it is still part of many research works because an exact knowledge of droplet dynamics is 

needed for the optimization of various technical processes, for instance, atomization of fuel in rocket engines. In 

order to develop suitable models to describe droplet behavior and interactions on larger scales, the understanding 

of single droplet oscillation under different conditions is required.  

Lord Rayleigh [1] introduced the first model of droplet oscillation in 1879. His model considered an inviscid liquid 

drop in vacuum to obtain amplitude and frequencies. The normal-mode technique was used to calculate the 

frequency of the oscillations, which were referred to as “oscillation modes”. Lamb [2] and Chandrasekhar [3] took 

the effect of viscous and gravitational forces into consideration. Prosperetti [4] worked on the initial value problem 

of infinitesimal amplitude oscillations of viscous drops. He showed that a more complicated expression than the 

before mentioned needs to be considered to explain the process of droplet oscillation. 

Foote [5] and Alonso [6] performed some of the first numerical simulations of drop oscillations making use of the 

marker and cell method. Mashayek and Ashgriz [7] used a finite element method to study the oscillations with and 

without internal circulations. Later Mashayek [8] showed that the period of oscillation is decreased by evaporation 

even though the dominant mode of oscillation remains the same as for non-evaporating droplets. Schlottke et. al [9] 

performed numerical simulations of evaporating, deformed droplets. They investigated droplet oscillation in an 

instationary three dimensional flow field.  

Although on the one hand a lot of analytical studies and on the other hand various numerical simulations have been 

conducted to investigate oscillating drops in the past, the interplay between both disciplines is still capable of 

improvement. Thus, the main idea of this work is to extract data from high resolved direct numerical 

simulations (DNS) to obtain an extensive comparison between numerics and the available analytical solutions. 

Furthermore, the numerical results should serve as a basis to improve existing analytical models, for example for 

droplet oscillations with higher deviations from the initial droplet shape or with evaporation.   

We present a method to extract the drop surface coordinates from the numerical simulations of oscillating droplets 

and perform a spectral decomposition into Legendre polynomials, hence, extracting the different oscillation modes. 

The simulations are conducted with the multiphase DNS-code Free Surface 3D (FS3D), which is described in more 

detail in the next section. Furthermore, the implementation of the method into the code is part of this work in order 

http://creativecommons.org/licenses/by-nc-nd/4.0/


ILASS – Europe 2019, 2-4 Sep. 2019, Paris, France 

 

This work is licensed under a Creative Commons 4.0 International License (CC BY-NC-ND 4.0). 

to achieve an efficient workflow, which is desirable due to the high computational load of DNS. Several simulations 

of oscillating water droplets at standard conditions are performed, comprising 3D setups with an initial deviation of 

the droplet shape from a spherical case and a variation of physical properties, for instance viscosity. The different 

oscillation modes are extracted with the mentioned method. Subsequently, they are compared and investigated 

with regard to their occurrence, amplitudes, frequencies, damping behavior etc. For small initial deviations the 

dominant modes are analyzed among others by using FFT and compared to the frequency values extracted from 

analytical equations of Lamb [2] and Prosperetti [4]. We show that the technique is versatile to all different 

initializations of the droplets, hence, a powerful tool to capture physical changes and suitable for a detailed 

comparison and interplay between numerics and analytics. Nevertheless, it is a first step in investigating droplet 

oscillations in such a manner and the work will be extended for various conditions and setups, like droplets with 

evaporation, higher initial deviations or non-Newtonian properties. 

 

Fundamentals  

The simulations are performed with the multiphase code FS3D. The code is used for DNS in order to solve the 

incompressible Navier Stokes equations. Thus, no turbulence models are needed. The conservation equations are 

discretized using a finite volume method and a Marker and Cell (MAC) grid, hence, velocities are stored on the cell 

faces whereas scalars at the cell centers. FS3D uses the Volume of Fluid method (VOF), which was developed by 

Hirt and Nichols [10]. To gain a successful advection the interface is reconstructed with the Piecewise Linear 

Interface Calculation (PLIC) algorithm [11]. Various phenomena have been investigated with FS3D in the last twenty 

years. Especially in terms of fluid dynamics, such as droplet deformation [12], droplet impact onto a thin film [13] or 

droplet collisions [14], the code is well validated. 

 

The flow field is computed by solving the conservation equations for mass and momentum 

𝜌𝑡 + 𝛻 ⋅ (𝜌𝑢) = 0,   (1) 

(𝜌𝑢)𝑡 + 𝛻 ⋅ ((𝜌𝑢) ⨂ 𝑢 ))  = 𝛻 ⋅ ( 𝑆 − 𝐼𝑝) + 𝜌𝑔 + 𝑓𝛾 ,     (2) 

where 𝜌 is the density, 𝑢 the velocity vector, S the viscous stress tensor defined as S = 𝜇 [∇𝑢 + (∇𝑢)𝑇] with 𝜇 

denoting the dynamic viscosity and 𝑝 the pressure. The gravity and other body forces, for instance surface tension, 

are represented by 𝑔 and 𝑓𝛾, respectively. For the description of surface tension different models are implemented 

in FS3D, such as the conservative continuous surface stress (CSS) model by Lafaurie et al. [15], the continuum 

surface force model (CSF) by Brackbill et al. [16], and the balanced force approach by Popinet [17]. We used the 

latter one in the frame of this study. Furthermore, the energy equation is solved in order to deal with heat transfer 

or phase change phenomena, which is not considered in the frame of this study. According to the VOF method the 

additional indicator variable 𝑓1 is introduced, which is defined as  

𝑓1 = {
0

 0 < 𝑓1 < 1
1

   
 in the continous phase   

at the interface                  
in the disperse phase.    

     (3) 

In this study, the disperse phase is water and the continuous phase is air. On the basis of the one-field formulation, 

which is inherent to the VOF method, local variables are defined by the local 𝑓1 value, for example the density is 

calculated from 

𝜌(𝑥, 𝑡) = 𝜌𝑔 + 𝑓1(𝑥, 𝑡)(𝜌𝑙 − 𝜌𝑔). (4) 

FS3D is fully parallelized using MPI and OpenMP, therefore, simulations with high computational effort can be 

conducted. Heretofore, simulations with up to 8 billion cells have been run successfully. For a detailed description 

of the code or further information we refer to [18]. 

 

Method to extract shape characteristics 

In the following, we describe our new method to extract the drop surface coordinates from the numerical simulations 

of oscillating droplets and perform a spectral decomposition into Legendre polynomials to extract the different 

oscillation modes.  

In a first step, the center of mass of the continuous phase, in this paper obviously the center of the droplet, is 

determined in FS3D. Based on this we determine its distance to the centroid of the PLIC surfaces in every interfacial 

cell. Hence, extracting a sufficient number of points to describe the shape of the oscillation and applying the spectral 

decomposition as followed. Figure 1 shows a representative sketch of the droplet with deviation in shape and the 

PLIC surfaces on the left side. On the right side the PLIC surfaces with their corresponding centroids are depicted 

in 2D.   
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Figure 1. Sketch with PLIC surfaces of a sliced deviated droplet (left). Derived simplified depiction in 2D of FS3D points (right), 

that are located at the centroids (red crosses) of the PLIC faces. 

From every extracted point we derive the radius 𝑅(𝜂). With the assumption of rotational symmetry we achieve an 

independency of the azimuthal angle 𝜙. Consequently, the radius 𝑅 =  √𝑥2 + 𝑦2 + 𝑧2 is only dependent on the 

angle 𝜂 = cos(𝜃) = 𝑧/𝑅 . Subsequently, the spectral decomposition of the surface distance can be defined as 

𝑅(𝜂𝑖) = ∑ 𝐴𝑘(𝑡)𝑃𝑘(𝜂𝑖)

∞

𝑘=0

. (5) 

𝑃𝑘(𝜂) are the Legendre polynomials of the first kind, 𝑘 is the number of the mode. In the next section we will show, 

that in the frame of the regarded setups of this study, odd modes are negligible. Same accounts for modes higher 

than 𝑘 = 6. The index 𝑖 represents the total number of points extracted from the simulation, clearly depending on 

the resolution of the setup. For every time step of the simulation the points are extracted. Equation (5) is then used 

to fit the solution of the numerical simulation with FS3D by using a least square method according to 

  ∑(𝑅(𝜂𝑖) − 𝑅𝐹𝑆3𝐷
𝑖 )

2
= ∑ (∑ 𝐴𝑘𝑃𝑘(𝜂𝑖) − 𝑅𝐹𝑆3𝐷

𝑖

𝑀

𝑘=0

)

2

= ℐ

𝑁

𝑖=1

𝑁

𝑖=1

 (6) 

In order to get the best fit between equation (5) and the FS3D radius equation (6) needs to be minimized in terms 

of each coefficient 𝐴𝑘. Therefore, one obtains 

 
𝜕ℐ

𝜕𝐴𝑗
= 2 ∑ [(∑ 𝐴𝑘𝑃𝑘(𝜂𝑖) − 𝑅𝐹𝑆3𝐷

𝑖

𝑀

𝑘=0

) 𝑃𝑗(𝜂𝑖)]  =  0

𝑁

𝑖=1

 (7) 

The values of 𝐴𝑘 become a function of time since the form of the droplet changes during its oscillation. Finally, this 

leads to systems of linear equations in the form 

 �̅�𝑘(𝑡) = �̿�𝑘𝑗

−1
𝑇�̅� (8) 

with 

 �̿�𝑘𝑗 = ∑ 𝑃𝑘(𝜂𝑖)𝑃𝑗(𝜂𝑖)

𝑁

𝑖=1

 (9) 

and  

 𝑇𝑗 = ∑ 𝑅𝐹𝑆3𝐷
𝑖 𝑃𝑗(𝜂𝑖)

𝑁

𝑖=1

. (10) 

This procedure for obtaining the values of 𝐴𝑘(𝑡) as a function of time was implemented successfully into FS3D in 

the frame of this study and will be used in the following to investigate droplet oscillation. First evaluations and results 

are discussed in the next section.  
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Results and discussion 

The analytical procedure is used to obtain the values of various coefficients 𝐴𝑘(𝑡) and analyze their behavior. For 

all conducted simulations we use a water droplet at standard conditions and a mass of 𝑚 = 2.809237 ∗ 10−7 kg. 

The droplet radii of all simulations and the analytics are referred to this mass. Only for the investigations with varying 

viscosity the material properties obviously differ. All simulations are set up fully 3D with continuous boundaries on 

all sides of the domain. The droplet is always initialized with the center of mass in the middle of the domain. The 

distance to the boundaries is chosen in a way that we can insure, that no unintended reactions disturb the oscillation 

of the droplet.  

First, a grid independence study is performed with grid sizes of 32³, 64³, 128³, 256³ and 512³ cells. The droplet is 

initialized as an ellipsoid with two identical half axes 𝑎 = 𝑏 and an initial deviation 𝛿 = 20% of the third axis 𝑐, thus,   

𝑐 = 1.2𝑎 = 1.2𝑏.  

 

Figure 2. Droplet oscillation for different grid sizes 32³, 64³, 128³, 256³ and 512³. The normalized droplet surface area 𝐴∗ over 

time is shown. 

Figure 2 shows the normalized area 𝐴∗ of the droplet surface, which is defined as  

𝐴∗ = 𝐴(𝑡)/𝐴(𝑡 = 0). (11) 

When we take the normalized area into consideration, the differences between the various grids is not significant. 

Even the grid with 32³ cells, which is, as expected, much too coarse for a proper DNS setup, shows a similar 

behavior at least for the first oscillations. Same accounts for the behavior of the diameter or for the comparison of 

the three half axes. This shows that simple evaluations, such as complete droplet surface area or diameter, are 

possible with little computational effort. Previous similar investigations and validations of oscillating droplets with 

FS3D have already been published by Ertl et al. [19] using a grid of 128³ cells. They proofed this as a sufficient 

resolution for these simple evaluation characteristic. Figure 2 confirms this assumption, since the devolution of the 

surface area for grids greater than 128³ cells is almost equal. 

 

Figure 3. Droplet oscillation with different grid sizes 32³, 64³, 128³ and 256³. The evolution of coefficient 𝐴4 over time is shown. 

At this point we will take a look at our new implemented method and examine if the same resolution accounts for 

the extraction of the different modes. We consider the fourth mode, depicted by 𝐴4 in Figure 3, for exemplary 

purposes. For the grids coarser than 128³ cells the values partly increase or fluctuate in a non-physical way with 

ongoing oscillation, presumably due to numerical noise and inaccuracies, inherent to the coarse resolution. 

However, due to the effect of the viscosity, there must be a damping that exists within the mode which is only 

depicted by the grids finer than 128³ cells. However, the devolution of the 128³ grid differs with respect to the 
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amplitudes and frequencies from the finer grid. The difference between the finest grid with 512³ cells and the 256³ 

grid is negligible. Thus, for the following work the 256³ grid has been utilized, as it provides the best relation between 

precision and computational costs.  

One can clearly see, that for a detailed investigation of a droplet oscillation with a big richness of information, a fine 

grid is essential. In addition, it is not sufficient to consider simple evaluation techniques, for instance only compare 

the progression of the diameter over time, when investigating droplet oscillation in such a manner. This is especially 

true for the development of precise analytical models for predicting droplet behavior or also for investigating smallest 

initial deviations, like comparing droplets with and without evaporation. The latter will be investigated with the help 

of our developed method in future studies.  

In a next step, we investigate and analyze different oscillating droplets. The following evaluation procedure is 

applied to all cases. It comprises the devolution of 𝐴𝑘(𝑡), interpretation of their characteristics, identification of 

numerical noise and an analysis with fast Fourier transform (FFT). Representatively for all cases we choose a water 

droplet at standard conditions with a small initial deviation of 𝛿 = 5%, which is nominated as case 1. The volume, 

and due to the constant density assumption the mass, is always kept constant for all cases to ensure comparability.  

In Figure 4 the values of 𝐴0 − 𝐴10 are plotted over time. 𝐴0 converges to the radius of a volume equivalent sphere, 

which we nominate as 𝑅0. With the chosen mass of the droplet this leads to a value of about 𝑅0 ≈ 4.06558 ∗ 10−4 m. 

This behavior can be seen in all other cases later with ongoing oscillation and damping, independent of the initial 

deviation. The constant evolution confirms the necessity of a high resolution, since for the coarse grids the value 

fluctuates much higher. Furthermore, it strengthens the correctness of the implemented method. The values of 

coefficient 𝐴1 are nearly zero, which is as expected, as it describes the translation of the center of mass. Due to the 

initialization of a symmetric ellipsoid this point does not move in space. The oscillation of the main mode of the 

droplet, which is the second mode, represented by 𝐴2, is also clearly visible. Additionally, the damping due to 

viscosity can be seen with the decreasing of the amplitude of the coefficient 𝐴2 in Figure 4 (left). 

     

Figure 4. Droplet oscillation of case 1. The complete evolution of all coefficients 𝐴0 − 𝐴10 over time is shown on the left, a small 

zoomed part for better visualization on the right. The odd modes are all collapsed on the x-axis. 

As expected, the other modes are orders of magnitude smaller and collapse on the x-axis of Figure 4. A detailed 

investigation and classification of them will be discussed in the following and a further visual insight is given later 

when we compare different initial deviations 𝛿. The influence of modes higher than 𝐴6 is very small, at least for our 

considered setups (Figure 4 right). Due to the ellipsoidal initialization of the droplet, that leads to an axisymmetric 

oscillation in all three main axis, the odd modes should not exist. This is also correct in our cases. The magnitude 

of the corresponding 𝐴𝑘,𝑜𝑑𝑑 values is negligibly small and is certainly attributed to numerical noise. Indeed, we will 

see later, that for very low viscosity, meaning unstable numerical droplet oscillation, these modes are growing.  

 

Figure 5. FFT of coefficients 𝐴2 − 𝐴6 of case 1. 
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The different extracted modes are then evaluated using FFT in order to gain the dominant frequencies of the 

oscillation modes. Figure 5 shows the FFT of the coefficients 𝐴2 − 𝐴6 depicted in a semi-logarithmic plot. The 

normalized magnitude 𝑀∗ of the FFT is plotted over the logarithmic frequencies. The magnitude is normalized with 

the maximum occurring value of each coefficient. The corresponding dominant values of the frequencies are given 

in Table 1. The frequency values for the even modes, in theory the only modes that should be present, show good 

values, especially the values of 𝐴2 and 𝐴4, which we will show in the following, when comparing to analytical 

solutions. For the last considered even value of coefficient 𝐴6 one dominant frequency coincides with the one of 𝐴2. 

This obviously comes from a superposition of both frequencies as well as the very weak signal. Thus, there is 

probably a numerical influence of the mode 𝐴2 on larger even modes. Nevertheless, the second relevant dominant 

peak for 𝐴6 is at a frequency of 2608 Hz, which is the expected one.  

 

To validate and verify the values and, thus, our implemented method, we compare case 1 with analytical solutions 

from Lamb (12) and Prosperetti (13), which read 

𝜔𝐿𝑎𝑚𝑏
2 =

𝜎

𝑅0
3𝜌𝑙

𝑘(𝑘 − 1)(𝑘 + 2)
𝜌𝑔

𝜌𝑙
𝑘 + (𝑘 + 1)

  (12) 

and  

𝜔𝑃𝑟𝑜𝑠
2 = 𝑘(𝑘 − 1)(𝑘 + 2)

𝜎

(𝜌𝑙𝑅0
3)

 . (13) 

𝜔 is the angular frequency, 𝜎 the surface tension, 𝑘 as mentioned before the respective oscillation mode. Both 

analytical solutions are only valid for very small oscillations, thus, a comparison with case 1 is not exact, but 

appropriate. The frequencies of all modes are, besides the material properties, naturally also depended on the 

droplet radius. The higher the radius, the lower the frequency of the modes.  

The values of the Lamb and Prosperetti frequencies for all considered coefficients 𝐴2 − 𝐴6 are also added in Table 

1. A comparison with the extracted values from our simulation show, that all are in very good accordance. The 

deviation for modes 𝐴2 − 𝐴5 is less than 1%, the first mode obviously does not exist, and the sixth mode is also 

proper regarding the mentioned relevant dominant frequency of 2608 Hz. It is noticeable, that the odd modes, which 

are assumed to be numerical noise, are also in accordance with the analytical solutions obtained from Lamb and 

Prosperetti. 

Table 1. Dominant frequencies obtained from the FFT of coefficients 𝐴2 − 𝐴6. 

 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 

DNS, Dominant frequency [Hz] 471.2 911.1 1421 1979 2608 

Lamb frequency [Hz] 468.8 907.8 1407 1961 2568 

Prosperetti frequency [Hz] 468.6 907.5 1406 1960 2567 

Δ𝐹 [%] DNS/Lamb 0.51 0.37 0.99 0.99 1.55 

Δ𝐹 [%] DNS/ Prosperetti 0.55 0.40 1.07 0.97 1.60 

 

Subsequently, we change the initial deviation 𝛿 of the droplet from a sphere to 1%, 20% and 40% and compare the 

different modes. For the sake of completeness, we add the first case with 5% deviation. The coefficients 𝐴2, 𝐴4 and 

𝐴6 over time are depicted in Figure 6. Similar to case 1, the odd modes for the other considered cases have 

negligible small amplitudes. In order to get a better visible impression of the evolution of the coefficients 𝐴𝑘 we look 

at the first few oscillations. The second mode, which is as mentioned before the main mode, describes the interplay 

between the different droplet shapes. The oscillation starts with a prolate droplet shape (𝐴2 positive maximum), 

reaches the spherical when 𝐴2 = 0 and, finally, ends up oblate (𝐴2 negative maximum). More intriguing than the 

main mode is obviously the behavior of the fourth mode. One can see clearly, that the coefficient 𝐴4 is predominantly 

positive. With increasing time and, thus, more damping, its value tends to zero. Especially for high initial deviations 

it seems to have a growing influence. To understand and evaluate this phenomenon it is worth taking a look inside 

the literature. Becker et al. [20] investigated large-amplitude oscillations of liquid drops with different initial modes 

experimentally and theoretically. For the fourth mode oscillation they detected a similar offset of the amplitude from 

zero. They attributed their observation to a strong nonlinear excitation of higher modes, which cannot be described 

with linear theory. Hence, also for our elliptical initialization, the extracted fourth mode, and probably the other even 

modes, seem to follow physical correctness and they are in good accordance with experimental investigations from 

literature. Noticeable is, that the fluctuations in the curves of the higher modes is probably not a consequence of 

instabilities or too coarse grid resolution, but of the overlaying of the dominant lower frequency. First investigations 

with asymmetrical initial droplet shapes support this assumption. Nevertheless, for future investigations, it is 

indispensable to initialize and evaluate droplets also with the shape of various Legendre polynomials and apply our 

method to them.  
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Figure 6. Coefficients 𝐴2, 𝐴4  and 𝐴6 over time of different initial deviations of the droplet. 

The evaluation using FFT of the different initial deviations provides no further information. All different main 

frequencies are of similar magnitude, as expected. Based on the restriction of equal mass of all cases, the shape 

of the initial ellipsoid naturally varies. Thus, leading to very small differences in the frequency behavior. However, 

due to the same material properties of all variations, they are negligible. Following this explanation, it makes sense 

to take a look at the viscosity, which is a determinant factor of droplet oscillation. Hence, in a next step we modify 

the droplet of case 1 and change its viscosity.  

 

Figure 7. Coefficients 𝐴2, 𝐴4  and 𝐴6 over time of different viscosities of the droplet with an initial deviation of 𝛿 = 5%. 

Figure 7 shows the evaluation of the considered even modes over time for different viscosities. Case 1 is referred 

to the blue line 100%, which is the viscosity for water at standard conditions. Incrementally we change the value 

from 50% to 1% of this value 𝜇0. The effect of lower viscosity is clearly visible, as the damping for the main mode 

is considerably lower. Particularly for 1% and 10% viscosity, the droplet gets very unstable that every mode 

significantly takes part in the overall oscillations of the droplet. This is the case even for odd modes, which were 

negligible and, therefore, are not shown in the previous investigation. The FFT analysis also shows chaotic behavior 

for very low viscosities. During the first oscillations, we yield a higher frequency of the modes, which is of course a 

consequence of the lower damping. Nevertheless, with proceeding time, we get unstable oscillations and no proper 

evaluation is possible. The unstable behavior is attributed to spurious numerical effects, which increase apparently 

with low viscosity, due to the reduced damping effect. The handling of numerical issues, for instance parasitic 

currents, is a wide field of research and was not a part of this study.  

 

Conclusions 

In this paper, oscillation of droplets was investigated. A method has been presented to extract surface coordinates 

of oscillating droplets from numerical simulations. These coordinates are used to perform a spectral decomposition 

into Legendre polynomials, in order to extract different oscillation modes. We described the implementation of the 

method in the multiphase DNS code FS3D. In a first grid study, we demonstrated the necessity of a very high 

resolution to get satisfying results for the detailed investigation of the modes. Afterwards, several simulations of 

oscillating water droplets were conducted. We deviated the initial droplet shape and varied viscosity. The modes of 

these cases were extracted with the help of the described method and analyzed in the following. Furthermore, 

frequencies of different modes were investigated and compared to analytical models of Lamb and Prosperetti. The 

results were in very good agreement with the analytical models for small initial deviations. Altogether, the 

implemented method is able to extract the different modes of various numerical droplet setups. Hence, it is a 

powerful tool to capture physical changes and it is suitable for a detailed comparison and interplay between 

numerics and analytics. In the future, the method and the numerical results should serve as a basis to improve and 

adapt existing analytical models. However, it is a first attempt in evaluating and investigating droplet oscillation. 

Further studies will be necessary and the works will be extended under various conditions and initializations. These 

 𝛿 

 𝜇/𝜇0 
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comprise larger initial deviations, initialization of drops with Legendre polynomials, investigations with evaporating 

droplets and non-Newtonian material properties. 
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Nomenclature 

𝐴 oscillation mode coefficients [-] 

𝑓 VOF variable [-] 

𝑔 gravitational acceleration [m s-2] 

𝑃 Legendre polynomials [-] 

𝑅 radius [m] 

𝑢 velocity [m s-1] 

𝑝 pressure [N m-2] 

𝛿 deviation [-] 

𝜂 angle [rad] 

𝜇 dynamic viscosity [Pa s] 

𝜙 azimuthal angle  [rad] 

𝜌 density [kg m-3] 

𝜎 surface tension [N m-1] 

𝜃 polar angle  [rad] 

𝜔 angular frequency [s-1] 
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