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Resumen: The main problem of a closed-loop re-identification procedure is that, in
general, the dynamic control and identification objectives are conflicting. In fact, to
perform a suitable identification, a persistent excitation of the system is needed, while
the control objective is to stabilize the system at a given equilibrium point. However,
an abstraction or generalization of the concept of stability, from punctual stability
to (invariant) set stability, allows a flexibility that can be used to avoid the conflict
between these objectives. Taking into account that an invariant target set includes not
only a stationary component, but also a transient one, the system could be excited
without deteriorating the stability of the closed-loop. In this work, a MPC controller
is proposed that assures the stability of invariant sets at the same time that a signal
suitable for closed-loop re-identification is generated. Several simulation results show
the propose controller formulation properties.

Palabras Claves: Model predictive control, closed-loop identification, target set
control, persistent excitation.

1. INTRODUCTION

Model predictive control (MPC) is typically im-
plemented as a lower stage of a hierarchical control
structure. The upper level stages are devoted
to compute, by means of a stationary optimiza-
tion, the targets that the dynamic control stage
(MPC) should reach to economically optimize
the operation of the process. Since both, the
dynamic and stationary optimizations are model
based optimizations, a periodic updating of the
model parameters are desired to reach meaningful
optimums. In this context, a re-identification
procedure should be developed in a closed-loop
fashion, since the process cannot be stopped each
time an update is needed. As it is known, the main
problem of a closed-loop identification is that the
dynamic control objectives are incompatible with
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the identification objectives. In fact, to perform
a suitable identification, a persistent excitation of
the system modes is needed, while the controller
takes this excitation as disturbance that it tries to
reject from the output to stabilize the system.

From a general point of view, the closed-loop
identification methods fall into the following
main groups (Soderstrom and Stoica (1989)). The
direct approach ignores the feedback law and iden-
tifies the open-loop system using measurements of
the input and the output. The indirect approach
identifies the closed-loop transfer function and
determines the open-loop parameters subtracting
the controller dynamic. To do that, controller
dynamic must be linear and known. The joint
input-output approach takes the input and output
jointly, as the output of a system produced by
some extra input or set-point signal. Since the last
two methods needs the exact knowledge of a linear
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controller, they are not directly applicable for
closed-loops under constrained MPC controllers.

Several strategies were developed to perform
closed-loop re-identification under MPC controllers:
Genceli and Nikolaou (1996) proposed a controller
named Model Predictive Control and Identi-
fication (MPCI) where a persistent excitation
condition is added by means of an additional
constraints in the optimization problem. This
strategy, which was explored later in (Ballin
(2008)), turns the MPC optimization problem
non-convex, and so, most the well-known prop-
erties of the MPC formulation cannot be es-
tablished. Sotomayor et al. (2009) proposed a
strategy that manipulates the steady state target
optimization (in the hierarchical MPC control
structure) in order to excite the system. This
strategy does not modify the MPC optimiza-
tion problem structure, but the identification
is performed on the whole closed-loop system.
As a result, the controller dynamic should be
linear and perfectly known, to make a clear
distinction between the controller and the open-
loop system. Bustos et al. (2011) proposed a
simpler closed-loop identification strategy to es-
timate multivariable process gains directly from
on line data. The control structure adopted
to test the proposed strategy is an LP-MPC
control structure frequently used in industrial
applications. In the context of data driven MPC
formulations (i.e., MPC that are designed to
perform predictions directly from collected data),
the subspace identification method is exclusively
used (Overschee and Moor (1996)). In Kadali et
al. (2003), Wahab et al. (2010) and Mardi (2010)
several approaches were presented, where a closed-
loop re-identification is needed to update the
data for predictions. Though preliminary studies
were made according to the trade-off between
stability and excitation, no definitive results were
presented.

In general, none of the reports cited in this section
have shown results regarding the system stability
of the MPC while the system is re-identifying. In
this work, based on the concept of stability of an
invariant set (as a generalization of stability of a
point), a MPC controller with a extended domain
of attraction is proposed, which assures stability
at the same time that a persistent excitation
can be generated to perform a closed-loop re-
identification.

Notation: Matrix In ∈ Rn×n denotes the identity
matrix, and matrix 0n,m ∈ Rn×m denotes the null
matrix. Given a matrix M ∈ Rm×n, R(M) =
{x ∈ Rm : x = Mα, α ∈ Rn} and Ker(M) =
{x ∈ Rn : Mx = 01,m} are the range (column
space) and the kernel (null space) of matrix M ,
respectively. Consider a convex set X ⊆ Rn. Then

dM (z,X )
∆
= infx∈X ‖z−x‖2M , with M > 0, denotes

the distance from an element z to the set X .
Consider two sets U ⊆ Rn and V ⊆ Rn, containing
the origin, and a real number λ. The Minkowski
sum U ⊕ V ⊆ Rn is defined by U ⊕ V = {(u +
v) : u ∈ U , v ∈ V}; the set (U\V) ⊆ Rn is
defined by U\V = {u : u ∈ U ∧ u /∈ V}; and the
set λU = {λu : u ∈ U} is a scaled set of U .

2. PROBLEM STATEMENT

Consider a system described by a linear time-
invariant discrete time model

x+ =Ax+Bu (1)

y =Cx

where x ∈ IRn is the system state, x+ is the
successor state, u ∈ IRm is the current control
and y ∈ IRp is the system output. The solution of
this system for a given sequence of control inputs
u = {u(0), · · · , u(j − 1)} and an initial state x
is denoted as x(j) = φ(j;x,u), j ∈ I≥1, where
x = φ(0;x,u). The state, the control input and
the output at sampling time k are denoted as x(k)
and u(k) respectively.

The system is subject to hard constraints on state
and input:

x(k) ∈ X, u(k) ∈ U (2)

for all k ≥ 0, where X ⊂ Rn and U ⊂ Rm.

It is assumed that the following assumption holds.

Assumption 1. Matrix A is stable, the pair (A,B)
is controllable and the state is measured at each
sampling time.

Assumption 2. The set X is convex and closed, U
is convex and compact and both sets contain the
origin in their interior.

2.1 Steady state characterization

If we consider the joint variable (x, u), the state
and input equilibrium subspace, associated to
model (1), is given by

Vss = Ker([(A− I) B]) ⊆ Rn+m,

where Ker is the null space operator.

We define now the set of admissible stationary
states as Xss = {x ∈ X | (x, u) ∈ Wss}, which is
the projection of Wss on the state space.
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2.2 Invariance generalization

In the definitions above, the concept of steady
state points, and the concept of equilibrium
subspace or set - as the mere aggregation of
steady state points - were presented. However,
the generalization of the concept of equilibrium
point is not the concept of equilibrium set,
but the concept of invariant set (associated to
an equilibrium point), in the sense that both,
the equilibrium point and the invariant set are
geometric entities such that, if the system reaches
them, it remains in them indefinitely. This fact
suggests the idea of using the dynamic degree of
freedom that the generalized equilibriums (i.e.,
the invariant sets) allows for to excite the system
with the objective of identification. It should be
noted that in this way, some kind of stability,
i.e., the stability to a (possibly robust) invariant
set, instead of the stability to an equilibrium
point could be assured, avoiding the conflicting
objectives of exciting and stabilizing a system.

Now we will present the following definitions
(Blanchini and Miani (2008), Kerrigan (2000)):

Definition 1. (Equilibrium set) A set Ω is an
equilibrium set for the autonomous system x+ =
Ax if for every point x ∈ Ω the condition x = Ax
holds.

It is clear that if A is assumed to be stable, the
only equilibrium point is the origin.

Definition 2. (λ-invariant set) A set Ω is λ-
invariant, with 0 < λ ≤ 1, for the autonomous
system x+ = Ax if x ∈ Ω implies Ax ∈ λΩ.

For the case of λ = 1, we say that the set Ω is
simply an invariant set. From the later definition
it is clear that any equilibrium set is also an
invariant set. Let us consider now a disturbed
system x+ = Ax+Ew, where E is the disturbance
matrix, w ∈ W is the disturbance vector, and W
is a compact convex set that contains the origin.
Then, we can define a robust invariant set as
follows:

Definition 3. (Robust invariant set) A set Ω is
robust invariant for the disturbed system x+ =
Ax+Ew, w ∈W , if x ∈ Ω implies x+ ∈ Ω, for all
w ∈W .

From the definition above, it is clear that a robust
invariant set for the disturbed system x+ = Ax+
Ew is also a invariant set for the nominal system
x+ = Ax (since w = 0 is a possible realization for
the disturbance).

2.3 Convergence generalization

The concept of invariant set, as a generalization of
an equilibrium point, allows us the generalization
of the concept of stability of an equilibrium point.
This generalization is one of the key points of
this work, since based on this concept, an MPC
formulation suitable for persistent excitation will
be presented in the next sections. Let us denote
the solution of the autonomous system x+ =
Ax, associated to an initial state x as φ(i;x) =
Aix, i ∈ I≥0, where x = φ(0;x). Then, we can
define the attractivity of an invariant and robust
invariant set as follows (Rawlings and Mayne
(2009)):

Definition 4. (Local attractivity of an invari-
ant set) The (closed and invariant) set Ω ⊆ X
is locally attractive for the autonomous system
x+ = Ax, x ∈ X, if for each x in a vicinity of Ω
(that we call the domain of attraction), it follows
that dM (φ(j;x),Ω) → 0, φ(j;x) ∈ X, for j → ∞
and for some M > 0.

This definition could be easily extended to the
case of robust invariant set, if we consider a
bounded disturbance vector w ∈W .

2.4 Target invariant set for identification

In this subsection some target sets will be
defined with the objective of proposing an MPC
formulation suitable for re-identification. Let us
consider first a state objective box-type set, Xpe,
with a volume large enough to allows for an
appropriate persistent excitation for identifica-
tion. Furthermore, this set should be such that
the variability of the system inside its volume is
safe for the whole process. Now, let Xt be the
largest robust invariant set inside Xpe for the
disturbed system x+ = Ax+Bw, with a bounded
disturbance variable w ∈ W ⊂ U . Furthermore,
because of the structure of system (1), Xt will

contain the set Xt
ss

∆
= (In − A)−1BW , which

is the set of stationary points that the system
will reach if a fixed disturbance signal w ∈ W
is continuously applied to the system (notice that
such a constant signal is a possible realization for
the disturbance). The output target set could be
defined as

Y t ∆
= CXt.

3. MPC FOR TRACKING EQUILIBRIUM
SETS

In this section an MPC controller for tracking
the equilibrium sets Xt

ss (i.e., an aggregation of
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equilibrium points) is presented. This controller is
formulated following a similar strategy to the one
presented in Ferramosca et al. (2010); Gonzalez
and Odloak (2009). The controller cost function
is given by:

V ES
N (x,Xt

ss; u) =

∞∑
j=0

dQ(xj , xss)

+ dR(uj , uss) + dS(xss, X
t
ss)

where Q > 0, R ≥ 0 and S > 0 are penalization
matrices and N is the control horizon. For any
current state x ∈ X, the optimization problem
PES
N (x,Xt

ss) to be solved is given by:

Problem PES
N (x,Xt

ss)

min
u

V ES
N (x; u)

s.t.
x0 = x,
xj+1 = Axj +Buj , j ∈ I0:N−1

xj ∈ X, uj ∈ U, j ∈ I0:N−1

uj = uss, j ∈ IN :∞
xss = (In −A)−1Buss .

In this optimization problem, x and Xt
ss are the

parameter, while the sequence

u = {u(0), · · · , u(N − 1)}

is the optimization variable. The control law,
derived from the application of a receding horizon
policy, is given by κN (x,Xt

ss) = u0(0;x), where
u0(0;x) is the first element of the solution
sequence u0(x).

Remark 1. The domain of attraction of the con-
troller derived from the iterative application
of Problem PES

N (x) is given by the maximal
invariant set contained in X.

Following similar procedures that the one shown
in Ferramosca et al. (2010); ?); Gonzalez and
Odloak (2009), it can be shown that the closed-
loop system converges asymptotically to zero.

4. MPC FOR TRACKING INVARIANT SETS

Now, a generalization of the MPC controller for
tracking equilibrium points will be presented. To
this end, we will consider the robust invariant
set Xt ⊃ Xt

ss presented in subsection 2.4. The
controller cost function is given by:

V IS
N (x,Xt; u) =

∞∑
j=0

dQ(xj , X
t) + dR(uj ,W ).

For any current state x ∈ X than can be
feasibly steered to Xt in N steps, the optimization

problem P IS
N (x,Xt) to be solved is given by:

Problem P IS
N (x,Xt)

min
u

V IS
N (x,Xt; u)

s.t.
x0 = x,
xj+1 = Axj +Buj , j ∈ I0:N−1

xj ∈ X, uj ∈ U, j ∈ I0:N−1

uN−1 ∈W ⊂ U
x(N) ∈ Xt

As it can be seen, the main difference between
this problem and problem PES

N (x,Xt
ss) is that the

target set is a (robust) invariant set, instead of
an equilibrium set. The controller derived form
this formulation also assures the convergence of
the closed-loop system to the robust invariant. In
fact, the controller only steers the system to the
invariant set Xt, and then, once the state is there,
nothing can be said about the system evolution.

To see this fact clearly, let us consider the
MPC cost function for a state in Xt. First, it
should be noted that from its definition, the cost
V IS
N (x,Xt; u) will be zero along every trajectory

starting in a initial state inside Xt, because it
penalizes the distance from the trajectory to the
invariant set, and using a control sequence u
inside W is a feasible solution. Furthermore, by
the definition of the invariant set, the system
x+ = Ax + Bu, u ∈ W , will maintain any state
inside Xt, following feasible trajectories that do
not leave Xt. From this fact the control action
obtained from the optimization will not take any
given value, and so, the system keep, in some
sense, in open-loop operation.

Remark 2. It can be shown, following similar
procedures as in González et al. (2011), that
Xt is a contractive invariant set, for the closed-
loop system obtained with the MPC controller
derived from the formulation above. Furthermore,
recursive feasibility can also be assured, for every
initial state that can be steered to Xt in N steps.

5. INCLUDING THE EXCITING MODE

Form the discussion in the last section, we see that
inside the robust invariant set Xt the proposed
MPC controller actually left the system in open
loop. This fact suggests the idea of using this
condition, i.e., when the system is in Xt, to excite
the system and perform a re-identification. As it
is known, to be able to estimate a model from
measured input and output data, the input signal
should contain enough information. This property
is generally indicated by the notion of persistency
of excitation (Ljung (1999)).

Now we can define a persistent excitation signal,
uPE , contained in W , to perform a suitable



AADECA 2012 - Semana del Control Automático - 23o Congreso Argentino de Control Automático
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identification. The persistent excitation input
might be of several form, going from a Pseudo-
random Binary Signal (PRBS) signal to a Filtered
Gaussian White Noise Signal (Ljung (1999)). The
proposed persistent excitation MPC formulation
is as follows:

V EXC
N (x,Xt,uPE , k; u) =

∞∑
j=0

{
dQ(xj , X

t)

+ dR(uj ,W )}+ ρ(x)‖u0 − uPE,k‖

where

uPE = {uPE(0), · · · , uPE(Tid)} ∈W,
is the persistent excitation signal, Tid is the
length of the data necessary to perform a suitable
identification, and ρ(x) is the following function:

ρ(x) = 1 if x ∈ Xt

= 0 otherwise.

For any current state x ∈ X, than can be
feasibly steered to Xt in N steps, the optimization
problem PEXC

N (x,Xt,uPE , k), to be solved at
each time instant k, is given by:

Problem PEXC
N (x,Xt,uPE , k)

min
u

V EXC
N (x,Xt,uPE , k; u)

s.t.
x0 = x,
xj+1 = Axj +Buj , j ∈ I0:N−1

xj ∈ X, uj ∈ U, j ∈ I0:N−1

uN−1 ∈W ⊂ U
x(N) ∈ Xt

Notice that the function ρ(x) is a discontinuous
function necessary to zero the persistent excita-
tion in case that an external disturbance takes
the system away from the robust invariant set Xt.
Notice also, that the input increment penalization
is not included in this formulation, since this cost
term would disturb the excitation procedure.

Remark 3. It can be said that the MPC control
formulation presented above has two main modes:
if the state is inside Xt, only the excitation
objective is present in the cost; if the system is in
X\Xt, then only the dynamic control objective is
present in the cost. Shortly, it can be said that
the MPC formulation presented above does not
deal with the two objectives of controlling and
identifying simultaneously.

Remark 4. As in the controller for tracking in-
variant sets, Xt is an attractive invariant set
for the closed-loop system obtained with the
MPC controller derived from the iterative solution
of PEXC

N (x,Xt,uPE , k). Furthermore, recursive
feasibility can also be assure, for every initial state
that can be steered to Xt in N steps.

Remark 5. Because of the definition of the target
robust invariant set Xt the persistent excitation
signal uPE cannot take the state outside the set.
Furthermore, since inside Xt the dynamic MPC
cost is null, the persistent excitation cost can also
be zeroed, which means that the input increment
can be equal to uPE . This fact guarantees that the
persistent excitation of the system will be made.

Remark 6. Notice that once the system is inside
Xt, if an external disturbance moves the state
outside Xt, then the MPC controller suspends
the excitation procedure to act as the MPC for
tracking invariant sets, ensuring in this way the
automatic switching between the two modes, and
the whole stability of the controller.

6. OPERATION OF THE LOOP

Based on the above discussion, the MPC con-
troller operation will be presented. We have two
Operation modes:

• Control operation mode: in this mode no
re-identification is needed, and the MPC
for tracking equilibrium set is implemented
(Problem PES

N (x,Xsst)). No further com-
ments are needed for this controller, since it
has been extensively analyzed in the litera-
ture (Ferramosca et al. (2010); Gonzalez and
Odloak (2009)).

• Re-identification operation mode: this mode
is activated only when there is a suspect that
the model is not working properly, and a
re-identification is needed. In this mode the
persistent excitation MPC is used (Problem
PEXC
N (x,Xt,uPE , k)).

6.1 Model mismatch

It should be noticed that the target set Xt,
which is a parameter of the MPC optimization
cost, depends on the model. Since the excitation
scenario is precisely given when we suspect
that the current model is no longer accurate, a
comment about the effect of the model mismatch
on the computation of Xt is needed. In fact, if
a difference between the model and plant does
exist, the current state x will be different from the
predicted state x+ corresponding to the precedent
optimization problem, and the invariant condition
of Xt could be no longer true. In this case, a
second robustness condition should be imposed to
Xt (different from the robustness associated to
the input variability). For instance, consider that
model mismatch can be modeled by means of an
additive disturbance,

x+ = Ax+Dd,
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where D is the disturbance matrix, d ∈ Dist is the
disturbance vector that describe model mismatch,
and Dist is a compact convex set. Then, we can
define the target robust invariant set Xt as the
robust invariant set for the disturbed system given
by:

x+ = Ax+

[
B 0
0 D

] [
w
d

]
,

[
w
d

]
∈W ×Dist.

The details of this discussion, however, are not in
the scope of the present work, and will be delayed
for future studies.

7. SIMULATION RESULTS

In this section some simulations results will
be presented, to show the proposed control
strategy properties. To this end, a simple 3-state
integrating-stable system is used:

x+ =Ax+Bu

y =Cx,

where

A=

 0.51 0.24 0.35
−0.20 0.30 −0.20
0.18 −0.20 0.50

 , B =

 0.85
−0.67
0.40


C =

[
−0.54 0.80 0.20
0.30 −1.10 0.70

]
.

The constraints of the system are given by:−30
−30
−30

 ≤ x ≤
 30

30
30

 , − 1.5 ≤ u ≤ 1.5

The persistent excitation input set has been
selected to be W = [−0.8 0.8], while the
persistent excitation signal was selected to be a
Random Gaussian White Noise Signal. Also, a
target robust invariant set, Xt, was computed
according to W . Figure 1 shows the relation
between the feasible state space X and the target
robust invariant set Xt.

The performed simulations were designed to
show the Re-identification operation mode of the
controller. To this end several initial states in
X\Xt was selected. As can be seen in Figure 2,
every (feasible) state is steered to the target set
Xt, and once the system is inside this set, the
exciting procedure is activated. Figure 3 shows
the input increment, outputs and cost function
time evolutions. Notice that there are two clear
modes: first, from time k = 0 to time k = 10,
the system is steered to the target set, with a
decreasing cost function. Then, from time k =
11 on, the cost function remains null, which

Fig. 1. Feasible state set, X, and robust invariant target

set, Xt, for the 3-state system, for W = [−0.8 0.8].

Fig. 2. State evolution corresponding to several initial

states. Notice that the controller steers the system to

Xt, and there, a persistent excitation is implemented.

corresponds to a persistent excitation determined
by the Gaussian signal uPE . The two time periods
have been separated by a dotted-line in Figure
3. Notice also, that the input increment is on its
upper bound in the first time periods, because the
controller tries to do the best for the system to
reach the target. Furthermore, in the excitation
mode, the input remain inside set W , whose
limits are also plotted in solid lines. Next, a
pure persistent excitation scenario is simulated.
An initial state x = [0 0 0]T ∈ Xt has been
selected. The state evolution can be seen in Figure
4, where two plots, with different time scales, are
presented. Finally, the input increment, outputs
and cost function time evolutions corresponding
to the later case is shown in Figure 5. Notice
that the MPC cost function is null throughout
all the simulation, which is consistent with a
pure persistent excitation of the system. This can
be clearly inferred by the input increment and
outputs time evolutions.
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Fig. 3. Input increment, output and cost evolution.

Fig. 4. State evolution corresponding to persistent
excitation.

Fig. 5. Input increment, output and cost evolution.
Notice that the MPC cost is null throughout all the
simulation.

8. CONCLUSIONS

In this work, some preliminary results regarding a
new MPC formulation suitable for closed-loop re-
identification was presented. The main advantages
of the method is that it assures closed-loop
stability and recursive feasibility, together with
a guarantee of persistent excitation. The key
concept to mixture these two opposite objectives
is the concept of stability of a robust invariant
set, inside which the excitation of the system
can be made, without affecting the stability
itself. A preliminary drawback of the method
is that a robust invariant set, which could be
conservative even for reduced exciting sets, needs
to be computed for each target change. Future
research clearly includes the study of the relation
between these two sets (the robust invariant
and the exciting set), in order to obtain a less
conservative formulation.
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