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Resumen: Recently, a Model Predictive Control (MPC) scheme suitable for closed-
loop re-identification was proposed which solves, in a non-conservative form, the
potential conflict between the persistent excitation of the system and the stabilization.
The idea is to use the concept of probabilistic invariance to define a target set,
and so to take advantage of the knowledge of the probabilistic distribution of
the excitation signal to design a non-competitive two-objective MPC formulation.
Although this proposal seems to work properly from an identification point of view
(since uncorrelated output-input data are obtained), some theoretical properties of
the formulation remains unexploited. In this work, new results are presented, focusing
on the finite-time convergence to the target, which is necessary to start the second
MPC objective of identification. Furthermore, several new simulation are developed
to clearly show the new properties benefits.

Palabras Claves: Model predictive control, closed-loop identification, probabilistic
invariant set, finite-time convergence.

1. INTRODUCTION

Model predictive control (MPC) is a popular
control technique that based on a simplified model
of the system under control, solves an on-line
optimization problem to determine the current
control action. As the system conditions change,
the model requires an update (re-identification)
that usually must be performed in a closed loop
fashion in order. One problem of the closed-
loop re-identification is that the control objective
is opposite to those of exciting the system for
identification: while the controller is devoted to

maintain the system at a given equilibrium most
of time, the excitation procedure agitates the
system around it, with the objective of producing
output-input data with enough dynamic informa-
tion.

In the MPC framework, several strategies were
developed to perform closed-loop re-identification.
An early strategy, consisting in the addition of
an excitation constraint, was presented in Genceli
and Nikolaou (1996). In Zacekova et al. (2013)
a two-stage controller approach is presented.
Recently, a study of several MPC re-identification
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methods is made in Potts et al. (2014), empha-
sizing the so-called MPC Relevant Identification
(MRI). In Patwardhan and Gopaluni (2014),
the generation of a persistent excitation (PE)
signal by means of the maximization (instead of
the minimization) of the MPC cost function is
proposed. This way, the variance (variability) of
the signal is maximized while the process variables
fulfill the constraints.

The main theoretical drawback of all these schemes
is that the formal feasibility and attractivity/stability
properties are lost. In González et al. (2014),
a MPC scheme suitable for re-identification is
proposed, which ensures recursive feasibility and
stability of a proposed invariant set, performing a
safe closed-loop re-identification once the system
reaches the set. However, the computation of
the target invariant set is made according to
the maximum value that the excitation signals,
without exploiting the knowledge of their prob-
abilistic distribution. This results in large target
regions that conservatively contains the excited
system evolution. Recently, based on the concept
of Probabilistic Invariant Sets (PIS) introduced in
Kofman et al. (2012), a significant reduction of the
conservativeness of the strategy was obtained in
Anderson et al. (2016). The idea in this approach
is to replace the target (robust) invariant sets
by their probabilistic counterparts. So, once the
excitation procedure starts, the state trajectories
remain in the set with high probability (close to 1
for most practical problems), and if a state leaves
the set, the control is resumed and the excitation
aborted.

The aforementioned ideas result in a useful control
formulation, mainly from an application point of
view. However, many theoretical details needs to
be exploited yet. The main desired improvement
is the guarantee of finite-time convergence to the
target set (in contrast to the asymptotic one),
given that the excitation is precisely started once
the system reached the target invariant set. In
this work new results regarding the properties
of the MPC based on probabilistic invariant
sets are presented, and conditions for the finite-
time convergence are provided. Furthermore, new
simulation are performed and some indexes are
proposed to quantify the improvement of consider
probabilistic target sets instead the deterministic
ones.

2. PROBLEM STATEMENT AND BASIC
DEFINITIONS

Consider a discrete time system described by a
linear time-invariant model

x(k + 1) = Ax(k) +Bu(k), x(0) = x0 (1)

where x(k) ∈ X ⊂ Rn is the system state at
the k–th sample time, x0 is the initial state, and

u(k) ∈ U ⊂ Rm is the current control input.
All along this work it is assumed that matrix
A ∈ Rn×n has all its eigenvalues strictly inside
the unit circle, the pair (A,B) is controllable, the
set X is convex and closed, the set U is convex
and compact and both contain the origin in their
interior.

The goal in this work is to develop a MPC strategy
that accounts for the closed-loop re-identification
of such a system.

2.1 Invariant sets and control

Next, some definitions and properties that will be
used later to derive the main results of the work,
are recalled.

Definition 1. (γ-Control Invariant Set, γ-CIS)
Given γ ∈ [0, 1], a set Ω ⊆ X is γ-control invariant
for system (1) associated with set U , if x(k) ∈ Ω
implies that x(k + 1) ∈ γΩ for some u(k) ∈ U .

Definition 2. (Controllable Set) Given the set
Ω ⊂ X , the one step controllable set to Ω, Q(Ω),
associated to the input set U , is the set of all
x ∈ X for which there exists u ∈ U such that
Ax+Bu ∈ Ω.

Definition 3. (Interior Set) Given the set Ω ⊂
Rn, the set int(Ω) is the interior of the Ω, if for
any x ∈ Ω there is ε > 0 such that the ball
Bε(x) = {y : ‖y − x‖ < ε} ⊆ Ω.

Next, a property relating the γ-CIS and its
corresponding controllable set is presented:

Lemma 1. Given a convex and closed set, Ω ⊂
Rn. If Ω is a γ-CIS, with γ < 1, for system
(1) and int(Q(Ω)) is the interior of the one step
controllable set to Ω, then Ω ⊆ int(Q(Ω)).

Proof: Let the state x ∈ Ω, and consider

ε = inf{‖y − z‖ : y ∈ ∂Ω, z ∈ γΩ} (2)

Note that ε > 0 since Ω is convex and γ < 1.
Given that Ω is γ-CIS for system (1), there is
u ∈ U such that x+ = Ax+Bu ∈ γΩ.
Now, let x̄ such that ‖x− x̄‖ < ε. Then, x̄+ =
Ax̄+Bu is such that

∥∥x̄+ − x+∥∥ = ‖A(x̄− x)‖ ≤ ‖A‖ ‖x− x̄‖ < ε

where the last inequality follows from the fact that
A is Hurwitz, and so ‖A‖ ≤ 1.
Since Ω is closed and by (2), it means that x̄+ ∈
Ω, and so by the definition of controllable sets,
x̄ ∈ Q(Ω).
Then, the ball Bε(x) = {x̄ : ‖x̄− x‖ < ε} ⊆ Q(Ω),
which means that Ω ⊆ int(Q(Ω)).
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3. ONE STEP PROBABILISTIC INVARIANT
SETS

The concept of probabilistic invariant set associ-
ated to the excitation requirements necessary to
perform suitable identifications is central in this
work. So, we first define the excitation signal,
according to the identification requirements.

Definition 4. (Bounded White Noise) Given
a compact non empty set V ⊂ Rm, we say
that a stationary process v : N → V is a
bounded white noise if it satisfies E[v(k)] = 0 and
cov[v(k)] > 0 for all k ∈ N, and, additionally v(k)
is uncorrelated with v(j), for k 6= j.

Notice that the fact that v(k) is bounded white
noise implies that it is also a persistent excitation
of any order Ljung (1999).

Probabilistic Invariant Sets (PIS) (Kofman et al.
(2012)) ensure that the state trajectories remain
inside them for all future time, with certain
probability. However, in the context of the MPC
scheme that will be proposed, it will suffice with
ensuring that the trajectories remain in the set at
the following step. For this reason, the concept of
One Step Probabilistic Invariant Sets (OSPIS) is
introduced next.

Definition 5. (γ–One Step Probabilistic In-
variant Set, γ–OSPIS) Let p ∈ (0, 1] and γ ∈
(0, 1]. A set S ⊆ X is a γ–One Step Probabilistic
Invariant Set with probability p of system (1) with
u(k) being a bounded white noise on V ⊂ U , if and
only if Pr[x(k + 1) ∈ γS | x(k) ∈ S] ≥ p.

When γ = 1 a γ–OSPIS is simply an OSPIS.
Furthermore, when p = 1 a γ-OSPIS is a γ-ISI
set, as the one defined in González et al. (2014).

The following property relates the probability p of
remaining in an OSPIS after one step with that
of remaining longer inside that set. This property
will play an important role to ensure the feasibility
of the re-identification procedure.

Lemma 2. Let p ∈ (0, 1]. Let S be an OSPIS with
probability p for System (1) with u(k) being a
bounded white noise on V ⊂ U . Then, provided
that x(k) ∈ S, it results that Pr[x(k + 1) ∈ S ∧
x(k + 2) ∈ S ∧ · · · ∧ x(k + q) ∈ S] ≥ pq.

Proof: The fact that u(k) is bounded white noise
implies that x(k) has a Markov property, i.e.,
given x(k), the value of x(k+ 1) does not depend
on past values of the state prior to time k. That
way, the OSPIS property that Pr[x(k + 2) ∈
S|x(k+1) ∈ S] > p is accomplished independently
on the fact that x(k) ∈ S. Thus, Pr[x(k + 2) ∈
St|x(k + 1) ∈ S ∧ x(k) ∈ S] > p.

Then, subject to x(k) ∈ S, it results that

Pr[x(k + 2) ∈ S ∧ x(k + 1) ∈ S]

= Pr[x(k + 2) ∈ S|x(k + 1) ∈ S] · Pr[x(k + 1) ∈ S]

≥ p2

and the proof concludes by the recursive use of
this reasoning.

4. MAIN RESULT

In this Section, a novel MPC formulation that
uses OSPIS as target sets is presented. The whole
objective is to properly include in the MPC op-
timization problem a less conservative target set,
that is invariant (in the probabilistic sense) under
the system excitation/re-identification, even when
the model is uncertain.

4.1 Proposed Scheme

The basic idea consists in using a control law that
drives the trajectories to a target set, which is
accomplished using the a cost function defined
below. Once the state enters the target set,
the scheme should introduce a bounded input
white noise signal that allows to perform the re–
identification procedure.

The cost function is defined as follows. Let
upe(k) ∈ U t be a bounded white noise signal
for which St is an OSPIS with probability p for
System (1). Then, being k the current sample
time, the cost function is given by:

VN (x,St, upe(k); u)

= (1− ρ(x))

N−1∑
j=0

[αdSt(x(j)) + βdUt(u(j))]

+ ρ(x)‖u(0)− upe(k)‖,

where ρ(x) = 1 if x ∈ St, and ρ(x) = 0
otherwise. Here, dSt(x(j)) and dUt(u(j)) represent
the distance between the set and the point defined
on Anderson et al. (2016), α and β are positive
real numbers and N ∈ N is the control horizon.

For any initial state x in XN , at a given time step
k, the optimization problem PN (x,St, upe(k), k),
to be solved at each time instant k, is given by:

Problem PN (x,St, upe(k), k)

min
u

VN (x,St, upe(k); u)

s.t.
x(0) = x,
x(j + 1) = Ax(j) +Bu(j), j = 0, ..., N − 1
x(j) ∈ X , u(j) ∈ U , j = 0, ..., N − 1
x(N) ∈ St

(3)
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Notice that ρ(x) is a discontinuous function
necessary to cancel the persistent excitation in
case the state leaves St. This could occur due
to the presence of an external disturbance or
even, with a small probability (1− p), due to the
persistent excitation itself.

The control law resulting from the application of
the receding horizon policy is given by a function
κN (x,St) = u0(0;x), where u0(0;x) is the first
element of the (optimal) solution sequence u0(x).
This way, the closed-loop system under the MPC
law is described as x(j) = φκN

(j;x,St) = Ajx +∑j−1
i=0 A

j−i−1BκN (x,St).

In Anderson et al. (2016) it was proved the
asymptotic convergence of the trajectories to the
OSPIS St. However, it is important to ensure
convergence in finite time, as the identification
procedure has to be applied inside that set. For
this, notice that a γ−OSPIS belong to the interior
of its one step controllable set (Lemma 1), by the
asymptotic convergence to the γ−OSPIS, there is
a finite convergence to this controllable set, and
from there, the γ−OSPIS can be reached in one
step. Indeed, consider first the following Lemma.

Lemma 3. Let St ⊆ X be an OSPIS with
probability p ∈ (0, 1] for system (1) with u(k)
being a bounded white noise signal on U t. Then,
if x(0) = x ∈ X1, where X1 is the one-step
controllable set to St (i.e., X1 = Q(St)), the target
set St is reached in one step for the closed-loop
system x(j) = φκN

(j;x,St), with j ∈ N.

Proof: We need to consider the case when x(0) /∈
St, then ρ(x) = 0. Notice that the fact that x(0) =
x ∈ X1 implies that a control action u(0) ∈ U t
exists such that x(1) ∈ St, and then successive
control actions exist for which x(j) remain in St
(from the invariance of that set). Then use of that
control sequence has null cost, while any control
action that leaves x(1) outside St has a positive
cost. Thus, the MPC will drive the state to the
target set in one step.

Now, from Lemmas 1 and 3, the following result
regarding the convergence on finite time to the
target set St is established.

Theorem 1. Let St ⊆ X be a γ−OSPIS with
probability p ∈ (0, 1] and γ < 1 for system (1)
with u(k) being a bounded white noise signal
on U t. Then, St is reached in finite time for
the closed-loop system x(j) = φκN

(j;x,St), with
x(0) = x ∈ XN and j ∈ N.

Proof: In Anderson et al. (2016) it was proved
that St is also a γ−CIS. Then, by Lemma 1, St
is in the interior of X1 = Q(St). Since we now
also by Anderson et al. (2016) that x(j) tends to

St as j goes to ∞, then, a finite time K there
exists such that x(K) ∈ X1. Then, by Lemma 3,
the state x(K + 1) = φκN

(1;x(k),St) will be in
St, which concludes the proof.

From the re-identification point of view, it is
important to ensure that the trajectory is kept
inside the target set St long enough to apply the
identification procedure. For that goal, we first
prove that the target set St is an OSPIS for the
whole scheme.

Lemma 4. Let St ⊆ X be an OSPIS with
probability p ∈ (0, 1] for system (1) with u(k)
being a bounded white noise signal on U t. Then,
St is also an OSPIS with probability p for the
closed-loop system x(j) = φκN

(j;x,St), with
x(0) = x ∈ XN and j ∈ N.

Proof: Notice that the condition x(k) ∈ St
implies that ρ(x) = 1. Thus, the cost function is
minimized by adopting u(k) = upe(k). As St is an
OSPIS for the input signal upe(k), it results that
Pr[x(k + 1)] ∈ St ≥ p completing the proof.

Let us suppose that Tid ∈ N is the length of the
data necessary to perform a suitable identification
of the system of Eq. (1). Taking into account
Lemmas 2 and 4, whenever the trajectory enters
set St, it will remain inside it during Tid units
of time with a probability greater than pTid . That
way, if p is chosen to be sufficiently large, it can be
ensured that the re-identification procedure can
be frequently performed.

5. ROBUSTNESS ANALYSIS

The MPC scheme proposed above uses a target set
St computed as an OSPIS for the system under
certain input noise signal. The problem is that St
depends on the model parameters (A and B), and
we cannot assume that they are accurately known
(and that is the reason why the re-identification
procedure is needed).

To take into account this remark, we shall prove
that when the set St is computed as a γ–OSPIS
then it results an OSPIS for a family of models
around the nominal one.

Let W ⊆ Rp be a proper C-set, and consider that
matrices A and B in the nominal system of Eq.(1)
are parametrized by w ∈ W.

x(k + 1) = A(w)x(k) +B(w)u(k), (4)

where A(w) and B(w) are Lipschitz functions on
W satisfying A(0) = A, and B(0) = B. Then, the
following theorem can be established

Theorem 2. Let St ⊂ X be a γ-OSPIS with
probability p ∈ (0, 1] and γ ∈ [0, 1) for system
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(1), with u(k) being a bounded white noise signal
on U t. Then, there exists a proper C-setWr ⊆ W
such that for any w ∈ Wr the set St is an OSPIS
with probability p for system (4) under the same
bounded white noise signal.

Proof: Let x(k) ∈ St. Compute x(k + 1) =
Ax(k) + Bu(k), and x̄(k + 1) = A(w)x(k) +
B(w)u(k). Then, substracting both future values
of the state we obtain

x̄(k+1)−x(k+1) = [A(w)−A]x(k)+[B(w)−B]u(k)

applying norms and triangular inequality, it re-
sults that

‖x̄(k + 1)− x(k + 1)‖= ‖[A(w)−A]x(k)

+ [B(w)−B]u(k)‖
≤ ‖A(w)−A‖ · ‖x(k)‖
+ ‖B(w)−B‖ · ‖u(k)‖
≤LA · ‖w‖ · ‖x(k)‖
+LB · ‖w‖ · ‖u(k)‖

where LA and LB are the Lipschitz constants of
A(w) and B(w) in W. Then,

‖x̄(k+1)−x(k+1)‖ ≤ (LA·rx+LB ·ru)·‖w‖ = α·‖w‖
(5)

where rx = maxx∈St ‖x‖ and ru = maxu∈Ut ‖u‖.

Let d = infx/∈St dγSt(x), i.e., the minimum
distance from the border of St to set γSt. Then,
consider the set

Wr = {w ∈ W : ‖w‖ ≤ d

α
}

Thus, w ∈ Wr implies that α‖w‖ ≤ d, and, from
Eq.(5), we have

w ∈ Wr ⇒ ‖x̄(k + 1)− x(k + 1)‖ ≤ d
Taking into account that d is the minimum
distance from the border of St to the set γSt, the
later condition establishes that x(k + 1) ∈ γSt ⇒
x̄(k + 1)St. Then,

Pr[x̄(k + 1) ∈ St] ≥ Pr[x(k + 1) ∈ γSt] ≥ p
what proves that St is an OSPIS for the system
of Eq.(4).

In the Appendix a flexible method to compute a
γ-OSPIS with γ ∈ [0, 1), which is robust for a
given set W for (4), is proposed.

6. EXAMPLE

The idea now is to test the proposed MPC scheme,
mainly, in an uncertainty scenario and performing
the corresponding excitation procedure. In order
to clearly show the simulation results, a simple 2-
state stable system (González et al. (2014)) given
by

x(k + 1) = A(w)x(k) +B(w)u(k), w ∈ W ⊆ R,
(6)

with affine functions

A(w) =

[
0.42 −0.28
0.02 0.6

]
+ w

[
−0.6 0.4
−0.6 −0.85

]
,

B(w) =

[
0.3
−0.4

]
+ w

[
−0.2
−0.4

]
,

and w ∈ W = [−0.22, 0.22], is used.

The unknown real model is given by A(wr) and
B(wr) where wr = −0.2. The constraints of the
system are given by X =

{
x ∈ R2 : ‖x‖∞ ≤ 17

}
and U = {u ∈ R : ‖u‖∞ ≤ 1}. The EIS set has
been selected to be U t = {u ∈ R : ‖u‖∞ ≤ 0.8}.
The Bounded White Noise signal upe(k) is as-
sumed to have a truncated normal distribution,
and lies within U t, with mean µ = 0 and standard
deviation σ = 0.4.

6.1 Simulating the Re-identification Control and
Exciting modes

Two indexes are defined to evaluate the benefits
of having a reduced target set for identification,
St, from the control point of view. The first
one, denoted as I1, is defined by the cumulative
distance from the states to the target equilibrium
set X tss, which represents the objective target for
the Control Operation Mode (i.e., when no re-
identification is needed):

I1 =

Tsim∑
i=1

dX t
ss

(x(i)) + dUt
ss

(u(i)),

where Tsim is the simulation time, Tar is the
objective set of the MPC cost function (i.e., an
invariant set in the Re-identification Operation
Mode; an equilibrium set in the Control Operation
Mode) and x = x(0) is the initial state. In
fact, this index is directly given by the MPC
cost proposed for the Control Operation Mode in
González et al. (2014).

The second index, denoted as I2, simply gives the
quantity of states in open-loop:

I2 = Tsim −
# {x(i) : x(i) = φ(i;x, Tar), i = 1, · · · , Tsim}

The idea behind these indexes is that the less time
the system is in open-loop for the identification
procedure (provided that a proper excitation is
performed), the better for safety control purposes.
In this context, the ideal scenario is given when
the Control Operation Mode is implemented, in
which case, the system is never in open-loop, and
so I1 = Icm1 (minimum value) and I2 = Icm2 = 0.
In order to standardize the indexes we define:

Istd1 =
I1 − Icm1

I1
; Istd2 =

I2
Tsim
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Fig. 1. The Re-identification Operation Mode simulation

with the OSPIS St as target set of the MPC cost
function.

which are values between 0 and 1, being the
smallest values that represent the best scenario,
in both cases.

The simulation scenario, devoted to show how
the proposed MPC works in the Re-identification
Operation Mode, consists in a sequence of distur-
bances that enters the system while the excitation
procedure is being performed. The simulation
starts at an initial state inside the target set
St, which corresponds to the Re-identification
Exciting Mode. Then, three disturbances takes
the system states outside St, which makes that
the controller automatically switch to the Re-
identification Control Mode, to steers the state
back to St, and once it occurs, to switch again
to the Re-identification Exciting Mode, to resume
the exciting procedure.

Table 1 show the indexes for both criterion of re-
identification process using the minimal invariant
set (ISI: González et al. (2014)) and the proba-
bilistic invariant set (OSPIS), respectively, also
in contrast to the ideal case (Control Operation
Mode) when no re-identification process is done.
As it can be seen, the proposed strategy shows a
significant improvement in both indexes, which is
due to the use of a smaller target set.

Target Set Eq set X t
ss OSPIS St ISI X t

Index 1 (standardized) 0 0.38 0.45

Index 2 (standardized) 0 0.88 0.98
Tabla 1. Both indexes for the control opera-

tion mode with the equilibrium objective set

X t
ss: First column. The same indexes for the

re-identification operation mode with the

objective sets St and X t: Second and third

column, respectively.

7. CONCLUSION

In this work a new MPC suitable for closed-loop
re-identification is proposed. The main benefits
consists in the use of a reduced target set, that
is computed taking into account probabilistic
invariance concepts. This way, the persistent ex-
citation of the closed-loop system is ensured, and

Fig. 2. The Re-identification Operation Mode simulation

with the ISI X t as target set of the MPC cost
function.

furthermore, output-input uncorrelated data can
be obtained, but only using a reduced state space
region around the equilibrium. Two different
indexes that explain the gain on using smaller
targets sets are proposed. In addition, from the
control point of view, a less conservative formula-
tion is obtained, which considerably improves the
applicability of the proposed methodology.
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