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Summary. When an earthquake affects an inhabited area, a need for information immediately
arises among the population. In general, this need is not immediately fulfilled by official channels
which usually release expert validated information with delays of many minutes.
Seismology is among the research fields where citizen science projects succeeded in collecting
useful scientific information. More recently, smartphone ubiquity is giving the opportunity to
involve even more citizens.
This paper focuses on seismic intensity reports collected through smartphone applications while
an earthquake is occurring. The aim is to provide a framework for predicting and updating in
near real time earthquake parameters useful for assessing the impact of the earthquake. This
is done using a multivariate space-time model based on time-varying coefficients and a spatial
latent variable.
As a case study, the model is applied to more than 200,000 seismic reports globally collected
over a period of around 4 years by the Earthquake Network citizen science project. It is shown
how the time-varying coefficients are needed to adapt the model to an information content that
changes with time, and how the spatial latent variable is able to capture the local seismicity
and the heterogeneity in the people response across the globe.

Keywords: smartphone app; spatio-temporal modelling; EM algorithm; dynamic kriging;
D-STEM software

1. Introduction

Whenever a natural event or disaster affects an inhabited area, an instant need for in-
formation arises among the population. This is especially true in a fully connected word
where people have immediate access to multiple sources of information (TV, Web, social
networks, smartphone applications) and they expect to find answers. In one way or an-
other, this need for information must be fulfilled. If not, people might be susceptible to
take the wrong action, either during an emergency or when an emergency does not exist
and no action should be taken.

Among all natural events, earthquakes are those posing one of the highest risk for the
population. According to the Significant Earthquake Database maintained by the Na-
tional Centers For Environmental Information of the National Oceanic and Atmospheric
Administration, around 570,000 people died and around one million people were injured
worldwide due to earthquakes only in the period 2000-2018. Moreover, the seismic risk
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map recently produced by the Global Earthquake Model foundation (Silva et al., 2018)
clearly shows that very few countries are exempt from potential losses connected to earth-
quakes.

In seismic areas, it is thus essential to have tools of risk mitigation able to collect and
communicate useful information before (Jordan et al., 2011), during (Allen and Kanamori,
2003) and after (Gehl et al., 2018) an earthquake.

From the physical point of view, an earthquake is a sudden release of energy occurring
with the rupture and the slip of a fault. Using networks of seismometers, earthquakes
are measured in terms of released energy at the rupture. This information, together with
instrumental ground motions, geologically based frequency and amplitude-dependent site
corrections and earthquake-rupture models is used to predict the shaking intensity across
space (known as ShakeMaps, see Wald et al. (1999)), and then to predict the potential
impact on the population (Allen et al., 2009).

Although most seismic countries have advanced monitoring networks able to detect
and assess earthquakes in a fast manner, official information are often released to the
general public with a delay of several minutes. Usually, this is done to release good
quality information eventually validated by experts.

According to the survey detailed in Table 1 and taken by 7,067 people, however, 53% of
the respondents would like to receive earthquake information as soon as possible, even if
just preliminary information. Additionally, around 74% of all the respondents would like
to receive this information within 60 seconds from the moment they feel the earthquake.
For around 66% of all the respondent, it is important to understand if the epicentre is
close to family/friends who live in a different area. Indeed, a peculiarity of earthquakes
is that it is hard, for a person, to understand if the shaking has been stronger somewhere
else. In most cases, the need for information is the care for the loved ones.

Another proof that this need for information actually exists lies in the fact that it
has been exploited to detect the occurrence of earthquakes. The LastQuake smartphone
application (app hereafter) of the European-Mediterranean Seismological Centre (Bossu
et al., 2018), for instance, is used to detect events when people feel an earthquake and they
open the app looking for information. A similar strategy is adopted in social networks
monitoring (Sakaki et al., 2010; Earle et al., 2012; Crooks et al., 2013). When people post
comments on Twitter immediately after an earthquake, it is for the need to communicate
something and to obtain information from others. However, though it is relatively easy
to detect the occurrence of an earthquake from social network monitoring, exploiting
the location information content is becoming more difficult. Indeed, only 0.7% of the
tweets on Twitter contain geolocation information (Graham et al., 2014) and Twitter has
announced† that the ability to tag precise location from tweets is being progressively
removed.

Within the same context, Earthquake Network (Finazzi, 2016) is a smartphone-based
citizen-science project which aims to release rapid and reliable information to the gen-
eral public about earthquakes while they are happening. This is done, on the one hand,
exploiting the accelerometer sensor on-board each smartphone, and on the other, by col-
lecting and analysing seismic intensity reports sent by smartphone users. The smartphone
app, therefore, is both the instrument for collecting information and the instrument to

†https://twitter.com/twittersupport/status/1141039841993355264
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receive information in the form of notifications or alerts.
In general, there is a trade-off between rapidity and the quality of what can be com-

municated. As detailed in (Finazzi and Fassò, 2017), data collected by the accelerometers
are analysed in an earthquake early warning setting with a temporal dynamics on the
scale of seconds. This allows to provide a very preliminary estimate of the epicentre and
to alert nearby cities beforehand. On the other hand, seismic intensity reports require up
to minutes to be collected and they are analysed to understand the potential impact of
the earthquake on the population. This is similar to what is commonly done with macro-
seismic intensity questionnaires collected through web sites (Atkinson and Wald, 2007;
Tosi et al., 2015). An important difference, however, is that smartphone apps provide a
user interface which is immediately available to the user, making the collection of reports
faster than ever before. Additionally, apps usually provide high accuracy geolocation in-
formation (latitude and longitude of the smartphone location) which are automatically
included in the report.

Having as reference the fulfilment of the need for information from the population,
the main goal of this paper is to understand, using a statistical approach, if the seismic
reports sent while earthquake waves propagate across space are informative enough to
predict relevant quantities about the earthquake itself. Quantities of interest are either
intrinsic parameters of the earthquake (magnitude, depth, etc.) or parameters related to
the interaction between the earthquake and the population (e.g. the distance between
the earthquake epicentre and a main city). If such predictions could be obtained within
the first minute of the earthquake and with good quality, they would represent useful
information complementary to the preliminary information released as early warning by
Earthquake Network.

To avoid confusion, it is stated here that the term prediction does not refer to the
occurrence of future earthquakes. Instead, what is predicted are the “true” earthquake
parameters that will be computed and released by geophysics institutions after many
minutes from the beginning of the earthquake.

Predictions obtained from reports may also be useful in underdeveloped and devel-
oping countries, where national geophysics institutions may not be able to provide fast
information but smartphone penetration is relatively high (see Bossu et al. (2015) for a
case study of the 2015 Nepal earthquake sequence). Additionally, any prediction based
on seismic reports can be instantly notified to the smartphone users, in a virtuous cycle
where each citizen provide a piece of information and has a useful service in return.

With respect to works in literature, the above goal is more ambitious for mainly two
reasons. First, it is attempted to predict intrinsic parameters of the earthquake, while,
in the past, questionnaires has been used to model the spatial distribution of the macro-
seismic intensity assuming a known magnitude and hypocentre (De Rubeis et al., 1992;
Atkinson and Wald, 2007; Sbarra et al., 2010; Cameletti et al., 2017). Second, it is at-
tempted to provide predictions while the earthquake is in progress and the ground shaking
is possibly not yet finished. In particular, the following questions are addressed:

(a) Can seismic reports be used to predict intrinsic parameters of an earthquake?
(b) How reliable are such predictions?
(c) After how many seconds are the predictions reliable?
(d) Do predictions keep improving with time?
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Answers will be obtained from the analysis of more than 220 thousand seismic reports
collected by the Earthquake Network app within more than 4 years and related to more
than 1, 500 earthquakes.

The prediction of earthquake parameters will be obtained adopting a statistical model
with input the seismic reports and output the parameters of interest. The model will be
trained using the collected reports and having as reference the true earthquake parameters
given by the seismic catalog. Once trained, the model is used to predict the parameters
of any new earthquake from the reports collected in real time by Earthquake Network.

The rest of the paper is structured as follows. Section 2 introduces the Earthquake
Network citizen science project, from which seismic reports are taken. Section 3 describes
the structure of the seismic reports and the data transformation applied to extract in-
formation from the reports. Section 4 introduces a univariate statistical model for the
real time estimation of the earthquake magnitude while Section 5 details a multivariate
model for the joint estimation of multiple parameters. A case study involving global data
is presented in Section 6. Remarks are given in Section 7 while conclusions in Section 8.

2. The Earthquake Network project

The seismic report analysis detailed in this work is based on reports collected by the
Earthquake Network project discussed above. During the last 6 years, around 5 million
people from all over the world took part to the project, enabling the collection of reach
data sets.

The smartphone app allows users to send a report about any earthquake they expe-
rience and the app is designed in such a way that the report is sent as fast as possible.
Using buttons, the user can report if the earthquake is mild, strong or very strong. It is
observed that reports arrive at the server after few seconds from when the ground shaking
begins. This particularly holds for people with the app installed for a long time, who are
thus “trained” to send a report very quickly if their smartphone is nearby. In effect, these
people become spatially distributed sensors monitoring for earthquakes.

As an example, Figure 2 shows on map the reports received by the server of the Earth-
quake Network project during a 5.2 magnitude earthquake which occurred on December
16th, 2016 off the coast of Puerto Aldea, Chile. The colour of the marker represents the
intensity as perceived by the smartphone user: green for mild, yellow for strong and red
for very strong. The first reports are located near the epicentre and most of them are
yellow. While time passes and the seismic waves reach more distant cities, new reports are
collected. As expected, the higher the distance from the epicentre the lower the reported
intensity.

This example suggests that the information content of seismic reports dynamically
changes over time while seismic waves propagate. Predictions about relevant quantities of
the earthquake can be provided as soon as the first reports arrive at the server and then
they are updated while time passes.
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Table 1. Results of the survey sent to 105,000 users of the Earthquake Network app. The survey
was viewed by 12,300 users and taken by 7,067 users. Area 1 is Italy, Area 2 includes Mexico,
Central America and South America while Area 3 is the rest of the world.

Q: When it comes to receive information
about an earthquake you prefer Area 1 Area 2 Area 3 Total

A: To wait for accurate information 461 2670 194 3325(47.0%)
A: Have information as soon as possible

even if not accurate 883 2515 344 3742(53.0%)

Q: You just felt an quake. How long are
you willing to wait before receiving
information on epicentre and magnitude? Area 1 Area 2 Area 3 Total

A: Maximum 15 seconds 456 1966 216 2638(37.3%)
A: Maximum 30 seconds 161 748 79 988(14.0%)
A: Maximum 1 minute 326 1183 108 1617(22.9%)
A: Maximum 2 minutes 145 457 40 642(09.1%)
A: Maximum 5 minutes 175 602 65 842(11.9%)
A: Maximum 10 minutes 81 229 30 340(04.8%)

Q: You just felt a mild earthquake. What
is the main reason why you are
interested in knowing epicentre and
magnitude as soon as possible? Area 1 Area 2 Area 3 Total

A: To find out if the epicentre is close to
family/friends who live in a different
area from mine 784 3604 306 4694(66.4%)

A: To know if it was a dangerous quake 527 1405 203 2135(30.2%)
A: Just out of curiosity 33 176 29 238(03.4%)

Q: You just felt an earthquake. What is
the first information channel you
turn to for information? Area 1 Area 2 Area 3 Total

A: TV 114 517 80 711(10.1%)
A: Smartphone apps 952 3431 344 4727(66.9%)
A: Twitter 26 346 17 389(05.5%)
A: Facebook 151 387 30 568(08.0%)
A: Instagram 3 35 7 45(00.6%)
A: Phone call with family/friends 44 180 43 267(03.8%)
A: WhatsApp 54 289 17 360(05.1%)
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Fig. 1. Spatio-temporal trend of the seismic reports sent by people joining the Earthquake Network
citizen science project during a magnitude 5.2 earthquake which occurred on December 16th, 2016 at
23:12:12 UTC off the coast of Puerto Aldea, Chile. The triangular marker is the earthquake epicentre
while star markers are the locations of the seismic reports. Green, yellow and red stand for mild,
strong and very strong intensity, respectively. From top left to bottom right, the elapsed time from
the first report is 30, 60, 90, 120, 150 and 180 seconds.
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3. Seismic report data

For a given earthquake felt and reported through the Earthquake Network app, the fol-
lowing data set is available

D = {(s̃j , τj , ij)}j=1,...,N

where s̃j ∈ S2 is the spatial location of the smartphone/person over the sphere S2, τj is
the report time and ij = (green, yellow, red) is the earthquake intensity as perceived by
the person, with green mild, yellow strong and red very-strong. A posteriori, a total of
N reports are collected.

By convention, τ1 = 0, namely the first report received by the server defines the time
origin for the reports. It also follows that the actual origin time of earthquakes is not used
nor is it a parameter of interest.

In order to study the dynamics of the reports sent to the server, the discrete time
t = 0, 1, ..., T is introduced, with time interval ∆. The actual length of the observation
window is then given by ∆ · T .

Moreover, s ∈ S2 is the centre of gravity of the coordinates of the reports collected at
time t = 1. The first reports usually come from people living near the epicentre and s
computed at t = 1 is representative of the area where people are expected to experience
strong ground shaking. Spatial location s will be used as reference spatial location when
defining statistical models in the following sections. That said, it is stressed that s does
not pretend to be an estimate of the epicentre.

In the sequel, for any given 0 ≤ t ≤ T , the focus will be on the reports collected in
[0, t]. In particular, the following quantities will be of interest

greent
0 =

∑N
j=1I (τj ≤ t ∧ ij = green)∑N

j=1I (τj ≤ t)

yellowt
0 =

∑N
j=1I (τj ≤ t ∧ ij = yellow)∑N

j=1I (τj ≤ t)
(1)

radiust
0 = q0.99

(
At

0
)

where greent
0 is the fraction of mild seismic reports collected up to time t, yellowt

0 is
the fraction of strong seismic reports, At

0 is the set of all the spatial distances computed
between the reports collected up to time t and q0.99 is the 99th percentile. The quantity
radiust

0 represents a sort of radius of the geographic area impacted by the earthquake.
If the earthquake is strong, then radiust

0 is expected to be high and to increase when t
increases. The 99th percentile is preferred to the maximum in order to mitigate the impact
of false reports that, by chance, may be received by the server during a real earthquake.
In this context, a report is false when the person sends it to the server without actually
feeling an earthquake. It is noted that 1− greent

0− yellowst
0 is the fraction of very strong

seismic reports, which, however, does not add information due to the constraint to one.
There is a loss of information when moving from D to the quantities in (1). What is

lost is the exact time and the exact spatial coordinates of the reports. Nonetheless, (1) are
expected to retain useful information for estimating earthquake parameters, while greatly
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simplifying the data analysis. For instance, mild seismic reports collected from a large
area may be related to a high magnitude but distant earthquake, possibly with epicentre
in the sea/ocean and thus far from any populated area. On the other hand, strong seismic
reports collected from a small area may be related to a shallow earthquake perceived as
strong only near the epicentre. This is the kind of information that (1) are expected to
convey.

4. Magnitude model

Before introducing a multivariate model for multiple earthquake parameters, this section
details a univariate model for the earthquake magnitude, usually the most important
intrinsic parameter for assessing the potential impact of the earthquake on the population.

The aim is modelling the earthquake magnitude at each time t = 0, ..., T given the
available information received by the server up to time t. This is done in order to obtain a
prediction of the earthquake magnitude and in order to update the prediction while more
information is collected by the server.

Three aspects about earthquakes should be discussed. First of all, the magnitude of an
earthquake is a measure of the energy released at its hypocentre and an expert validated
magnitude is usually available after many minutes from the beginning of the event. On
the contrary, people experience the local and instantaneous intensity of the earthquake.
The intensity reported by the person’s mainly depends on the distance between the person
location and the hypocentre of the earthquake.

Second, earthquake hypocentres are usually localised near fault lines. People living in
cities close to these faults are expected to experience, on average, strong ground shaking
irrespective of the magnitude of the earthquake. On the other hand, cities far from faults
will experience mild ground shaking even when earthquakes are strong in magnitude.

Third, people from different countries of the world may rate differently the intensity
of an earthquake of a given magnitude. People living in countries characterized by low
seismicity usually rate as strong earthquakes which actually have a low magnitude.

The above discussion suggests that any statistical model used for estimating the earth-
quake magnitude should be characterized, on the one side, by time-variant parameters,
and on the other, by a spatial component modelling both the local seismicity and the
heterogeneity in the earthquake perception across the world.

The proposed model for the log-magnitude is

log y (s, t) = x0 (t)′ β0 + x1 (t)′ β1 (t) + w (s, t) + ε (s, t) (2)
β1 (t) = Gβ1 (t− 1) + η (t) .

In (2), x0 (t) and x1 (t) are vectors of covariates, namely the the quantities (1) detailed
in Section 3 and, possibly, any interaction between them. β0 and β1 (t) are the fixed
and time-varying coefficients, respectively, w (s, t) is a latent variable correlated across
space and uncorrelated over time while ε (s, t) ∼ N

(
0, σ2

ε,t

)
is a random error with time-

varying variance σ2
ε,t. Note that the log-transformation is adopted since the histogram of

the magnitude of felt earthquakes tends to be right-skewed. Indeed, earthquakes below



Fulfilling the information need after an earthquake 9

magnitude 2.5 are rarely felt and reported by the population. Also, the log-transformation
guarantees that a positive magnitude is predicted.

Model (2) is a classic hierarchical model (Gelman and Hill, 2007). In Finazzi et al.
(2013), a similar model has been used for modelling the observations of a spatio-temporal
phenomenon sampled over time at fixed spatial locations. Here, time t is not the absolute
time of a space-time phenomenon but, rather, it represents the evolution over time of the
reports related to a generic earthquake and received by the server starting from t = 0.

In the simplest case where x0 (t) = x1 (t), β0 is the fixed effect for covariates in x
while β1 (t) is a “correction” of β0 specific for time t. Similarly, w (s, t) is a specific effect
for spatial location s and time t. Therefore, β0, β1 (t) and w (s, t) are not related to the
physics of the earthquake intended as a spatio-temporal phenomenon, but to the dynamics
in space and time of the reports sent by people when an earthquake is felt.

The time-varying coefficients β1 (t) have Markovian dynamics with stable diagonal
transition matrix G and innovation vector η (t) ∼ N (0,Ση), with Ση diagonal. On the
other hand, w (s, t) is modelled by means of a Gaussian process with spatial covariance
function given by ρ (s, s′; θ) = v2 exp (−d (s, s′) /θ), with v2 the variance and d (·) the
geodetic distance between any two spatial locations s, s′ ∈ S2.

The model parameter set is Ψ =
{
β0,σ

2
ε , v

2, θ,G,Ση
}
, with σ2

ε =
(
σ2

ε,1, ..., σ
2
ε,T

)
.

4.1. Estimate of model parameters
Model estimation is based on the maximum likelihood approach and on the Expectation-
Maximization algorithm. In particular, the estimation is based on historical data related
to L earthquakes felt and reported by the population through the smartphone app. For
each earthquake l = 1, ..., L, the following time series{

greent
0
}

l,t=1,..,T{
yellowt

0
}

l,t=1,..,T (3){
radiust

0
}

l,t=1,..,T

are derived from the reports sent to the server. Moreover, S = {sl}l=1,...,L is the set of all
centres of gravity computed at t = 1 from the report coordinates received up to t = 1.

For each earthquake, its magnitude yl is obtained from an earthquake catalogue. The
data model is then

log yt (S) = X0,tβ0 +X1,tβ1,t +wt (S) + εt (S)
β1,t = Gβ1,t−1 + ηt

where yt (S) = (y1, ..., yL)′ is the vector of “true” magnitudes, wt (S) is the normally
distributed spatial latent variable at locations S and time t, εt (S) is the random error at
S and t while X0,t =

(
x′0,1,t, ...,x

′
0,L,t

)′
and X1,t =

(
x′1,1,t, ...,x

′
1,L,t

)′
are the matrices of

covariates at time t. The set X = {X0,1, ...,X0,T ,X1,1, ...,X1,T} collects the covariates
at all time steps.

It is worth noting that, contrary to classic spatio-temporal models adopted for mod-
elling evolving phenomena (and thus a time-variant yt (S)), the vector of magnitudes is
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time-invariant. This is because the magnitude is a feature of the earthquake assessed a
posteriori and that does not change with time. What evolves over time are the model
parameters and the latent variables, which are updated at each time t in order to better
fit the magnitude on the basis of the available information (covariates) at t.

Details on model estimation using the EM algorithm are given in (Fassò and Fi-
nazzi, 2011). Here, it is recalled that the estimate of β1,t and its variance are given by
EΨ (β1,t |m,X) and VarΨ (β1,t |m,X), respectively, and they are computed by means
of the Kalman smoother (see Shumway and Stoffer (2011)). As common when using
the Kalman smoother, β1,0 ∼ N (0,Σ0), with Σ0 a diagonal matrix with arbitrarily
large variances. Conditional expectation EΨ (wt (S) |m,X) and the conditional vari-
ance VarΨ (wt (S) |m,X) are computed using classic formulas of the multivariate normal
distribution.

4.2. Prediction of earthquake parameters
The estimated model is eventually used to predict the magnitude of a new earthquake on
the basis of the reports collected by the server. For any given spatial location s∗ ∈ S2

and time step t, the prediction of the log-magnitude is given by

log ŷt (s∗) = x′0,tβ̂0 + x′1,tβ̂1,t + ŵt (s∗) (4)

where s∗ is the centre of gravity of the reports collected at t = 1 while ŵt (s∗) is the latent
variable w (s, t) estimated at spatial location s∗ by means of classic spatial Kriging (see
Diggle et al. (1998)). The log-magnitude estimation variance is given by

σ̂2
y (s∗) = Var

Ψ̂
(yt (s∗) | y,X) = x′1,t Var

Ψ̂
(β1,t | y,X)x1,t + Var

Ψ̂
(wt (s∗) | y,X) (5)

+ 2x′1,tcovΨ̂ (β1,t, wt (s∗) | y,X) .

In (5), conditional variance and covariance are based on the estimated parameters
Ψ̂. Also note that x0,t and x1,t are the vectors of covariates for the current earthquake
while X refers to the historical data. Thanks to the estimation variance, 95% confidence
intervals for the log-magnitude are easily obtained as ŷt (s∗)± 1.96

√
σ̂2

y (s∗).
Using (4) and (5), it is possible to update the magnitude prediction and its confidence

interval while new reports are sent to the server. The update is done with temporal
interval ∆.

5. Multivariate model

The model described in the previous section is easily extended to more than one earthquake
parameter. Let y be the k×1 vector of earthquake parameters of interest. The multivariate
model for log y is

log y (s, t) = X0 (t)β0 +X1 (t)β1 (t) +w (s, t) + ε (s, t) (6)
β1 (t) = Gβ1 (t− 1) + η (t)
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where Xr (t) = Ik ⊗ xr (t)′ is the k × kb block-diagonal matrix of covariates, r = 0, 1,
w (s, t) is a multivariate Gaussian process with matrix spatial covariance function given
by ρ (s, s′; θ) = V exp (−d (s, s′) /θ) while ε (s, t) ∼ N (0,Σε,t) is the random error.
Matrix V is a valid k × k variance-covariance matrix while Σε,t is a k × k time-varying
diagonal matrix with diagonal elements collected in vector σ2

ε . Vectors β0 and β1 (t)
have kb elements while G and Ση are diagonal kb × kb matrices. In (6), it is assumed
that the same vector of covariates x (t) is used to model each earthquake parameter. In
practice, each earthquake parameter can have specific covariates. The model parameter set
becomes Ψ =

{
β0,σ

2
ε ,V , θ,G,Ση

}
. Model estimation and prediction of the earthquake

parameters are analogous to those detailed in the previous section. Details on the estimate
of the multivariate model are given in Fassò and Finazzi (2011).

6. Case study

In this section, a case study is developed in order to show the fitting capabilities of model
(6) and to show how the model is used for real time prediction and updating. The focus of
the case study is on the estimate of three parameters: two intrinsic earthquake parameters,
namely magnitude and depth, and the distance between the earthquake epicentre and the
centre of gravity of the report coordinates at t = 1, here called d1. Being a distance, d1
is not a prediction of the epicentre location but it is useful to assess the impact of the
earthquake on the population. As an example, a magnitude 8 earthquake with epicentre
at 10 km from the area of the first reports is expected to have a higher impact than
an earthquake of the same magnitude but 500 km away. A statistical model for the
real time estimate of the epicentre from smartphone network data is detailed in Finazzi
(2016). However, temporal and spatial information of the reports must be retained in
order to obtain unbiased predictions, especially if the epicentre is “outside” the network
of smartphones. For this reason, epicentre estimation is outside the scope of this work
and distance d1 is used as a proximity measure of the earthquake to the nearest populated
area.

6.1. Data description
The data set considered for the case study consists in 222, 288 reports collected through
the Earthquake Network app in the period April 20, 2014 - November 17, 2018. Reports
relate to 1, 552 earthquakes identified by matching the reports to the earthquakes listed
in the United States Geological Survey (USGS) catalogue‡.

Figure 2 shows the spatial distribution of all the reports collected in this period. The
distribution highlights some of the major seismic zones of the world, with most of the
reports coming from Central and South America but also Italy, Nepal, Taiwan, Philippines,
Indonesia and California in United States of America.

Figure 3 depicts the 1, 552 earthquakes in terms of their magnitude and the distance
d1. As expected, the distance tends to be small for earthquakes of low magnitude.

On the other hand, Figure 4 shows the earthquake magnitude versus the number of
reports sent to the server. Note that a high magnitude does not necessarily imply a large

‡The catalogue is available online at https://earthquake.usgs.gov/earthquakes/search/
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Fig. 2. Spatial distribution of the 222, 288 seismic reports sent to the Earthquake Network server in
the period April 20, 2014 - November 17, 2018. Each dot is a report.

Fig. 3. Earthquake magnitude vs distance d1 for the 1, 552 earthquakes of the case study.
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Fig. 4. Earthquake magnitude vs number of seismic reports for the 1, 552 earthquakes of the case
study.

number of reports. In fact, the number of reports depends on the distance from the
epicentre and on the spread of the app among the population.

For this work, it is decided to study the evolution of the reports over a period of 10
minutes considering ∆ = 10 seconds as time interval. This implies t = 0, ..., 60. For each
earthquake, then, time series (3) are computed from the data set D. Figure 5 shows the
values of greent

0, yellowt
0 and radiust

0 versus the earthquake magnitude when t = 20.
Analogous figures for depth and distance d1 are given in supplementary material.

The choice t = 20 reflects the fact that, after 200 seconds, the reports sent to the server
should well represent the earthquake perception by the population.

Table 2 reports the linear correlations between greent
0, yellowt

0 and radiust
0 and the

three earthquake parameters. The ratios of mild and strong reports show a correlation
with magnitude but not with depth and distance, while the radius presents a correlation
with all the parameters. As expected, the linear correlation between magnitude and
greent

0 is negative, since the number of mild seismic reports is expected to be low when
the earthquake is strong. On the contrary, the linear correlations between magnitude and
both yellowt

0 and radiust
0 are positive since a strong earthquake implies a higher number

of strong seismic reports and a larger radius for the reports. Although small, the linear
correlation between depth and radiust

0 is positive. If the earthquake is deep, it must
be strong to be felt at all by the population, and being strong is felt over a large area.
Instead, there is no easy or obvious explanation for the positive linear correlation between
radiust

0 and distance, which however is small.

6.2. Model estimation and comparison
Since three parameters are of interest, the subsequent data analysis will be based on the
multivariate model (6). All the parameters are log-transformed. Additionally, variable
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Fig. 5. Values of greent
0, yellowt

0 and radiust
0 vs earthquake magnitude when t = 20 for the 1, 552

earthquakes of the case study.

Table 2. Linear correlations between quantities
greent

0, yellowt
0, radiust

0 and magnitude, depth
and distance d1 when t = 20.

Magnitude Depth Distance
greent

0 −0.34 0.04 0.02
yellowt

0 0.30 −0.03 −0.08
radiust

0 0.44 0.19 0.23
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Table 3. Estimated fixed effects β̂0 for the multivariate model
(6). Standard deviations in brackets.

Magnitude Depth Distance
green −0.156(0.155) 0.096(0.012) −1.078(0.061)
yellow 1.298(0.081) −1.958(0.060)
radius 0.397(0.016) 0.255(0.005)
green:yellow −0.259(0.023) 0.598(0.023)
greenˆ2 0.330(0.050) −0.032(0.011) 0.538(0.050)
yellowˆ2 −0.746(0.030) 0.987(0.030)

and covariates are normalised to have zero mean and unit variance. This helps numerical
stability during model estimation and it makes the β coefficients directly comparable.

To show the benefit of using a complex model with temporal and spatial latent vari-
ables, two additional simpler models are considered. The first is a classic regression model
without time-varying coefficients and without the spatial latent variable:

log yi (s, t) = x0 (t)′ β0 + ε (s, t) (7)

while the second is a dynamic linear model with only time-varying coefficients:

log yi (s, t) = x0 (t)′ β0 + x1 (t)′ β1 (t) + ε (s, t) (8)

where β1 (t) has the same Markovian dynamics in (2) and where the index i runs over the
three earthquake parameters. For brevity,M1,M2 andM3 will refer to (7), (8) and (6),
respectively.

Model predictive capabilities are assessed using cross-validation. In particular, 75%
of the 1, 552 earthquakes is randomly sampled and used for model estimation while the
remaining 25% is used for cross-validation.

For each variable, a preliminary analysis not reported here has been carried out in
order to identify the significant covariates (and interactions) to be included in x0 (t)
and x1 (t). Model estimation is carried out using the D-STEM software (Finazzi and
Fassò, 2014). D-STEM provides standard deviations for the estimated model parameters
enabling inference.

The estimated parameters are reported in Tables 3-4 and in Figure 6, and they already
reflect the pruning of the preliminary analysis. Table 4 reports the estimated variance-
covariance matrix V̂ of the multivariate spatial latent variable w (s, t). Covariance is
high between magnitude and distance. This is likely due to the fact that high magnitude
earthquakes are felt at large distance. The estimated parameter of the spatial correlation
function ρ is θ̂ = 107.6 km with standard deviation 0.1 km. This implies that w (s, t) is
essentially uncorrelated for any two points more than 300 km apart but, for instance, is
highly correlated within the same city or large metropolitan area.

Figures 6-8 show the estimated time-varying effects β̂0 + β̂1 (∆ · t) (only those signif-
icantly different from zero) for covariates used to explain log-magnitude, log-depth and
log-distance, respectively. Graphs show how the effect of each covariate changes with
respect to the time elapsed since the first report (i.e., t = 0). This reflects the fact that
the information content of the reports changes with time and that the model has to adapt
its parameters.
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Table 4. Estimated variance-covariance matrix V̂ of the latent
spatial variable w(s, t) for the multivariate model (6). Standard
deviations in brackets.

Magnitude Depth Distance
Magnitude 0.59(5.8·10−4) 0.02(3.3·10−4) 0.55(4.2·10−4)
Depth 0.02(3.3·10−4) 0.58(4.3·10−4) 0.15(3.4·10−4)
Distance 0.55(4.2·10−4) 0.15(3.4·10−4) 0.72(6.0·10−4)

Fig. 6. Time-varying effect β̂0 + β̂1 (∆ · t) and 95% confidence interval (dotted lines) for covariates
used to explain the log-magnitude.
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Fig. 7. Time-varying effect β̂0 + β̂1 (∆ · t) and 95% confidence interval (dotted lines) for covariates
used to explain the log-depth.

Fig. 8. Time-varying effect β̂0 + β̂1 (∆ · t) and 95% confidence interval (dotted lines) for covariates
used to explain the log-distance.
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Fig. 9. Estimated σ̂2
ε,t and 95% confidence interval (dotted lines) of multivariate model (6) for

magnitude, depth and distance d1.

Finally, Figure 9 shows the estimated σ̂2
ε,t and 95% interval for the three earthquake

parameters. For magnitude and distance, the variance of the random error ε (s, t) is
significantly higher for the first time steps while it stabilises as t increases. For depth, the
variance is essentially constant over time.

Figure 10 shows ŵt (s∗) and its variance VarΨ̂ (wt (s∗) | y,X) for magnitude and for
two selected regions of the world. In this case, s∗ belongs to a regular spatial grid of 0.5◦
resolution. Recall that w is a latent variable describing a spatial local effect not explained
by covariates. A positive (negative) w means that covariates tend to underpredict (over-
predict) the magnitude. As an example, the top-left panel of Figure 10 depicts ŵt (s∗) over
a sub-region of South America at t = 60. Note that ŵ is mainly negative in Chile while it
is positive in the region of the city of Cordoba in Argentina. This can be explained by the
fact that most of the earthquakes (including very strong earthquakes) occur in the Pacific
Ocean along the coast of Chile. Strong earthquakes in Chile are also felt in Argentina but
they are reported as mild due to the large distance from the epicentre. Being positive, ŵ
allows to compensate for this and to predict a higher magnitude. The bottom-left panel
depicts ŵ for Italy. During the period covered by this work, four earthquakes with mag-
nitude between 5.4 and 6.5 hit Central Italy. In particular, the magnitude 6.0 earthquake
that hit on August 24, 2016 killed 299 people. All these earthquakes were reported as
very strong by the users Earthquake Network app, even though their magnitudes were not
high if compared to global seismicity. In this case, ŵ suggests to decrease the prediction
which is made using only covariates. This, in turn, shows that ŵ also describes a global
heterogeneity in the perception of the earthquake intensity by the population. Right pan-
els in Figure 10 represent the variance of ŵ, namely its uncertainty. Uncertainty is low
(high) in regions where a large (small) number of reports where observed and used for
model estimation. Moreover, the higher the uncertainty on ŵ the wider the confidence
interval on the magnitude prediction. Analogous figures for the entire globe and for the
three earthquake parameters are given as supplementary material.

Figures 11 and 12 depict back-transformed ŷ versus y when t = 60 for data used to fit
the model (in sample data) and for cross-validation data, respectively. For all earthquake
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Fig. 10. Spatial latent variable ŵt (s∗) (left panels) and its variance VarΨ̂ (wt (s∗) |m,X) (right
panels) estimated for a sub-region of South America (top panels) and Italy (bottom panels) when
t = 60.
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Fig. 11. Scatter plots of back-transformed ŷ versus y when t = 60 for in sample data.

parameters, the improvement in the model fitting capability is visible when moving from
M1 toM3. Table 5 gives the R2 statistics when t = 60 for all models and all parameters.
Again, the benefit of using model M3 is clear. Looking at Figures 11, it is possible to
see that there is a tendency to overpredict (underpredict) the magnitude of low (high)
magnitude earthquakes. This is possibly due to the fact that the dataset includes a small
number of both low and high magnitude earthquakes, and model parameters are thus
optimized for medium magnitude earthquakes. In fact, high magnitude earthquakes are
rare while small magnitude earthquakes are large in number but they are rarely felt and/or
reported by the population.

Figure 13 shows the trend of the in sample and of the cross-validation root mean
squared error (RMSE) for all the parameters (back-transformed) and all the models.
Besides the improvement related to model M3, it is possible to note how the RMSE
decreases over time. For instance, the magnitude RMSE stabilizes after 50 seconds from
the first report received by the server. A similar behaviour is observed for depth and
distance. In cross-validation, the magnitude RMSE reaches its minimum at around 170
seconds and then increases. This is possibly due to the fact that, after few minutes
from the beginning of the earthquake, the server starts receiving false reports, usually
from people who are alerted by the smartphone app and who send a report without
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Fig. 12. Scatter plots of back-transformed ŷ versus y when t = 60 for cross-validation data.

actually experiencing the earthquake. This suggests that after 170 seconds the magnitude
prediction is less reliable.

6.3. Prediction of the earthquake parameters
Once estimated, the model is used to analyse the seismic reports collected during new
events. Earthquake parameters are predicted and updated with temporal interval ∆
while reports keep arriving at the server. As an example, Figure 14 shows the prediction
over time for the magnitude 5.2 earthquake the reports of which are shown in Figure 2.
Graphs in Figure 14 show how the earthquake parameters are updated while time passes,
confidence intervals included. Note that the prediction variance (5) also depends on the
variance of the estimated spatial variable ŵ (s, t). This variance is higher for areas of
the world where few or no reports where observed; therefore, confidence intervals are also
expected to be wider for those areas.

Finally, Figure 15 depicts on a map the evolution over time of the predicted distance
d1 and its 95% confidence interval. At t = 1, the seismic reports collected within the first
∆ = 10 seconds are used to compute the centre of gravity s of their coordinates (asterisk
marker in the figure panels). While new reports are collected, the prediction of d1 and its
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Table 5. In sample and cross-validation R2 for magnitude,
depth and distance d1 under models M1, M2 and M3 at
t = 60.

In sample Cross-validation
M1 M2 M3 M1 M2 M3

Magnitude 0.26 0.27 0.51 0.35 0.33 0.42
Depth 0.02 0.02 0.62 0.02 0.02 0.40

Distance 0.10 0.10 0.47 0.07 0.08 0.27

Fig. 13. In sample and cross-validation RMSE for magnitude, depth and distance d1 under models
M1, M2 and M3.
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Fig. 14. Model prediction for the magnitude 5.2 earthquake detailed in Figure 2. Thick line:
estimation; light line: real earthquake parameter from USGS earthquake catalogue; dotted line: 95%
confidence interval.

confidence interval are updated. Note that only d1 is updated while the centre of gravity
s is fixed once computed at t = 1. Moreover, it is possible to see that the first prediction
for d1 is already a good estimate of the distance between s and the earthquake epicentre.
This is possible thanks to the spatial variable w which, in this case, well describes the
typical distance of earthquake epicentres when reports has centre of gravity at s.

7. Remarks

Results obtained from the data analysis of the previous section allow us to answer the
four questions posed in Section 1.

(a) Can seismic reports be used to predict intrinsic parameters of an earthquake in real
time? Results suggest that a statistical model with time-varying coefficients and a
spatial latent variable can be fitted in order to provide good prediction of earthquake
parameters useful to assess the impact on the population.

(b) How reliable are such predictions? For magnitude, depth and distance, the in sample
RMSE is around 0.4, 23 km and 55 km, respectively. The cross-validation RMSE is
around 20%, 35% and 15% higher, respectively.

(c) After how many seconds are the predictions reliable? Predictions become reliable
and stable after around 50 seconds for magnitude and depth and after around 200
seconds for distance.

(d) Do predictions keep improving with time? Once stable, there is no significant im-
provement in the predictions. Predictions for magnitude possibly deteriorate after
170 seconds.

8. Conclusions

In this paper, seismic intensity reports collected by the Earthquake Network citizen sci-
ence project have been analysed in order to understand if the report information content
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Fig. 15. Prediction of distance d1 for the magnitude 5.2 earthquake detailed in Figure 2. The
triangular marker is the earthquake epicentre while star markers are the locations of the seismic
reports. The asterisk marker is the centre of gravity s of the coordinates of the seismic reports
collected within the first ∆ = 10 seconds. The thick line circle is centred on s and has radius d1,
while the dotted lines represent the 95% confidence interval on d1.
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is suitable for predicting earthquake parameters while the earthquake is evolving. Pre-
dictions are eventually communicated in near real time to the general public through
smartphone apps, fulfilling the need for information arising among the population.

Parameters of interest were magnitude, depth and distance between the earthquake
epicentre and the location of the first reports sent to the server. The modelling of the
parameters was done using a multivariate space-time model with time-varying coefficients
and a latent spatial variable. The time-varying coefficients allows the model parameters
to be adapted to a report information content that changes with time, while the latent
spatial variable is able to capture the local seismicity and the global heterogeneity in the
perception of the earthquake intensity by the population.

The model has been applied to more than 200 thousand seismic reports globally col-
lected over a period of more than 4 years. For all the earthquake parameters, it was shown
that the model proposed in the paper outperforms a classic regression model and a model
with time-varying coefficients but without the spatial variable. Thanks to the model, it
was possible to assess prediction root mean squared error and the amount of time that has
to be waited before obtaining reliable predictions. Moreover, it was shown that waiting
longer does not significantly improve predictions, both when considering in sample data
and when considering cross-validation data.

Cross-validation RMSE are neither too large for the predictions to be uninformative
nor small enough to claim that they can replace the official estimates coming from seismic
networks. Nonetheless, predictions provided by the approach developed in this paper have
the nature of preliminary information and they have the advantage of being in near real
time. Moreover, it has been shown that the need for information can be fulfilled by the
population itself by providing information about what they are experiencing.

Future works will consider seismic reports coming from multiple citizen science projects,
which will be jointly analysed to improve the real time prediction, solving the problem
of possibly misaligned seismic intensity scales. Moreover, exploiting insights from other
citizen science projects discussed in Bain (2016), the possibility of assigning a personal
measure of reliability to people joining the projects will be exploited. Such a measure will
allow to weight differently the information coming from different smartphone users, with
a higher weight assigned to trusted users and/or users with a long history in the project.
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Finazzi, F., E. M. Scott, and A. Fassò (2013). A model-based framework for air quality
indices and population risk evaluation, with an application to the analysis of Scottish
air quality data. Journal of the Royal Statistical Society: Series C (Applied Statis-
tics) 62 (2), 287–308.

Gehl, P., F. Cavalieri, and P. Franchin (2018). Approximate bayesian network formulation
for the rapid loss assessment of real-world infrastructure systems. Reliability Engineering
& System Safety 177, 80 – 93.



Fulfilling the information need after an earthquake 27

Gelman, A. and J. Hill (2007). Data Analysis Using Regression and Multilevel/Hierarchical
Models. Cambridge University Press.

Graham, M., S. A. Hale, and D. Gaffney (2014). Where in the world are you? Geolocation
and language identification in Twitter. The Professional Geographer 66 (4), 568–578.

Jordan, T., Y.-T. Chen, P. Gasparini, R. Madariaga, I. Main, W. Marzocchi, G. Pa-
padopoulos, G. Sobolev, K. Yamaoka, and J. Zschau (2011). Operational earth-
quake forecasting. State of knowledge and guidelines for utilization. Annals of Geo-
physics 54 (4).

Sakaki, T., M. Okazaki, and Y. Matsuo (2010). Earthquake shakes Twitter users: real-time
event detection by social sensors. In Proceedings of the 19th international conference on
World wide web, pp. 851–860. ACM.

Sbarra, P., P. Tosi, and V. De Rubeis (2010, Aug). Web-based macroseismic survey in
Italy: method validation and results. Natural Hazards 54 (2), 563–581.

Shumway, R. H. and D. S. Stoffer (2011). Time series regression and exploratory data
analysis. In Time series analysis and its applications, pp. 47–82. Springer.

Silva, V., D. Amo-Oduro, A. Calderon, J. Dabbeek, V. Despotaki, L. Martins, A. Rao,
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