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ABSTRACT 5 

The phenomenon of dynamic instability of steel beams under harmonic axial loading is analysed, in 6 

particular to identify those elements in equilibrium under static axial loads, i.e. loaded below the 7 

Euler load, but that could fail under dynamic conditions, possibly compromising the entire 8 

structural stability. In the literature, the general problem of dynamic instability was 9 

comprehensively presented by Bolotin, who defined instability regions. Bolotin’s method was 10 

extended herein and more accurate instability regions derived. In some conditions, depending on the 11 

ratio between the frequency of the exciting load and the beam transversal natural frequency, an 12 

elastic beam could sustain a dynamic axial load greater than the Euler load. 13 

The influence of geometric and material non-linearity on the shape of the instability regions has 14 

been evaluated herein through time series analyses. Then, response spectrum analyses were 15 

conducted to highlight possible effects of dynamic instability due to seismic loading. Two building 16 

typologies were considered: multi-storey buildings with cross bracing and existing industrial 17 

buildings. The results show that in the case of elements of the bracing system of new-designed 18 

multi-storey buildings, the dynamic instability is generally not an issue due to the high frequency of 19 

the single elements compared to the frequency of the fundamental mode of vibrations of the whole 20 

building. In the case of existing industrial buildings not designed to sustain seismic actions, some 21 

slender elements, with frequency of vibration compatible with the fundamental frequencies of the 22 

building, may undergo dynamic instability with possible detrimental effects in the whole building 23 

response. 24 
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1. INTRODUCTION 27 

The stability of elements subjected to static and dynamic loading conditions has been widely 28 

studied over the years, particularly during the last century [1] [2] [3] [4] [5] [6] [7]. Among these 29 

topics, the phenomenon of dynamic instability is investigated herein.  30 

When an elastic beam is subjected to a periodic axial load, whose amplitude is less than the Euler 31 

critical load, the beam will in general show only longitudinal vibrations. However, for some 32 

combinations of the ratio between the loading frequency and the transverse vibration frequency of 33 

the beam, the element will experience transverse oscillations with increasing amplitude, i.e. 34 

instability occurs. This phenomenon is known as dynamic instability and, although being 35 

extensively analysed in the context of mechanical and aerospace engineering, particularly for plates 36 

[8] [9] [10] [11] [12], it has not been systematically applied in the field of seismic engineering. In 37 

this scenario, the purpose of this work is to analyse the dynamic instability of steel elements, both in 38 

the elastic and inelastic range, and to define a method for its evaluation in the case of seismic 39 

loading by means of a response spectrum analysis. 40 

The general theory of dynamic instability was comprehensively presented in Bolotin (1964) [13], 41 

who provided solutions to engineering problems using simplified mathematical methods by which 42 

he introduced the concept of “instability regions” as those regions in which dynamic instability may 43 

occur, i.e. indefinitely increasing transverse vibration of an axially loaded beam, as opposed to the 44 

“safe regions” where no instability is expected. Bolotin provided an approximation of the instability 45 

regions for elastic, simply-supported, constant cross-section beams as a function of the loading 46 

frequency, the transverse frequency of the beam, the initial loading conditions and the amplitude of 47 

the harmonic excitation. The small displacement-small deflection assumption applies. Other 48 

applications of this theory regard rods subjected to axial jump loading, where axial vibrations give 49 

rise to periodic axial loads which in turn cause unstable bending vibrations [14] [15], and the 50 

influence of wind loads in the elements of a building type structure [16]. An interesting application 51 

in the field of earthquake engineering was carried out by Azad et al. [17], who studied the effects of 52 

seismic loading on braced steel frames by means of non-linear dynamic analysis. In particular, the 53 

overload recorded in the braces and the frequency for which the phenomenon occurred were 54 

analysed. After evaluating the effect of this overload on the adjacent elements, a method was 55 

proposed to account for the overload in the design stage. For the treatment of dynamic instability 56 

equations and problems the use of a finite element approach is nowadays widely adopted [9] [11] 57 

[16] [17] [18]. 58 

In this study the method for determining the regions of dynamic instability proposed by Bolotin 59 

[13] has been extended to derive more accurate instability regions. The influence of geometric and 60 



material non-linearity and of the beam slenderness on the distribution of unstable regions was 61 

evaluated by means of non-linear dynamic analyses. It is interesting to note that, in some 62 

conditions, the beam could sustain a dynamic axial load greater than the Euler instability load. Such 63 

conditions could affect the application of the capacity design for earthquake type loading.  64 

The possibility of dynamic instability in building type structures was investigated by means of 65 

response spectrum analyses considering two case studies: a steel multi-storey building with cross-66 

bracing designed to sustain seismic actions and a single-storey industrial building not designed for 67 

seismic actions. The results show that in the former case the dynamic instability is not an issue: in 68 

the cross-bracing elements there are no cases where the axial load exceeds the static instability load 69 

therefore capacity design is not affected; in the columns of the bracing system there are no cases 70 

where dynamic instability occurs for lower than expected axial loads. This is due to the high 71 

frequency of vibration of the single elements compared to the frequency of the fundamental mode 72 

of vibrations of the whole building. In the latter case, existing industrial buildings not designed to 73 

sustain seismic actions, some slender elements, with frequency of vibration compatible with the 74 

fundamental frequencies of the building, may undergo dynamic instability with possible detrimental 75 

effects in the whole building response. 76 

2. THEORY OF DYNAMIC INSTABILITY 77 

Considering the transverse oscillations of a simply-supported beam with no geometric 78 

imperfections subjected to a periodic axial load (Figure 1), the differential equation governing the 79 

problem in the case of small deflection [13] is: 80 
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 82 

Figure 1: Deformed configuration of a straight rod loaded with a longitudinal periodic load. 83 

where EJ is the beam bending stiffness, P is the longitudinal force defined as P(t) = P0 + Pt cos 𝜗t, 84 

𝜗 is the frequency of the load and m is the mass per unit length of the beam. The solution of Eq. (1) 85 

is sought in the form: 86 

 𝑣(𝑥, 𝑡) = 𝑓%(𝑡)	sin
%&#
'
										(𝑘 = 1, 2, 3, … )  (2) 87 



where fk (t) are unknown functions of time and L is the length of the rod. Replacing Eq. (2) into 88 

Eq. (1) it yields:  89 
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To satisfy this equation, the expression contained in the square brackets must be zero. The new 91 

expression obtained is the same for all k, which therefore will be omitted for sake of clarity. 92 

It is convenient to define the following parameters: 93 

- the angular frequency of the first mode of transverse vibrations of the unloaded beam: 94 

𝜔 = &"

'"
?*+
,

 (4) 95 

- the angular frequency of the first mode of transverse vibrations of the beam loaded by a constant 96 

longitudinal force P0: 97 

𝛺 = 𝜔?1 − -$
-%
		 (5) 98 

- the Euler critical load: 99 
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- the excitation parameter: 101 

𝜇 = -&
/(-%1-$)

	 (7) 102 

It is interesting to note that µ = 0.5 leads to Pt + P0 = Pe, therefore to the Euler critical load for static 103 

conditions. Introducing these parameters in Eq. (3), one obtains: 104 

𝑓33 + 𝛺/(1 − 2𝜇 cos 𝜗𝑡)𝑓 = 0	 (8) 105 

where f’’ is the second derivative of f with respect to time. This second-order homogeneous linear 106 

differential equation is known as Mathieu-Hill equation [19] [20]. Finally, by introducing in Eq. (8) 107 

the damping term ε, defined as: 108 

𝜀 = 𝜉𝛺 (9) 109 

where ξ is the relative damping, the following differential equation is obtained:  110 

𝑓33 + 2𝜀𝑓3 + 𝛺/(1 − 2𝜇 cos 𝜗𝑡)𝑓 = 0  (10) 111 

Such equation could be related to a Mathieu-Hill equation and its solution is reported in the 112 

Appendix A. Bolotin [13], by considering only 2x2 systems of equations, provided closed-form 113 

solutions on the problem and identified the boundaries of regions of dynamic instability in the plane 114 

(	𝜗/2W , µ). It is worth noting that some regions exist in which stability is guaranteed for axial loads 115 

exceeding the Euler critical load. 116 



To refine the results obtained by Bolotin [13], the systems of equations were extended considering a 117 

matrix size 8x8 and 7x7 respectively (Appendix A) and solved analytically. The boundaries of the 118 

first 3 dynamic instability regions obtained from the refined solution (8x8 matrix for region 1 and 3, 119 

and 7x7 matrix for region 2) are compared to the boundaries obtained from less refined solutions, 120 

i.e. 4x4 matrix and 2x2 matrix, being the latter solution the one adopted by Bolotin [13]. Figure 2 121 

shows this comparison for both the non-damped and damped case (ξ = 1%). It is observed that the 122 

instability regions obtained from the simplified method (referred to as “Bolotin” in Figure 2) [13] 123 

represent a reasonable approximation of the solution up to µ = 0.5, while for higher values of µ a 124 

significant difference is observed, especially for the lower boundary of each region. Looking at the 125 

overall results presented in Figure 3, i.e. at all the seven instability regions, it is observed how the 126 

instability regions for 𝜗/2W approaching 0 (i.e. for quasi static loading) tend to µ = 0.5, i.e. to the 127 

Euler critical load. Another interesting aspect is that between the first pairs of regions (i.e. between 128 

the 1st and the 2nd region and between the 2nd and the 3rd region) it is observed how stable solutions 129 

are possible when P0 is lower than the Euler critical load (Pe) but the total loading (P0 + Pt) exceeds 130 

Pe. This aspect was not highlighted in the previous formulation [13]. From Figure 3 it is evident 131 

that damping involves a shift to the right of the origin of the instability regions. Furthermore, an 132 

attempt to define simplified regions in which dynamic instability does not occur is reported in 133 

Appendix B. 134 

  135 



 136 

a)  137 

b)  138 

c)  139 
Figure 2: Comparison of the boundaries of the first three regions of dynamic instability investigated by Bolotin. 140 

Note: a), b), and c) correspond to the 1st, 2nd, and 3rd region of instability. 141 
Left-side undamped case, right-side damped case (ξ = 1%). 142 

 143 
Figure 3: Regions of dynamic instability obtained from the 8x8 matrix and 7x7 matrix. 144 

Note: left-side undamped case, right-side damped case, ξ = 1%. 145 



3. INFLUENCE OF NON-LINEARITIES 146 

The previous considerations are based on the hypotheses that the beam is perfectly linear, the 147 

material is elastic and the small-displacements assumption applies. This section investigates the 148 

possible variation of the shape of the instability regions by removing the hypothesis of small-149 

displacements and by including an initial imperfection of the beam and the non-linearity of the 150 

material, i.e. considering the plastic properties of the steel. Subsequently, another slenderness ratio 151 

was analysed. To account for all these sources of non-linearity, a series of numerical time history 152 

simulations has been conducted for various conditions ranging in the previously considered 153 

extensions of the μ - 𝜗/2Ω plane. The finite element software Abaqus [21] and the Abaqus2Matlab 154 

[22] toolbox were used to automate the process in a Matlab [23] environment to extract the value of 155 

the transverse oscillation of the beam and the moment-curvature relationship at mid-span. 156 

A starting model was created in Abaqus [21] and its properties modified to perform the different 157 

series of analysis. Such model consists of a steel beam (grade S235) of length L equal to 4 m, with a 158 

constant circular cross-section of diameter D, constrained at one end by a perfect hinge, while at the 159 

other end by a simple support allowing the translation along the beam axis direction. An initial 160 

sinusoidal imperfection was assigned to the beam, which was subdivided into ten segments 161 

(Figure 4).  162 

 163 

Figure 4: Considered finite element model with initial geometry imperfection. 164 

Starting from this model, other models were derived with the characteristics shown in Table 1. The 165 

influence of the initial geometry imperfection was investigated with model A, for increasing 166 

amplitude of the initial imperfection, the evaluation of the material non-linearity with model B, by 167 

introducing the plastic properties of the material, and the influence of the slenderness with model C. 168 

The beam instability was evaluated considering the exceedance of a transverse displacement at the 169 

mid-span equal to 1/50 of the beam length L. Such limit was selected, for demonstration purposes, 170 

based on the following considerations: L/50 corresponds to 10 times the standard initial 171 

imperfection (L/500) and it also corresponds to 5 times the lateral displacement associated with an 172 

axial load corresponding to the critical load, considering elastic conditions and a first order analysis. 173 

In addition, higher deflections may trigger damage in the connections. From a computational point 174 



of view such a limitation helped in reducing the analysis time. Other limit values may alternatively 175 

be selected without compromising the general results presented herein. Regarding the time duration 176 

of each analysis, a total time of 1s, 3s and 10s was considered to evaluate the influence of the 177 

duration of loading on the onset of dynamic instability: indeed, Bolotin [13] referred to the dynamic 178 

instability triggered by a stationary sinusoidal signal, while earthquakes are non-stationary events. It 179 

is worth observing that the 10s duration leads to an approximation of the boundaries of the 180 

instability regions comparable with the results of the extensions of Bolotin method [13] highlighted 181 

in the previous section. 182 

The nonlinear properties of the steel are included by means of a piecewise linear stress-strain 183 

relationship passing through the following points: (0; 0), (235 MPa; 0.001119), 184 

(360 MPa; 0.076119), (235 MPa; 0.131119), (100 MPa; 0.201119). Abaqus B21 elements ("Beam" 185 

element with linear interpolation in the plane) with a mesh size 0.4m were used, but for the 186 

segments 5-6 and 6-7 of the elasto-plastic model a mesh size of 0.1m were considered. Furthermore, 187 

a Rayleigh damping was included in the model calculated by considering a relative damping x = 1% 188 

for the 1st and 3rd transverse modes of vibration. 189 

Table 1: Characteristics of the considered FE models. 190 
Note: D is the beam dimeter; λ is the normalized slenderness; ω is the natural angular frequency of the beam; Pe is the 191 

Euler critical load; Ppl is the elasto-plastic load (evaluated by means of a quasi-static pushover analysis). 192 

Model Material D (m) λ ω (Hz) Pe (kN) Ppl (kN) 

A Linear Elastic 0.0875 1.9471 11.1 372.7 - 

B Elasto-Plastic 0.0875 1.9471 11.1 372.7 307.6 

C Elasto-Plastic 0.1750 0.9735 22.2 5963.8 3542.0 

 193 

The characteristics of the considered models are summarized in Table 2. The amplitude, Pt, and the 194 

angular frequency, 𝜗, of the harmonic external load were varied to cover the μ - 𝜗/2Ω plane with 195 

sufficient accuracy, i.e. variations of μ and 𝜗/2Ω equal to 0.0116 and 0.0242 respectively. 196 

The results of the analyses are reported in the following graphs in which the dynamically unstable 197 

points (μ, 𝜗/2Ω) are plotted with the symbol *. Moreover, the following graphs show the boundaries 198 

of the instability regions previously determined (with red continuous lines), the value for which the 199 

sum between the initial load P0 and the variable load Pt is equal to the Euler critical load Pe (i.e. 200 

μ = 0.5, with a blue continuous line), and the value for which the sum between the initial load P0 201 

and the variable load Pt is equal to the maximum plastic load Ppl evaluated under static conditions 202 

(with a blue dotted line). 203 



Table 2: Parameters considered in each analysis series. 204 
Note: Aimp is the ratio between the amplitude of the initial imperfection and the beam length. 205 

Id. Model Aimp P0 (kN) P0 / Pe P0 / Ppl 

A1 A l/1000 50.0 13.4% - 

A2 A l/500 50.0 13.4% - 

A3 A l/250 50.0 13.4% - 

B1 B l/500 0 0 % 0 % 

B2 B l/500 50.0 13.4% 16.3% 

B3 B l/500 186.5 50.0% 60.6% 

B4 B 1/500 228.1 61.2% 74.2% 

B5 B l/500 260.0 69.8% 84.5% 

C1 C l/500 575.7 9.6% 16.3% 
 206 
The influence of the geometric non-linearity is shown in Figure 5. It is worth noting that the greater 207 

the analysis time, the better the approximation of the instability regions for all the series. In 208 

addition, it is observed that the bounds are affected by the duration of analysis, particularly for low 209 

values of µ (i.e. low initial load and low dynamic load). For this condition, the increase of the 210 

lateral displacement during dynamic loading occurs at a slower rate. Moreover, if the initial 211 

imperfection increases, from series A1 to A2 and to A3, the number of unstable cases increases in 212 

the case of 𝜗/2Ω values lower than 0.5; such unstable points are characterised by μ values lower 213 

than those theoretically predicted (i.e. a left shift of the instability regions). The geometric non-214 

linearity does not affect the solution only for the 1st region of instability, as the unstable cases are 215 

almost identical for all the series and in accordance with the theoretical formulation. It is observed 216 

that a portion of the plane between the 1st and 2nd instability region is characterized by a stable 217 

response for μ values greater than 0.5 (i.e. greater than the Euler critical load). Finally, it is observed 218 

that in the case of static loading (i.e. 𝜗/2Ω = 0), the onset of instability is related to the considered 219 

maximum lateral deflection taken as reference (herein 1/50 of L): indeed, the greater the initial 220 

imperfection, the lower the load (and therefore µ) required to reach such lateral deflection. 221 

 222 

 223 

 224 



 225 

 226 

 227 

Figure 5: Results of model A: investigation of geometric non-linearity (series A1, A2, and A3 from top to bottom) 228 
for different durations of the analysis time (1s, 3s, and 10s from left to right). 229 

Figure 6 shows the results obtained from the investigation of the influence of the material non-230 

linearity, obtained from introducing the plastic characteristics of the steel. As in the elastic case, it is 231 

observed that the number of unstable points in the analysis increases with the increase of the 232 

analysis time. The 1st region of instability is similar in the elastic and inelastic case, while for the 233 

higher order regions the unstable cases are outside the theoretical boundaries and they are 234 

characterized by lower values of µ (i.e. a left shift of the instability regions). This aspect is more 235 

pronounced with the increase of the initial load P0. It is observed that all the additional unstable 236 

points found in the inelastic case are characterized by inelastic transverse vibrations: i.e. the load 237 

demand in the rod (axial load and bending moment due to the 2nd order effects) for elastic 238 

conditions leads to stress values exceeding the yield stress, therefore in the inelastic case yielding 239 

occurs; under these conditions the system becomes dynamically unstable after introducing the 240 

material non-linearity. Finally, it is worth noting that between the 1st and 2nd instability regions 241 

there are still stable points beyond the axial capacity of the beam. 242 



 243 

 244 

 245 

 246 

 247 

 248 

Figure 6: Results of model B: influence of material non-linearity (series B1, B2, B3, B4, and B5 from top to bottom) 249 
for different durations of the analysis time (1s, 3s, and 10s from left to right). 250 



For sake of clarity, the time history of a stable and an unstable point across the boundary of the 1st 251 

region of instability (blue and red circles in Figure 6, respectively) are reported in Figure 7 in the 252 

case of plastic (Figure 7a) and elastic (Figure 7b) material. 253 

a)  b)  254 
Figure 7: Time history of a stable (blue circle) and an unstable (red circle) point of series B2 (Figure 6) in the case of 255 

a) plastic material and b) elastic material. 256 

Figure 8 shows the comparison between the results of the series C1, selected to assess the influence 257 

of the beam slenderness l (lC = 0.5 lB), and the results of the series B4, since both cases are 258 

characterised by the same µ value for static conditions (i.e. for 𝜗/2Ω = 0). The unstable points of the 259 

two series are represented with an empty circle and with a filled circle, respectively. As for the 260 

previous investigations, if the analysis time increases, the number of unstable points also increases. 261 

It is observed that the results of series C1 are all unstable beyond the continuous blue line (i.e. the 262 

sum between the initial load P0 and the variable load Pt is equal to the Euler critical load) and, 263 

generally, unstable points are found for µ greater than 0.4 between the 1st and 2nd regions and above 264 

the 1st region. This is associated with the difference of lateral deflection at yielding of the two 265 

series: series C1 is characterized by yielding at the midspan cross-section for a much smaller lateral 266 

deflection compared to series B4, 0.009m compared to 0.031m respectively. Considering the 267 

additional unstable points of series C1, i.e. for instance the points between the 1st and 2nd instability 268 

regions, the lateral deflection demand in the case of elastic material is much larger than the 269 

displacement associated with yielding in the case of plastic material, i.e. far beyond 0.009m. This 270 

comparison is shown in Figure 9 in terms of time history for the blue circle depicted in Figure 8 271 

for series B4 and C1 for both elastic and plastic material. Considering the reduction of unstable 272 

points in the 2nd region (Figure 8), it is worth noting that such behaviour is not related to the time of 273 

analysis, but to a peculiar combination of plasticity and loading frequency which needs to be further 274 

investigated. 275 



Similar results for models A, B, and C are obtained from considering 3% of relative damping as 276 

reported in Appendix C along with a close up of the results in the plane (μ; 𝜗/2Ω) between (0; 0) 277 

and (0.5;0.6). In that case the designer could directly enter the provided graphs with the (μ; 𝜗/2Ω) 278 

point corresponding to a specific element and loading conditions and determine the possibility of 279 

dynamic instability. 280 

 281 
Figure 8: Results of model C: investigation of the influence of the slenderness ratio (series C1) 282 

for different durations of the analysis time (1s, 3s, and 10s from left to right). 283 
Note: the empty and filled circles are the unstable points of series C1 and B4 respectively 284 

a)  b)  285 

Figure 9: Time series of a reference point (blue circle) of Figure 8 in the case of a) series C1 and b) series B4. 286 

4. DYNAMIC INSTABILITY DUE TO SEISMIC LOADING 287 

Possible onset of dynamic instability in building type structures due to seismic loading could be 288 

directly evaluated in the design phase by means of response spectrum analysis, which is a linear 289 

dynamic approach based on the decoupling of the fundamental modes of vibration in classically 290 

damped systems. Given a building, and in general a multi degree of freedom (MDOF) system, the 291 

elastic response, for instance in terms of displacements and internal actions, may be directly 292 

obtained from adding the response of single degree of freedom (SDOF) systems which represent the 293 

fundamental modes of vibration of the original structure (Figure 10). Each of these SDOF systems 294 

is characterized by a modal participation factor which acts as a weight for the total response. More 295 

details can be found for instance in [26]. 296 



Given these premises, it is possible to introduce the response spectrum analysis, which measures the 297 

contribution of each natural mode of vibration to the seismic response of a MDOF system. A 298 

response spectrum collects the maximum response of SDOF systems with different periods of 299 

vibration (Figure 10), for instance in terms of acceleration or displacement, when they are 300 

subjected to the same ground motion. Considering a building and its fundamental modes of 301 

vibration, it is possible to evaluate the maximum acceleration of each of them in the response 302 

spectrum and to combine them to find the overall likely maximum response of the MDOF system. 303 

Various combination techniques maybe adopted to account for the non-contemporaneity of the 304 

maximum values of the SDOF systems, such as the square-root of the sum of the square rule [26]. 305 

Finally, to account for the inelastic behaviour of the system, the building codes introduce a 306 

behaviour factor, which is a function of the structural typology, to reduce the ordinate values of the 307 

response spectrum. 308 

 309 
Figure 10: Scheme of response spectrum analysis. 310 

Note: Ti and mi are the period of vibration and participation mass of the ith SDOF system, respectively; Sai is the 311 

maximum acceleration of the ith SDOF system under a ground acceleration . 312 

In the present study, the contribution of the various vibration modes is accounted for by considering 313 

single modes at a time in the analysis: for instance, carrying out a response spectrum analysis taking 314 

into account the sole 1st mode of vibration allows obtaining the variation of the axial load in the 315 

elements (i.e. Pt according to the previous formulation) associated with the 1st mode of vibration of 316 

the system, which is characterized by a specific angular frequency (i.e. 𝜗 according to the previous 317 

formulation, therefore the frequency of load). Once P0, Pt, and 𝜗 have been defined, it is possible to 318 
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evaluate the dynamic instability of each axially loaded beam, which is characterized by a transverse 319 

angular frequency Ω, following the formulation presented in the previous sections. Similar 320 

considerations apply for the evaluation of possible dynamic instability in the case of higher order 321 

modes of vibration. It is worth noting that the use of a response spectrum analysis provides results 322 

on the safe side because the values of such analysis are associated with the maximum values 323 

experienced by the system during the earthquake. 324 

At this regard two case studies have been considered: a cross-braced multi-storey building (4 and 11 325 

storeys) designed for seismic actions and an existing single-storey industrial building not designed 326 

for seismic actions. Each case study was subjected to response spectrum analyses, with the software 327 

MidasGEN [24], considering a design spectrum corresponding to the life safety limit state in 328 

accordance to Eurocode 8 [25] with soil class B, ground acceleration on rock ag equal to 0.270g, 329 

relative damping equal to 5%. The analyses were conducted considering a behaviour factor (q) 330 

equal to 4, i.e. in accordance with Eurocode 8 [25] for concentrically braced frames, in the first case 331 

study, and equal to 1.5, i.e. referring to existing industrial buildings not specifically designed for 332 

seismic loading, in the second case study. 333 

4.1. Case study 1: multi-storey building 334 

The case study shown in Figure 11 was selected as representative of cross-braced buildings 335 

designed for seismic actions. The response spectrum analysis of the whole building was considered 336 

and the effects of dynamic instability in the elements of the bracing system (columns and diagonals) 337 

were evaluated. For both the 4 and 11 storeys cases, the columns and the beams are made by 338 

HEM400 and HEA300 profiles respectively. Moreover, the columns of the ground floor of the 11 339 

storeys building are made by HEM600. Pinned connections are considered between the elements. 340 

The steel grade is S355 and the floor tributary mass is 71800kg. The diagonal elements, 5.83m 341 

long, are considered unloaded due to gravity (i.e. P0 = 0) and were designed based on the tension 342 

load resulting from a response spectrum analysis. 343 

Considering that the Eurocode 8 [25] prescribes that the non-dimensional slenderness, �̅�, must be 344 

limited between 1.3 and 2.0, a parametric analysis was carried out to evaluate the influence of �̅� on 345 

the distribution of points in the μ - 𝜗/2Ω plane. At this regard, multiple analyses were carried out by 346 

varying the steel profile of the diagonal elements in each analysis, therefore varying the values of �̅� 347 

and the working rates (Table 3). Among these, the profiles allowed by Eurocode 8 [25] are 348 

HEA140, HEA120, HEA100 and 2L90x90x6. The excitation coefficient (µ) (Eq. (7)) and the 349 

frequency ratio (𝜗/2W) were calculated after obtaining the load due to the earthquake (Pt) from the 350 

response spectrum analyses. The resulting points for the diagonal elements of each floor level are 351 



represented in Figure 12: the increase of the non-dimensional slenderness leads to an increase of 352 

both the frequency ratio and of the excitation coefficient. The latter is associated with the decrease 353 

of the Eulerian critical load (Pe).  354 

a)  b)  355 

c)  356 

Figure 11: Case study 1: a) building plan with bracing position highlighted in red; b) bracing system for 4 and 11 357 
storeys; c) finite element models for the two buildings. 358 

Table 3: Diagonal elements types considered in the parametric analysis. 359 
Note: Ω is the frequency of the 1st transversal mode of vibration of the diagonals considered as pinned elements; 𝜗 is the 360 

fundamental frequency of the building, which is supposed to be the frequency of load; WR is the working rate. 361 

4 storeys building  11 storeys building 

Profile 𝝀" Ω (Hz) 𝝑 (Hz) WR  Profile 𝛌" Ω (Hz) 𝝑 (Hz) WR 

HEA180 1.02 17.68 2.347 31.8%  HEA180 1.02 17.68 0.671 32.8% 

HEA140 1.33 13.69 2.009 44.2%  HEA140 1.33 13.69 0.608 42.3% 

HEA120 1.56 11.69 1.831 49.3%  HEA120 1.56 11.69 0.571 49.7% 

HEA100 1.88 9.68 1.697 53.7%  HEA100 1.88 9.68 0.541 57.7% 

2L90x90x6 1.76 9.41 1.686 53.4%  2L90x90x6 1.76 9.41 0.538 57.6% 

2L60x60x10 2.74 6.66 1.725 52.4%  2L60x60x10 2.74 6.66 0.547 55.5% 



L90x90x7 3.82 4.23 1.345 69.3%  L90x90x7 3.82 4.23 0.450 92.0% 

L80x80x10 4.92 3.70 1.470 63.2%  L80x80x10 4.92 3.70 0.484 77.0% 

L60x60x5 6.23 2.81 1.006 94.1%  L60x60x10 6.60 2.76 0.436 99.9% 

a) b)  362 

Figure 12: Evaluation of the influence of the profile of the diagonal elements in the μ - 𝜗/2Ω plane: 363 
a) 4 storeys building; b) 11 storeys building. 364 

Note: abscissa in logarithmic scale for sake of clarity. 365 

In all the considered cases, the points are associated with low frequency ratios, where no stability 366 

regions (Figure 6) are present beyond the elastic case (µ = 0.5), therefore an axial overload in such 367 

diagonal elements is not expected and the design is not affected. It is worth noting that, according to 368 

the results presented in the previous section, the design could be affected only for 𝜗/2W greater than 369 

0.18, i.e. only above such value it is possible to find stable regions beyond the static critical load, 370 

therefore possibly providing an overload in the compressed elements. 371 

A complete analysis of the bracing systems of the two case studies was carried out considering the 372 

HEA100 profile as diagonal elements, because such profile satisfied the Eurocode 8 slenderness 373 

requirements. Table 4 shows the frequency and the modal participation mass of the first two modes 374 

of vibrations, obtained from an eigenvalue analysis. Table 5 reports the values of Pt, i.e. the seismic 375 

load, for the first two fundamental modes obtained from the response spectrum analyses and the 376 

corresponding point in the μ - 𝜗/2Ω plane (Figure 13) for the bracing system with the highest 377 

loading rate. Even the columns of the bracing system are not affected by dynamic instability 378 

because they present very low 𝜗/2Ω ratios, about 0.004, and therefore static instability governs. 379 

Table 4: 1st and 2nd mode of vibration frequency and modal mass. 380 

4 storeys building  11 storeys building 

Mode Frequency (Hz) Modal mass  Mode Frequency (Hz) Modal mass 

1st 1.866 89.0%  1st 0.602 79.8% 

3rd 6.275 8.7%  3rd 1.936 13.5% 
 381 
  382 



Table 5: Load (Pt) on the bracing elements and coordinates of the stability plane. 383 

4 storeys   1st mode    2nd mode  

Level  Pt (kN) μ 𝝑/2Ω  Pt (kN) μ 𝝑/2Ω 

1  347.0 0.815 0.096  26.0 0.061 0.324 

2  268.0 0.629 0.096  0.3 0.001 0.324 

3  184.0 0.432 0.096  23.0 0.054 0.324 

4  101.0 0.237 0.096  26.0 0.061 0.324 

11 storeys   1st mode    2nd mode  

Level  Pt (kN) μ 𝝑/2Ω  Pt (kN) μ 𝝑/2Ω 

1  313.0 0.735 0.031  153.0 0.359 0.100 

2  274.0 0.644 0.031  130.0 0.305 0.100 

3  247.0 0.580 0.031  90.0 0.211 0.100 

4  226.0 0.531 0.031  45.0 0.106 0.100 

5  203.0 0.477 0.031  3.3 0.008 0.100 

6  177.0 0.416 0.031  46.0 0.108 0.100 

7  147.0 0.345 0.031  78.0 0.183 0.100 

8  114.0 0.268 0.031  92.0 0.216 0.100 

9  77.0 0.181 0.031  87.0 0.204 0.100 

10  38.0 0.089 0.031  63.0 0.148 0.100 

11  1.0 0.002 0.031  31.0 0.073 0.100 
 384 

a)  385 

b)  386 
Figure 13: Stability plane for the diagonal elements of Case study 1: a) 4 storeys building; b) 11 storeys building. 387 

Note: the number corresponds to the floor level; the shaded region corresponds to the envelope of the instability regions 388 
(series B1 and x = 1%); 1st and 2nd fundamental mode of vibration on the left and right side, respectively. 389 



4.2. Case study 2: industrial building 390 

The case study shown in Figure 14 was selected as representative of existing industrial buildings 391 

not specifically designed for seismic loading. The building is analysed to highlight possible 392 

dynamic instability particularly for the bottom chord of the truss elements in the out-of-plane 393 

direction. The columns are made by HEA260 elements, the truss is made by 2 L65x100x11 394 

elements for the top chord, 2 L80x80x8 elements for the bottom chord, and 2 L80x120x10 elements 395 

for the diagonal members, the lateral bracing system is made by 2 L80x120x10 elements. The steel 396 

grade is S235, the purlin length is 7.5 m and the roof unit mass is 55.8 kg/m2. 397 

a)  398 

b)  399 

Figure 14: Case study 2: a) building bracing dimensions; b) finite element model. 400 

The frequency of the fundamental mode of vibration, obtained from an eigenvalue analysis, is 401 

3.01Hz. The out-of-plane frequency of vibration of the truss bottom chord is w = 1.70Hz and the 402 

loads obtained from the response spectrum analyses are reported in Table 6 along with the 403 

corresponding points in the stability plot, which are graphically represented in Figure 15. Since the 404 

chord is composed by various elements, the average axial load is considered herein. From 405 

Figure 15 it is possible to note that the bottom chord of span B and possibly of span C might be 406 

affected by out-of-plane dynamic instability. To counteract this phenomenon, it is possible to add 407 

additional bracing elements connecting the bottom chords of subsequent frames as shown in 408 

Figure 16. The resulting points in the stability plots are shown in Figure 15 with grey circles. 409 

Regarding the diagonal elements and the columns of the vertical bracing system, the corresponding 410 



points in the instability plot associated with the maximum loaded elements are (0.387; 0.243) and 411 

(0.034; 0.183), respectively, which lay outside the region of dynamic instability. 412 

Table 6: Loads acting on the truss bottom chord, frequency (Ω) of the loaded beam, 413 
and coordinates of the points in the stability plane 414 

Span P0 (kN) Ω (Hz) Pt (kN) μ 𝝑/2Ω 

A -4.07 1.78 3.9 0.044 0.838 

B 6.97 1.54 14.4 0.218 0.968 

C 2.43 1.65 8.7 0.116 0.908 
 415 

 416 

Figure 15: Representation of the points of the lower chords of the truss members in Case study 2 for the 1st mode of 417 
vibration in the as-is conditions (in white circles) and after placing additional braces (in grey circles). 418 

Note: the letter corresponds to the span. The shaded region corresponds to the envelope of the instability regions 419 
obtained from the analyses (series B1 and x = 1%). 420 

 421 

Figure 16: Additional bracing elements (in red) to counteract dynamic instability 422 



5. CONCLUSIONS 423 

This paper investigated the phenomenon of dynamic instability of beams subjected to axial 424 

harmonic loading. Starting from the theoretical formulation proposed by Bolotin, a more refined 425 

definition of the instability regions was derived. This allowed highlighting conditions under which 426 

the beam could become unstable for loading values well below the Euler critical load and 427 

conditions under which the beam could be stable for loading values beyond the Euler critical load. 428 

The influence of the geometric and material non-linearity was specifically addressed by performing 429 

series of finite element analyses. The results showed that an increase of the initial imperfection 430 

leads to an increase of the unstable cases, while for an imperfection amplitude equal to 1/1000 of 431 

the beam length, the theoretical results are practically superimposed by the numerical solutions. 432 

When the plastic behaviour of the material was introduced, a small reduction of the unstable cases 433 

was observed for the 1st instability region, while for the higher order regions an increase of the 434 

unstable points was recorded. Such increase leads to a shift to the left of the instability regions (i.e. 435 

lower value of the axial load) and it is related to the plastic behaviour of the material, particularly 436 

when the lateral deflection demand in the case of elastic material is beyond the displacement 437 

associated with yielding in the case of plastic material. It is observed that particularly between the 438 

1st and 2nd instability regions, stable solutions are possible for axial loads higher than the static 439 

critical load. 440 

Finally, the possibility of dynamic instability in building type structures due to seismic loading was 441 

evaluated. It is possible to account for such phenomenon by means of response spectrum analyses: 442 

the variation of the axial load in the elements due to the earthquake is evaluated by considering 443 

single modes at the time. This load is considered corresponding to a harmonic excitation with 444 

angular frequency equal to the vibration mode. This allows defining a point in the stability plane for 445 

each element and verifying its possible instability. It is worth noting that adopting a response 446 

spectrum analysis provides results on the safe side because the values of such analysis represent the 447 

maximum values experienced by the system during the earthquake. 448 

At this regard two case studies were considered: a cross-braced multi-storey building (with 4 and 11 449 

storeys) designed for seismic actions and an existing single-storey industrial building not designed 450 

for seismic actions. The results showed that in the former case the dynamic instability does not 451 

occur. In the cross-bracing elements there are no cases where the axial load exceeds the static 452 

instability load therefore capacity design is not affected: all the diagonal elements would buckle for 453 

loads equal to the static critical loads, therefore without providing an overload in the compressed 454 

elements. In addition, in the columns of the bracing system there are no cases where dynamic 455 

instability occurs for lower than expected axial loads. This is due to the high frequency of vibration 456 



of the single elements compared to the frequency of the fundamental mode of vibrations of the 457 

whole building. It is worth noting that only the elements whose points in the stability plot have an 458 

ordinate greater than 0.18 could reach loads greater than the static critical loads. 459 

In the latter case, existing industrial buildings not designed to sustain seismic actions, some slender 460 

elements, with frequency of vibration compatible with the fundamental frequencies of the building, 461 

may experience dynamic instability with possible detrimental effects in the whole building 462 

response. For such conditions a retrofit solution based on the introduction of additional bracing 463 

elements was proposed. This solution allowed moving the unstable points in the stability plots 464 

towards stable regions. 465 

  466 



APPENDIX A 467 

The governing equation of the damped case is 468 

 𝑓33 + 2𝜀𝑓3 + 𝛺/(1 − 2𝜇 cos 𝜗𝑡)𝑓 = 0	 (A1) 

This equation could be related to a Mathieu-Hill equation. In fact, performing the substitution 469 

 𝑓(𝑡) = 𝑢(𝑡)	𝑒14$	, (A2) 

Deriving once and twice in respect to time, we obtain 470 

 𝑓3(𝑡) = 𝑢3(𝑡)	𝑒14$ − 𝜀	𝑢(𝑡)	𝑒14$	 

𝑓33(𝑡) = 𝑢33(𝑡)	𝑒14$ − 2𝜀	𝑢3(𝑡)𝑒14$ + 𝜀/	𝑢(𝑡)	𝑒14$ 
(A3) 

Substituting such equations into Eq. (A1): 471 

 𝑢33(𝑡)	𝑒14$ − 2𝜀	𝑢3(𝑡)𝑒14$ + 𝜀/	𝑢(𝑡)	𝑒14$ + 2𝜀𝑢3(𝑡)	𝑒14$  472 

 −𝜀	𝑢(𝑡)	𝑒14$ + 𝛺/(1 − 2𝜇 cos 𝜗𝑡)	𝑢(𝑡)	𝑒14$ = 0  (A4) 473 

and simplifying 474 

 𝑢33(𝑡)	𝑒14$ + (−𝜀/ + 𝛺/ − 2𝜇 𝛺/cos 𝜗𝑡)	𝑢(𝑡)	𝑒14$ = 0	 (A5) 

Multiplying by eεt and collecting the term Ω2: 475 

 
𝑢33(𝑡) 	+ 𝛺/ I1 −

𝜀/

𝛺/ − 2𝜇 cos 𝜗𝑡J 	𝑢
(𝑡) = 0	 (A6) 

To obtain the general form of the Mathieu-Hill equation, we substitute 476 

 𝑢(𝑡) = 𝑦 L56
/
M  (A7) 477 

By deriving twice, we obtain 478 

 
𝑢33(𝑡) =

𝜗/

4 𝑦
33 O
𝜗𝑡
2 P (A8) 

Substituting Eq. (A7) and Eq. (A8) in Eq. (A6), we obtain 479 

 𝜗/

4 𝑦
33 O
𝜗𝑡
2 P + 𝛺

/ I1 −
𝜀/

𝛺/ − 2𝜇 cos 𝜗𝑡J𝑦 O
𝜗𝑡
2 P 	= 0	 (A9) 

Finally, replacing the independent variable 𝑥 = 𝜗𝑡/2 and multiplying by 4/𝜗2, we obtain the 480 

general form of the Mathieu-Hill equation: 481 

 
𝑦33(𝑥) +

4𝛺/

𝜗/ I1 −
𝜀/

𝛺/ − 2𝜇 cos(2𝑥)J 𝑦
(𝑥) 	= 0	 (A10) 

Since this equation is related to a Mathieu-Hill equation, the solution follows the mathematical 482 

properties of such type of equations [20]. The boundaries of the odd and even instability regions are 483 

obtained from searching periodic solutions of period 2T and T, respectively: 484 

𝑓(𝑡) = ∑ L𝑎% sin
%7$
/
+ 𝑏% cos

%7$
/
M8

%9:,<,=  (A11) 485 

𝑓(𝑡) = 𝑏) + ∑ L𝑎% sin
%7$
/
+ 𝑏% cos

%7$
/
M8

%9/,>,?  (A12) 486 



By replacing one at a time Eq. (A11) and Eq. (A12) into Eq. (A10), the following systems of 487 

equations is obtained, respectively: 488 

⎩
⎪⎪
⎨

⎪⎪
⎧ L1 + 𝜇 − 7"

>@"
M 𝑎: − 𝜇𝑎< −

A
&
7
/@
𝑏: = 0

L1 − 𝜇 − 7"

>@"
M 𝑏: − 𝜇𝑏< +

A
&
7
/@
𝑎: = 0

…
L1 − %"7"

>@"
M 𝑎% − 𝜇(𝑎%1/ + 𝑎%B/) −

A
&
%7
/@
𝑏% = 0										(𝑘 = 3, 5, 7, … )

L1 − %"7"

>@"
M 𝑏% − 𝜇(𝑏%1/ + 𝑏%B/) +

A
&
%7
/@
𝑎% = 0									(𝑘 = 3, 5, 7, … )

 (A13) 489 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

𝑏) − 𝜇𝑏/ = 0

L1 − 7"

@"
M 𝑎/ − 𝜇𝑎> −

A
&
7
@
𝑏/ = 0

L1 − 7"

@"
M 𝑏/ − 𝜇(2𝑏) + 𝑏>) +

A
&
7
@
𝑎/ = 0

…
L1 − %"7"

>@"
M 𝑎% − 𝜇(𝑎%1/ + 𝑎%B/) −

A
&
%7
/@
𝑏% = 0										(𝑘 = 4, 6, 8, … )

L1 − %"7"

>@"
M 𝑏% − 𝜇(𝑏%1/ + 𝑏%B/) +

A
&
%7
/@
𝑎% = 0									(𝑘 = 4, 6, 8, … )

  (A14) 490 

where Δ is defined as: 491 

𝛥 = 2𝜋𝜉 (A15) 492 

In order to obtain the non-trivial solution of such systems, the determinant of the matrix constructed 493 

with the coefficients of the terms ak and bk must be zero. In this way and through some 494 

simplifications (i.e. by considering only 2x2 systems of equations), Bolotin [13] determined three 495 

regions of dynamic instability, as represented in Figure A1, which are included between the 496 

boundaries defined by the following equations: 497 

7
/@
= ?1 − 0.5(2𝜉)/ ± a𝜇/ − (2𝜉)/ + 0.25(2𝜉)> (A16) 498 

7
/@
= :

/
?1 − 𝜇/ ± a𝜇> − (2𝜉)/(1 − 𝜇/) (A17) 499 

7
/@
= :

<
?1 − C D⁄ F"±HF'1(/I)"(?> C:⁄ 1/ <⁄ F")

?> C:⁄ 1F"
 (A18) 500 

It is worth noting that stability regions for µ > 0.5 define conditions in which stability is guaranteed 501 

for axial loads exceeding the Euler critical load. 502 



a)  b)  503 

Figure A1: Regions of dynamic instability determined by Bolotin [13]: a) non-damped case; b) damped case (ξ = 1%). 504 
Note: the original region investigated by Bolotin corresponds to the shaded area. 505 

To refine the results obtained by Bolotin [13], the systems in Eq. (A13) and Eq. (A14) were 506 

extended to reach a matrix size 8x8 and 7x7 respectively; in this way, 7 instability regions were 507 

derived. It is worth noting that the greater the number of terms considered in Eq. (A11) and 508 

Eq. (A12), the greater the size of the matrix to be solved and the greater the number of instability 509 

regions and the accuracy of their boundaries. The matrix obtained from the system in Eq. (A13) and 510 

Eq. (A14) become respectively: 511 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 −

>D7"

>@"
−𝜇 0 0 0 0 0 − A

&
J7
/@

−𝜇 1 − /=7"

>@"
−𝜇 0 0 0 − A

&
=7
/@

0

0 −𝜇 1 − D7"

>@"
−𝜇 0 − A

&
<7
/@

0 0

0 0 −𝜇 1 + 𝜇 − 7"

>@"
− A
&
7
/@

0 0 0

0 0 0 A
&
7
/@

1 − 𝜇 − 7"

>@"
−𝜇 0 0

0 0 A
&
<7
/@

0 −𝜇 1 − D7"

>@"
−𝜇 0

0 A
&
=7
/@

0 0 0 −𝜇 1 − /=7"

>@"
−𝜇

A
&
J7
/@

0 0 0 0 0 −𝜇 1 − >D7"

>@" ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (A19) 512 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 −

<?7"

>@"
−𝜇 0 0 0 0 − A

&
?7
/@

−𝜇 1 − :?7"

>@"
−𝜇 0 0 − A

&
>7
/@

0

0 −𝜇 1 − >7"

>@"
0 − A

&
/7
/@

0 0
0 0 0 1 −𝜇 0 0

0 0 A
&
/7
/@

−2𝜇 1 − >7"

>@"
−𝜇 0

0 A
&
>7
/@

0 0 −𝜇 1 − :?7"

>@"
−𝜇

A
&
?7
/@

0 0 0 0 −𝜇 1 − <?7"

>@" ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (A20) 513 

 514 



APPENDIX B 515 

After evaluating the regions of dynamic instability, a conservative “no-instability region” for the 516 

elastic case was identified. In this region, the behaviour of the axially loaded beam is stable. This 517 

region is herein approximately defined by piecewise linear functions between known reference 518 

points. The first 2 points (abscissa and ordinate) are taken from Bolotin [13]: 519 

 

 𝜇 = h𝛥
𝜋

#
	= a2𝜉# 	; 				

𝜗
2𝛺 =

1
𝑘	 

(B1) 

where k is the number of the instability region, herein 1 and 2. 520 

Three possible conditions are distinguished as a function of the damping factor. 521 

Case 1, ξ < 3%. The no-instability region is bounded by a broken line passing through points A, B 522 

and C (Figure B1a, b). Where points A and B correspond to the origin points of the first 2 523 

instability regions, Eq. (21), and point C, of coordinates (0.5; 0), corresponds to the achievement of 524 

the Euler critical load in the static case. 525 

Case 2, ξ = 3%. An additional point D, of coordinates (0.5; 0.125), is introduced in addition to the 526 

aforementioned points A, B and C, since the value of the abscissa of the regions higher than the 7th 527 

is approximately equal to 0.5. Consequently, the DC segment will be a vertical segment 528 

(Figure B1c). 529 

Case 3, ξ > 3%. The point A, B, and C are the same as in the previous cases. The point D has an 530 

ordinate equal to 0.125, while the abscissa is determined by a linear regression relating μ to ξ: 531 

 𝜇 = 0.45 + 1.59	𝜉	 (B2) 

The corresponding no-instability region is shown in Figure B1d. 532 

a)  b)  533 

c)  d)  534 

Figure B1: No-instability regions: a) ξ = 0.5%; b) ξ = 2.0%; c) ξ = 3.0%; d) ξ = 7.0%. 535 



APPENDIX C 536 

The results of the analyses of model A, model B and model C with relative damping equal to 3% 537 

are reported in Figure C1, Figure C2 and Figure C3 respectively. 538 

 539 

 540 

 541 

Figure C1: Results of model A with damping equal to 3%: investigation of geometric non-linearity (series A1, A2, and 542 
A3 from top to bottom) for different durations of the analysis time (1s, 3s, and 10s from left to right). 543 

 544 



 545 

 546 

  547 

 548 

Figure C2: Results of model B with damping equal to 3%: investigation of material non-linearity (series B1, B2, B3, 549 
B4, and B5 from top to bottom) for different durations of the analysis time (1s, 3s, and 10s from left to right). 550 



 551 
Figure C3: Results of model C with damping equal to 3%: investigation of the influence of the slenderness ratio 552 

(series C1) for different durations of the analysis time (1s, 3s, and 10s from left to right). 553 
Note: the empty and filled circles are the unstable points of series C1 and B4 respectively. 554 

Figure C4 shows a close up of the results in the plane (μ; 𝜗/2Ω) between (0; 0) and (0.5;0.6). In 555 

that case the designer could directly enter the provided graphs with the (μ; 𝜗/2Ω) point 556 

corresponding to a specific element and loading conditions and determine the possibility of 557 

dynamic instability. The refinement is associated with an initial imperfection with amplitude 558 

Aimp = L/500 and both for a relative damping x = 1% and for x = 3%. These results can be seen as an 559 

extension of what presented in Appendix B for the elastic case. 560 

 561 

 562 

 563 



 564 

 565 

Figure C4: Investigation of the influence of geometry and material non-linearity on the no-instability region  566 
varying the P0 / Ppl ratio (0.0%, 16.3%, 60.6%, 74.2% and 84.5% from top to bottom) 567 

for different values of relative damping (1% on the left and 3% on the right). 568 
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