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Resumen: Model Predictive Control (MPC) is the most used advanced control
strategy in the industries, mainly due to its capability to fulfill economic objectives,
taking into account a dynamic simplified model of the plant, constraints, and stability
requirements. In the last years, several economic formulations of MPC have been
presented, which get over the standard setpoint-tracking formulation. The goal of this
work is to provide, by means of application to a highly nonlinear plant, a comparison
of different strategies, focusing mainly on economic optimality, computational burden,
and economic performance.
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1. INTRODUCTION

The main goal of advanced control strategies
is to operate the plants as close as possible to
an economically optimal operation point, while
ensuring stability. In the process industries, this
objective is achieved by means of a hierarchical
control structure (Qin and Badgwell, 2003): at
the top of this structure, an economic scheduler
and planner decides what, when and how much
the plant has to produce, taking into account
information from the market and from the plant.
The output of this layer are production goals,
prices, economic cost functions and constraints
which are sent to a Real Time Optimizer (RTO).
The RTO is a model-based system, operated in
closed loop. It implements the economic decision
in real time, performing a static optimization,
and providing setpoints to the advanced control
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level. It employs a stationary complex model of
the plant and for this reason it works on a time-
scale of hours or day. The setpoints calculated
by the RTO are sent to the advanced control
level, where an advanced control strategy - usually
model predictive control (MPC) (Mayne et al.,
2000; Rawlings and Mayne, 2009) - calculates the
optimal control action to be injcted to the plant,
in order to regulate it as close as possible to the
setpoint, taking into account a dynamic model of
the plant, constraints, and stability requirements.

Generally, the MPC controllers are designed
as setpoint-tracking controllers: the goal of the
usually quadratic cost function is to drive the
system as fast as possible to the desired economic
setpoint. Moreover, the model used for prediction
is generally a linear model: hence, the economic
setpoint calculated by RTO may be inconsistent
or unreachable for the dynamic layer (Kadam and
Marquardt, 2007). A way to avoid this problem
is to add a new optimization level in between
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of RTO and MPC, referred as the steady state
target optimizer (SSTO). The SSTO calculates
an admissible steady state for the linear system,
solving a linear or quadratic programming and
taking into account information from the RTO
(Muske, 1997; Marchetti et al., 2014). In (Limon
et al., 2008; Ferramosca et al., 2009, 2011) an
MPC that integrates the SSTO into the same
MPC layer, is presented. This controller ensures
that under any change of the economic setpoint,
the closed-loop system maintains the feasibility of
the controller and ensures local optimality. Similar
strategies are also presented in (Gonzalez and
Odloak, 2009).

Recently, with the aim to add economics into
the own MPC control layer, one-layer MPC
controllers have been proposed. These controllers
integrate the RTO economic cost function as
a stationary extra cost to be added to the
dynamic setpoint-tracking cost function (Zanin et
al., 2002). This converts the economic objective
into a process control objective, but on the other
hand adds notable complexity to the optimization
problem to be solved, due to the high nonlinearity
of the economic cost function. Recently, a new
one-layer MPC has been presented (Alamo et al.,
2014), which by means of a suboptimal algorithm
and the use of the gradient of the economic cost,
makes the MPC optimization problem solvable
with just a QP, thus reducing considerably the
computational complexity.

The above mentioned controllers are designed
to ensure asymptotic tracking of the economic
setpoint, without taking into account the issue
of transient economic costs (Angeli et al., 2012).
This way to operate is practically optimal when
the setpoint does not change with respect to
the dynamic of the system. However, in some
industrial applications, the economic cost in the
transient is more significant than the cost at the
steady state. This happens when the economic
criterion is subject to frequent changes. Hence,
it becomes very important to optimize the cost
of the entire trajectory, not only at the steady
state. All the above motivated in the last years
the interest in Economic MPC, which considers
the nonlinear economic cost of the RTO, as the
stage cost for the dynamic regulation problem
(Rawlings et al., 2012; Diehl et al., 2011; Amrit,
2011; Ferramosca et al., 2010, 2014).

The aim of this work is to compare different
approaches to economic optimality in model
predictive control, focusing in particular on the
fulfillment of economic objectives, in the station-
ary as well as in the transient regime, and on
the computation requiered to solved the MPC
problem. This comparison is done by applying
these controllers to a nonlinear simulator of a
polymerization reactor.

2. PROBLEM STATEMENT

Consider a system described by a discrete-time
linear time-invariant model

x+ =Ax+Bu (1)

y=Cx (2)

where x ∈ IRn is the system state, u ∈ IRm

is the current control vector, x+ is the successor
state, y ∈ IRp are the system output. The solution
of this system for a given sequence of control
inputs u and initial state x is denoted as x(j) =
φ(j;x,u), j ∈ I≥0, where x = φ(0;x,u). The state
of the system and the control input applied at
sampling time k are denoted as x(k) and u(k)
respectively.

The system is subject to hard constraints on state
and input:

x(k) ∈ X, u(k) ∈ U (3)

for all k ≥ 0, where X ⊂ R
n and U ⊂ R

m are
compact sets.

It is assumed that the following assumption holds.

Assumption 1. The pair (A,B) is controllable and
the state is measured at each sampling time.

The steady state and input of the plant (xs, us)
are such that (1) is fulfilled, i.e. xs = Axs +Bus.

We define the set of admissible equilibrium states
as

Zs={(x, u) ∈ δ(X × U) | x = Ax+Bu} (4)

Xs={x ∈ X | ∃u ∈ U such that (x, u) ∈ Zs}(5)

Ys={y = Cx | x ∈ Xs} (6)

where δ ∈ (0, 1) is a constant arbitrarily close to
1. Notice that Xs is the projection of Zs onto X .

Definition 1. The economic criterion is given by
the function

feco(x, u, p) (7)

where x and u are the state and the input of the
system, and p is a vector of parameters which
takes into account prices, costs, production goals,
etc.

Function (7) represents the economic criterion to
be optimized, and it may change according to
the market, the plant scheduling, or the data
reconciliation tasks.

The optimal operation point that stabilizes the
plant, is the steady state provided by the RTO,
and is defined as:
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Definition 2. The optimal steady state, input and
output, (xs, us, ys), satisfy

(xs, us, ys) = arg min
x,u,y

feco(x, u, p) (8)

s.t. x = Ax+Bu, y = Cx,

x ∈ X, u ∈ U

and is assumed to be unique.

Remark 1. Notice that the optimal setpoint de-
pends on the value of p, that is (xs(p), us(p), ys(p)).
However, for the sake of clarity, in the rest of the
paper we will use the notation (xs, us, ys).

Remark 2. Notice that here it is considered a
simplified version of the RTO problem. In general,
this kind of problems may also consider other
objectives (not just the economic one), like
nonlinear engineering constraints which cannot
be normally included in the linear constraints
x ∈ X, u ∈ U .

Next, the four representative MPC formulations
considered for the study of the optimality proper-
ties are introduced.

2.1 MPC for tracking: MPCT

In the MPC for tracking the cost function is
designed as a measure of the distance of the
predicted trajectory to the economic setpoint ys.
In particular the formulation that we consider
here (Limon et al., 2008; Ferramosca et al., 2009,
2011) guarantees recursive feasibility for any ys
and, if possible, convergence of the system output
to the setpoint.

The cost function of the proposed MPC is given
by:

V t
N (x, ys;u)=

N−1
∑

j=0

‖x(j)−x(N−1)‖2Q+‖u(j)−u(N−1)‖2R

+VO(y(N−1), ys) (9)

where x(j) = φ(j;x,u), Q > 0 and R > 0.
Function VO : Rp → R is the so-called offset cost
function and is defined as:

Definition 3. VO(y, ys) is a positive definite con-
vex function such that the unique minimizer of
min
y∈Ys

VO(y, ys) is ys.

This additional cost is necessary in order to
guarantee convergence to (xs, us, ys).

The controller is derived from the solution of the
optimization problem PN (x, ys) given by:

min
u

V t
N (x, ys;u) (10a)

s.t.

x(0) = x, (10b)

x(j + 1) = Ax(j) +Bu(j), I0:N−1(10c)

y(j) = Cx(j), I0:N−1 (10d)

x(j) ∈ X, u(j) ∈ U I0:N−1 (10e)

x(N) = x(N − 1) (10f)

Remark 3. Notice that constraints (10f) defines
an admissible equilibrium point, such that x(N) =
x(N−1) = Ax(N−1)+Bu(N−1) ∈ Xs, the pair
(x(N − 1), u(N − 1)) ∈ Zs, and y(N) ∈ Ys.

Remark 4. Since the set of constraints (10b)-(10f)
does not depend on ys, the feasible region of
PN (x, ys) does not depend on ys either. Then
there exists a region XN such that for all x ∈ XN

and for all ys ∈ Ys, PN (x, ys) is feasible. XN can
be read as the set of states that can reach some
target ys ∈ Ys in N steps.

A detailed stability proof for this controller can
be found in (Limon et al., 2008; Ferramosca et
al., 2009).

2.2 The one-layer MPC: RTO+MPC

This controller integrate the RTO economic cost
function as a stationary extra cost to be added
to the dynamic setpoint-tracking cost function
(Zanin et al., 2002). The cost function reads:

V r
N (x, p;u)=

N−1
∑

j=0

‖x(j)−x(N−1)‖2Q+‖u(j)−u(N−1)‖2R

+feco(x(N−1), u(N−1), p) (11)

The control law is derived from the solution of
the optimization problem P r

N (x, p) given by:

min
u

V r
N (x, p;u) (12a)

s.t. (10b)− (10f)

Notice that neither the cost function nor the
optimization problem depends on the economic
setpoint ys. It is the own MPC controller that will
determine this point by driving the system to the
minimizer of the economic cost function feco.

2.3 Gradient based MPC: subRTO+MPC

The controller presented in (Alamo et al., 2014)
is a low-cost formulation of the previous one.
Instead of the nonlinear cost feco, the gradient of
this function is added as extra cost to the MPC
controller. Moreover, instead of injecting to the
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plant the optimal solution of the approximated
problem, a solution that is the convex combi-
nation of a previously known feasible solution
and the approximated one, is computed. This
way, a suboptimal MPC strategy is obtained,
which however ensures recursive feasibility and
convergence to the optimal steady state in the
economic sense, with a reduced computational
cost.

The cost function to be minimized reads:

V s
N (x, û, p;u)=

N−1
∑

j=0

‖x(j)−x(N−1)‖2Q+‖u(j)−u(N−1)‖2R (13)

+∇feco(x̂(N−1),û(N−1),p)

[

x(N−1)−x̂(N−1)
u(N−1)−û(N−1)

]

where (û, x̂(N − 1), û(N − 1)) at time k is a
previously known feasible solution, obtained using
the shifted solution applied to the system at the
sample time k − 1.

The control law at time k is derived from u(k) =
λu∗ + (1 − λ)û, λ ∈ (0, 1), which is a convex
combination of û with u∗, being the last one the
solution of the optimization problem P s

N (x, p):

min
u

V s
N (x, û, p;u) (14a)

s.t. (10b)− (10f)

A detailed stability proof for this controller can
be found in (Alamo et al., 2014).

2.4 Economic MPC - EMPCT

The economic MPC considers the economic cost
function as the dynamic stage cost of the MPC
controller (Rawlings et al., 2012; Ferramosca et
al., 2014). The cost function reads:

V e
N(x,ys,p;u)=

N−1
∑

j=0

feco(x(j)−x(N−1)+xs ,u(j)−u(N−1)+us ,p)

+VO(y(N−1), ys) (15)

The control law is derived from the solution of the
optimization problem P e

N (x, ys, p) given by:

min
u

V e
N (x, ys, p;u) (16a)

s.t. (10b)− (10f)

Function VO(y(N−1), ys) is the same as in (9).
Notice also that in this formulation, as in the
MPCT one, we need to know the value of the
economic setpoint (xs, us, ys), which means that
we need to solve the RTO problem (8) prior to
the MPC problem. A detailed stability proof for
this controller can be found in (Ferramosca et al.,
2014).

Fig. 1. Process diagram for the styrene polymerization
reactor.

3. POLYMERIZATION REACTOR - CSTR

The four controllers have been compared in a
simulation test on a nonlinear polymerization
reactor system. The polymerization reactor is usu-
ally the heart of the polymer production process
and its operation may be difficult as it involves
exothermic reactions, unknown reaction kinetics
and high viscosity (Alvarez and Odloak, 2012).
Most styrene polymers are produced through
batch or continuous polymerization processes.
The present work considers the free-radical bulk
and solution styrene polymerization in a jacketed
CSTR. As shown in Fig. 1, the CSTR has three
feed streams: the pure styrene monomer, the 2,2’-
azoisobutyronitrile (AIBN) initiator dissolved in
benzene, and the pure benzene solvent. The exit
stream contains polymer, un-reacted monomer,
initiator, and solvent. The kinetic mechanism
used for this homopolymerization process is very
general and can be described by the following
steps (Jaisinghani and Ray, 1977):

I
fi,kd
−→ 2R (initiator decomposition)

M +R
ki−→Pi (chain initiation)

Pn +M
kp

−→Pn+1 (propagation)

Pn + Pm
ktd−→Tn + Tm (termination by dispropor-

tionation)

Pn + Pm
ktc−→Tn+m (termination by combination)

The two initiation reactions involve the decom-
position of initiator I to produce radicals R, which
react with the monomer molecules M to initiate
new live (radical) polymer chains P1. During
the propagation step, monomer molecules M are
added, one at a time, to the live-polymer chains
Pn(n ≥ 1). The growth of the chains terminates
when the propagating radicals lose their activity
through any termination reaction, resulting in
dead-polymer chains, Tn(n ≥ 1).

The nonlinear model that represent the dynamic
of the reactor is defined by the following equations
(Maner et al., 1996):
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d [I]

dt
=

(

Qi

[

If
]

−Qt [I]
)

V
− kd [I] (17)

d [M ]

dt
=

(

Qm

[

Mf

]

−Qt [M ]
)

V
− kp [M ] [P ] (18)

dT

dt
=

Qt

(

Tf − T
)

V
+

(−∆Hr)

ρCp

kp [M ] [P ] (19)

−
hA

ρCpV
(T − Tc) (20)

dTc

dt
=

Qc

(

Tcf − Tc

)

Vc

+
hA

ρcCpcVc

(T − Tc) (21)

where

[P ] =

[

2fikd [I]

kt

]0.5

(22)

kj =Aj exp

(

−Ej

T

)

, j = d, p, t (23)

Qt =Qi +Qs +Qm (24)

The definition of the parameters and variables
involved in the equations above can be found
in (Alvarez and Odloak, 2012, Table 1 and 2).
The moment equations for the dead polymer are
written as follows:

dD0

dt
= 0.5kt[P ]2 −

QtD0

V
(25)

dD1

dt
= Mmkp [M ] [P ]−

QtD1

V
(26)

dD2

dt
= 5Mmkp [M ] [P ]+3Mm

kp
2

kt
[M ]2−

Q

V
D2 (27)

D0, D1 and D2 represent the zero, the first and
the second order moment of the dead polymer,
respectively.

The weight-average molecular weight is obtained
as:

M̄w = Mm
D2

D1

(28)

For online control, viscosity is commonly mea-
sured as a substitute for the average molecular
weights. The following correlation is used to
simulate the measurement of the viscosity (Gazi
et al., 1996):

η = 0.0012Mw
0.71 (29)

4. APPLICATION TO THE CSTR

4.1 Linear Model for predictions

Here, the polymer intrinsic viscosity η and the
reactor temperature T are defined as the con-
trolled outputs. For controlling y1 = η and
y2 = T , the controller manipulates the initiator
flow-rate (u1 = Qi) and the liquid flow rate
of the cooling jacket (u2 = Qc) because of the
adequate sensitivity of the process outputs to
these variables. The remaining inlet flow-rates Qs

and Qm are related to Qi by ratio control. So
as to improve the performance of the controller,

the ratio between the initiator flow rate Qi and
monomer flow rate Qm is maintained fixed, then:

Qm =
Q̄m

Q̄i

Qi (30)

where Q̄m and Q̄i are the nominal values of
Qm and Qi, respectively. On the other hand, the
solvent volume fraction should be maintained at
0.6 to avoid the gel effect (Hidalgo and Brosilow,
1990), then a control law for the solvent flow rate
is implemented as:

Qs = 1.5Qm −Qi (31)

To test the proposed controller a linear model of
the styrene reactor is required. This model was
obtained by subspace identification techniques.
The linearization point were the simulations will
start is given by: uss = (0.030; 0.131) and yss =
(3.8968; 323.56). The PRBS signal used to excite
the system has an amplitude of 0.1uss. The
identified linear model is:

A =

[

0.9788 0.0292 0.0010
−0.0006 0.9375 0.0011
0.0124 −0.0327 0.9569

]

, (32)

B =

[

10.2205 −1.2333
−6.6059 −1.3983
−7.1717 0.2481

]

, (33)

C =

[

−0.0757 0.0447 −0.1073
0.6023 −0.2749 −0.0256

]

(34)

The control scheme is been equipped with a state
observer and disturbance estimator of the form:

x̂+ =Ax̂+Bu+ Lx(Cx̂+ d̂− yp) (35)

d̂+ = d̂+ Ld(Cx̂+ d̂− yp) (36)

where (Lx, Ld) are the gain of the state observer
and the disturbance estimator respectively, and yp
is the output from the plant.

4.2 Economic function and constraints

Following (Alvarez and Odloak, 2012), in the RTO
problem, the maximization of the production rate
plus a separation cost (assumed to be directly
proportional to the flow rate of the cooling jacket)
is considered as the economic objective. The
production rate is defined as the product of the
total flowrate Qt and the first order moment D1.
This product represents the total weight of dead
polymer produced per time unit. The economic
cost function is given by

feco = QtD1 + (p(1)QcT − p(2)Qc) (37)

where p = (p(1), p(2)) are prices. The RTO
optimization problem reads:
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max
y,u

feco(x, u, p)

s.t.

x = f(x, u),
y = h(x, u),
y ∈ Y, u ∈ U

(38)

where Y = {y | [3; 310]
′
≤ y ≤ [5.5; 331]

′
} and

U = {y | [0.01; 0.08]
′
≤ y ≤ [0.07; 0.25]

′
}.

For the linear MPC control problems,the state
constraints are given by X = {x | ‖x‖∞ ≤ 20}.

The simulations start at the nominal operating
point (uss, yss). Three changes of prices have been
considered: p1 = (1; 1), p2 = (1.5; 1) and p3 =
(0.1; 5).

4.3 Economic optimality

Figures 2, 3 and 4 show the results of the
application of the four considered controllers to
the nonlinear CSTR.

The first thing that we notice is how all the
controllers drive the system to the economically
optimal setpoint, guaranteed feasibility and en-
suring stability.
As we expected, the main difference between the
four evolutions is in the way they drive the system
to the economic optimum.

It can be noticed in particular, that the EMPCT
(solid black line), has a transient response very
different from the other three controllers. This
is because it optimizes the economics in the
dynamic part of the MPC cost function, hence
the evolution of the system under the EMPCT
controller is also optimal in the transient. The
other three controllers only consider economics
in the stationary term of the cost function. This
property of the EMPCT is of great interest,
above all in those cases of frequent changes in
the economics objective, or in case of cyclic
economically optimal behaviours.

Another interesting aspects that we can notice is
that the subRTO+MPC speeds up the conver-
gence to the economic setpoint: this is due to the
knowledge of the gradient of the economic cost
function, which allows to drive the stationary part
of the cost faster to the economic setpoint.

The MPCT, in the second change of the economic
cost, is not able to drive the system to the eco-
nomically optimal point. This fact is particularly
clear in Figure 4. This is due to the fact that the
MPCT, in its stationary part of the cost (the offset
cost function), only tries to minimize the distance
to the setpoint, without taking into account any
other information, such as an economic cost.
Notice how, as a consequence, the value of feco
when the nonlinear system is controlled by the
MPCT, is clearly not the optimal one.
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Fig. 2. Time evolution of the economics: black solid line the
EMPCT, in green dash-dotted line the suboptimal
RTO+MPC, in blue dashed line the RTO+MPC, and
red dotted line the MPCT.
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Fig. 3. Time evolution of the outputs: black solid line the
EMPCT, in green dash-dotted line the suboptimal
RTO+MPC, in blue dashed line the RTO+MPC, and
red dotted line the MPCT.
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Fig. 4. Time evolution of the inputs: black solid line the
EMPCT, in green dash-dotted line the suboptimal
RTO+MPC, in blue dashed line the RTO+MPC, and
red dotted line the MPCT.

4.4 Computational burden

Table 1 presents the execution times of a single
MPC iteration, for the four considered con-
trollers. The MPCT is clearly the faster algorithm
since it needs to solve just a QP problem.
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Tabla 1. Execution time (in seconds)

Algo. Max Min Average

MPCT QP 0.4591 0.0096 0.0230

RTOMPC SQP 0.6880 0.0182 0.0807

sub-RTOMPC QP 0.6114 0.0065 0.0096

EMPCT SQP 0.9382 0.0257 0.1393

The subRTO+MPC is also very fast in the QP
solution; it’s average execution time, is even lower
than the MPCT one. However, it has to be
underlined that here we are only considering the
optimization solution time. If we also consider the
calculation of the gradient, the subRTO+MPC
algorithm execution time ends up to be higher.
This issue however might be solved by providing
an approximated gradient (such as BFGS or
simular) to the controller.

The solution of the EMPC problem is clearly the
one that needs more computational time, due to
the high nonlinearity of the cost function.

5. CONCLUSIONS

In this work, economics in MPC have been
studied. In particular, the economic performance
of four different economic approaches have been
compared.

The results have shown how each of the considered
approaches is capable to ensure convergence, fea-
sibility and stability, always fulfilling constraints.
The main differences between these approaches
are in the economic performance. Each of them
has a different behaviour, due to its particular
formulation. While setpoint tracking controllers
speed up convergence to the setpoint, Economic
MPC also provide economically optimal transient
trajectories.
The computational burden is of course also
strictly connected with the proper formulation of
each controller, with RTO+MPC and EMPCT
being the most computational expensive, due to
the nonlinearities in their formulations. As for
implementation, it should be noticed that either
the MPCT and the EMPCT needs to know the
economic setpoint (see (9) and (15)), hence an a
priori RTO problem is needed to be solved. On
the other hand, RTO+MPC and subRTO+MPC
are able to drive the system to the economically
optimal setpoint by themselves.

It is clear from this study that, when it comes
to economics, MPCT is the less interesting con-
troller. EMPCT ensures economic optimality, in
particular in the transient fase. RTO+MPC and
subRTO+MPC are able to ensure stationary
economics optimality, but above all they make the
presence of an RTO layer unnecessary.
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