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Abstract—Decentralized Cloud Storage services represent a
promising opportunity for a different cloud market, meeting the
supply and demand for IT resources of an extensive community
of users. The dynamic and independent nature of the resulting
infrastructure introduces security concerns that can represent a
slowing factor towards the realization of such an opportunity,
otherwise clearly appealing and promising for the expected
economic benefits. In this paper, we present an approach enabling
resource owners to effectively protect and securely delete their
resources while relying on decentralized cloud services for their
storage. Our solution combines All-Or-Nothing-Transform for
strong resource protection, and carefully designed strategies
for slicing resources and for their decentralized allocation in
the storage network. We address both availability and security
guarantees, jointly considering them in our model and enabling
resource owners to control their setting.

Index Terms—Decentralized Cloud Storage; Secure deletion;
Slicing and allocation; Security; Availability; Replication.

I. INTRODUCTION

A clear recent trend in information technology is the rent by
many users and enterprises of the storage/computation services
from other parties. With cloud technology, what was in the past
managed autonomously now sees the involvement of servers,
often in an unknown location, immediately reachable wherever
an Internet connection is present. Today the use of these
Internet services typically assumes the presence of a Cloud
Service Provider (CSP) managing the service. There are a
number of factors that explain the current status. In general,
the procurement and management of IT resources exhibit
significant scale economies, and large-scale CSPs can provide
services at costs that are less than those incurred by smaller
players. Still, many users have an excess of computational,
storage, and network capacity in the systems they own and
they would be interested in offering these resources to other
users in exchange of a rent payment. In the classical behavior
of markets, the existence of an infrastructure that supports the
meeting of supply and demand for IT services would lead to
a significant opportunity for the creation of economic value
from the use of otherwise under-utilized resources.

This change of landscape is witnessed by the increasing
attention of the research and development community toward
the realization of Decentralized Cloud Storage (DCS) services,
characterized by the availability of multiple nodes that can be
used to store resources in a decentralized manner. In such ser-
vices, individual resources are fragmented in shards allocated
(with replication to provide availability guarantees) to different
nodes. Access to a resource requires retrieving all its shards.
The main characteristics of a DCS is the cooperative and

dynamic structure formed by independent nodes (providing a
multi-authority storage network) that can join the service and
offer storage space, typically in exchange of some reward.
This evolution has been facilitated by blockchain-based tech-
nologies providing an effective low-friction electronic payment
system supporting the remuneration for the use of the service.
On platforms such as Storj [1], SAFE Network Vault [2], [3],
IPFS [4], and Sia [5], users can rent out their unused storage
and bandwidth to offer a service to other users of the network,
who pay for this service with a network crypto-currency [6].

However, if security concerns and perception of (or actual)
loss of control have been an issue and slowing factor for
centralized clouds, they are even more so for a decentralized
cloud storage, where the dynamic and independent nature of
the network may hint to a further decrease of control of the
owners on where and how their resources are managed. Indeed,
in centralized cloud systems, the CSP is generally assumed to
be honest-but-curious and is then trusted to perform all the op-
erations requested by authorized users (e.g., delete a file when
requested by the owner) [7]. The CSP is discouraged to behave
maliciously, since this would clearly impact its reputation. On
the contrary, the nodes of a decentralized system may behave
maliciously when their misbehavior can provide economic
benefits without impacting reputation (e.g., sell the content
of deleted files). Client-side encryption typically assumed in
DCSs provides a first crucial layer of protection, but it leaves
resources exposed to threats, especially in the long term. For
instance, resources are still vulnerable in case the encryption
key is exposed, or in case of malicious nodes not deleting
their shards upon the owner’s request to try reconstructing the
resource in its entirety.

Protection of the encryption key is therefore not sufficient in
DCS scenarios, as it remains exposed to the threats above. A
general security principle is to rely on more than one layer of
defense. In this paper, we propose an additional and orthogonal
layer of protection, which is able to mitigate these risks.

On the positive side, however, we note that the decentralized
nature of DCS systems also increases the reliability of the
service, as the involvement of a collection of independent
parties reduces the risk that a single malfunction can limit
the accessibility to the stored resources. In addition to this, the
independent structure characterizing DCS systems - if coupled
with effective resource protection and careful allocation to
nodes in the network - makes them promising for actually
strengthening security guarantees for owners relying on the
decentralized network for storing their data.

In this paper, we present a solution to enable resource



2

owners to securely store their resources in DCS services, to
share them with other users, while still being able to securely
delete them. Our contribution is threefold. First, leveraging
the protection guarantees offered by All-Or-Nothing-Transform
(AONT), we devise an approach to carefully control resource
slicing and allocation to nodes in the network, with the goal
of ensuring both availability (i.e., retrieval of all slices to
reconstruct the resource) and security (i.e., protection against
malicious parties jointly collecting all the slices composing
a resource). The proposed solution also enables the resource
owners to securely delete their resources when needed, even
when some of the nodes in the DCS misbehave. Second,
we investigate different strategies for slicing and distributing
resources across the decentralized network, and analyze their
characteristics in terms of availability and security guarantees.
Third, we provide a modeling of the problem enabling owners
to control the granularity of slicing and the diversification
of allocation to ensure the aimed availability and security
guarantees. We demonstrate the effectiveness of the proposed
model by conducting several experiments on an implementa-
tion based on an available DCS system. Our solution provides
an effective approach for protecting data in decentralized cloud
storage and ensures both availability and protection respond-
ing to currently open problems of emerging DCS scenarios,
including secure deletion. In fact, common secret sharing so-
lutions (e.g., Shamir [8]), while considering apparently similar
requirements are not applicable in scenarios where the whole
resource content (and not simply the encryption key) needs
protection, because of their storage and network costs (e.g.,
each share in Shamir’s method has the same size as the whole
data that has to be protected).

Outline. The remainder of the paper is organized as follows.
Section II introduces the basic concepts. Section III defines the
properties of a decentralized allocation function with respect
to replication and protection. Section IV discusses slicing
and allocation strategies. Section V illustrates availability and
security guarantees and discusses the setting of parameters
guiding slicing and allocation. Section VI illustrates the im-
plementation of our approach on a real DCS service and
presents experimental results. Section VII discusses related
work. Finally, Section VIII concludes the paper. The proofs
of theorems are provided in Appendix A.

II. BASIC CONCEPTS AND SCENARIO

The basic building block enabling the development of our
solution is the application, at the client-side, of an All-Or-
Nothing-Transform (AONT) encryption mode that transforms
resources for their external storage. This mode requires the use
of an encryption key. The encryption driven by the key repre-
sents the primary protection, and the use of AONT encryption
mode further strengthens security. An AONT-encryption mode
transforms a plaintext resource (original content in whatever
form) into a ciphertext, with the property that the whole result
of the transformation is required to obtain back the original
plaintext. AONT guarantees in fact complete interdependence
(mixing) among the bits of the encrypted resource in such
a way that the unavailability of a portion of the encrypted
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Fig. 1. An example of application of Mix&Slice

resource prevents the reconstruction of any portion of the
original plaintext. A party having access to a portion of
the encrypted resource (but not to the encrypted resource in
its entirety): i) if knowing the encryption key, it will not
be able to reconstruct any portion of the resource (i.e., it
will not be able to derive any information from the AONT-
encrypted portions it has; the only option would be to attempt
a brute force attack on the possible configurations of the
missing portions, but their possible large size makes this attack
unfeasible); ii) if not knowing the encryption key, it will not
be able to perform brute-force attacks for guessing such a
key, as any key (even the correct one) will be ineffective
if not applied to the complete resource. AONT protection
schemes can be built with the use of common cryptographic
functions, like symmetric encryption and hash functions. An
example of AONT scheme that guarantees complete mixing,
which has also been used in the implementation of our
prototype, is Mix&Slice [9]. Intuitively, Mix&Slice works by
applying different rounds of encryption, each operating on
a carefully designed combination of the bits resulting from
the previous round. With Mix&Slice, i rounds of encryption
working on blocks including b mini-blocks each, guarantee
complete mixing of a resource composed of bi mini-blocks.
Figure 1 illustrates an example of mixing with two rounds
of encryption. The first round mixes contiguous mini-blocks,
while the second round mixes mini-blocks representatives of
the different computations in the first round, providing a
mixing of the whole resource content (as visible from the
pattern-coding in the figure). Mix&Slice guarantees that each
bit in the encrypted resource depends on the value of each
bit in its plaintext representation. In our context, the use
of AONT guarantees protection to the individual slices (and
shards) composing the resource, and therefore to the resource
itself (in its entirety as well as any of its portions). In fact,
AONT makes each portion of the resource needed, in terms
of information theory, to reconstruct any of the portions of the
resource. The protection is then provided by the absence of
information content.

Figure 2 illustrates our reference scenario. The focus of
this paper is the design of proper slicing of resources and
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the allocation of the produced slices to different nodes in the
DCS system. Note that in the paper we use the term slicing to
refer to the cutting of a resource and the term slices to refer
to the result of such a process. A slice is therefore a chunk of
the resource and represents a unit of allocation, in contrast to
a shard that represents a portion of the resource allocated to a
node (a shard can include several slices). Our approach focuses
on slicing and allocation and is agnostic with respect to the
specific AONT technique to be used, as long as the aimed
strong protection guarantees are ensured, and with respect to
the specific DCS adopted.

III. ALLOCATION PROPERTIES

In our approach, the slicing of the resources into several
slices to be distributed at the different nodes is guided by
the availability and protection properties that need to be
guaranteed. Availability (despite nodes failure or temporary
unreachability) is provided through replication, security is
provided through protection against malicious coalitions. Ma-
licious nodes (and coalitions thereof) are interested in making
the resource unavailable, by not returning the slices of the
resource they store, or in providing access to a resource even
after its deletion, by not removing the slices of the resource
they store and returning such slices to (not authorized) users
who pay for it. Before addressing slicing, we then character-
ize the replication and coalition resistance properties of the
distribution of a resource.

We assume a (transformed) resource that has undergone
AONT encryption (as described in the previous section) at the
client side. For simplicity, we will omit such an explicit remark
on transformation and we will simply use the term resource
to denote an AONT-encrypted resource. Also, we assume a
resource to be composed of different slices, for distribution in
a DCS. We will address the problem of producing such slices
in Section IV.

We model a resource as a set S = {s1, . . . , ss} of slices
to be allocated to the nodes, denoted N , of the DCS. The
following definition formalizes slice allocation.

Definition 1 (Allocation function): Let S be a set of slices
composing a resource and N be a set of nodes. An allocation
function ϕ : S → 2N \ ∅ assigns each slice si ∈ S to a set of
nodes ϕ(si) = Ni ⊆ N , Ni 6= ∅.

The allocation function dictates how slices are allocated
to nodes in the DCS. The consideration of sets of nodes (in
contrast to individual nodes) in the co-domain accommodates
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Fig. 3. An example of a minimal 3-protected and 2-replicated allocation
function

replication. The exclusion of the empty set of nodes ensures
lossless distribution (i.e., each slice is allocated to at least
one node). Figure 3 illustrates an example of an allocation
function, considering a resource split into ten slices (S =
{s1, . . . , s10}) allocated to five nodes (n1, . . . , n5) in the DCS
(nodes not used in the allocation are not reported in the figure).
The figure has a row for each node and a column for each slice.
The allocation of a slice to a node is represented by a gray
box at the intersection between the row representing the node
and the column representing the slice. Empty boxes with a
dotted frame represent the fact that the slice is not allocated
to the node. For example, ϕ(s1) = {n1, n2}.

We identify two main properties of an allocation, character-
izing the availability, provided by replication, and the protec-
tion against possible malicious coalitions of nodes, provided
by the diversification of the allocation.

We characterize availability provided by replication in terms
of the number of replicas maintained in the system. While
in principle the number of replicas maintained for each slice
can differ, we assume the same number of replicas is used
for all the slices. This derives from the fact that we assume
that nodes are not associated with individual reliability profiles
(Section V). Since all slices are needed to reconstruct the
resource, using fewer replicas for any of the slices would
decrease the availability of the resource, which will be dictated
by such a lower bound. The following definition formalizes the
replication degree of an allocation function.

Definition 2 (r-Replicated allocation function): Let S be
a set of slices composing a resource, N be a set of nodes,
and ϕ be an allocation function. Function ϕ is r-replicated iff
∀si ∈ S, |ϕ(si)| ≥ r.

For instance, the allocation function in Figure 3 is 2-
replicated, as two copies are maintained for each slice.

We characterize the protection offered by an allocation in
terms of the minimum number of nodes required to reconstruct
a resource, as formalized by the following definition.

Definition 3 (k-Protected allocation function): Let S be a
set of slices composing a resource, N be a set of nodes, and
ϕ be an allocation function. Function ϕ is k-protected iff for
each Ni ⊂ N , with |Ni| ≤ k, ∃sj ∈ S s.t. ϕ(sj) ∩ Ni = ∅.

A k-protected allocation function guarantees distribution of
slices to nodes in such a way to dictate the cooperation of no
less than k + 1 nodes to collect all the slices composing the
resource (and hence enabling retrieving its plaintext). In other
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Fig. 4. An example of 2-replicated allocation function that is not 3-protected

words, a k-protected allocation function guarantees protection
of the resource against malicious (i.e., colluding) behavior of
up to k nodes. In fact, with a k-protected allocation function,
for each coalition of k nodes in N , there is at least a slice
that is not stored at any of the nodes in the coalition. Hence,
such a coalition can neither decrypt the resource with a brute-
force attack, nor prevent its deletion. The allocation function
in Figure 3 is 3-protected: any subset of 3 out of the 5
nodes misses at least a slice. For instance, coalition {n1,n2,n3}
misses slice s10, while coalition {n1,n2,n4} misses slice s9. On
the contrary, the allocation function in Figure 4, on the same
slices and nodes, is not 3-protected (but only 2-protected):
coalition {n1,n3,n4} jointly possesses all the slices.

We refer to an allocation function that is r-replicated,
according to Definition 2, and k-protected, according to Def-
inition 3, as a (k, r)-allocation.

Definition 4 ((k, r)-Allocation): Let S be a set of slices
composing a resource, N be a set of nodes, and ϕ be an
allocation function. Function ϕ is a (k, r)-allocation iff it is
k-protected and r-replicated.

According to Definitions 2 and 3, a (k, r)-allocation is
also a (k′, r′)-allocation, for any r′ ≤ r and any k′ ≤ k.
In fact, trivially, an allocation function providing r replicas
also provides r′ < r replicas. Analogously, an allocation
function protecting a resource from coalitions of k nodes also
protects the resource from coalitions of k′ < k nodes. Among
all (k, r)-allocations, we are interested in identifying those
for which k and r represent the highest values satisfying
the availability and protection properties (i.e., satisfying the
properties in a minimal way). We call such allocation functions
minimal, as formalized by the following definition.

Definition 5 (Minimal (k, r)-allocation): Let S be a set of
slices composing a resource, N be a set of nodes, and ϕ be
a (k, r)-allocation. Function ϕ is minimal iff:

1) it is not (k + 1)-protected;
2) ∀si ∈ S, |ϕ(si)| = r.

According to Definition 5, a minimal (k, r)-allocation is an
allocation that guarantees protection against coalitions of up
to k (but no more) nodes and that uses exactly r replicas. The
allocation function in Figure 3 is an example of minimal (3, 2)-
allocation. In the following, we will restrict our attention to
minimal allocation functions and, when talking about a (k, r)-
allocation, we will implicitly assume such minimality.

IV. SLICING AND ALLOCATION STRATEGIES

In the absence of replication, producing an allocation that
guarantees k-protection, that is, a (k, 1)-allocation, is straight-
forward: it is sufficient to split the resource into k + 1 slices
and allocate each slice to a different node. When considering
replication, different approaches can be taken for allocation,
differing in the granularity of slicing and in how allocation
diversifies the storage at different nodes. In the following,
we discuss these options. In the discussion, in addition to
parameters k and r introduced before, we will use parameters
s, denoting the number of slices in which a resource is
split, and n, denoting the number of nodes to be involved
in the allocation of a resource. Different approaches vary in
the number s of slices to be considered and in the number
n of nodes to be involved for providing a (k, r)-allocation.
We note that, with respect to nodes, the only parameter to
be considered in the allocation strategies is the number n
of nodes to be involved (the specific nodes to be involved
can be selected randomly). We identify and study the be-
havior of two approaches for producing a (k, r)-allocation.
The first approach aims to minimize the number of slices
(Min slices), while the second aims to minimize the number
of nodes (Min nodes). We analyze these two approaches as
they represent the two extremes with respect to granularity of
slicing and diversification of allocation. Their analysis permits
to highlight the characteristics of fine-grained (Min nodes) and
coarse-grained (Min slices) slicing, and can also represent a
reference for intermediate configurations.

A. Minimizing the number of slices

We start noting that the number s of slices involved for
guaranteeing a (k, r)-allocation must be such that s ≥ k + 1.
In fact, there should be at least k + 1 slices to guarantee k-
protection, as formally captured by the following theorem.

Theorem 1 (Minimum number of slices): Let k be a protec-
tion parameter and r be a replication factor. The number s of
slices necessary to define a (k, r)-allocation is s ≥ k + 1.

A simple approach for determining a (k, r)-allocation ex-
tends the natural approach of producing k+1 slices, by simply
considering their replication at different nodes. Such an ap-
proach is characterized by a coarse-slicing, since minimizing
the number of slices clearly entails a larger size for them, and
by consistent replication (i.e., nodes have no intersection or
complete intersection of stored slices).

We observe that a (k, r)-allocation function using the min-
imum number (s = k + 1) of slices implies that:

1) a node maintains at most one slice, that is, |ϕ−1(ni)| =
1, ∀ni ∈ N involved in the allocation;

2) the number of nodes involved in the allocation is exactly
r times the number of slices, that is, n = r · (k + 1).

The first observation derives from the fact that, since there
are only k + 1 slices, placing more than one slice on a
node would imply the existence of a set of k nodes able to
reconstruct the resource and therefore would not guarantee k-
protection anymore. The second observation naturally derives
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Fig. 5. An examples of (3, 2)-allocation that minimizes the number of slices

from the first, considering that every slice needs to be repli-
cated r times. The following theorem proves the observations
above.

Theorem 2: Let k be a protection parameter and r be a
replication factor. A (k, r)-allocation ϕ : S → 2N \ ∅ that
adopts the minimum number of slices s = k + 1 is such that:

1) |ϕ−1(ni)| = 1, ∀ni ∈ N involved in the allocation;
2) the number of nodes involved in the allocation is n =

r · (k + 1).

As an example, a (3, 2)-allocation using the minimum
number of slices would imply splitting the resources into 4
(= 3 + 1) slices, generating 2 copies of each slice, to be
distributed at 8 different nodes. Figure 5 illustrates an example
of allocation function enforcing this.

A (k, r)-allocation that uses the minimum number of slices
s = k + 1 well resists to failures. Indeed, k + 1 nodes out of
r · (k + 1) are sufficient to reconstruct the resource content,
as long as one replica of each slice is available. However, the
number of nodes used by such an allocation function quickly
grows with k and r. For instance, a (10, 5)-allocation would
need 55 (= 5 · (10 + 1)) nodes.

B. Minimizing the number of nodes

At the other end of the spectrum of possible strategies for
defining and distributing slices to guarantee a (k, r)-allocation,
there are functions minimizing the number of nodes to be
involved in the distribution (and deriving the number of slices
in which the resource needs to be split based on this).

A trivial lower bound on the number of nodes that need
to be involved in a (k, r)-allocation is n ≥ max(k + 1, r),
since there should be at least r nodes to hold r replicas and
at least k + 1 nodes to guarantee k-protection. The minimum
number of nodes to be involved to guarantee (k, r)-allocation
is actually higher than that as it needs to be at least the sum of
the protection and replication parameters (k and r), as stated
by the following theorem.

Theorem 3 (Minimum number of nodes): Let k be a protec-
tion parameter and r be a replication factor. The number n of
nodes necessary to define a (k, r)-allocation is n ≥ k + r.

The minimum number of nodes stated by Theorem 3 derives
from two simple observations. First, to guarantee k-protection,

for each coalition of k nodes, there must exist at least one
slice that is not stored at any of the nodes in the coalition.
Second, to provide r-replication, such a slice should be stored
at (at least) r nodes that are not in the coalition. Hence, at
least k+ r nodes need to be involved. As we will illustrate in
the following, k + r nodes, besides been necessary, are also
sufficient to define a (k, r)-allocation.

While using the minimum number of slices applies a
coarse slicing with consistent replication, using the minimum
number of nodes applies a fine-grained slicing with diversified
replication across nodes. Intuitively, instead of splitting the
resource into slices and allocating to each node a single
slice, minimizing the number of nodes requires slicing the
resource into more fine-grained slices and allocating the slices
to nodes in a diversified manner, to guarantee that no set of
k nodes jointly possesses all the slices. The definition of the
allocation requires then to identify the number of slices in
which a resource needs to be split, which must be sufficient to
distribute the r replicas to nodes while ensuring k-protection.
The minimum number of slices needed for ensuring that no
set of k nodes is able to reconstruct the resource when using
k+ r nodes, clearly happens when any set of k nodes misses
exactly one slice (which, given r-replication, would instead
be stored at the r nodes not belonging to the set) and no two
coalitions miss the same slice. In fact, if two sets of k nodes
miss the same slice, such a slice could not have r replicas
when using only k + r nodes. The number of required slices
can then be identified as the number of coalitions of k nodes
out of k+r, that is

(
k+r
k

)
, as formally proved by the following

theorem.
Theorem 4: Let k be a protection parameter and r be

a replication factor. Each (k, r)-allocation that adopts the
minimum number of nodes n = k + r uses s =

(
n
k

)
=
(
k+r
k

)
slices.

A (k, r)-allocation that uses k+r nodes and
(
k+r
k

)
slices has

two interesting properties. The first one, already noted, is that
any coalition of k nodes misses exactly one slice. The second
one, deriving from the fact that the missing slice is different for
different coalitions, is that any set of k+1 nodes is sufficient
to reconstruct the resource (differently from the Min slices
approach where at least k+1 nodes are needed to reconstruct
the resource but not any set of k + 1 nodes guarantees that).
The following theorem proves these two properties.

Theorem 5: Let k be a protection parameter and r be
a replication factor. Each (k, r)-allocation that adopts the
minimum number of nodes n = k + r and s =

(
k+r
k

)
slices

guarantees that:
1) ∀Ni ⊂ N with |Ni| = k, ∃!sj s.t. ϕ(sj) ∩ Ni = ∅;
2) ∀Ni ⊆ N with |Ni| = k + 1,

⋃
nj∈Ni ϕ

−1(nj) = S .

A (k, r)-allocation that minimizes the number of nodes can
be obtained by assuming N to comprise k + r nodes and
proceeding as follows. Let 2Nk = {Ni ∈ 2N : |Ni| = k}
be all subsets of k nodes in N . For each slice si ∈ S, i =
1, . . . ,

(
k+r
k

)
, ϕ(si) = {N \ {Ni} : with Ni∈2Nk }. Intuitively,

for each slice si, ϕ(si) selects a coalition of k nodes that
misses si and allocates slice si to all the other nodes. This
guarantees that each coalition (Ni) of k nodes misses at
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least one slice (si), providing k-protection. Slice si, which
represents the missing slice for coalition Ni, is stored at all
the other n − k = r nodes in N , providing r-replication.
Intuitively, in a (k, r)-allocation using the minimum number
of nodes, no two slices are allocated exactly to the same set of
nodes (i.e., ∀si, sj ∈ S , ϕ(si) 6=ϕ(sj)). In fact, the possible
subsets of r nodes in N is

(
k+r
r

)
and

(
k+r
k

)
=
(
k+r
r

)
.

For example, a (3, 2)-allocation using the minimum number
of nodes requires n = k+r = 3+2 = 5 nodes and the use of
s =

(
k+r
k

)
=
(
5
3

)
= 10 slices. Figure 3 illustrates an example

of (3, 2)-allocation distributing 10 slices over 5 nodes. The
allocation is a (3, 2)-allocation since it replicates each slice
twice while guaranteeing that no coalition of 3 nodes possesses
all the slices. More precisely, any coalition of 3 nodes misses
exactly one slice and the missing slice is different for any
of such coalitions. For instance, coalition {n1, n2, n3} misses
slice s10, while coalition {n1, n2, n4} misses slice s9.

C. Discussion

We have discussed two alternative strategies for produc-
ing a (k, r)-allocation, aimed to minimize the number of
slices (Min slices, with coarse-grained slicing and consistent
replication) and to minimize the number of involved nodes
(Min nodes, with fine-grained slicing and diversified replica-
tion). When no replication is used (i.e., r = 1) these two
strategies are equivalent, as each would imply the use of the
same number of slices s = k + 1 and nodes n = k + 1.
On the contrary, when replication is adopted (i.e., r > 1) the
two strategies differ in the number of nodes n and slices s
used and in the distribution of slices to nodes. Besides these
two extreme configurations, the resource owner can decide to
adopt other allocation strategies. The analysis presented in this
section can then represent a reference for the definition and
analysis of intermediate configurations.

We note that the structure of the Min nodes strategy has
a correspondence with secret sharing [8]. In (m,d) secret
sharing, the goal is to build d shares of a secret such that at
least m of them are necessary to reconstruct a secret. Given
a Min nodes (k, r)-allocation, with k + r shares, the use of
a (k + 1, k + r) secret sharing scheme would then satisfy
the requirement that at least k + 1 nodes have to cooperate
to access the resource, tolerating the loss of up to r − 1
nodes. Compared to the well-known Shamir’s technique for
secret sharing [8], the approach we propose shows a signifi-
cant advantage with respect to storage and network capacity.
In terms of computational cost, Shamir’s technique requires
to identify the roots of a polynomial, while our approach
requires the application of symmetric encryption algorithms.
The performance of symmetric encryption algorithms is so
high, particularly for algorithms implemented in hardware by
the CPU, that the potentially simpler computational structure
of Shamir’s technique does not provide an advantage and turns
out to be slower when considering large resources. However,
the computational cost is in any case a marginal element in this
domain. In terms of storage, Shamir’s approach offers security
if each of the shares has the same size as the secret. With a
(k+1, k+r) secret sharing scheme, there is therefore the need

to store in the network k + r times the amount of plaintext
data, whereas our solution is characterized by the replication
factor r. In terms of the minimum amount of data that has to
be accessed by the owner, Shamir’s solution asks the owner
to read k + 1 times the size of the plaintext, whereas our
technique, if the storage nodes support access to portions of
the resource, does not require to access more than the size of
the plaintext. We can then conclude that Shamir’s technique,
which is quite interesting for domains where the secret has
a small size (e.g., encryption keys), is not convenient in the
domain considered in this work. When Shamir’s method is
used to protect only the encryption key and then encryption is
used to protect the resource, Shamir’s method can be assumed
to be only a key management strategy, making encryption of
the resource the only protection measure, without offering the
level of protection provided by AONT.

Note also that, for simplicity, we have assumed that the
owner can arbitrarily split her resource as needed for the
definition of a (k, r)-allocation. However, thanks to its flexi-
bility, our approach can be adopted also when the encrypted
resource is already organized in chunks that cannot be split for
allocation (e.g., blocks resulting from the AONT algorithm
adopted), or in general when slicing is constrained. Indeed,
even if in the discussion, for simplicity, we consider slices
of equal size, our approach can be adopted also if the size
varies. Also, slices can contain non-contiguous chunks of the
resource. Clearly, the number of chunks should be sufficient
for the definition of a (k, r)-allocation (e.g., k + 1 and

(
n
k

)
in our two alternative configurations). If the resource includes
fewer chunks, it needs to be padded. If the resource includes
more chunks than necessary, the resource owner can combine
the chunks in s slices and apply the chosen allocation function
over these slices. As an example, to define a (3,2)-allocation
for a resource organized in 20 chunks using 5 nodes, chunks
can be arbitrarily combined to identify 10 slices for allocation.
Alternatively, k-protection and r-replication can be obtained
by considering each chunk as a different slice and interpreting
the allocation function as periodic in s, or simply by randomly
allocating the chunks after the first s (which are the ones
necessary to guarantee k-protection). For instance, a (3,2)-
allocation for a resource with 20 chunks using 5 nodes can be
obtained by applying the allocation function in Figure 3 twice
(on slices s1, . . . , s10 and s11, . . . , s20), or by using it for slices
s1, . . . , s10 while arbitrarily allocating slices s11, . . . , s20 at
two nodes each.

V. AVAILABILITY AND PROTECTION
GUARANTEES

Parameters r and k introduced in the previous section
characterize the degree of replication and of protection against
malicious coalitions of nodes. Such parameters provide a clean
and precise modeling and allow reasoning about properly
setting the number of slices and the number of nodes to be
involved in the allocation. The setting of k and r to provide
given security and availability guarantees clearly depends on
the specific characteristics of the network. For instance, in
a stable network a low number of replicas may suffice to
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provide high availability, while in a highly dynamic and
non-resilient network a higher number of replicas should
be used to enjoy the same guarantee. In the same vein,
actual protection against possible exposure of a resource to
malicious coalitions depends on the nature of nodes involved
in the allocation. Consistently with these observations, we
note that a natural way for the resource owner to express
and reason about availability and protection guarantees is the
probability of the resource to become unavailable and the
probability of a coalition of malicious nodes to jointly possess
all the resource slices. In this section, we illustrate how to
derive proper r and k settings to be then used for splitting
resources into slices and for slices allocation, starting from the
aimed guarantee of availability and security expressed in terms
of such probabilities. Clearly, the probability of a resource
to become unavailable, or exposed to malicious coalitions,
depends on the probability of individual nodes to become
unavailable or behaving maliciously. We then introduce the
probability of a single node to fail, and hence to become
unavailable, denoted pu, and the probability of a node to
behave maliciously, and hence to participate in a malicious
coalition compromising protection, denoted pc. We assume,
as common in decentralized systems, the probability pu of
failure to be the same for all nodes and the failure of any node
to be not influenced by the failure of the other nodes. This
assumption enables a clean modeling, which can be taken as
a reference for reasoning on different probability distributions.
Since the selection of storage nodes is driven by a pseudoran-
dom function, we also consider a uniform probability pc of
compromise and assume independence of compromise events
on different nodes. We introduce the probability of a resource
to become unavailable, denoted Pu, and of being exposed
to a malicious coalition, denoted Pc, when using a (k, r)-
allocation. The analysis will then guide the identification of
the values for k and r to be used to guarantee that Pu and
Pc do not exceed a given threshold. We discuss separately the
Min slices and Min nodes allocation strategies introduced in
the previous section, which, as we will see, exhibit a different
behavior with respect to availability and security guarantees.

A. Min slices allocation

Using a (k, r)-allocation with the minimum number of
slices, unavailability of a resource happens when, for any of
the k + 1 slices composing the resources, all the r nodes
storing the replica of the slice fail. The probability of such
an event to happen is Pu = 1 − (1 − (pu)

r)k+1, where
(1 − (pu)

r) is the probability that one of the r replicas of a
slice is available and, for the assumption on the independence
of the failure events, (1−(pu)

r)k+1 is the probability that one
replica of each of the k + 1 slices is available. In the same
vein, the resource becomes exposed (and hence a compromise
happens and deletion cannot be guaranteed) when a coalition
of malicious nodes collectively possesses all the k + 1 slices,
that is, when the coalition contains k+1 nodes each possessing
a different slice. The probability of such an event to happen is
Pc = (1−(1−pc)r)k+1, where (1−pc)r is the probability that
one replica is stored on a node that is not part of a coalition

and, consequently, 1 − (1 − pc)
r is the probability that one

replica is exposed. Since such an exposure must involve all
the k + 1 slices, the probability that a coalition possesses all
the slices is (1− (1−pc)

r)k+1. The following theorem proves
such observations.

Theorem 6: Given a set S of slices composing a resource, a
set N of nodes with probability of failure pu and probability
of being compromised pc, and a (k, r)-allocation using the
minimum number of slices:
• Pu = 1− (1−(pur))k+1

• Pc = (1− (1− pc)
r)k+1

Figure 6 illustrates how k and r affect the values of Pu

(Figure 6(a,c)) and Pc (Figure 6(b,d)), considering different
values of pu and pc, respectively. The values considered for pu
and pc are 0.2, 0.4, 0.6, and 0.8. These values, extremely pes-
simistic with respect to what can be expected in real systems,
have been chosen to study the behavior of the probabilistic
formulas. Figure 6(a) reports the values of Pu assuming a
fixed number r = 5 of replicas and varying k between 1
and 25. Figure 6(c) reports the values of Pu assuming a fixed
k = 5 and varying the number r of replicas between 1 and 25.
Figures 6(b,d) report the values of Pc in the same settings of
Figures 6(a,c). As it can be seen from Figure 6(a), Pu increases
as the value of k increases, because the number of nodes used
in the allocation increases and therefore the probability of
availability of a larger number of slices decreases. Indeed, the
number of nodes necessary to reconstruct a resource grows
with k (it is k + 1), and the probability of availability of
all the nodes necessary to reconstruct the resource decreases.
However, Pu remains low if the failure probability of a single
node pu is low. Probability Pu instead decreases as the value of
r increases (Figure 6(c)), because each slice will be stored on
a larger number of nodes, reducing the risk of unavailability.
Figure 6(b) shows that Pc decreases as k increases because the
number of nodes that should be part of a coalition increases,
meaning that the probability of forming a coalition decreases.
Probability Pc increases as r increases (Figure 6(d)), because
the number of replicas of each slice increases and therefore
also the probability that one replica is stored on a compromised
node increases.

B. Min nodes allocation

Using a (k, r)-allocation with the minimum number of
nodes, the unavailability of the resource occurs when any
combination of r (or more) nodes becomes unavailable. In
fact, regardless of the slices that those nodes store, such
an event causes at least one slice to be unavailable. The
probability Pu that a resource becomes unavailable is then

Pu =
k+r∑
i=r

(
k+r
i

)
(pu)

i(1 − pu)
k+r−i, where the binomial

coefficient
(
k+r
i

)
is the number of all possible combinations

of i nodes over k+r, with i varying in the range r, . . . , k+r,
that can be unavailable; (pu)i is the probability that i nodes
are unavailable; and (1− pu)

k+r−i is the probability that the
remaining nodes (i.e., k+r−i) are available. In the same vein,
any coalition of k+1 nodes causes an exposure of the resource,
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regardless of the slices they store. Relying on the minimum
number of nodes, in fact, implies that any coalition of k + 1
nodes possesses all the slices (Theorem 5). The probability Pc

of a compromise is then Pc =
k+r∑

i=k+1

(
k+r
i

)
(pc)

i(1−pc)
k+r−i,

where the binomial coefficient
(
k+r
i

)
is the number of all

possible coalitions of i nodes over k+r nodes, with i varying
in the range k + 1, . . . , k + r; (pc)i is the probability that i
nodes form a coalition; and (1 − pc)

k+r−i is the probability
that the remaining nodes (i.e., k+r− i) are not compromised.
The following theorem proves such observations.

Theorem 7: Given a set S of slices composing a resource, a
set N of nodes with probability of failure pu and probability
of being compromised pc, and a (k, r)-allocation using the
minimum number of nodes:

• Pu =
k+r∑
i=r

(
k+r
i

)
(pu)

i(1− pu)
k+r−i

• Pc =
k+r∑

i=k+1

(
k+r
i

)
(pc)

i(1− pc)
k+r−i

Figure 7 illustrates how k and r affect the values of Pu

(Figures 7(a,c)) and Pc (Figures 7(b,d)), considering different
values of pu and pc, respectively. The values considered for
pu and pc are 0.2, 0.4, 0.6, and 0.8. Figure 7(a) reports the
values of Pu assuming a fixed number r = 5 of replicas and
varying k between 1 and 25. Figure 7(c) reports the values
of Pu assuming a fixed k = 5 and varying the number
r of replicas between 1 and 25. Figures 7(b,d) report the
values of Pc in the same settings as Figures 7(a,c). From
the figures, it is immediate to see that Pu and Pc present a
similar behavior when adopting a configuration minimizing the
number of slices and of nodes (i.e., Pu increases as k grows
and decreases as r grows, while Pc decreases as k grows and
increases as r grows).

C. Setting k and r

Our modeling of the probability that a resource is not
available (Pu) and that it is exposed (Pc) can be used to set ap-
propriate values for parameters k and r. To this purpose, fixing
the maximum threshold Pmax

u of resource unavailability and
Pmax
c of resource exposure, we compute all the configurations

of k and r that guarantee Pu ≤ Pmax
u and Pc ≤ Pmax

c through
the formulas in Theorems 6 and 7. Clearly, the values of k and
r for the configurations satisfying the thresholds depend on the
chosen allocation function.

Comparing the evolution of the probability Pu that a
resource becomes unavailable using the Min slices and
Min nodes allocation strategies, varying k (Figure 6(a) and
Figure 7(a)), we can easily see that Min slices is more
robust against node failure (i.e., Pu increases slowly) than
Min nodes. This is due to the fact that even if the number
of nodes involved in the allocation increases in both configu-
rations, with an allocation that minimizes the number of nodes
the impact of a node failure on the availability of the resource
is significant. A similar comment applies when comparing how
Pu evolves in the two configurations varying the number r
of replicas (Figure 6(c) and Figure 7(c)). In this case, the
decrease of Pu with Min slices is faster than the decrease
of Pu with Min nodes. Therefore, we can conclude that, for
configurations with the same values for r and k, Min slices
exhibits higher availability.

Comparing the evolution of the probability Pc that a re-
source is exposed due to a coalition of at least k + 1 nodes
using Min slices and Min nodes allocation strategies, varying
k (Figure 6(b) and Figure 7(b)), we can easily see that
Min nodes is more robust (i.e., Pc decreases faster) than
Min slices. This is due to the fact that, with an allocation that
minimizes the number of nodes, the probability of forming
a coalition of at least k + 1 nodes among the k + r nodes
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Fig. 8. Min slices and Min nodes (k, r)-allocations that guarantee Pu ≤ 10−7 and Pc ≤ 10−6 with different values for pu and pc

is smaller than the probability of controlling at least one of
the r nodes for each of the k + 1 slices of the allocation
that minimizes the slices. A similar comment applies when
comparing how Pc evolves in the two configurations varying
the number of replicas (Figure 6(d) and Figure 7(d)). The
increase of probability Pc using Min slices is faster than the
increase of Pc using Min nodes, because it is more difficult
to control at least k + 1 of the k + r nodes than to control at
least one node in each of the distinct k+1 groups of r nodes.
Therefore, we can conclude that, for configurations with the
same values for r and k, Min nodes exhibits higher security.

When the resource owner has chosen the preferred allo-
cation function, given the maximum threshold Pmax

u of re-
source unavailability and Pmax

c of resource exposure, different
configurations of k and r guarantee that Pu ≤ Pmax

u and
Pc ≤ Pmax

c . Among all these configurations, the ones with
low replication factor (r) require less storage and have lower
economic costs, while the ones involving a limited number (n)
of nodes enjoy simplicity in the management of the system
and better performance of access operations (less connections
have to be established). Figure 8 considers three different
network configurations, characterized by a different probability
pu for single nodes to fail and a different probability pc to
behave maliciously, and illustrates the configurations of k
and r satisfying the above thresholds using Min slices and
Min nodes allocation strategies. In the figure, the orange area
on the top-left represents the configurations of k and r that
satisfy the availability requirement (i.e., Pu ≤ 10−7), while the
blue area on the bottom-right represents the configurations that
satisfy the security requirement (i.e., Pc ≤ 10−6). We chose
these thresholds because the overall availability guarantee
(Pmax

u = 10−7) is the same declared in the specification of
the system used in our experiments (i.e., Storj). We chose a
higher value for Pmax

c than Pmax
u because protection against

coalitions represents a security layer adding to the protection
already offered by encryption. The intersection between the
orange and blue areas represents configurations that provide
both availability and security guarantees within the thresholds
set by the owner. Among these configurations, the one located
on the left/bottom corner of the intersecting area is the one to
be preferred as the number of nodes and replicas is minimum.

Figures 8(a,b) consider nodes with pu = 0.005 and pc =
0.2. The optimal configuration for Min slices it is k = 26
and r = 4 (i.e., n = 108), while for Min nodes allocation
is k = 12 and r = 5 (i.e., n = 17). The second allocation,
although more expensive on storage, due to one additional

replica, considerably reduces the number of nodes involved
in the storage of the resource compared to the adoption of
the first allocation function. Our analysis demonstrates that
this is a general behavior: Min nodes requires the same (or a
slightly higher) number r of replicas and a significantly lower
number n of nodes than Min slices. This observation is con-
firmed by the extreme scenarios illustrated in Figures 8(c,d),
considering highly reliable (pu = 0.001) but lowly trusted
(pc = 0.5) nodes, and in Figures 8(e,f), considering unreliable
(pu = 0.05) but relatively trusted (pc = 0.1) nodes. The
optimal configurations in Figures 8(c,d) are k = 100 and r = 3
for Min slices (i.e., n = 303), and k = 27 and r = 4 for
Min nodes (i.e., n = 31, meaning that the number of nodes is
ten times smaller). The optimal configurations in Figures 8(e,f)
are k = 10 and r = 9 (i.e., n = 99) for Min slices, and k = 18
and r = 7 (i.e., n = 25) for Min nodes.

Our analysis confirms that, for a wide range of values
for Pu and Pc and assumptions on the node availability pu
and compromise risk pc, our approach is able to identify a
configuration of r and k with manageable complexity (i.e., a
reasonable number of replicas and of nodes). We note that,
even when r and k grow, the minimum number of slices
composing a resource remains limited.

VI. IMPLEMENTATION AND EXPERIMENTS

To verify the benefit of our proposal we applied it into an ex-
isting DCS network. Among the existing DCS networks (e.g.,
Storj [1], Sia [5], IPFS [4], and Maidsafe Safe-network [10]),
we selected Storj since, to the best of our knowledge, it is
currently the most advanced and supported DCS. The market
valuation of the cryptocurrencies [11] associated with these
DCSs (Storj for Storj, Siacoin for Sia, Filecoin for IPFS, and
Maidsafecoin for Maidsafe) supports the importance that these
solutions are rising: at the date of submission, the global
market capitalization of these initiatives is more than 400
million dollars. There are currently more than 100,000 nodes
offering capacity in the Storj network, with more than 100PB
of data available and a planned goal of 10 times growth in
2019.

Storj is a protocol that coordinates a decentralized network
to create and enforce storage contracts between peers. Each
peer can negotiate contracts with other peers, upload and
download data from other peers, and periodically verify the
availability and integrity of her data. Storj leverages a Dis-
tributed Hash Table (DHT) to connect parties interested in
forming a storage contract. In the discussion, we maintain the
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terminology of our model and refer to parties outsourcing their
resources to the decentralized network as owners (renters in
Storj), and to parties offering storage space in exchange for a
remuneration in a digital currency as storage nodes (farmers
in Storj). Bridge nodes support the correct operations in the
system and can take responsibility for the verification of the
integrity and availability of resources. In the following, we
describe the technical choices characterizing our implementa-
tion (Section VI-A), the experimental results (Section VI-B),
and a few considerations about the impact produced by fine
granularity retrieval (Section VI-C).

A. Implementation

The enforcement of Min slices and Min nodes allocation
strategies in Storj required changing the client library of
the open source implementation. In particular, Storj currently
offers three main clients, one written in C that must be built
from source, one written in JavaScript and designed to be
executed by a node.js runtime, and one written in Python
and compatible with any Python environment. We integrated
our technique within the Python implementation, also for
easy integration with the implementation of Mix&Slice, which
in addition of being an AONT-encryption supports other
protection requirements (e.g., encryption-based access control
and policy revocation). The design of Storj makes the client
independent from the bridge and the storage nodes. Our work
on the Python client allowed us to access the services of the
whole network.

We implemented the Min slices and Min nodes allocation
strategies in the client and assigned slices (in the Storj termi-
nology all the slices allocated to a node form a shard) to nodes.
The performance of shard creation and resource reconstruction
is orders of magnitude greater than the throughput of storage
nodes in the Storj network (Mix&Slice operates at several
hundred MB/s, whereas the maximum throughput we observed
in Storj is around two orders of magnitude lower). In our
experiments, we focused on evaluating the time required
to complete the access request since the time requested by
decryption does not have significant impact. We note that the
use of the AONT forces each access request to be able to
proceed with a client-side decryption only when the complete
resource is available on the client. Should this be a problem for
the specific application domain (e.g., resources are very large),
mitigation can be provided by splitting the large resource and
applying our approach to the resulting (smaller) chunks. Each
chunk can then be downloaded and decrypted independently.
This would reduce the access times to resources, but it may
also delay the completion of the transfer, because the overhead
for the management of a greater number of access requests
reduces the effective bandwidth. The experiments confirm this
observation (see Section VI-B), as they show that there is a
performance benefit in managing large resources.

B. Experimental results

To evaluate the performance of the Min slices and
Min nodes allocation strategies, we introduced into the client
a module that activates a number of parallel threads (in the
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Min nodes allocation strategies

considered configuration, we used 10 concurrent threads) to
open access requests to the storage nodes. In Storj, access
requests from the owner involve both storage nodes and bridge
nodes. In fact, each time an owner needs to retrieve a shard,
she makes a request to the bridge, which returns a token
together with the IP address of the node storing the required
shard (note that this access request is recorded and a crypto-
currency payment is created by the owner for the node). The
token is then used by the client as a parameter of an HTTP
request directed to the node. Our experiments considered the
performance of the system in the management of the dialogue
between owner and node. In particular, we compared the
access times observed for the two allocation strategies, varying
the resource size.

An important restriction of the current implementation of
Storj is that requests for shards are atomic and it is not possible
to access only a specific portion of a shard managed by a
node. This restriction cannot be removed operating only on the
client, as it has a great impact not only on storage nodes but on
the overall structure of the system. We then implemented the
access requests for the Min slices and Min nodes techniques
as follows. For Min nodes, we implemented concurrent re-
quests to the nodes. As soon as a node completes the delivery
of its shard, a new request is started for another shard. The
request is considered completed as soon as the client has
received k+1 complete shards. For Min slices, for each shard
a number t of parallel threads (t ≤ r) are activated to manage
a request to distinct nodes managing the same shard (which
coincides with a slice for this allocation strategy), for a number
of shards compatible with the number of concurrent threads
(e.g., in the experiments we set t = 2 and we had 5 shards
processed at the same time by the 10 threads). As soon as a
shard is fully delivered to the client, the group of t threads is
dedicated to another missing shard.

Figure 9 reports the results of our experiments, where we
used resources of size varying from 1MB to 1GB. Figure 9(a)
shows the time required for the completion of the access
requests and Figure 9(b) shows the throughput in terms of
bandwidth. The graphs include two curves, one for Min slices
allocation, with k = 26 and r = 4, and one for Min nodes
allocation, with k = 12 and r = 5, which correspond
to the configurations considered in Figure 8(a) and Figure
8(b), respectively. The graphs present the average and the
standard deviation of the values obtained with 10 executions.
We note that the Min nodes strategy exhibits a moderate ben-
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efit compared to the Min slices strategy. The benefit derives
from the savings in overhead associated with the interaction
with multiple nodes. An element that also contributes to the
throughput is the natural variety of performance in nodes, with
some being faster than others. The Min nodes strategy works
well as long as the number of nodes with limited performance
(slow nodes) is less than r − 1 and there are at least k + 1
nodes with good performance (fast nodes) serving the shard.
For Min slices, it is sufficient to have one of the k+1 shards
assigned to a group of nodes where the t nodes contacted in
parallel happen to be slow to suffer from a significant delay
in the access.

C. Further considerations

We noted that a limitation of the current implementation
of the Storj node is that the request for a shard is atomic.
The realization of a mechanism that permits to manage partial
access requests would offer the opportunity for a significant
improvement in the management of the access requests. For a
generic server in a file sharing protocol this can be expected
to be a relatively simple change in the server code; for a DCS
system, this change would require a revision of the model used
for the remuneration of access requests, as follows. The bridge
should not consider each request received by the owner as an
access to the complete resource (which also implies a payment
to access the whole resource), but it should return to the owner
the IP address and the authorization token of the node storing
the shard. The owner and the node should then commence
a protocol in which the owner issues signed confirmations
in exchange of pieces of the resource. These confirmations
can then be submitted to the bridge to receive the payment.
Allowing the owner to pay a node only for the downloaded
portion of the resource results in better performance and
stronger competition among the nodes; best performing nodes
would be preferred by the owner and would serve more traffic,
receiving a correspondingly greater remuneration for their
storage service.

The flexible structure of the Min nodes assignment would
be particularly suited to this model. Under the assumption that
nodes exhibit a high variability in access times, each slice
could be retrieved by any of the r nodes storing it, with the
possibility to adapt the amount of data transferred from each
node depending on the response time and in case a group of r
nodes happens to be all composed of slow nodes, the impact
would be limited to the single or few slices that cannot be
retrieved from fast nodes.

VII. RELATED WORK

RAID [12] is one of the main contributions aimed at the
construction of reliable systems. RAID is normally deployed
on local drives. With the advent of the cloud, RAID has
been extended to take adversarial failures into considera-
tion. Along this line of works, HAIL (High-Availability and
Integrity Layer) [13] extended RAID with multiple cloud
storage providers and a Proof of Retrievability (PoR) [14]
scheme to verify that a provider still holds a certain piece
of information. HAIL is however not well-suited for DCS

systems, where the nodes are less reliable than well-established
cloud service providers. Also, HAIL does not take into account
the possibility of adversarial users trying to reconstruct the
resources for their own personal profit. The works closest to
ours are the solutions aimed to offer reliability and security
of data in DCS. Many DCS networks that have recently
been proposed, already include a certain degree of security
guarantees. (i.e., protection against malicious parties jointly
collecting all the slices composing a resource). Among them,
Storj [1] and Sia [5] adopt client-side encryption and do not
protect the outsourced data against coalitions of malicious
nodes. SAFE Network [2] instead adopts a self-encryption
technique: the resource is divided into shards and a weak
AONT among 3 shards is applied before uploading them.
In [3] the design of the SAFE Network and the possible
attack vectors are analyzed. The solution proposed in [2], [3]
is predetermined and the interaction between redundancy and
security is not analyzed. Our proposal could be applied to
improve the flexibility and security of these networks.

Another line of works is security of outsourced data
(e.g., [15], [16], [17], [18]), which can be improved using
AONT. Existing solutions however consider domains different
from DCS. We have discussed before the proposal in [9],
where the goal was to support policy evolution for outsourced
resources where the access control policy is mapped to an
encryption policy. Another approach using AONT and Reed-
Solomon codes is AONT-RS [19]. Apart from the use of
AONT, there is a limited similarity with the structure of
our proposal. In fact, the work in [19] does not explicitly
consider the structure of current DCS systems and does not
provide an approach for the identification of the parameters
to use in the configuration of the system. An evolution of
the work on AONT-RS is CAONT-RS [20] that has been
used by CDStore [21], which also uses two-stage dedupli-
cation to achieve both bandwidth and storage savings and
robustness against side-channel attacks, while DepSky [22]
addresses the privacy requirements using Shamir’s scheme. All
these proposals consider cloud-of-clouds environments, which
see the integration of the services of cloud providers. Their
adaptation to the DCS scenario requires significant attention
and a model for the identification of the parameters to use in
the configuration of the system. Also, the interaction between
security and availability is not analyzed.

A precursor of DCS is represented by P2P systems. The P2P
system closer to our proposal, which considers reliability and
security, is Tangler [23]. The goal of Tangler is censorship
resistance, which is a potential application of DCS, but not
its main goal. Several of the assumptions at the basis of the
design of Tangler have also been considered in the realization
of DCS systems. A crucial difference between Tangler and our
proposal is that Tangler uses Shamir’s method, so it is quite
expensive in terms of storage and bandwidth. Also, it does not
aim at combining availability and confidentiality requirements
in data allocation.

The novelty of our approach with respect to all above-
mentioned techniques is the combination of AONT with
different strategies for slicing and allocating resources in DCS
systems and the joint consideration of security and availability
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guarantees. Our analysis of the characterization, interplay, and
settings of the parameters guiding slicing and allocation can
be used by all existing solutions to enhance their security and
availability properties.

VIII. CONCLUSIONS

We presented an approach for providing effective secure
protection to resources in decentralized cloud storage services.
Our approach enables resource owners to protect their re-
sources and to control their decentralized allocation to different
nodes in the network. We investigated different strategies for
splitting and distributing resources, analyzing their charac-
teristics in terms of availability and security guarantees. We
also provided a modeling of the problem enabling owners
to control the granularity of slicing and diversification of
allocation to ensure aimed availability and security guarantees.
Enabling effective control for resource owners, our solution
helps in removing natural reluctance due to security concerns
and moves a step forward in the realization of novel services
effectively benefiting from technological evolution. Our work
leaves room for extensions, such as the consideration of
error correcting codes and information dispersal algorithms
to reduce the spatial overhead.

APPENDIX A
PROOFS OF THEOREMS

Proof of Theorem 1:
Let us assume, by contradiction, the existence of a (k, r)-
allocation for a resource split into s = k < k+1 slices. Given
s different slices, no more than s nodes can be used to store
one replica of the slices. Since s=k, the allocation function is
storing the whole resource using at most k nodes. Therefore,
it is not k-protected. Note that k + 1 slices are sufficient
to define a (k, r)-allocation. The r-replication requirement is
easily satisfied by replicating r times each of the k+1 slices.
The k-protection requirement is satisfied by storing each slice
to a different node. Hence, for each replica of the resource,
each coalition of k nodes misses one slice (the one stored at
the (k + 1)-th node).

Proof of Theorem 2:
Since there are r ·(k+1) slices to be stored, a (k, r)-allocation
cannot use more than r · (k + 1) nodes. However, a (k, r)-
allocation with s = k+1 cannot use less than r ·(k+1) nodes.
Let us consider the case where slices are not replicated (i.e.,
r = 1), since the same discussion applies to each replica of
the resource. Assume, by contradiction, that a (k, r)-allocation
stores more than one slice at one of the nodes. If the function
adopts n = k + 1 nodes, there will be at least one node that
does not store any slice (which is equivalent to say that n ≤ k)
as the number of slices is k + 1. Then, k nodes store all the
slices composing the resource, thus violating k-protection.

Proof of Theorem 3:
To guarantee r-replication, each slice should be stored at (at
least) r nodes. If allocation function ϕ is k-protected, for each
coalition Ni of k nodes, there exists at least a slice sj that is
not stored at any of the nodes in Ni. To guarantee that sj has
r copies, there must exist at least r additional nodes that store

sj, and n should be at least equal to k + r. Note that k + r
nodes are sufficient to define a (k, r)-allocation. Consider, as
an example, s =

(
k+r
k

)
slices, the set N1, . . . , Ns of possible

coalitions of k nodes, and allocation function ϕ that assigns
the i-th slice to all the nodes in N , but the ones in the i-
th coalition: ϕ(si) = N \ {Ni}. Function ϕ is k-protected,
since each coalition Ni cannot access slice si, and r-replicated,
since slice si is stored at each node ni ∈ N \ {Ni}, then at
n− k = r nodes.

Proof of Theorem 4:
An allocation function ϕ is k-protected if the set of slices
stored at any coalition Ni of k nodes is not complete (i.e., at
least one slice is missing). To guarantee that ϕ is an allocation
function each slice should be stored at least on one node. If
each coalition misses a different slice, we are minimizing the
number of slices necessary to define an allocation function
ϕ. Indeed, since n > k, the missing slice for each coalition
Ni can be stored at the nodes in N \ Ni, as they will miss
another slice. Since there are

(
k+r
k

)
possible coalitions of k

nodes in N , s should be at least
(
k+r
k

)
to guarantee that each

coalition misses a different slice. Assume, by contradiction,
that r = 1, s =

(
k+r
k

)
− 1, and that ϕ is k-protected. In this

case, two coalitions Ni and Nj will miss the same slice sx. That
is, there are at least k+1 nodes (the ones in Ni ∪ Nj) missing
sx. However, if n = k + 1 then ϕ cannot be an allocation
function, since no node in N stores sx. (The same reasoning
applies with larger values for r.)

Proof of Theorem 5:
1) Since each coalition of k nodes should not be able to
reconstruct the resource, it should miss at least one slice. The
number of slices used by the allocation function is s =

(
k+r
k

)
,

which is sufficient for each coalition to miss at least one slice.
In fact, the number of possible coalitions of k nodes is

(
k+r
k

)
.

Let us assume, by contradiction, that two coalitions Ni and
Nj miss the same slice sx. Therefore, there are k + 1 nodes
(Ni∪Nj) that do not store sx. However, in this case sx would
be stored at n− (k+1) = r− 1 nodes. Hence, the allocation
function would not be r-replicated.
2) By definition of (k, r)-allocation with n = k+ r nodes and
s =

(
n
k

)
slices, each coalition of k nodes misses a different

slice. Let us consider two coalitions Ni and Nj that differ in
one node only. Coalition Nj misses one slice, sj, while Ni
misses si. Since Nj misses one slice only, it stores si. Hence,
Ni∪Nj includes k+1 nodes and stores all the slices composing
the resource.

Proof of Theorem 6:
Pu) The probability to obtain back the original plaintext
resource corresponds to the probability that k+1 nodes, each
storing a different slice, do not fail. Since pu is the probability
that a node fails, the probability that at least one of the r
replicas of a slice is available is (1 − (pu)

r), with (pu)
r the

probability that all r replicas of the slice are unavailable. The
probability to obtain back all the k + 1 slices, and then also
the original plaintext resource, is then (1 − (pu)

r)k+1 and
(1−(1−(pu)r)k+1) is the probability that the resource cannot
be decrypted.
Pc) The probability that the resource is exposed is the proba-
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bility that all the slices are compromised, meaning that k + 1
nodes are malicious. Since 1 − pc is the probability that a
node is not compromised and each slice has r replicas, the
probability that at least one replica is exposed is (1−(1−pc)r),
with (1− pc)

r the probability that all r replicas of a slice are
not compromised. We can then conclude that the probability
that all k + 1 slices are exposed is (1− (1− pc)

r)k+1.
Proof of Theorem 7:

Pu) To obtain back the original plaintext resource, we need
the slices stored on any combination of k + 1 nodes, that
is, k + 1 nodes must not fail. A resource therefore becomes
unavailable when any combination of r or more nodes fail.
The probability that i nodes fail, with i = r, . . . , k + r, and
k + r − i nodes do not fail is equal to (pu)

i(1 − pu)
k+r−i.

Since the number of combinations of i nodes out of k + r
is
(
k+r
i

)
, the probability that a resource is unavailable is

Pu =
k+r∑
i=r

(
k+r
i

)
(pu)

i(1− pu)
k+r−i.

Pc) A coalition can compromise the confidentiality of the
resource whenever it involves any combination of k + 1
nodes, that is, at least k + 1 nodes must be compromised.
The probability that i nodes are compromised, with i =
k+1, . . . , k+ r, and k+ r− i nodes are not compromised is
equal to (pc)

i(1−pc)k+r−i. Since the number of combinations
of i nodes out of k + r is the binomial coefficient

(
k+r
i

)
, we

can conclude that the probability that any combination of at
least k + 1 nodes are compromised in a collection of r + k

nodes is Pc =
k+r∑

i=k+1

(
k+r
i

)
(pc)

i(1− pc)
k+r−i.
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