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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract 

Bayesian Networks represent one of the most powerful and effective tools for knowledge acquisition in the observation of 
physical phenomena affected by randomness and uncertainties. The methodology is the result of several developments 
concerning the Bayesian statistical theory and permits, by inference, to update the statistics describing physical variables by the 
observation of experimental evidences. In general, Bayesian Networks have become a very popular and versatile approach in 
problem solving strategies because of their capability in enhancing the status of knowledge of a physical problem domain and to 
characterize expected outcomes. In particular, this work presents a strategy performing the Bayesian updating of the mechanical 
and geometrical properties of a steel structure. Based on high-precision topographical measurements, such a strategy has the 
purpose of accurately estimating the structural displacements expected during the structural life-cycle. 
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Monitoring of displacements, deflections and ground settlements of civil infrastructures can be performed by 
periodically performing topographical surveys detecting the coordinates and mutual locations of a set of control 
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points. Moreover, the interpretation of survey measurements is usually performed by adopting statistical strategies in 
order to account for instrumental errors and estimating confidence intervals of the results. 

An appealing benefit of Bayesian Networks is their capability in accounting for a priori statistical 
characterization of the structural parameters which is updated by survey observations and, subsequently, can predict 
future structural responses. In this sense, differently from traditional statistical approaches, Bayesian updating can 
forecast anomalous behaviors before their occurrencies. In fact, it is well known that the accuracy of survey results 
obtained by least squares approaches is significantly influenced by the adopted stochastic model. On the contrary, 
use of the Bayesian approach requires far less observations to get a desired accuracy of the displacement 
measurement. 

Bayesian Networks, implemented in conjunction with Markov Chains and Monte Carlo Simulations, permit to 
determine an efficient relationship between the prior knowledge of the structural model and the survey observations. 
In this respect, an effective and accurate characterization of the prior statistics of the structural domain represents an 
essential aspect of the identification process, especially in presence of limited observations or when their detection 
involves expensive activities, since it permits to forecast structural responses, although with limited confidence, even 
in absence of experimental evidences. 

The application of Bayesian updating to structural models concerns mainly two different aspects: parameter 
learning is focused on the characterization of the marginal probabilities of the adopted structural parameters while 
structure learning concerns the relationships between different parameters and their conditional probabilities. Both 
these tasks are performed in machine learning methodologies in which optimization algorithms, analyzing 
experimental outcomes, determine the mutual dependency of parameters and responses. Moreover, observations 
permit to update the prior statistics of the structural parameters by an inference process. Finally, the updated 
parameters can be used to forecast future structural responses by performing reliability analysis algorithms. 

The present research analyzes the outcomes of a structural survey of a steel truss vault in order to characterize its 
constitutive parameters and to detect possible anomalies. In particular, the vertical displacements of the structural 
nodes have been detected by a total station; subsequently, the recorded data have been interpreted by a Bayesian 
network characterizing the relationships between displacements and mechanical parameters. It is worth to be 
emphasized that the inference procedure accounts for the whole set of observed displacements and their correlation 
so that parameters’ updating assumes the capabilities of a multi-objective identification process. 

 

  

Fig. 1.(a) Example of Bayesian Network nodes and connections; (b) Case-study: a steel truss barrel vault. 

2. Probabilistic Inference updating 

Bayesian Networks are defined by means of random variables (nodes) mutually connected, see, e.g., Fig. 1(a). 
Variables not depending upon different nodes (namely parent variables) are characterized by marginal Probability 
Density Functions (PDFs) while variables influenced by different nodes of the network (defined as child variables) 
are characterized by PDFs conditioned by the value of their parents. Use of conditional probability to establish 
connections between parent and child nodes is particularly feasible to represent the modularity of random systems 
constituted by redundant components; moreover, implemented frameworks available in the literature that perform 
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both parameters and structure learning and graphically represent variables and connections, make their use 
particularly intuitive in common practice. 

Observation of experimental data permits to set the actual value of some variables, defined as evidences, for 
which a deterministic characterization is assumed. Purpose of the Bayesian Network consists in assessing, by 
statistical inference, the updated, or posterior, probabilistic distributions of the remaining nodes representing the 
global statistical characterization of an event or scenario. In brief, probabilistic inference, representing the pivotal 
phase of the machine learning process, determines the probability distributions P[Xi|E] of the random variable Xi for 
an observed event E which characterize the probabilistic behavior of the analyzed system. 

To fix ideas, starting from the nodes set as evidences, conditioned probability distributions are updated by 
inference, intuitively performed by the application of the Bayes’ Theorem, so that the evidence propagates among 
the network , as shown in Casaca et al. (2008) and Straub (2010). 

Conditional probabilities have been defined by assuming discrete descriptions of the random variables by 
Conditional Probability Tables (CPT). Bayesian inference updating consists in computing, by means of optimization 
algorithms, the posterior values of the CPT, and subsequently the discrete probability distribution of each node, 
relevant to one or more evidences introduced in the network. Computations have been performed by the freeware 
Genie which provides an exhaustive framework for Bayesian Network analysis. 

 
Fig. 2. (a) Workflow of a topographical survey session; (b) workflow of the Bayesian Updating procedure 

3. The case-study Bayesian Network 

The case-study analyzed in this research consists in a steel truss barrel vault, shown in Figure 1(b), which was 
monitored during its construction phases by two topographical surveys, detecting the structural displacements, 
performed on February 28th and March 22nd 2015, respectively. 

The survey campaign aimed to detect possible anomalous behaviors. In particular, while classical procedures for 
the statistical assessment of survey data analyse the evolving values of displacements and can identify anomalously 
large values only after that they have occurred, the Bayesian updating workflow, reported in Figure 2(a), is capable 
of interpreting the values-in-time of the responses, update the statistics of the structural parameters and forecast the 
expected maximum values of the response which are compared with the values determined by the structural design. 
     It is worth to be emphasized that the updated statistics of the network variables is highly influenced by the 
definition of the assumed prior distributions which, subsequently, must be properly computed by simulations 
consistent with the physical behaviour of the model. Main phases of the procedure for the Bayesian Network 
characterization and of the parameters updating are reported in Figure 2(b). 
 

4. Geometrical scheme of the survey net 

The monitored sail-shaped vault consists in a net of steel columns and beams and presents a 40x50 m rectangular 
plan. Main beams consist in 9 frames made of square-piped elements and vertical molded plate columns and are 
connected by pin joints to 13 secondary beams presenting square cross sections. 
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a  b  

Fig. 3. (a) Axonometric representation of the net adopted in the topographical survey; (b) Joint targets monitored by the topographical survey. 

 
Fig. 4. Monitored points included in the Bayesian Network. 

Surveys have been performed at the end of the steel frames realization in order to control the displacements 
generated by the dead loads and investigate the correct installation of the structural elements. To this end, the 
monitored joints, whose numbering is shown in Figure 3(a), have been equipped with 94 targets, shown in Figure 
3(b), so that measurements concern the mutual distances between consecutive targets, azimuthal and zenithal angles. 

In order to reduce the computational effort of the updating procedure, the responses included in the Bayesian 
network, shown by red bullets in Figure 4, are relevant to 14 joints located on the vault boundary and 4 nodes 
located at the top beams. Measurements have been performed by using a high precision total station type Leica TPR 
30 equipped with innovative optical and digital technologies.  

Table 1 shows the detected relative vertical altitudes Δzmar.and Δzfeb, measured in the February 2015 and March 
2015 survey sessions, respectively, and the relative vertical displacements Δu computed as Δu= Δzmar.- Δzfeb. 

5. Structure of the Bayesian Network 

The Bayesian Network used in this research has been defined by prior PDFs of the structural parameters of 
interest and by conditional PDFs between those parameters and the esteemed responses. A schematized 
representation of the adopted network is reported in Figure 5(a). 

It is worth to be emphasized that some variables of interest, which are described below, are directly involved in 
the updating procedure as evidences or target parameters. Different parameters, although included in the 
computational definition of the network, are not represented for brevity. 

To illustrate the physical meaning of all the involved random variables, the network nodes are arranged by 
different typologies. In particular, the parent variables are: 
1. Structural parameters: represented in black, consist in the parameters characterizing the structural model, such 

as the Young’s modulus, see, e.g., Fig. 6(a), loads, joint performance coefficients etc. 
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2. Model error εfem: represented in light blue, it models the inaccuracies related to the finite element model. The 
node has unitary-mean Gaussian distribution, shown in Fig. 6(b), with coefficient of variation (c.o.v.) of 30%. 
Survey measurement error εl: represented in violet, it is related to the instrumental error of the survey sessions. 

It is characterized by a unitary-mean Gaussian distribution, shown in Fig. 6(c), with 5% c.o.v. 
Child variables can be summarized as: 

1. Theoretical displacements ufem,i: represented in blue, consists in the absolute displacements of the monitored 
nodes computed by a finite element analysis. Progressive index i denotes the node of the survey net for which the 
displacement is computed. 

2. Real displacements ui: reported in red, denote the real, physical displacement of each node. Their outcomes are 
esteemed as ui = ufem,i εfem. 

3. Detected relative displacements ij: represented in green will be adopted as evidences of the network. Such 
quantities represent the relative displacement detected between two consecutive nodes corrected by the 
instrumental error: ij = (ui – uj) εl. 
In conclusion, the model is made of 53 nodes, related by 59 dependencies. The probability distributions of all the 

random variables have been discretized in order to implement and analyze the network by Genie 2.0, a freeware 
framework for scientific research purposes. A part of the network implemented in Genie is shown in Figure 5(b) in 
which parent variables are represented in violet, child nodes are depicted in light blue and dependencies are 
represented as arrows. 

     Table 1. Target nodes vertical displacements and altitudes. 

 
 

Some parent nodes PDFs are represented in, 6(b) and 6(c). Probabilistic dependencies, numerically defined by 
conditional PDFs, characterize the likelihood that a child variable assumes a specific value as function of all 
possible states of its parent variables. 

Such a dependency has been determined by theoretical considerations, simplified models available in the 
literature and a Finite Element-based Monte Carlo simulation. Since the software needs the definition of a finite 
number of variable states, PDFs have been suitably discretized. 

The generation of the conditional PDFs of the child variables has been performed by the following steps: 
1. Random generation of m occurrences of the parent variables; 
2. Computation of m corresponding finite element responses; 
3. Computation of the absolute displacement occurrences by applying the model error; 
4. Determination of the relative displacements occurrences by combining absolute displacements and 

survey error; 
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5. Definition of n intervals (states) for each variable; 
6. Determination of the conditional PDFs by statistical analysis of the generated occurrences performed by 

an ad-hoc algorithm implemented in Matlab. 
Obviously, the occurrences of the finite element displacements depend on the realizations of the structural 

parameters generated by the Monte Carlo procedure. It is worth to be emphasized that, because of the Markov 
hypothesis, conditional probabilities of each child variable depend exclusively on the state of their directly-
connected parent variables. Two examples of the PDF entries relevant to the Ufem,i and Ui displacements, discretized 
as matrices, are reported in Figures 7 and 8. Note that each variable depends on the states of the corresponding 
parent nodes so that the FEM displacements depends on the outcome of the Young’s modulus while displacement 
Ui, in Fig. 8, depends on the states of Ufem,i and εfem. 

 

  
Fig. 5. (a) Scheme of the adopted Bayesian Network; (b) Outline of the Bayesian Network modeled in Genie 2.0. 

  
Fig. 6. (a) Young’s modulus PDF; (b) FEM error PDF; (c) Survey error PDF. 

6. Discussion of the Bayesian Updating results  

Bayesian updating of the node PDFs can be performed as the values of variables Dij are set, as evidence, equal to 
the survey measurements. Subsequently, the software computes by inference the posterior PDFs of each node. 

The quantities of interest for this survey are the real displacements Ui whose updated PDFs represent the 
probability distributions of the real displacements attained by the structure. Expected values of the displacement of 
each monitored node are reported in Figure 9(a) where anomalously high values are boxed in red and represented as 
red bullets in Figure 9(b). In particular, nodes belonging to the top beam (n. 21) and to the edge beam (n. 48 and 50) 
are expected to attain at displacement greater than one centimetre with probability values of, respectively, 46.3%, 



 Maria Grazia D’Urso  et al. / Procedia Structural Integrity 6 (2017) 69–76 75
6 Author name / Structural Integrity Procedia  00 (2017) 000–000 

5. Definition of n intervals (states) for each variable; 
6. Determination of the conditional PDFs by statistical analysis of the generated occurrences performed by 

an ad-hoc algorithm implemented in Matlab. 
Obviously, the occurrences of the finite element displacements depend on the realizations of the structural 

parameters generated by the Monte Carlo procedure. It is worth to be emphasized that, because of the Markov 
hypothesis, conditional probabilities of each child variable depend exclusively on the state of their directly-
connected parent variables. Two examples of the PDF entries relevant to the Ufem,i and Ui displacements, discretized 
as matrices, are reported in Figures 7 and 8. Note that each variable depends on the states of the corresponding 
parent nodes so that the FEM displacements depends on the outcome of the Young’s modulus while displacement 
Ui, in Fig. 8, depends on the states of Ufem,i and εfem. 

 

  
Fig. 5. (a) Scheme of the adopted Bayesian Network; (b) Outline of the Bayesian Network modeled in Genie 2.0. 

  
Fig. 6. (a) Young’s modulus PDF; (b) FEM error PDF; (c) Survey error PDF. 

6. Discussion of the Bayesian Updating results  

Bayesian updating of the node PDFs can be performed as the values of variables Dij are set, as evidence, equal to 
the survey measurements. Subsequently, the software computes by inference the posterior PDFs of each node. 

The quantities of interest for this survey are the real displacements Ui whose updated PDFs represent the 
probability distributions of the real displacements attained by the structure. Expected values of the displacement of 
each monitored node are reported in Figure 9(a) where anomalously high values are boxed in red and represented as 
red bullets in Figure 9(b). In particular, nodes belonging to the top beam (n. 21) and to the edge beam (n. 48 and 50) 
are expected to attain at displacement greater than one centimetre with probability values of, respectively, 46.3%, 

 Author name / Structural Integrity Procedia 00 (2017) 000–000  7 

64% and 65.6%. The latter two nodes are located on a doubled beam in proximity of some joints with columns and 
the high associated probability indicates a high risk that the region nearby such nodes can present significant 
damage. It is worth to be emphasized that a structural inspection, subsequent to the survey, has proved that some 
connections located nearby the two anomalous nodes were affected by manufacturing defects. 

 

 
Fig. 7. Conditional PDF values of a displacement Ufem,i. 

 
Fig. 8. Conditional PDF values of a displacement Ui. 

a  b  

Fig. 9. (a) Expected values of the structural displacements; (b) Nodes with anomalous displacements. 

7. Conclusions 

A Bayesian Network conceived for the survey of a steel vault, aiming to update the structural parameters and 
forecast expected displacements and anomalous behaviours, has been presented. This was motivated by the fact that 
even the rough analysis of a preliminary survey, when the structure was subject to its self-weight only, indicated 
unexpectedly large displacements at the top of the vault and nearby the edge beam. Eventually, the Bayesian 
updating analysis described in this research confirmed such an anomalous behaviour which was caused by 
handcrafting defects of some steel joints between beam and column elements. 

The main advantage of the proposed network consists in the fact that the updating analysis forecasts expected 
values of the displacements (namely displacements of nodes 21, 48 and 50, all resulting about 1.22 cm), which can 



76 Maria Grazia D’Urso  et al. / Procedia Structural Integrity 6 (2017) 69–76
8 Author name / Structural Integrity Procedia  00 (2017) 000–000 

be compared with the corresponding design values, before that they actually occur inducing significant damage. 
Moreover, the computed expected values are characterized by a probability distribution which determines the 
likelihood of the outcomes and the confidence of the results. 

Despite of their efficiency, Bayesian Networks often present a strong mutual dependency of the considered 
variables resulting in significant computational effort. Moreover, such a demand increment tends to sensibly 
increase as the set of variables of the model is enriched in order to characterize more accurate responses. 

For this reason, future work will investigate alternative strategies such as algorithms based on the likelihood 
principle or, especially, strategies focused on different formulation of the network dependencies in order to reduce 
the mutual dependencies and to obtain almost-Markovian structures. 

Nevertheless, Bayesian Networks represent a very effective approach defining a reliable computational tool, 
although its efficiency depends on suitable updating procedures of the statistical characterization, which results 
particularly suitable for multidisciplinary activities and for data exchange with different technologies such as spatio-
temporal GIS systems. 
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