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Abstract— Recently, a gradient-based model pre-
dictive control (MPC) strategy was proposed to redu-
ce the computational burden of integrating real time
optimization (RTO) and control: the main idea is to
obtain the on-line controller solution by means of the
convex combination of a feasible solution and a so-
lution of an approximated (linearized) problem. This
formulation, however, is developed only for the nomi-
nal case, which significantly reduce its applicability. In
this work, an extension of the gradient-based MPC to
include bounded additive disturbance is made. Based
on the concept of robust set-interval, the uncertainty
is explicitly accounted for, while economic performan-
ce and stability is maintained. Several scenarios are
simulated to show the benefits of the proposal in con-
trast to the nominal controller.
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1. Introduction
Model predictive control (MPC) is one of the most suc-

cessful advanced control techniques in the process indus-
tries. MPC theoretical background has been widely in-
vestigated in the last two decades, showing how MPC is
a control technique capable to provide stability, robust-
ness, constraint satisfaction and tractable computation for
linear and for nonlinear systems [1].

Recently, researchers are focused on improving the
economic performance of MPC. In this context, the study
of the hierarchical control structure, typical in process
industries, has a certain relevance [2]: at the top of this
structure, an economic schedule and planner determi-
nes the whole plant production (level, quality, etc.). The
outputs of this layer are sent to a Real Time Optimizer
(RTO), which is devoted to compute the stationary set-
points according to economic criteria. This optimizer is
usually based on a complex nonlinear stationary model
of the plant and so has a sampling time different from ot-
her layers. Then, the setpoints computed by the RTO are
sent to the MPC control level which calculates the control
actions necessary for the plant to reach those setpoints, ta-
king into account a simplified dynamic model of the plant
and the variable constraints.

One well-known drawback of this hierarchical con-
trol structure is, however, that the communication bet-
ween the economic/stationary and the dynamic layers
may be inconsistent, producing in this way problems that
go from unreachability of the setpoints to poor economic
performances. As a result, a proper strategy to unify this
(probably competing) objectives becomes highly desired
from an operating point of view.

Two ways to reduced inconsistency are the so-called
two-layer and one-layer structures. In the first case, an
extra optimization level - the Steady State Target Optimi-
zer, SSTO - is added in between the RTO and the MPC to
decide the best admissible target for the MPC, according
to a local approximation of the RTO cost function, and
using the same simplified model used in the MPC layer.
Some examples of this strategy (within different frame-
works) can be seen in [3, 4].

In the one-layer strategy the idea is to merge the RTO
layer with the MPC layer, by designing controllers that
integrates the RTO economic cost function as part of the
MPC cost as in [5], or controllers based on a general (eco-
nomic) cost function, as in [6, 7]. The main problem of
this strategy is that the economic objectives are usually
represented by a complex nonlinear function that turn the
one-layer optimization cost also nonlinear and difficult to
solve.

In order to reduce the computational burden, an appro-
ximation of the RTO function can be considered, as eco-
nomic cost function: for instance, in [8], the gradient of
the economic objective function is included in the con-
troller cost function, in order to obtain a computational
low-cost strategy. This solution allows one to solve the re-
sulting control/optimization problem as a single QP pro-
blem, and the results are promising from both, theoretic
and practical points of view. This idea has been then ex-
tended in [9], in order to obtain a stable formulation.

The novelty of this strategy is that instead of applying
to the system the optimal solution of an approximated
problem, the applied control action is the convex combi-
nation of an arbitrary feasible solution and an approxima-
ted solution. In this way, a sub-optimal MPC strategy is
obtained, which ensures recursive feasibility and conver-
gence to the optimal steady state in the economic sense,
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with a reduced computational cost. The aforementioned
formulation, however, was developed for the nominal ca-
se only.

The aim of this work is to extend the formulation to
robust case, considering bounded additive disturbances.
Based on the concept of robust set-interval ([10]) the ex-
tension is made with the objective to preserve the nomi-
nal economic performance and stability. The so obtained
control formulation is tested by simulating several econo-
mic scenarios on a simple system.

2. Problem Statement

Consider a system described by a linear time-invariant
discrete time model

x̄+ = Ax̄+Bu+ w (1)

where x̄ ∈ IRn is the system state, u ∈ IRm is the current
control vector, x̄+ is the successor state and w ∈ IRn is
an unknown but bounded state disturbance. In what fo-
llows, x̄(k), u(k) and w(k) denote the state, the mani-
pulable variable and the disturbance respectively, at sam-
pling time k.

The system is subject to constraints on state and input:

(x̄(k), u(k)) ∈ Z̄ (2)

for all k ≥ 0, where Z̄ = X̄ × Ū is a compact convex
polyhedron containing the origin in its interior.

Define also the plant nominal model, given by 1 ne-
glecting the disturbance input w:

x+ = Ax+Bu (3)

The solution of this system for a given sequence of con-
trol inputs u = {u(0), · · · , u(j − 1)} and an initial sta-
te x is denoted as x(j) = φ(j;x,u), j ∈ I≥1, where
x = φ(0;x,u).

The plant model is assumed to fulfill the following as-
sumption:

Assumption 1. (i) The pair (A,B) is controllable and
the state is measured at each sampling time. (ii) The un-
certainty vector w is bounded and lies in a compact con-
vex polyhedron, W , containing the origin in its interior.
(iii) The state of the system is measured, and hence x̄(k)
is known at each sample time.

2.1. The robustness approach
The keystone of the robust MPC presented in [10] is to

use predictions based on the nominal system for the MPC
cost and to restrict the constraints set X and U any step of
the prediction horizon. The controller is based on a pre-
stabilization of the plant using a state feedback control
gain K, such that AK = A+BK has all its eigenvalues
in the interior of the unit circle. The nominal controlled
system is then given by:

x(k + 1) = AKx(k) +Bc(k)

u(k) = Kx(k) + c(k) (4)

The notion of robust positively invariant (RPI) set ([11])
plays an important role in the design of robust controllers
for constrained systems. This is defined as follows:

Definition 1. A set Ω is called a robust positively in-
variant (RPI) set for the uncertain system x̄(k + 1) =
AK x̄(k) + w(k) with w(k) ∈ W if AKΩ⊕W ⊆ Ω

It is also necessary to define the so-called reachable
sets, that represents the forced response of the system due
to the uncertainty.

Definition 2. The reachable set in j steps, Rj , is given
by

Rj =

j−1⊕
i=0

Ai
kW (5)

This is the set of states of the nominal closed-loop sys-
tems which are reachable in j steps from the origin, under
the disturbance input w. This set satisfies the following
properties:

(i) It is given by the recursion Rj ⊕ Aj
KW = Rj+1

whitR1 =W .

(ii) Aj
KRj ⊕W = Rj+1 = Rj ⊕Aj

KW .

(iii) Rj ⊆ Rj+1

(iv) The sequence of setsRj has a limitR∞ as j →∞,
andR∞ is a robust positive invariant set.

(v) R∞ is the minimal RPI set.

Based on this, the sets of restricted constraints are defi-
ned by:

Xj , X̄ 	 Rj (6)

Uj , Ū 	KRj

These sets are non-empty if the following assumption
holds:

Assumption 2. The sets Xj and Uj exist if and only if
R∞ ⊂ X̄ and KR∞ ⊂ Ū

It is important also to note that the computation of such
sets is made off-line, so it has no practical effects on the
MPC problem.

Remark 1. The control gain K has an important role in
the proposed robust approach, since it determines the dy-
namic of the closed-loop system in presence of disturban-
ces and hence, it has to ensure that Assumption 2 holds.

2.2. Equilibrium characterization and optimal
point

If we consider the joint variable (x, u), the state and in-
put equilibrium subspace, associated to the nominal mo-
del (3), is given by N ([A− In B]), where N is the null
space of a matrix. That is

[A− In B]

[
xs
us

]
= 0n,1
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Defining Z , XN × UN , the set of admissible equili-
briums - for the nominal system, is given by

Zs , {(x, u) ∈ γZ | x+ = Ax+Bu}

where γ ∈ (0, 1) is a given parameter added to avoid
those steady states and inputs that provide active cons-
traints.

Taking into account the later equilibrium characteriza-
tion, the optimal operation point that stabilizes the plant
is

Definition 3. The optimal steady state and input,
(xecos , uecos ), satisfies

(xecos , uecos ) = arg mı́n
(x,u)∈Zs

feco(x, u, p). (7)

where feco(x, u, p) defines an economic cost function
and p is a parameter that takes into account prices, costs
or production goals.

Assumption 3. The economic cost function feco(x, u, p)
is strictly convex in (x, u) and twice differentiable. This
is important for the proof of the theorem of convergence
which will be presented later.

In addition, according to most real cases, it is assumed
that feco(x, u, p) is nonlinear and its evaluation takes a
significant computation time, since it is based on complex
stationary models of the real plant.

3. The one layer robust economic MPC strategy

In this section, the proposed controller formulation is
presented. This controller follows the ideas presented in
[9], which considers the offset cost function as the eco-
nomic objective and provide a suboptimal and easy-to-
compute solution, that prevents computational problem
originated by the non-linear nature of the economic cost.
Furthermore, here we take into account the robustness re-
sults presented in section 3, to extend the controller to
the robust case. The main challenge is then to maintain
the properties of the former formulation (simplicity, fea-
sibility, convergence) when a bounded disturbance is ex-
plicitly considered.

The controller cost function is given by:

VN (x, p;u, xs, us)=V
dyn
N (x;u, xs, us)+Veco(xs, us, p) (8)

where V dyn
N (x;u, xs, us) =

N−1∑
j=0

‖x(j) − xs‖2Q +

‖u(j) − us‖2R, for appropriate matrices Q and R, and
Veco(xs, us, p) = feco(xs, us, p).

As can be seen in (8), the cost function is formed by
two terms, based on nominal predictions. The first term
is a pure dynamic term (since the pair (xs, us) defines an
artificial target only forced to be in Zs) while the second
one is a pure stationary term (since it only penalizes the
artificial target - which is an admissible equilibrium - ac-
cording to the economic objectives). This is an extension

of the so called MPC for tracking, which incorporates
the artificial target (xs, us) for feasibility reasons ([12]).

Assuming the prestabilization gain K, we can wri-
te VN (x, p;u, xs, us) = VN (x, p; c, xs, us), where each
element of c, c(j;x), fulfill u(j;x) = K(x(j) − xs) +
us + c(j;x). This way, for any current state x, the opti-
mization problem PN (x, p) to be solved is given by:

Problem PN (x, p)

mı́n
c,xs,us

VN (x, p; c, xs, us)

s.t. x(0) = x,
x(j + 1) = AKx(j) +Bu(j), j ∈ I[0:N−1]

u(j) = K(x(j)− xs) + us + c(j), j ∈ I[0:N−1]

x(j) ∈ Xj , j ∈ I[0:N−1]

u(j) ∈ Uj , j ∈ I[0:N−1]

x(N) = xs,
xs = Axs +Bus ((xs, us) ∈ Zs)

In this optimization problem, x and p are the parame-
ters, while the input sequence c = {c(0), · · · , c(N − 1)}
and the artificial target variables xs and us are the opti-
mization variables.

Notice that the additional constraints necessary to en-
sure stability (according to the MPC for tracking frame-
work) are the last two ones: first, the artificial variables
(xs, us) are only forced to belong to the admissible no-
minal equilibrium set Zs ⊆ XN ×UN , and second, the fi-
nal predicted state x(N) is forced to be xs (which means
that x(N) ∈ Xs).

The control law is given by κN (x, p) = u0(0;x) =
K(x−x0

s)+u0
s + c0(0;x), where c0(0;x) is the first ele-

ment of the solution sequence c0(x). In this regards, the
following assumption must be done to ensure convergen-
ce:

Assumption 4. For a given system (A,B), the hori-
zon N is such that R(CoN−1) ⊃ Xs, where Coj =
[Aj−1B Aj−2B · · · B] is the j-controllability matrix
of system (A,B) andR is the range of a matrix.

4. An easy-to-obtain suboptimal solution

Given that the economic cost is generally based on a
complex nonlinear model, the main problem of the la-
ter formulation is the high computational burden. In this
context, [9] proposed a strategy based on suboptimal so-
lutions to Problem PN (x, p). This suboptimal solution is
constructed by an appropriate convex combination of a
feasible solution and an optimal solution of an approxi-
mated optimization problem, as described next.

Now, for a given time instant k, defi-
ne the feasible solution to problem PN (x, p),
ĉ = {ĉ(0), · · · , ĉ(N − 2), 0} , x̂s, ûs, as the shifted
solution of the same problem at time k − 1. Asso-
ciated to this solution is the feasible state sequence
x̂ = {x̂(0), · · · , x̂(N)} where x̂(N) = x̂s by the
terminal constraint.

The cost function corresponding to solution
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(x̂, ĉ, x̂s, ûs) (called feasible cost) is given by:

VN (x, p; ĉ, x̂s, ûs) = V dyn
N (x̂; ĉ, x̂s, ûs)

+ Veco(x̂s, ûs, p) (9)

Let us consider now an approximated optimal solution to
to the original problem PN (x, p), which is obtained by
solving the following approximated problem:

Problem P app
N (x, p)

mı́n
c,xs,us

V app
N (x, p; c, xs, us)

s.t. c, xs, us ∈ CN (x)

where CN (x) define the set of values c, xs, us that fulfill
the constrain in Problem PN (x, p), and the approximated
cost is given by

V app
N (x, p; c, xs, us) = V dyn

N (x; c, xs, us) + Veco(x̂s, ûs, p)

+∇V ′eco(x̂s,ûs,p)

[
xs−x̂s
us−ûs

]
and∇Veco(x̂s, ûs, p) represents the gradient of Veco w.r.t.
(x, u), evaluated at the point (x̂s, ûs).

As it can be seen, this approximated optimal solution
tries to optimize problem PN (x, p) by means of a simpli-
fied version of it. Notice that this solution is sub-optimal
(in the transient) with respect to the optimal solution to
the original problem PN (x, p) and hence its direct appli-
cation into the MPC scheme does not guarantee conver-
gence of the closed-loop system to the optimal solution
to the original problem PN (x, p).

Let us denote the optimal solution to problem
P app
N (x, p) (which we name approximated optimal solu-

tion) as c∗ = {c∗(0), · · · , c∗(N − 1)} , x∗s, u∗s and x∗ =
{x∗(0), · · · , x∗(N)}

The cost function corresponding at the approximated
optimal solution (x∗, c∗, x∗s, u

∗
s) reads:

VN (x, p; c∗, x∗s, u
∗
s) = V dyn

N (x∗; c∗, x∗s, u
∗
s)

+ Veco(x∗s, u
∗
s, p)

The idea now is to use a convex combination of the fea-
sible solution and the approximated optimal solution,

c(λ) = (1− λ)ĉ + λc∗

x(λ) = (1− λ)x̂ + λx∗

us(λ) = (1− λ)ûs + λu∗s

xs(λ) = (1− λ)x̂s + λx∗s, with λ ∈ [0, 1],

to obtain a new suboptimal solution that produces a de-
creasing MPC cost. Now, the following theorem can be
established:

Theorem 1. Let us consider Problem PN (x, p), with
x 6= xecos , and the aforementioned suboptimal solu-
tions c(λ), xs(λ), us(λ). Consider also that (x̂s, ûs) 6=
(xecos , uecos ). Then there exists a λ̃ ∈ (0, 1] such that, for
all 0 ≤ λ ≤ λ̃

VN (x, p; c(λ), xs(λ), us(λ)) < VN (x, p; ĉ, x̂s, ûs). (10)

The proof of theorem can be seen in [9].
According to the later result, we can define the subop-

timal solution as the one that produces a (positive) de-
crement in the cost function. That is, cso, xsos , u

so
s

∆
=

c(λ̃), xs(λ̃), us(λ̃). Associated to this solution is the
suboptimal state sequence xso ∆

= x(λ̃).

Remark 2. The way to implement this suboptimal so-
lution sequentially (i.e., at every time k the MPC control
action must be implemented) is as follows. In the first pla-
ce, sets Xj and Uj (necessary to define the feasible space
of Problem PN (x, p)) must be computed offline. Then

1. Compute the feasible solution (x̂, û) to problem
PN (x, p), using the shifted solution applied to the
system at the sample time k− 1. If the current time
is k = 0, compute the feasible solution (x̂, û) by
solving the reduced problem P dyn

N (x).

2. Compute the gradient of the economic cost function
Veco(x, u, p) w.r.t. (x, u),∇Veco(x, u, p).

3. Compute the value of the parameter λ̃ that defines
the suboptimal solution (this value can be compu-
ted heuristically in such a way that condition (10)).
Note that to compute this value, the approximated
optimal solution to problem PN (x, p), (x∗,u∗),
must be computed first, by minimizing the appro-
ximated problem P app

N (x, p).

4. From the suboptimal solution cso, xsos , u
so
s =

c(λ̃), xs(λ̃), us(λ̃), take the first input of the se-
quence cso to implement the implicit MPC control
law, κN (x, p)

∆
= uso(0;x) = K(x− xsos ) + usos +

cso(0;x).

5. Stability and convergence of the proposed
controller

In this section some new results are presented regar-
ding the convergence, the economic optimality and the
stability of the proposed algorithm.

Theorem 2. Consider that assumptions 1-4 hold, and
consider a given parameter p for the economic cost
Veco(x, u, p) = feco(x, u, p). Then, for any initial sta-
te x ∈ XN , the optimization problem PN (x, p) is re-
cursively feasible and steers the disturbed system 1 to
(xecos , uecos )⊕ (R∞ ×KR∞).

Sketch of Proof According to previous results presen-
ted in [10], it is possible to show that the contracting
constraints based on the reachable sets, make that shifted
suboptimal solution corresponding to time step k could
be used as feasible solution for the same problem at ti-
me step k + 1. This feasible solution produce in turn a
MPC cost function smaller than the suboptimal solution
at time k. Then, given that Theorem (1) ensures that the
suboptimal solution at time k+1 produces a smaller MPC
cost than the suboptimal solution at the same time, then,
a decreasing cost along the solution is obtained.
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However, given that true state at time k+ 1 is given by
x̄+ = AK(x − xsos ) + usos + Bcso(0;x) + w, and not
by the nominal prediction x+ = AK(x − xsos ) + usos +
Bcso(0;x), then the decreasing cost is obtained whenever
the state is outside the set xecos ⊕ R∞, since otherwise,
the disturbance w avoid the property.

This last fact, together with the fact that
cso(0;x(k)) → 0 as k → ∞, is the one that allows us
to ensure the convergence of (x(k), u(k)) to a the set
(xsos (k), usos (k))⊕(R∞×KR∞), first, and given that the
only one closed loop equilibrium is given by (xecos , uecos ),
then, the convergence to (xecos , uecos )⊕ (R∞ ×KR∞).

6. Example
In this section some simulations results will be pre-

sented, to evaluate the proposed control strategy. First, a
description of the system is shown. Then we present the
results of dynamic simulations.

6.1. System description
In order to demonstrate the benefits and the proper-

ties of the proposed controller, we consider a constrained
sampled double integrator:

x+ =

[
1 1
0 1

]
x+

[
0 0,5
1 0,5

]
u+ w

where the set W of possible disturbances realization is
given by W = {w ∈R2 :‖w‖∞≤ 0,1} and the system
must fulfill the following constraints:
X̄ = {x ∈ R2 :‖x‖∞≤ 5} and Ū = {u ∈ R2 :‖u‖∞≤
0,5} Matrix K has been chosen as the LQR for Q =
0,5 I2 and R = 2 I2, and it is given by:

K =

[
−0,1201 −0,5843
−0,2854 −0,5776

]
The prediction horizon has been chosen as N = 3, and

corresponding economic function reads:

feco(x, u, p) = (u2
1 + p1u

2
2) + p2/(5− x1)

It is important to note that this function is strictly con-
vex in (x, u) and twice differentiable. Figure 1 shows the
different sets of robust economic MPC for tracking. As
can be seen in the Figure, the sets meet Assumption 2.

Figura 1: Different sets of the robust economic MPC for
tracking

In this case, the nominal system has the following
contracting constraints on the inputs and states (for

N = 3):
umin=(−0,3984;−0,3660) and umax=(0,3984; 0,3660)
xmin=(−4,6283;−4,8181) and xmax=(4,6283; 4,8181)

6.2. Dynamic simulations
The results of the simulation are presented in Figu-

res 2, 3, 4 and 5. In particular, Figure 2 shows the sets
X , the domain of attraction XN , the set of equilibrium
Xs and how the uncertain system evolves, starting at
point x0 = (−0,5;−1) with a given economic parame-
ter p = (10; 200). The green dot represents the economic
optimal point, xecos , while the red sequence represents the
artificial state variables xsos . Figure 2 clearly shows that
x̄→ xecos ⊕R∞ as x→ xecos . Notice that the sate evolu-
tion never leaves xecos ⊕R∞, once it is inside this set.

Figures 4 and figure 5 shows the time evolution of out-
puts and inputs, respectively.

Figura 2: System evolution in set X

Figura 3: System evolution in set X . Another view

As shown, the controller brings the system to the point
economically feasible operation, obtained from the solu-
tion of problem PN (x, p). That is the controller proposed
in this work satisfies the economic objective.

7. Conclusions

In this work a new robust economic MPC controller
is presented. The overall idea is to robustly consider the
stationary economic optimization cost into the controller
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Figura 4: Time state evolution

Figura 5: Time input evolution

formulation. By means of a suboptimal solution to the
MPC optimization problems and the use of artificial tar-
gets variable stability and convergence to the optimum
are ensured. The main benefits of the proposed controller
are:

The closed loop robustly converge to the optimal
economic point that minimizes feco.

The controller implementation requires the solu-
tion of just one QP, even when the economic cost
is nonlinear.

There is no need to compute the Hessian of feco,
provided that an heuristic procedure is used to
compute λ̃ holds.

The controller remains feasible under any change
of the economic objective and any disturbance rea-
lization.

The use of artificial variables allows as the direct
substitution of optimal economic points by optimal
economic regions (zone control).

Several simulation results shown that the strategy could
be useful from an application point of view.
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