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Discrepancy for convex bodies with isolated flat
points

Luca Brandolini, Leonardo Colzani, Bianca Gariboldi,
Giacomo Gigante and Giancarlo Travaglini

Abstract. We consider the discrepancy of the integer lattice with respect
to the collection of all translated copies of a dilated convex body having
a finite number of flat, possibly non-smooth, points in its boundary. We
estimate the Lp norm of the discrepancy with respect to the translation
variable, as the dilation parameter goes to infinity. If there is a single flat
point with normal in a rational direction we obtain, for certain values of p,
an asymptotic expansion for this norm. Anomalies may appear when two
flat points have opposite normals. Our proofs depend on careful estimates
for the Fourier transform of the characteristic function of the convex body.

1. Introduction

Let B be a convex body in Rd, that is a convex bounded set with nonempty interior,
and for every R > 1 and z ∈ Rd let

DR (z) = −Rd |B|+
∑

m∈Zd
χRB (z + m)

be the discrepancy between the number of integer points inside a dilated and
translated copy of B and its volume. The function z 7→DR (z) is periodic and a
straightforward computation shows that it has the Fourier expansion

(1.1)
∑

m∈Zd\{0}

Rdχ̂B (Rm) e2πim·z

where χ̂B (ζ) denotes the Fourier transform of χB (z), that is

χ̂B (ζ) =

∫
B

e−2πiζ·zdz.
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The size of DR (z) as R→ +∞ is therefore closely connected to the decay of χ̂B (ζ)
as |ζ| → +∞. For example, if the boundary of B is smooth and has everywhere
positive Gaussian curvature then χ̂B (ζ) has the decay

(1.2) |χ̂B (ζ)| 6 c |ζ|−
d+1
2

(see [29, Chapter 8]), and it can be shown that this rate of decay is optimal. Under
the assumption (1.2), in [2, Corollary 3] the authors proved the following estimates
for the Lp norm of the discrepancy function

(1.3)

(∫
Td
|DR (z)|p dz

)1/p

6


cR

d−1
2 1 6 p < 2d/ (d− 1) ,

cR
d−1
2 log

d−1
2d (R) p = 2d/ (d− 1) ,

cR
d(d−1)
(d+1) (1− 1

p ) p > 2d/ (d− 1) .

In [2, Theorem 5] it has also been shown that the above estimates are sharp in
the range 1 6 p < 2d/ (d− 1). More precisely, using the asymptotic expansion
for χ̂B (ζ), it has been proved that when B is not symmetric about a point or
d 6≡ 1 (mod 4) one has, for every p > 1,(∫

Td
|DR (z)|p dz

)1/p

> cR
d−1
2 .

On the other hand, when B is symmetric about a point and d ≡ 1 (mod 4),

lim sup
R→+∞

R−
d−1
2

(∫
Td
|DR (z)|p dz

)1/p

> 0 for every p > 1,

lim inf
R→+∞

R−
d−1
2

(∫
Td
|DR (z)|p dz

)1/p

= 0 for every p <
2d

d− 1
.

Up to now we have considered the case of positive Gaussian curvature.

When the Gaussian curvature of the boundary of B vanishes at some point the
estimate (1.2) fails and the rate of decay depends on the direction.

More precisely the decay of the Fourier transform (1.2) holds in a given direction
Θ if the Gaussian curvature does not vanish at the points on the boundary of B
where the normal is ±Θ. When the curvature vanishes the rate of decay of χ̂B (ρΘ)
can be significantly smaller. We will see that in this case the behavior of the Lp

norms of the discrepancy function may differ from the case of positive Gaussian
curvature.

To the authors’ knowledge the discrepancy for convex bodies with vanishing
Gaussian curvature has been considered only for specific classes of convex bodies
and only for L∞ and L2 estimates. See e.g. [9], [14], [15], [16], [21], [22], [23], [27],
[28]. See for example [22] for sharp estimate of the L2 discrepancy associated to
the curve x2 + y4 = 1. See also [7] for a lower bound in terms of irregularities of
distribution.
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Throughout the paper we will use bold symbols only for d-dimensional points
and non-bold symbol for lower dimensional points. Moreover when we write a
point z = (x, t) or ζ = (ξ, s) we agree that x, ξ ∈ Rd−1 and t, s ∈ R.

We are happy to thank Gabriele Bianchi for some interesting remarks on the
geometric properties of the convex bodies considered in this paper (see [1]).

2. Statements of the results

In this paper we study the Lp norms of the discrepancy function associated to a
convex body whose boundary has a finite number of isolated flat points. The rele-
vant example is a convex body B such that ∂B has everywhere positive Gaussian
curvature except at the origin and such that, in a neighborhood of the origin, ∂B
is the graph of the function t = |x|γ , with x ∈ Rd−1 and some γ > 2. This function
is smooth at the origin only when γ is a positive even integer, and the geometric
control of the Fourier transform in [8] does not apply directly.

We are actually interested in a larger class of convex bodies and this is why we
introduce the following definition.

Definition 1. Let U be a bounded open neighborhood of the origin in Rd−1, let
Φ ∈ C∞ (U \ {0}) and let γ > 1. For every x ∈ U \ {0} let µ1 (x) , . . . , µd−1 (x)
be the eigenvalues of the Hessian matrix of Φ. We say that Φ ∈ Sγ (U) if for
j = 1, . . . , d− 1,

(2.1) 0 < inf
x∈U\{0}

|x|2−γ µj (x)

and, for every multi-index α,

(2.2) sup
x∈U\{0}

|x||α|−γ
∣∣∣∣∂|α|Φ∂xα

(x)

∣∣∣∣ < +∞.

Observe that if Φ ∈ Sγ (U) then for some c1, c2 > 0,

c1 |x|γ−2 6 µj (x) 6 c2 |x|γ−2
.

Moreover, since γ > 1, we have Φ ∈ C1 (U).

Definition 2. Let B be a convex body in Rd and let z ∈ ∂B and let γ > 1. We
say that z is an isolated flat point of order γ if, in a neighborhood of z and in
a suitable Cartesian coordinate system with the origin in z, ∂B is the graph of a
function Φ ∈ Sγ (U), as in the previous definition.

Convex bodies with flat points can be easily constructed by taking powers of
strictly convex functions.

Proposition 3. Let U be a bounded open neighborhood of the origin in Rd−1,
let H ∈ C∞ (U) such that H (0) = 0, ∇H (x) = 0 and assume that its Hessian
matrix is positive definite at the origin. Let γ > 1. Then the function Φ (x) =

[H (x)]
γ/2 ∈ Sγ (U).
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We have already observed that some of the results in this paper for the singu-
larity |x|γ with γ even integer are not new. However observe that |x|2n is analytic,
while the above definition does not imply that the boundary is smooth. For exam-
ple, in dimension 2 consider a singularity of the kind Φ′′ (x) = 2 + sin (log (|x|)).

Interestingly, in the following Proposition 11 concerning the decay of the Fourier
transform of a convex body with a flat point of order γ, the case γ = 2 with non
smooth flat points requires some extra care.

The discrepancy for convex bodies with flat points in the above class is described
by the following theorem.

Theorem 4. Let B be a bounded convex body in Rd. Assume that ∂B is smooth
with everywhere positive Gaussian curvature except for a finite number of isolated
flat points of order at most γ.

1) For 1 < γ 6 2 we have

(∫
Td
|DR (z)|p dz

)1/p

6


cR

d−1
2 1 6 p < 2d/ (d− 1) ,

cR
d−1
2 log

d−1
2d (R) p = 2d/ (d− 1) ,

cR
d(d−1)
(d+1) (1− 1

p ) p > 2d/ (d− 1) .

2) For 2 < γ 6 d+ 1 we have(∫
Td
|DR (z)|p dz

)1/p

6

{
cR(d−1)(1− 1

γ ) 1 6 p 6 (2d) / (d+ 1− γ)

cR
d(d−1)
d+1 (1− 2

γp ) p > (2d) / (d+ 1− γ)

3) For γ > d+ 1 and every p > 1 we have(∫
Td
|DR (z)|p dz

)1/p

6 cR(d−1)(1− 1
γ ).

The picture summarizes our estimates for the discrepancy.

R
d(d−1)
d+1

(
1− 1

p

)

R
d−1
2 R

(d−1)
(
1− 1

γ

)

R
d(d−1)
d+1

(
1− 2

γp

)

γ

1/p

1 2 d+ 1

1

d−1
2d
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The estimates in point 1) are the same as in [2] for the case of positive Gaussian
curvature and are independent of γ. On the contrary, as we will see from the proof,
in the cases 2) and 3) the flat points give the main contribution. In the case 2) if
p = +∞ then

d (d− 1)

d+ 1

(
1− 2

pγ

)
=
d (d− 1)

d+ 1
.

Hence, when γ 6 d+ 1 the estimates for the L∞ discrepancy of B match Landau’s
estimates for the L∞ discrepancy of the ball. See e.g. [25]. For p ≥ 2d/ (d− 1)
the above result extends a theorem of Colin de Verdiere [9].

The proof of the above theorem is inspired by the classical works of Kendall [22]
and Hlakwa [18], and relies on the study of the Fourier series of the discrepancy
which, by the Poisson summation formula, is related to the Fourier transform

χ̂B (ζ). The decay of χ̂B (ζ) is of order of |ζ|−(d+1)/2
along generic directions, but

it is of order of |ζ|−1−(d−1)/γ
along singular directions normal to flat points. See

Proposition 11 below. One can split the Fourier series of the discrepancy into two
series S = Sgeneric + Ssingular according to these two different decays. Roughly
speaking Sgeneric has many terms, but these terms are small, while Ssingular has
few terms, but these terms are larger. For every p and γ the contribution of

Ssingular is of order R(d−1)(1− 1
γ ), and this is sharp. The contribution of Sgeneric

depends on p and γ and we are able to show that our estimates are sharp only
in a restricted range of p. In particular, when 2 < γ 6 d + 1 and 1 6 p 6
(2d) / (d+ 1− γ) or γ > d + 1 and p > 1, the contribution of the singular part is
larger than the contribution of the generic part and we obtain sharp estimates of
the norm of the discrepancy. On the other hand for convex bodies with smooth
boundary of positive Gaussian curvature, sharp estimates for the supremum of the
discrepancy are not known, except for specific bodies and dimensions.

In the next theorem we consider convex bodies with a flat point with normal
pointing in a rational direction. In this case, some of the previous estimates can
be improved to asymptotic estimates.

Theorem 5. Let B be a bounded convex body in Rd. Assume that ∂B is smooth
with everywhere positive Gaussian curvature except at most at two points P and Q
with outward unit normals −Θ and Θ which are flat of order γP and γQ respectively.
Let

S (t) = |{z ∈ B : z ·Θ = t}|

be (d− 1)-dimensional measure of the slices of B that are orthogonal to Θ. The
function S (t) is supported in P ·Θ 6 t 6 Q ·Θ and is smooth in P ·Θ < t < Q ·Θ.
Assume that there exist two smooth functions GP (r) and GQ (r) with GP (0) 6= 0
and GQ (0) 6= 0 such that, for u > 0 sufficiently small

S (P ·Θ + u) = u
d−1
γP GP

(
u1/γP

)
and

S (Q ·Θ− u) = u
d−1
γQ GQ

(
u1/γQ

)
.
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Finally, assume that the direction Θ is rational, that is αΘ ∈ Zd for some α, and
denote by m0 the first non-zero integer point in the direction Θ. Define

AP (z) =
2GP (0) Γ

(
d−1
γP

+ 1
)

(2π |m0|)
d−1
γP

+1

+∞∑
k=1

k
−1− d−1

γP sin

(
2πkm0 · z−

π

2

d− 1

γP

)
,

and

AQ (z) = −
2GQ (0) Γ

(
d−1
γQ

+ 1
)

(2π |m0|)
d−1
γQ

+1

+∞∑
k=1

k
−1− d−1

γQ sin

(
2πkm0 · z +

π

2

d− 1

γQ

)
.

1) Let γP > γQ > 2 and assume that one of the two alternatives holds:

2 < γP 6 d+ 1 and p < (2d) / (d+ 1− γP ) ,
or

γP > d+ 1 and p 6 +∞.

Then there exist constants δ > 0 and c > 0 such that for every R > 1,(∫
Td

∣∣∣DR (z)−R(d−1)(1−1/γP )AP (z−RP )
∣∣∣p dz)1/p

6 cR(d−1)(1−1/γP )−δ.

In particular, as R→ +∞, we have the following asymptotic(∫
Td
|DR (z)|p dz

)1/p

∼ R(d−1)(1−1/γP )

(∫
Td
|AP (z)|p dz

)1/p

.

2) Let γP = γQ = γ and assume that one of the two alternatives holds:

2 < γ 6 d+ 1 and p < (2d) / (d+ 1− γ) ,
or

γ > d+ 1 and p 6 +∞.

Then there exist constants δ > 0 and c > 0 such that for every R > 1,(∫
Td

∣∣∣DR (z)−R(d−1)(1−1/γ) (AP (z−RP ) +AQ (z−RQ))
∣∣∣p dz)1/p

6 cR(d−1)(1−1/γ)−δ.

Note that the series that define AP (z) and AQ (z) converge uniformly and
absolutely. In particular these functions are bounded and continuous.

Observe that the asymptotic estimate of point 1) includes the case of a single
flat point, that is γP > γQ = 2. In point 2) it is not excluded that for particular
values of P , Q, GP (0), GQ (0) and R, the terms AP (z−RP ) and AQ (z−RQ)
may cancel each other and the discrepancy gets smaller.
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Corollary 6. Under the assumptions in point 2 in the previous theorem assume
furthermore that GP (0) = GQ (0) and that (d− 1) /γ is an even integer. Then for
every R such that Rm0 · (P −Q) is an integer we have

AP (z−RP ) +AQ (z−RQ) = 0.

In particular with this choice of the parameters(∫
Td
|DR (z)|p dz

)1/p

6 cR(d−1)(1−1/γ)−δ.

The case γ = 2 is not covered by the above corollary, however observe that for
γ = (d− 1) / (2k) = 2, that is d ≡ 1 (mod 4), and p < 2d/ (d− 1), one formally
would obtain

lim inf
R→+∞

{
R
d−1
2

(∫
Td
|DR (z)|p dz

)1/p
}

= 0.

Actually this is true, even if the proof is more delicate. The case of a ball and
p = 2 has been proved by L. Parnovski and A. Sobolev in [24]. Moreover, in [2] it is
shown that this phenomenon also occurs for convex smooth domains with positive
Gaussian curvature and p < 2d/ (d− 1) if and only if the domains are symmetric
and d ≡ 1 (mod 4).

As remarked by Kendall the above Lp estimates for the discrepancy can be
turned into almost everywhere pointwise estimates using a Borel-Cantelli type
argument. See [22, §3] for the proof.

Proposition 7. Assume that for some β > 0(∫
Td
|DR (z)|p

)1/p

6 κRβ ,

let λ (t) be an increasing function and let Rn → +∞ such that

+∞∑
n=1

λ (Rn)
−p

< +∞.

Then for almost every z ∈ Td there exists c > 0 such that

|DRn (z)| < cRβnλ (Rn) .

If the flat points on the boundary of the domain B have “irrational” normals
then the discrepancy can be smaller than the one described in the above theorems.
In particular, we have the following result that applies to every convex body,
without curvature or smoothness assumption.

Theorem 8. Let B be a bounded convex body in Rd and for σ ∈ SO (d) denote
by DR,σ the discrepancy associated to the rotated body σB. Then we have the
following mixed norm inequalities.
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1) If 1 6 p 6 2, we have(∫
SO(d)

(∫
Td
|DR,σ (z)|p dz

)2/p

dσ

)1/2

6 cR
d−1
2 .

2) If 2 6 p < 2d/ (d− 1), we have(∫
SO(d)

(∫
Td
|DR,σ (z)|p dz

)1/(p−1)

dσ

) p−1
p

6 cR
d−1
2 .

For the planar case d = 2 we can state a slightly more precise result.

Theorem 9. Let B be a bounded convex body in R2. Assume that ∂B is smooth
with everywhere positive curvature except a single flat point of order γ > 2. Let
(α, β) be the unit outward normal at the flat point and assume the Diophantine
property that for some δ < 2/ (γ − 2) there exists c > 0 such that for every n ∈ Z∥∥∥∥nαβ

∥∥∥∥ >
c

|n|1+δ
.

Here ‖x‖ denotes the distance of x from the closest integer. Then(∫
T2

|DR (z)|2 dz
)1/2

6 cR
1
2 .

By a classical result of Jarnik (see e.g. [12, §10.3]) the set of real numbers ω
that are (2 + δ)-well approximable, that is

‖nω‖ 6 n1−(2+δ) = n−1−δ

for infinitely many n, has Hausdorff dimension 2
2+δ . In particular the exceptional

set in the above theorem, where the discrepancy may be larger than R1/2 has
Hausdorff dimension at most γ−2

γ−1 .

3. Estimates for the Fourier transforms

The main ingredient in the proof of our results on the discrepancy comes from
suitable estimates of the decay of χ̂B (ζ). We start studying a family of oscillatory
integrals.

As usual we write d-dimensional points through the notation z = (x, t) and
ζ = (ξ, s) (see the Introduction).

Lemma 10. Let U ⊂ Rd−1 be an open ball about the origin of radius b, let Φ ∈
Sγ (U) for some γ > 1, let ψ be a smooth function supported in {0 < a 6 |x| 6 b},
for every positive integer k let

Φk (x) = 2kγΦ
(
2−kx

)
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and let

Ik (ξ, s) =

∫
Rd−1

(
∇Φ

(
2−kx

)
,−1

)
e−2πi(ξ,s)·(x,Φk(x))ψ (x) dx.

Then there exist constants c, c1, c2 > 0 and, for every M > 0, a constant cM such
that for every k > 0

|Ik (ξ, s)| 6


c (1 + |s|+ |ξ|)−

d−1
2 for every (ξ, s)

cM (1 + |s|)−M if |ξ| 6 c1 |s| ,
cM (1 + |ξ|)−M if c2 |s| 6 |ξ| .

Proof. The behaviour of the oscillatory integral Ik (ξ, s) depends on the points
where the amplitude ψ (x) is not zero and the phase (ξ, s) ·(x,Φk (x)) is stationary.
This happens only when |ξ| ≈ |s| and in this case, since the phase is non degenerate,

one obtains the classical estimate c |(ξ, s)|−(d−1)/2
. In all other directions the

oscillatory integral has a fast decay. In particular, when |ξ| 6 c1 |s| one obtains the

decay cM (1 + |s|)−M , and when |ξ| > c2 |s|, one obtains the decay cM (1 + |ξ|)−M .
For the sake of completeness we include the full details of the proof.

By the definition of the class Sγ we have∣∣∣∣∂|α|Φk∂xα
(x)

∣∣∣∣ = 2kγ2−k|α|
∣∣∣∣∂|α|Φ∂xα

(
2−kx

)∣∣∣∣ 6 2kγ2−k|α|cα
∣∣2−kx∣∣γ−|α|(3.1)

6 cα |x|γ−|α| .

In particular when x belongs to the support of ψ (x) we have∣∣∣∣∂|α|Φk∂xα
(x)

∣∣∣∣ 6 cα.

Moreover, the Hessian matrix of Φk (x) satisfies

Hess Φk (x) = 2k(γ−2) Hess Φ
(
2−kx

)
and it follows that the eigenvalues µ

(k)
j (x) of Hess Φk (x) are related to the eigen-

values µj (x) of Hess Φ (x) by the identity

µ
(k)
j (x) = 2k(γ−2)µj

(
2−kx

)
.

By (2.1)

(3.2) µ
(k)
j (x) =

µj
(
2−kx

)
|2−kx|γ−2 |x|

γ−2 > c |x|γ−2
.

If x belongs to the support of ψ (x) we have

µ
(k)
j (x) > c > 0.
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Since

∇Φ
(
2−kx

)
= 2−k(γ−1)∇Φk (x)

by (3.1) all the derivatives of ∇Φ
(
2−kx

)
are uniformly bounded.

The phase in the integral Ik (ξ, s) is stationary when

∇ (ξ · x+ sΦk (x)) = ξ + s∇Φk (x) = 0.

By (3.1) there exits c2 > 0 such that |∇Φk (x)| 6 c2
2 for every k. It follows that

for |ξ| > c2 |s| we have

|ξ + s∇Φk (x)| > |ξ| − |s| |∇Φk (x)| > 1

2
|ξ| .

Integrating by parts M times gives (see e.g. Proposition 4, p. 341, in [29])

|Ik (ξ, s)| 6 cM (1 + |ξ|)−M .

Let now |ξ| 6 c1 |s| where c1 is a constant which will be determined later on. Let
us consider the function

F (t) = ∇Φk (tx) · x

with t ∈ [0, 1]. Then, for t ∈ (0, 1]

F ′ (t) = xT Hess Φk (tx)x

and by (3.2) the eigenvalues of Hess Φk (tx) are bounded from below by tγ−2 |x|γ−2
.

Then

F (1) >
∫ 1

0

xT Hess Φk (tx)xdt > c

∫ 1

0

tγ−2 |x|γ−2 |x|2 dt > c |x|γ

and therefore

|∇Φk (x)| > ∇Φk (x) · x
|x|

> c |x|γ−1 > 2c1 > 0.

It follows that

|ξ + s∇Φk (x)| > |s| |∇Φk (x)| − |ξ| > c1 |s| .

Integrating by parts M times gives

|Ik (ξ, s)| 6 cM (1 + |s|)−M .

Finally, for every (ξ, s), Theorem 1, p. 348, in [29] gives

|Ik (ξ, s)| 6 c (1 + |ξ|+ |s|)−
d−1
2 .

2
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Proposition 11. Let γ > 1 and let B be a bounded convex body in Rd with
everywhere positive Gaussian curvature with the exception of a single flat point of
order γ. Let Θ be the outward unit normal to ∂B at the flat point and for every
ζ ∈ Rd write ζ = ξ + sΘ, with s = ζ ·Θ and ξ ·Θ = 0. Then, if 1 < γ 6 2

(3.3) |χ̂B (ζ)| 6 c |ζ|−
d+1
2 .

If γ > 2 the following three upper bounds hold:

(3.4) |χ̂B (ζ)| 6


c |s|−1− d−1

γ ,

c |ξ|−(d−1) γ−2
2(γ−1) |s|−

d−1
2(γ−1)

−1
,

c |ξ|−
d+1
2 .

The particular case where the boundary in a neighborhood of the flat point has
equation t = |x|γ with γ > 2 and d = 2 has been already considered in [6]. The
same case with γ > 2 and d > 2 has been considered in [4], but we acknowledge
that the proof of the rate of decay in the horizontal directions was not correctly
justified.

More precise estimates for the Fourier transform of the characteristic functions
of a convex body with boundary having flat points in which the principal curvatures
may vanish of different orders are contained in [21, Proposition 1.2].

Proof. Choose a smooth function η (z) supported in a neighborhood of the flat
point and such that η (z) = 1 in a smaller neighborhood. For every z ∈ ∂B let
ν (z) be its outward unit normal. Applying the divergence theorem we decompose
the Fourier transform as

χ̂B (ζ) =

∫
B

e−2πiζ·zdz =
−1

4π2 |ζ|2
∫
∂B

∇
(
e−2πiζ·z) · ν (z) dσ (z)

=
−1

2πi |ζ|2
∫
∂B

ζ · ν (z) e−2πiζ·zdσ (z)

=
−1

2πi |ζ|2
∫
∂B

ζ · ν (z) e−2πiζ·zη (z) dσ (z)(3.5)

+
−1

2πi |ζ|2
∫
∂B

ζ · ν (z) e−2πiζ·z [1− η (z)] dσ (z)

= K1 (ζ) +K2 (ζ) .

Since in the support of the function 1 − η (z) the Gaussian curvature is bounded
away from zero, the method of stationary phase gives the classical estimate (see
Theorem 1, p. 348, in [29])

(3.6) |K2 (ζ)| 6 c |ζ|−
d+1
2 .

By a suitable choice of coordinates we can assume that z = (x, t), the flat point
is the point (0, 0), its outward normal is (0,−1) and that the relevant part of the
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surface ∂B is described by the equation t = Φ (x) with Φ ∈ Sγ . Hence

ν (x,Φ (x)) =
(∇Φ (x) ,−1)√
1 + |∇Φ (x)|2

.

Write ϕ (x) = η (x,Φ (x)) and ψ (x) = ϕ (x)− ϕ (2x) so that for every x 6= 0

ϕ (x) =

+∞∑
k=0

ψ
(
2kx
)
.

Observe that ϕ (x) is smooth and a suitable choice of η (z) guarantees ϕ (x) = 1
if |x| 6 ε/2 and ϕ (x) = 0 if |x| > ε for some ε > 0. With the above choice
of coordinate we can also write ζ = (ξ,−s) so that, following the notation of the
previous lemma, we have

K1 (ζ)

=
−1

2πi |ζ|2
∫
Rd−1

ζ · (∇Φ (x) ,−1)√
1 + |∇Φ (x)|2

e−2πiζ·(x,Φ(x))ϕ (x)

√
1 + |∇Φ (x)|2dx

=
−ζ

2πi |ζ|2
·
∫
Rd−1

(∇Φ (x) ,−1) e−2πiζ·(x,Φ(x))ϕ (x) dx(3.7)

=
−ζ

2πi |ζ|2
·

+∞∑
k=0

∫
Rd−1

(∇Φ (x) ,−1) e−2πiζ·(x,Φ(x))ψ
(
2kx
)
dx

=

+∞∑
k=0

−2−k(d−1)ζ

2πi |ζ|2

·
∫
Rd−1

(
∇Φ

(
2−ky

)
,−1

)
e−2πi(2−kξ,−2−kγs)·(y,2kγΦ(2−ky))ψ (y) dy

=

+∞∑
k=0

2−k(d−1) −ζ
2πi |ζ|2

· Ik
(
2−kξ,−2−kγs

)
.

By the previous lemma∣∣Ik (2−kξ,−2−kγs
)∣∣ 6 c

(
1 +

∣∣2−kγs∣∣+
∣∣2−kξ∣∣)− d−1

2 .

Hence,

|K1 (ζ)| 6 c

|(ξ, s)|

+∞∑
k=0

2−k(d−1)
(
1 +

∣∣2−kγs∣∣+
∣∣2−kξ∣∣)− d−1

2 .

In particular, for every (ξ, s) ∈ Rd we have

|K1 (ζ)| 6 c

|ξ|

+∞∑
k=0

2−k(d−1)
∣∣2−kξ∣∣− d−1

2 6 c |ξ|−
d+1
2 .
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Assume now γ 6= 2. Our second estimate for K1 (ζ) is as follows. For every
(ξ, s) ∈ Rd we have

|K1 (ζ)| 6 c

|s|

+∞∑
k=0

2−k(d−1)
(
1 +

∣∣2−kγs∣∣)− d−1
2

6
c

|s|
∑

2k>|s|1/γ
2−k(d−1) +

c

|s|
∑

2k<|s|1/γ
2−k(d−1)

∣∣2−kγs∣∣− d−1
2

6 c |s|−1− d−1
γ + c |s|−1− d−1

2

∑
2k<|s|1/γ

2k(d−1)( γ2−1)

6

{
c |s|−

d+1
2 γ < 2,

c |s|−1− d−1
γ γ > 2.

Note that when γ = 2 the previous computation gives c |s|−
d+1
2 log (2 + |s|). How-

ever when Φ (y) is smooth it is well known that the correct estimate is c |s|−
d+1
2 .

With a more careful analysis we show that this is the case also in our setting, even
if we do not assume smoothness at the flat point. Indeed notice that condition
(2.2) allows higher derivatives to blow up at the flat point. Let γ = 2. Then

(3.8) |K1 (ζ)| 6 c

|(ξ, s)|

+∞∑
k=0

2−k(d−1)
∣∣Ik (2−kξ,−2−kγs

)∣∣
By the previous lemma we have

∣∣Ik (2−kξ,−2−2ks
)∣∣ 6


c
(
1 +

∣∣2−2ks
∣∣+
∣∣2−kξ∣∣)− d−1

2 for every (ξ, s)

cM
(
1 +

∣∣2−2ks
∣∣)−M if 2k 6 c1

|s|
|ξ| ,

cM
(
1 +

∣∣2−kξ∣∣)−M if c2
|s|
|ξ| 6 2k.

so that

+∞∑
k=0

2−k(d−1)
∣∣Ik (2−kξ,−2−2ks

)∣∣
6 c

∑
2k6c1|s|/|ξ|

2−k(d−1)
(
1 +

∣∣2−2ks
∣∣)−M + c

∑
c2|s|/|ξ|62k

2−k(d−1)
(
1 +

∣∣2−kξ∣∣)−M
+ c

∑
c1|s|/|ξ|<2k<c2|s|/|ξ|

2−k(d−1)
(
1 +

∣∣2−2ks
∣∣+
∣∣2−kξ∣∣)− d−1

2

= S1 + S2 + S3.

We have

S1 6 c

+∞∑
k=0

2−k(d−1)
(
1 +

∣∣2−2ks
∣∣)−M
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6 c
∑

|s|1/262k

2−k(d−1) + c |s|−M
∑

|s|1/2>2k

22kM2−k(d−1)

6 c |s|−
d−1
2

and

S2 6 c
∑

c2|s|/|ξ|62k

2−k(d−1)
(
1 +

∣∣2−kξ∣∣)−M
6 c

∑
max(c2|s|/|ξ|,|ξ|)62k

2−k(d−1) + c |ξ|−M
∑

c2|s|/|ξ|62k<|ξ|

2Mk−k(d−1).

Observe that

∑
max(c2|s|/|ξ|,|ξ|)62k

2−k(d−1) 6 cmin

((
|ξ|
|s|

)d−1

, |ξ|−(d−1)

)

6 c |s|−
d−1
2 min

(
|ξ|d−1

|s|
d−1
2

,
|s|

d−1
2

|ξ|d−1

)
6 c |s|−

d−1
2 .

Also, the series

|ξ|−M
∑

c2|s|/|ξ|62k<|ξ|

2Mk−k(d−1)

is non void only if c2
|s|
|ξ| < |ξ|, that is c |s|1/2 < |ξ|. In this case we have

c |ξ|−M
∑

c2|s|/|ξ|62k<|ξ|

2Mk−k(d−1) 6 c |ξ|−M
∑
|ξ|>2k

2Mk−k(d−1) 6 c |ξ|−(d−1)

6 c |s|−
d−1
2 .

We now turn to S3 that contains a sum with a finite number of terms. We have,

S3 6 c |s|−
d−1
2

∑
c1|s|/|ξ|<2k<c2|s|/|ξ|

1 6 c |s|−
d−1
2 .

Substituting into (3.8) gives the estimate

|χ̂B (ζ)| 6 c |s|−
d+1
2

when γ = 2. It remains to prove the second row in (3.4). We have

|K1 (ζ)|

6
c

|s|

+∞∑
k=0

2−k(d−1)
(∣∣2−kγs∣∣+

∣∣2−kξ∣∣)− d−1
2
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6
c

|s|

|s|− d−1
2

∑
2k6(|s|/|ξ|)

1
γ−1

2k(d−1)( γ2−1) + |ξ|−
d−1
2

∑
2k>(|s|/|ξ|)

1
γ−1

2−k
d−1
2


6 c |ξ|−

(d−1)(γ−2)
2(γ−1) |s|−

d−1
2(γ−1)

−1
.

2

Remark 12. Let z ∈ ∂B, let Tz be the tangent hyperplane to ∂B in z and let

S (z, δ) = {w ∈ ∂B : dist (w, Tz) < δ} .

In [8] it is proved that when the boundary of B is smooth and of finite type (every
one dimensional tangent line to ∂B makes finite order of contact with ∂B), then

|χ̂B (ζ)| 6 c |ζ|−1
[
σ
(
S
(
z+, |ζ|−1

))
+ σ

(
S
(
z−, |ζ|−1

))]
where z+ and z− are the two points on ∂B with outer normal parallel to ζ and σ
is the surface measure. In our case ∂B is not necessarily smooth, but the above
result in fact holds. Indeed, let B as in Proposition 11, and choose coordinates
such that z = (x, t), the flat point is the point (0, 0), its outward normal is (0,−1)
and that the relevant part of the surface ∂B is described by the equation t = Φ (x)
with Φ ∈ Sγ . Fix z = (x, t) ∈ ∂B. Elementary geometric observations lead to

σ (S (z, δ)) > cσ (S (0, c1δ)) ≈
(
δ1/γ

)d−1

for δ > c |x|γ ,(3.9)

σ (S (z, δ)) > c

(
δ
(
|x|γ−2

)−1
) d−1

2

for δ 6 c |x|γ .(3.10)

The unit normal to ∂B in (x,Φ (x)) is (∇Φ(x),−1)√
|∇Φ(x)|2+1

. It follows that for a given

ζ = (ξ, s) the point (x,Φ (x)) in ∂B with normal in the direcion ζ satisfies |ξ| / |s| =
|∇Φ (x)| ≈ |x|γ−1

.

a) If |s| > |ξ|γ then |s|1−γ > (|ξ| / |s|)γ ≈ |x|(γ−1)γ
. Hence

1

|ζ|
≈ 1

|s|
> c |x|γ

so that, by (3.9),

σ
(
S
(
z, |ζ|−1

))
> cσ

(
S
(
0, c1 |ζ|−1

))
≈ |ζ|−(d−1)/γ ≈ |s|−(d−1)/γ

.

b) If |ξ| 6 |s| 6 |ξ|γ , then as before

1

|ζ|
≈ 1

|s|
6 c |x|γ
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and by (3.10)

σ
(
S
(
z, |ζ|−1

))
> c

(
1

|s|

(
|ξ|
|s|

) 2−γ
γ−1

) d−1
2

= c |ξ|−(d−1) γ−2
2(γ−1) |s|−

d−1
2(γ−1)

c) If |ξ| > |s|, then |x| ≈ 1and by (3.10)

σ
(
S
(
z, |ζ|−1

))
> |ξ|−

d−1
2 .

The geometric estimate

|χ̂B (ζ)| 6 c |ζ|−1
σ
(
S
(
z, |ζ|−1

))
.

now follows from Proposition 11.

As said before, the above proposition is the main ingredient in the estimate of
the discrepancy associated to the convex body B. In particular it follows that the
directions where the Fourier transform has the slowest rate of decay play a relevant
role in the estimates of the discrepancy.

Actually the Fourier transform in a given direction depends on the two points
in ∂B have normals in that direction. The interplay between the contribution of
these points is exploited in the following proposition.

Proposition 13. Let B be a bounded convex body in Rd. Assume that ∂B is
smooth with everywhere positive Gaussian curvature except at most at two points
P and Q which are flat of order γP and γQ respectively and have outward unit
normals −Θ and Θ. Let

S (t) = |{z ∈ B : z ·Θ = t}|

be (d− 1)-dimensional measures of the slices of B that are orthogonal to Θ. The
function S (t) is supported in P ·Θ 6 t 6 Q ·Θ and is smooth in P ·Θ < t < Q ·Θ.
Assume that there exist two smooth functions GP (r) and GQ (r) with GP (0) 6= 0
and GQ (0) 6= 0 such that, for u > 0 sufficiently small

S (P ·Θ + u) = u
d−1
γP GP

(
u1/γP

)
and

S (Q ·Θ− u) = u
d−1
γQ GQ

(
u1/γQ

)
.

Then, as |s| → +∞,

χ̂B (sΘ) = e−2πisΘ·PGP (0)
Γ
(
d−1
γP

+ 1
)

(2π)
d−1
γP

+1
e
−iπ2

(
d−1
γP

+1
)

sgn(s) |s|−1− d−1
γP

+ e−2πisΘ·QGQ (0)
Γ
(
d−1
γQ

+ 1
)

(2π)
d−1
γQ

+1
e
iπ2

(
d−1
γQ

+1
)

sgn(s) |s|−1− d−1
γQ

+O

(
|s|
−1− d

max(γP ,γQ)

)
.
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Observe that when in a neighborhood of the points P and Q the boundary of B
is smooth with positive Gaussian curvature K (P ) and K (Q) then we have γP =

γQ = γ = 2, GP (0) = (2π)(d−1)/2

Γ( d+1
2 )

K−1/2 (P ), and GQ (0) = (2π)(d−1)/2

Γ( d+1
2 )

K−1/2 (Q).

Hence we obtain the classical formula

χ̂B (sΘ) =
1

2π
e−2πisΘ·PK−1/2 (P ) e−i

π
2 ( d−1

2 +1) sgn(s) |s|−
d+1
2

+
1

2π
e−2πisΘ·QK−1/2 (Q) ei

π
2 ( d−1

2 +1) sgn(s) |s|−
d+1
2

+O
(
|s|−

d+2
2

)
.

See [17] and [18]. See also [19, Corollary 7.7.15].

Proof. The d-dimensional Fourier transform is the one dimensional Fourier trans-
form of a Radon transform. In [1, Lemma 4.3] it is proved that the Radon transform
S (t) is smooth inside P ·Θ < t < Q ·Θ. It follows that the asymptotic behaviour
of the Fourier transform of S (t) depends only on S (t) in a neighborhood of the
endpoints t = P · Θ and t = Q · Θ. Let η (t) be a smooth cutoff function with
η (t) = 1 if |t| 6 ε and η (t) = 0 if |t| > 2ε with ε small. For every N > 0 we have

χ̂B (sΘ) =

∫
Rd
χB (z) e−2πiz·sΘdz =

∫ +∞

−∞

(∫
{z·Θ=t}

χB (z) dz

)
e−2πistdt

=

∫ Q·Θ

P ·Θ
S (t) e−2πistdt

=

∫ +∞

0

η (u)S (P ·Θ + u) e−2πis(P ·Θ+u)du

+

∫ +∞

0

η (u)S (Q ·Θ− u) e−2πis(Q·Θ−u)du+O
(
|s|−N

)
= e−2πisP ·Θ

∫ +∞

0

u
d−1
γP GP

(
u1/γP

)
η (u) e−2πisudu

+ e−2πisQ·Θ
∫ +∞

0

u
d−1
γQ GQ

(
u1/γQ

)
η (u) e2πisudu+O

(
|s|−N

)
.

It is enough to consider

K (s) =

∫ +∞

0

u
d−1
γ G

(
u1/γ

)
η (u) e−2πisudu.

Since G (r) is smooth, for every N > 0 we can write the Taylor expansion

K (s) =

N−1∑
k=0

G(k) (0)

k!

∫ +∞

0

u
d−1+k
γ η (u) e−2πisudu

+

∫ +∞

0

u
d−1+N

γ GN

(
u1/γ

)
η (u) e−2πisudu.
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For N large enough, the function u
d−1+N

γ GN
(
u1/γ

)
η (u) has enough bounded

derivatives so that a repeated integration by parts gives∣∣∣∣∫ +∞

0

η (u)GN

(
u1/γ

)
u
d−1+N

γ e−2πisudu

∣∣∣∣ 6 c |s|−1− dγ .

Finally, all other terms in the above sum have the form∫ +∞

0

η (u)uαe−2πisudu

and can be estimated by the following lemma. 2

Lemma 14. If η is as above then, for every α > −1 and s 6= 0, we have∫ +∞

0

tαe−2πistη (t) dt =
Γ (α+ 1)

(2π |s|)α+1 e
−iπ2 (α+1) sgn(s) +O

(
|s|−N

)
.

The above result is not surprising since, in the sense of distributions,∫ +∞

0

tαe−2πistdt =
Γ (α+ 1)

(2π |s|)α+1 e
−iπ2 (α+1) sgn(s).

See e.g. [13]. The following is a direct proof.

Proof. Assume first s > 0. An integration by parts gives∫ +∞

0

tαe−2πistη (t) dt =
1

2πis

∫ +∞

0

e−2πist d

dt
[tαη (t)] dt

=
α

2πis

∫ +∞

0

e−2πisttα−1η (t) dt+
1

2πis

∫ +∞

0

e−2πisttαη′ (t) dt.

Since supp η′ ⊂ (ε, 2ε) the term tαη′ (t) is smooth so that

1

2πis

∫ +∞

0

e−2πisttαη′ (t) dt = O
(
|s|−N

)
.

Repeating the integration by parts k times, with k 6 α gives∫ +∞

0

tαe−2πistη (t) dt

=
α (α− 1) · · · (α− k + 1)

(2πis)
k

∫ +∞

0

e−2πisttα−kη (t) dt+O
(
|s|−N

)
.

Assume first that α is an integer and take k = α. Then∫ +∞

0

tαe−2πistη (t) dt =
α!

(2πis)
α

∫ +∞

0

e−2πistη (t) dt+O
(
|s|−N

)
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=
α!

(2πis)
α+1 +

α!

(2πis)
α+1

∫ +∞

0

e−2πistη′ (t) dt

=
α!

(2πis)
α+1 +O

(
|s|−N

)
.

If α is not an integer we take k = [α] + 1. Then∫ +∞

0

tαe−2πistη (t) dt

=
α (α− 1) · · · (α− [α])

(2πis)
[α]+1

∫ +∞

0

e−2πisttλ−1η (t) dt+O
(
|s|−N

)
,

where λ = α− [α]. By [11, (4) pag. 48] we have∫ +∞

0

e−2πisttλ−1η (t) dt =

∫ +∞

0

e2πisttλ−1η (t) dt

=−
N−1∑
n=0

Γ (n+ λ)

n!
e−πi(n+λ−2)/2η(n) (0) (2πs)

−n−λ
+O

(
s−N

)
and since η(n) (0) = 0 for every n > 0 and η (0) = 1 we obtain∫ +∞

0

tαe−2πistη (t) dt

=
α (α− 1) · · · (α− [α])

(2πis)
[α]+1

∫ +∞

0

e−2πisttλ−1η (t) dt+O
(
|s|−N

)
=

Γ (α+ 1)

(2πs)
α+1 e

−π2 i(α+1) +O
(
s−N

)
also in this case.

Let now s < 0. Then∫ +∞

0

tαe−2πistη (t) dt =

∫ +∞

0

tαe−2πi(−s)tη (t) dt

=
Γ (α+ 1)

(2π |s|)α+1 e
iπ2 (α+1) +O

(
|s|−N

)
2

In the next proposition we show that assumptions of Proposition 13 are satisfied
when the flat points are as in Proposition 3.

Proposition 15. Let γ > 1 and let B be a bounded convex body in Rd. Let U be
a bounded open neighborhood of the origin in Rd−1 and let H (x) ∈ C∞ (U) such
that H (0) = 0, ∇H (0) = 0 and HessH (0) positive definite (see Proposition 3).
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Assume there exists a neighborhood of the origin W ⊂ Rd such that, in suitable
coordinates,

∂B ∩W =
{

(x, t) ∈ Rd : t = (H (x))
γ/2
}
∩W.

As before, let
S (t) =

∣∣{x ∈ Rd−1 : (x, t) ∈ B
}∣∣ .

Then, there exists a smooth function G (r) such that for t > 0 sufficiently small we
have

S (t) = t
d−1
γ G

(
t1/γ

)
with G (0) equal to the (d− 1)-dimensional measure of the ellipsoidx ∈ Rd−1 :

1

2

d−1∑
j,k=1

∂2H

∂xj∂xk
(0)xjxk 6 1

 .

Proof. For t small enough we have

S (t) =

∫
{x∈Rd−1:t>(H(x))γ/2}

dx.

By Morse’s lemma (see [29, p. 346]), there exists a diffeomorphism Ψ (y) between
two small neighborhoods of the origin in Rd−1 such that

H (Ψ (y)) = |y|2 .

Then,

S (t) =

∫
{x∈Rd−1:t>(H(x))γ/2}

dx =

∫
{|y|6t1/γ}

JΨ (y) dy

= t
d−1
γ

∫
{|u|61}

JΦ

(
t1/γu

)
du = t

d−1
γ G

(
t1/γ

)
where

G (r) =

∫
{|z|61}

JΦ (ru) du.

Finally observe that

G (0) = lim
r→0

∫
{|u|61}

JΦ (ru) du = lim
r→0

1

rd−1

∫
{|w|6r}

JΦ (w) dw

= lim
r→0

1

rd−1

∫
{|w|26r2}

JΦ (w) dw

= lim
r→0

1

rd−1

∫
{H(y)6r2}

dy = lim
r→0

∫
{H(rx)

r2
61}

dx

=

∣∣∣∣∣∣
x ∈ Rd−1 :

1

2

d−1∑
j,k=1

∂2H

∂xj∂xk
(0)xjxk 6 1


∣∣∣∣∣∣ .

2
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4. Proofs of the results

Proof of Proposition 3. Let α be a multi-index. It is not difficult to prove by
induction on |α| that

∂|α|Φ

∂xα
(x)

is a finite sum of terms of the form

c [H (x)]
γ/2−k ∂

|β1|H

∂xβ1

(x)× · · · × ∂|βk|H

∂xβk
(x)

with k 6 |α| and multi-indices β1, . . . , βk such that |β1| + · · · + |βk| = |α|. Since
HessH (0) is positive definite there are positive constants c1 and c2 such that in a
neighborhood of the origin

c1 |x|2 6 H (x) 6 c2 |x|2

and ∣∣∣∣ ∂H∂xj (x)

∣∣∣∣ 6 c2 |x| .

Moreover, since H (x) is smooth∣∣∣∣∂|βj |H∂xβj
(x)

∣∣∣∣ 6 c |x|max(2−|βj |,0) 6 c |x|2−|βj | .

It follows that∣∣∣∣[H (x)]
γ/2−k ∂

|β1|H

∂xβ1

(x)× · · · × ∂|βk|H

∂xβk
(x)

∣∣∣∣
6 c

(
|x|2
)γ/2−k

|x|2−|β1| × · · · × |x|2−|βk| 6 c |x|γ−2k |x|2k−(|β1|+···+|βk|)

6 c |x|γ−|α| .

This proves (2.2). To prove (2.1) let us write

∂2Φ

∂xj∂xk
(x)

=
γ

2
(γ/2− 1) [H (x)]

γ/2−2 ∂H

∂xj
(x)

∂H

∂xk
(x) +

γ

2
[H (x)]

γ/2−1 ∂2H

∂xj∂xk
(x)

=
γ

2
[H (x)]

γ/2−1

(
∂2H

∂xj∂xk
(x) + (γ/2− 1)

∂H
∂xj

(x) ∂H
∂xk

(x)

H (x)

)

so that

Hess Φ (x) =
γ

2
[H (x)]

γ/2−1
HessM (x)
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where M (x) is the matrix with entries

∂2H

∂xj∂xk
(x) + (γ/2− 1)

∂H
∂xj

(x) ∂H
∂xk

(x)

H (x)
.

Let A = HessH (0), since

H (x) =
1

2
xTAx+O

(
|x|3
)
,

∇H (x) = Ax+O
(
|x|2
)

HessH (x) = A+O (|x|)

we have

M (x) = A+O (|x|) + (γ/2− 1)

(
Ax+O

(
|x|2
))(

Ax+O
(
|x|2
))T

1
2x

TAx+O
(
|x|3
)

= A+ (γ − 2)
Ax (Ax)

T

xTAx
+O (|x|) .

Let us show that the matrix

A+ (γ − 2)
Ax (Ax)

T

xTAx

is positive definite. Indeed, for all y ∈ Rd−1 we have

yT

(
A+ (γ − 2)

Ax (Ax)
T

xTAx

)
y = yTAy + (γ − 2)

(
yTAx

)2
xTAx

.

When γ > 2 we easily obtain

yT

(
A+ (γ − 2)

Ax (Ax)
T

xTAx

)
y > yTAy > λ1 |y|2

where λ1 is the smallest eigenvalue of A. For 1 < γ < 2, by Cauchy-Schwarz
inequality for the inner product defined by 〈y, x〉 = yTAx we have(

yTAx
)2

xTAx
6

(
yTAy

) (
xTAx

)
xTAx

= yTAy.

Hence

yT

(
A+ (γ − 2)

Ax (Ax)
T

xTAx

)
y > yTAy + (γ − 2) yTAy

= (γ − 1) yTAy > (γ − 1)λ1 |y|2 .
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Let µ1 (x) be the smallest eigenvalue of Hess Φ (x) . We want to show that µ1 (x) >
c |x|γ−2

. This is equivalent to show that

yT Hess Φ (x) y > c |x|γ−2 |y|2 .

We have

yT Hess Φ (x) y =
γ

2
[H (x)]

γ/2−1
yT

(
A+ (γ − 2)

Ax (Ax)
T

xTAx

)
y

+ [H (x)]
γ/2−1

yTO (|x|) y

> c1

(
|x|2
)γ/2−1

|y|2 − c2
(
|x|2
)γ/2−1

|x| |y|2

= c1 |x|γ−2 |y|2 − c2 |x|γ−2 |x| |y|2 > c |x|γ−2 |y|2

for |x| small enough. 2

To prove the theorems and the corollary it is convenient to introduce a mollified
discrepancy. In the next lemma we assume that the origin is in the interior of the
body. Since we will apply this lemma to prove estimates that are invariant under
translations of the body we can always reduce to this case.

Lemma 16. Assume that the origin is an interior point of B and let ϕ (z) be a
nonnegative compactly supported smooth function in Rd with integral 1. Then, if
the support of ϕ (z) is sufficiently small, for every 0 < ε < 1 and R > 1 we have

ε−dϕ
(
ε−1·

)
∗ χ(R−ε)B (z) 6 χRB (z) 6 ε−dϕ

(
ε−1·

)
∗ χ(R+ε)B (z) .

In particular,

|B|
(

(R− ε)d −Rd
)

+Dε,R−ε (z) 6 DR (z) 6 |B|
(

(R+ ε)
d −Rd

)
+Dε,R+ε (z) ,

where
Dε,R (z) = Rd

∑
06=m∈Zd

ϕ̂ (εm) χ̂B (Rm) e2πim·z.

The above lemma is well known. See e.g. [3, pag. 195] for a proof.
Also the following result is well known, the following is elementary proof.

Lemma 17. For every integer M > 0 and every neighborhood U of the origin in
Rd there exists a smooth function ϕ (z) supported in U such that

ϕ̂ (0) = 1

and for every multi-index α, with 0 < |α| 6M

∂|α|ϕ̂

∂ζα
(0) = 0.
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Proof. Let ψ (z) be a smooth function supported in U such that∫
Rd
ψ (z) dz = 1.

We want to find constants c0, c1, . . . , cM such that the function

ϕ (z) =

M∑
k=0

2kdckψ
(
2kz
)

satisfies the lemma. We have

ϕ̂ (ζ) =

M∑
k=0

ckψ̂
(
2−kζ

)
so that

ϕ̂ (0) =

M∑
k=0

ckψ̂ (0) =

M∑
k=0

ck

and for every multi-index α

∂|α|ϕ̂

∂ζα
(0) =

M∑
k=0

ck2−k|α|
∂|α|ψ̂

∂ζα
(0) .

Hence the coefficients ck are the solution of the non singular linear system
c0 + c2 + · · ·+ cM = 1(
2−1
)0
c0 +

(
2−1
)1
c1 + · · ·+

(
2−1
)M

cM = 0
...(

2−M
)0
c0 +

(
2−M

)1
c1 + · · ·+

(
2−M

)M
cM = 0

2

The following lemma collects the main estimates that we will use later.

Lemma 18. Assume the inequalities

|χ̂B (ζ)| 6


c |s|−1− d−1

γ ,

c |ξ|−(d−1) γ−2
2(γ−1) |s|−

d−1
2(γ−1)

−1
,

c |ξ|−
d+1
2 .

proved in Proposition 11, where ζ = ξ + sΘ, with s = ζ ·Θ and ξ ·Θ=0 for some
Θ ∈ Rd with |Θ| = 1 and γ > 2 and let ϕ (z) as in the previous lemma.

1) For every τ > 0 and p > 2d/ (d− 1) there exists c such that for every ε > 0
and R > 1,∫

Td

∣∣∣∣∣∣Rd
∑

|m−(m·Θ)Θ|>τ

ϕ̂ (εm) χ̂B (Rm) e2πim·z

∣∣∣∣∣∣
p

dz

1/p

6 cR
d−1
2 ε−

d−1
2 + d

p .
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2) For every τ > 0 there exists c such that for every ε > 0, R > 1 and z ∈ Td,∣∣∣∣∣∣Rd
∑

0 6=m∈Zd, |m−(m·Θ)Θ|<τ

ϕ̂ (εm) χ̂B (Rm) e2πim·z

∣∣∣∣∣∣ 6 cR(d−1)(1− 1
γ ).

Proof. Let us prove 1). For every m ∈ Zd, write m = m1 + m2 with m1 =
m− (m ·Θ) Θ and m2 = (m ·Θ) Θ. Also observe that for every M > 0,

|ϕ̂ (ζ)| 6 cM (1 + |ζ|)−M .

Since p > 2, by the Hausdorff-Young inequality with 1/p + 1/q = 1 and the
assumption on χ̂B (ζ) we have∫

Td

∣∣∣∣∣∣Rd
∑
|m1|>τ

ϕ̂ (εm) χ̂B (Rm) e2πim·z

∣∣∣∣∣∣
p

dz

q/p

6 Rdq
∑
|m1|>τ

|ϕ̂ (εm)|q |χ̂B (Rm)|q

6 cRq
d−1
2

∑
τ6|m1|6|m2|

(1 + ε |m2|)−M |m1|−q(d−1) γ−2
2(γ−1) |m2|−q

d−1
2(γ−1)

−q

+ cRq
d−1
2

∑
|m1|>max(|m2|,τ)

(1 + ε |m1|)−M |m1|−
d+1
2 q

= A+B.

Since in the series in A the quantities |m1| and |m2| are bounded away from
zero we can control the series with an integral,∑

τ<|m1|6|m2|

(1 + ε |m2|)−M |m1|−q(d−1) γ−2
2(γ−1) |m2|−q

d−1
2(γ−1)

−q

6 c

∫∫
{τ<|ξ|6|s|}

(1 + ε |s|)−M |ξ|−q(d−1) γ−2
2(γ−1) |s|−q

d−1
2(γ−1)

−q
dξds

6 c

∫ +∞

τ

(1 + ε |s|)−M |s|−q
d−1

2(γ−1)
−q

[∫
{|ξ|6|s|}

|ξ|−q(d−1) γ−2
2(γ−1) dξ

]
ds

6 c

∫ +∞

τ

(1 + ε |s|)−M |s|d−1−q d+1
2 ds 6 cε−(d−q d+1

2 )

(note that since p > 2d/ (d− 1) we have q < 2d/ (d+ 1)). Similarly, for the series
in B, ∑

|m1|>max(|m2|,τ)

(1 + ε |m1|)−M |m1|−
d+1
2 q

6 c

∫∫
{|ξ|>|s|}

(1 + ε |ξ|)−M |ξ|−
d+1
2 q

dξds
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= cε
d+1
2 q−d

∫
Rd−1

(1 + |ξ|)−M |ξ|1−
d+1
2 q

dξ = cε
d+1
2 q−d.

This proves point 1) in the statement. Similarly, to prove point 2) observe that,
by the assumption on χ̂B (ζ), we have∣∣∣∣∣∣Rd

∑
06=m∈Zd,|m1|<τ

ϕ̂ (εm) χ̂B (Rm) e2πim·z

∣∣∣∣∣∣ 6 Rd
∑

0 6=m∈Zd,|m1|<τ

|χ̂B (Rm)|

6 cR(d−1)(1− 1
γ )

∑
06=m∈Zd,|m1|<τ

|m2|−1− d−1
γ .

Note that the last series is essentially one dimensional and it is convergent. 2

Proof of Theorem 4. Without loss of generality we can assume that the origin is
an interior point of B. The discrepancy will be estimated using the size of χ̂B (ζ).
Since the main contribution to the size of this Fourier transform comes from the
flat points on ∂B and since with a suitable partition of unity we can isolate such
flat points, without loss of generality we can assume the existence of only a single
flat point of order γ.

The case 1 < γ 6 2 follows from the argument used in [2] for the smooth case.
This essentially reduces to the Hausdorff-Young inequality and follows from the
estimate

|χ̂B (ζ)| 6 c |ζ|−
d+1
2

that holds true also in our case by (3.3). Let us now prove point 2) and point 3)
in the theorem. To prove point 2) we observe that the case p 6 2d/ (d+ 1− γ)
follows from the case p = 2d/ (d+ 1− γ), and the case 2d/ (d+ 1− γ) 6 p 6 +∞
follows by interpolation between p = 2d/ (d+ 1− γ) and p = +∞. Hence to prove
point 2) it suffices to consider only the cases p = 2d/ (d+ 1− γ) and p = +∞.
Similarly to prove point 3) it suffices to consider only the case p = +∞. Observe
that since γ > 2, all these values of p are greater than 2d/ (d− 1).

By Lemma 16 we have

‖DR‖Lp(Td) 6 |B|max
±

∣∣∣(R± ε)d −Rd∣∣∣+ max
±
‖Dε,R±ε‖Lp(Td)

6 cRd−1ε+ max
±
‖Dε,R±ε‖Lp(Td) .

Replacing R± ε with R for simplicity, Lemma 18, with a fixed τ > 0, gives

‖Dε,R‖Lp(Td) =

∫
Td

∣∣∣∣∣∣Rd
∑

0 6=m∈Zd
ϕ̂ (εm) χ̂B (Rm) e2πim·z

∣∣∣∣∣∣
p

dz

1/p

6

∫
Td

∣∣∣∣∣∣Rd
∑

|m−(m·Θ)Θ|>τ

ϕ̂ (εm) χ̂B (Rm) e2πim·z

∣∣∣∣∣∣
p

dz

1/p
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+

∣∣∣∣∣∣Rd
∑

0 6=m∈Zd, |m−(m·Θ)Θ|<τ

ϕ̂ (εm) χ̂B (Rm) e2πim·z

∣∣∣∣∣∣
6 cR

d−1
2 ε−

d−1
2 + d

p + cR(d−1)(1− 1
γ )

The choice ε = R−
d−1

d+1−2d/p then gives

‖DR‖Lp(Td) 6 cRd(d−1) p−2
p−2d+dp + cR(d−1)(1− 1

γ ).

For p = 2d/ (d+ 1− γ) and 2 < γ 6 d+ 1, or p = +∞ and γ > d+ 1 we obtain

‖DR‖Lp(Td) 6 cR(d−1)(1− 1
γ ).

For 2 < γ < d+ 1 and p = +∞ we obtain

‖DR‖L∞(Td) 6 cR
d(d−1)
d+1 .

2

Proof of Theorem 5. Once again we can assume that the origin is an interior point
of B. The smoothness of S (t) is proved in [1, Lemma 4.3]. For every m ∈ Zd,
write m = m1 + m2 with m1 = m− (m ·Θ) Θ and m2 = (m ·Θ) Θ, and split the
Fourier expansion of the discrepancy as

(4.1) DR (z) = Rd
∑

m1=0, m2 6=0

χ̂B (Rm) e2πim·z +Rd
∑

m1 6=0

χ̂B (Rm) e2πim·z.

We will see that the main term is the first one and it follows from Proposition 13
that

Rd
∑

m1=0, m2 6=0

χ̂B (Rm) e2πim·z

∼ R(d−1)(1−1/γP )AP (z−RP ) +R(d−1)(1−1/γQ)AQ (z−RQ) .

The details are as follows. Let Dε,R (z) be the mollified discrepancy as in the proof
of Theorem 4 and let

Y (z,R) = R(d−1)(1−1/γP )AP (z−RP ) +R(d−1)(1−1/γQ)AQ (z−RQ) .

From Lemma 16 with a cut-off function as in Lemma 17 we have

|DR (z)− Y (z,R)|

6 |B|max
±

∣∣∣(R± ε)d −Rd∣∣∣+ max
±
|Dε,R±ε (z)− Y (z,R± ε)|(4.2)

+ |Y (z,R± ε)− Y (z,R)|
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The first term in the right-hand side is bounded by cRd−1ε. For the third term we
have

|Y (z,R± ε)− Y (z,R)|

6
∣∣∣(R± ε)(d−1)(1−1/γP )

AP (z− (R± ε)P )−R(d−1)(1−1/γP )AP (z−RP )
∣∣∣

+
∣∣∣(R± ε)(d−1)(1−1/γQ)

AQ (z− (R± ε)Q)−R(d−1)(1−1/γQ)AQ (z−RQ)
∣∣∣ .

The two terms are similar, let us consider only the first one. Then∣∣∣(R± ε)(d−1)(1−1/γP )
AP (z− (R± ε)P )−R(d−1)(1−1/γP )AP (z−RP )

∣∣∣
6 (R± ε)(d−1)(1−1/γP ) |AP (z− (R± ε)P )−AP (z−RP )|

+
∣∣∣(R± ε)(d−1)(1−1/γP ) −R(d−1)(1−1/γP )

∣∣∣ |AP (z−RP )|

Since

|AP (z− (R± ε)P )−AP (z−RP )|

6 c

+∞∑
k=1

k
−1− d−1

γP

×
∣∣∣∣sin(2πkm0 · (z− (R± ε)P )− π

2

d− 1

γP

)
− sin

(
2πkm0 · (z−RP )− π

2

d− 1

γP

)∣∣∣∣
6 c

+∞∑
k=1

k
−1− d−1

γP |sin (επkm0 · P )|

6 cε
d−1
γP .

and |AP (z−RP )| 6 c we have∣∣∣(R± ε)(d−1)(1−1/γP )
AP (z− (R± ε)P )−R(d−1)(1−1/γP )AP (z−RP )

∣∣∣
6 cR(d−1)(1−1/γP )ε

d−1
γP +R(d−1)(1−1/γP )−1ε.

It remains to estimate the second term in (4.2) and for simplicity we replace R± ε
with R. We have

Dε,R (z)− Y (z, R)

=

Rd ∑
m1=0,m2 6=0

ϕ̂ (εm) χ̂B (Rm) e2πim·z − Y (z, R)

(4.3)

+

Rd ∑
m1 6=0

ϕ̂ (εm) χ̂B (Rm) e2πim·z


= I (z) + II (z) .
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For I (z) we have a pointwise estimate,

|I (z)| 6 Rd
∑
s6=0

|ϕ̂ (εsm0)− 1| |χ̂B (Rsm0)|

+

∣∣∣∣∣∣Rd
∑
s 6=0

χ̂B (Rsm0) e2πism0·z − Y (z, R)

∣∣∣∣∣∣ .
Our choice of the function ϕ (z) yields

d|α|ϕ̂

dζα
(0) = 0

for every multi-index α with |α| 6M . Hence

|ϕ̂ (ζ)− 1| 6 cM |ζ|M ,

and by Proposition 11 (recall that γP > γQ)

Rd
∑
s 6=0

|ϕ̂ (εsm0)− 1| |χ̂B (Rsm0)|

6 cR
(d−1)

(
1− 1

γP

)∑
s6=0

min
(
εM |s|M , 1

)
|s|−1− d−1

γP

6 cR
(d−1)

(
1− 1

γP

) ∑
ε|s|61

εM |s|M |s|−1− d−1
γP + cR

(d−1)
(

1− 1
γP

) ∑
ε|s|>1

|s|−1− d−1
γP

6 cR
(d−1)

(
1− 1

γP

)
ε
d−1
γP .

By our assumption on the direction Θ and by Proposition 13 a long but direct
computation gives

Rd
∑

m1=0,m 6=0

χ̂B (Rm) e2πim·z = Rd
∑
s 6=0

χ̂B (Rsm0) e2πism0·z

= R(d−1)(1−1/γP )AP (z−RP ) +R(d−1)(1−1/γQ)AQ (z−RQ)

+O
(
R
d−1− d

γP

)
= Y (z, R) +O

(
R
d−1− d

γP

)
Hence, we have the pointwise estimate

(4.4) |I (z)| 6 cR
(d−1)

(
1− 1

γP

)
ε
d−1
γP +R

d−1− d
γP .

The assumption that αΘ ∈ Zd for some α implies that the requirement m1 6= 0
is equivalent to |m1| > τ for some τ > 0. By Lemma 18 we therefore have

(4.5) ‖II‖p 6 cR
d−1
2 ε−

d−1
2 + d

p .
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Collecting the estimates (4.3), (4.4) and (4.5) we have

‖DR (z)− Y (z, R)‖Lp(Td)

6 cR(d−1)(1−1/γP )ε
d−1
γP + cRd−1ε+ cR

d−1− d
γP + cR

d−1
2 ε−

d−1
2 +d/p.

The choice ε = R−
d−1

d+1−2d/p gives

‖DR (z)− Y (z, R)‖Lp(Td)

6 cR
(d−1)

(
1− 1

γP

) (
R
− d−1
d+1−2d/p

d−1
γP +R

d−1
γP
− d−1
d+1−2d/p +R

− 1
γP

)
.

Since our assumption implies 1/p > (d+ 1− γP ) / (2d), all the exponents of R in
the parenthesis are negative and therefore

‖DR (z)− Y (z, R)‖Lp(Td) 6 cR
(d−1)

(
1− 1

γP

)
−δ

for some δ > 0. This proves immediately point 2). It also prove point 1) as long
as one notices that if γP > γQ∥∥∥R(d−1)(1−1/γQ)AQ (z−RQ)

∥∥∥
Lp(Td)

6 cR
(d−1)

(
1− 1

γP

)
−δ

for a suitable δ > 0. 2

Proof of Corollary 6. Because of our assumptions the constants in front of the two
series that define AP (z−RP ) and AQ (z−RQ) are the same. A simple computa-
tion gives

AP (z−RP ) +AQ (z−RQ)

=
4GP (0) Γ

(
d−1
γ + 1

)
(2π |m0|)

d−1
γ +1

+∞∑
k=1

k−1− d−1
γ sin

(
π

(
km0 ·R (Q− P )− d− 1

2γ

))
× cos

(
2πkm0 ·

(
z−RP +Q

2

))
.

and

AP (z−RP ) +AQ (z−RQ) = 0

since m0 ·R (Q− P ) and d−1
2γ are integers. 2
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Proof of Theorem 8. By Theorem 1.1 in [5] we have the following estimate for the
L2 average decay of the Fourier transform(∫

SO(d)

|χ̂B (Rσm)|2 dσ

)1/2

6 c (R |m|)−
d+1
2 .

Hence, applying the Hausdorff-Young inequality to (1.1) with 2 6 p < 2d/ (d− 1)
and 1/p+ 1/q = 1, we obtain∫

SO(d)

(∫
Td
|DR,σ (z)|p dz

)q/p
dσ 6 Rdq

∑
0 6=m∈Zd

∫
SO(d)

|χ̂B (Rσm)|q dσ

6 Rdq
∑

06=m∈Zd

(∫
SO(d)

|χ̂B (Rσm)|2 dσ

)q/2
6 cRq

d−1
2

∑
0 6=m∈Zd

|m|−q
d+1
2 6 cRq

d−1
2 .

In a similar way if 1 6 p 6 2 we have,∫
SO(d)

(∫
Td
|DR,σ (z)|p dz

)2/p

dσ 6
∫
SO(d)

∫
Td
|DR,σ (z)|2 dzdσ

= R2d
∑

0 6=m∈Zd

∫
SO(d)

|χ̂B (Rσm)|2 dσ

6 cRd−1
∑

0 6=m∈Zd
|m|−(d+1) 6 cRd−1.

2

Proof of Theorem 9. Without loss of generality we can assume |α| 6 |β|. By
Proposition 11 we have

|χ̂B (m,n)| 6


c |αm+ βn|−1− 1

γ ,

c |−βm+ αn|−
γ−2

2(γ−1) |αm+ βn|−
1

2(γ−1)
−1
,

c |−βm+ αn|−
3
2 .

We have ∫
Td
|DR (z)|2 dz = R4

∑
(m,n) 6=(0,0)

|χ̂B (Rm,Rn)|2

6 R4
∑

0<|−βm+αn|<1/2

|χ̂B (Rm,Rn)|2
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+R4
∑

1/26|−βm+αn|6|αm+βn|

|χ̂B (Rm,Rn)|2

+R4
∑

0<|αm+βn|<|−βm+αn|

|χ̂B (Rm,Rn)|2

= I + II + III.

Using the above estimate for χ̂B (Rm,Rn) we have

III 6 cR
∑

0<|αm+βn|<|−βm+αn|

|(m,n)|−3 6 cR
∑

(m,n) 6=(0,0)

|(m,n)|−3 6 cR.

In the term II the quantity |−βm+ αn| and |αm+ βn| are bounded away from
zero so that, arguing as in the proof of Lemma 18, we can replace the series with
the corresponding integral,

II 6 cR
∑

1/26|−βm+αn|<|αm+βn|

|−βm+ αn|−
γ−2

(γ−1) |αm+ βn|−
1

(γ−1)
−2

6 cR

∫
{1/26|ξ|<|s|}

|ξ|−
γ−2

(γ−1) |s|−
1

(γ−1)
−2
dsdξ 6 cR.

In the term I observe that |−βm+ αn| < 1/2 implies |αm+ βn| ≈ |n|. Then

I 6 cR
∑

|−βm+αn|<1/2

|−βm+ αn|−
γ−2
γ−1 |αm+ βn|−

1
γ−1−2

6 cR
∑

|−βm+αn|<1/2

∥∥∥∥αβ n
∥∥∥∥−

γ−2
γ−1

|n|−
1

γ−1−2

6 cR
∑

|−βm+αn|<1/2

(
|n|−1−δ

)− γ−2
γ−1 |n|−

1
γ−1−2

6 cR

+∞∑
n=1

n(1+δ) γ−2
γ−1n−

1
γ−1−2 6 cR.

In the last inequality we used the assumption δ < 2/(γ − 2). 2
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