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Resumen: Model predictive control (MPC) is typically implemented as a lower
stage of a hierarchical control structure. The upper level stages - known as Real
Time Optimizer (RTO) - are devoted to compute, by means of a stationary
optimization, the targets that the dynamic control stage (MPC) should reach to
economically optimize the operation of the process. A different alternative consist in
incorporating the economic optimization performed by the RTO stage directly in the
dynamic optimization that solves the MPC stage. In this way, a single stage control
structure could be implemented, avoiding the frequent inconsistencies that shows the
communication between the two stages. In this work a new MPC formulation that
explicitly integrates the RTO structure into the dynamic control layer is presented.
The main properties of the proposed strategy are the simplicity - provided that it
uses a gradient-based approximation for the economic cost, the guarantee of stability
and recursive feasibility and an extended domain of attraction. Several simulations
of a subsystem of a fluid catalytic cracking (FCC) unit were performed to test the
controller.

1. INTRODUCTION

Traditionally, process industries are controlled by
a hierarchical control structure (Engell, 2007):
at the top, an economic scheduler and planner
determines the whole plant production (level,
quality, etc.). The outputs of this layer are
sent to a Real Time Optimizer (RTO), which
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is devoted to compute the stationary targets
according to economic criteria. This optimizer is
usually based on a complex nonlinear stationary
model of the plant and so has a sampling time
different from other layers. Then, the targets
computed by the RTO are sent to the advanced
control level (usually an MPC) which calculates
the control actions necessary for the plant to
reach the targets, taking into account a simplified
dynamic model of the plant and the variable
constraints. One well-known drawback of this
hierarchical control structure is that the commu-
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nication between the economic/stationary and the
dynamic layers may be inconsistent, producing in
this way problems that go from unreachability
of the targets to poor economic performances.
As a result, a proper strategy to unify this
(probably competing) objectives becomes highly
desired from an operating point of view.

In (Zanin et al., 2002) the authors present
the formulation and industrial application of
a combined RTO/MPC controller applied to a
fluidized-bed catalytic cracker, FCC, in which
the RTO economic cost function is part of the
MPC cost function. In (De Souza et al., 2010),
the gradient of the economic objective function
is included in the controller cost function, in
order to obtain a computational low-cost strategy.
This solution allows one to solve the resulting
control/optimization problem as a single QP
problem, and the results are promising from both,
theoretic and practical points of view.

In this work, we resume the idea to use the
gradients of the economic cost to simplify the
one-layer MPC cost, in the context of an MPC
formulation suitable to include additional objec-
tives to the dynamic control one (Limon et al.,
2008; Ferramosca et al., 2009; Gonzalez and Od-
loak, 2009). However, instead of applying to the
system the optimal solution of an approximated
problem, we apply a solution that is the convex
combination of an arbitrary feasible solution
and an approximated solution. In this way, a
suboptimal MPC strategy is obtained, which
ensures recursive feasibility and convergence to
the optimal steady state in the economic sense,
with a reduced computational cost. Furthermore,
the MPC formulation is based on a mode-
decoupled velocity system that derives in a
controller with an extended domain of attraction
(i.e., for open-loop stable systems, the domain of
attraction is the largest the system allows for).

2. PROBLEM STATEMENT

Consider a system described by a linear time-
invariant discrete time model

x+ =Ax+B∆u (1)

where x ∈ IRn is the system state, ∆u ∈
IRm is the current control increment and x+ is
the successor state. The solution of this system
for a given sequence of control inputs ∆u =
{∆u(0), · · · ,∆u(j − 1)} and an initial state x is
denoted as x(j) = ϕ(j;x,∆u), j ∈ I≥1, where
x = ϕ(0;x,∆u). The state of the system and
the control input applied at sampling time k
are denoted as x(k) and ∆u(k) respectively. The
system is subject to hard constraints on state and
input:

x(k) ∈ X, ∆u(k) ∈ ∆U (2)

for all k ≥ 0, where X ⊂ Rn and ∆U ⊂ Rm. It is
assumed that the following assumption holds.

Assumption 1. The pair (A,B) is controllable and
the state is measured at each sampling time.
Furthermore, the set X is convex and closed, ∆U
is convex and compact and both sets contain the
origin in its interior.

2.1 Dynamic system decoupling

It is assumed in this work that matrix A has
nss = m integrating eigenvalues, nun (pure)
unstable eigenvalues and nst stable eigenvalues
(González et al., 2011). Therefore, matrix A in (1)
can be decomposed into its stationary, unstable
and stable modes using the Jordan decomposition:

A=WΛV

=
[
Wss Wun Wst

] Λss 0 0
0 Λun 0
0 0 Λst

 V T
ss

V T
un

V T
st

 ,

where T
∆
= WV = In, and Λ is a block

diagonal matrix (Jordan canonical form), in which
Λss, Λun and Λst are upper triangular matrices.

The columns of the linear maps Tss
∆
= WssV

T
ss ,

Tun
∆
= WunV

T
un and Tst

∆
= WstV

T
st span the

(complementary) stationary, unstable and stable
subspaces or manifolds of the state space, Wss,
Wun and Wst, respectively; and they trivially
satisfy Tss + Tun + Tst = T = In. Since Wss ⊕
Wun ⊕Wst ≡ Rn, every state can be decomposed
as x = xss+xun+xst, where xss = Tssx belongs to
Wss, x

un = Tunx belongs to Wun and xst = Tstx
belongs to Wst. Furthermore, given that Wss ∩
Wun ∩Wst ≡ {0}, if x ∈ Wss then xst = xun = 0,
and so on for the others subspaces. As it is known,
Wss ⊆ Rn, Wun ⊆ Rn and Wst ⊆ Rn are
invariant subspaces of the state space under the
transformation A. Taking into account the model
decomposition presented above, it is assumed that
the original state constraint set is given by the
decoupled set:

X
∆
= Xss ⊕Xun ⊕Xst

where Xss ⊆ Wss (notice that this set includes
the input constraints u ∈ U), Xun ⊆ Wun and
Xst ⊆ Wst are closed convex sets. Furthermore,
Xst is assumed to be a contractive set in Wst.

2.2 Steady state characterization and economic
optimum

If we consider the joint variable (x,∆u), the state
and input equilibrium subspace, associated to
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model (1), is given by

Vss = N ([(A− I) B]) ⊆ Rn+m,

where N is the null space operator. Because of the
velocity form of model (1) it can be shown that
the steady state input set is given by the origin,
∆Uss = {0}. So, the equilibrium subspace can be
defined in Rn, and is given by Wss = N (A− I)

We define now the set of admissible stationary
states as Xss = {x ∈ X | x ∈ Wss, }, which is
a convex set in the equilibrium subspace. Now,
taking into account the economic objectives, let
us consider the following definition:

Definition 1. The optimal steady state, xs, satisfy

xs = argmin
x

feco(x, p)

s.t. x ∈ Xss

where feco(x, p) defines an economic cost function
and p is a parameter that takes into account
prices, costs or production goals. Notice that
system input, u, which usually defines the optimal
operating point, can always be described in terms
of the states, according to model (1).

Assumption 2. The economic cost function feco(x, p)
is convex in x and twice differentiable.

In addition, according to most real cases, it
is assumed that feco(x, p) is nonlinear and its
evaluation takes a significant computation time,
provided that it is based on complex stationary
models of the real plant.

3. THE ONE LAYER ECONOMIC MPC
STRATEGY

In this section, the proposed controller is pre-
sented. The controller cost function is formulated
following (Limon et al., 2008) and is given by:

VN (x, p;∆u) = V dyn
N (x,∆u) + Vss(xss, p)

where V dyn
N (x,∆u) =

N−1∑
j=0

∥xj−xss∥2Q+∥∆uj∥2R+
∞∑

j=N

∥xj − xss∥2Q, Q > 0 and R ≥ 0 are

penalization matrices of appropriate dimension,
and Vss(xss, p) = feco(xss, p). For any current
state x, the optimization problem PN (x, p) to be
solved is given by:

Problem PN (x, p)

min
∆u

VN (x, p;∆u)

s.t.
x0 = x,
xj+1 = Axj +B∆uj , j ∈ I0:N−1

xj ∈ X, ∆uj ∈ ∆U, j ∈ I0:N−1

TssxN = xss, TunxN = 0,

In this optimization problem, x and p are the
parameters, while the sequence

∆u = {∆u(0), · · · , u(N − 1)}

is the optimization variable. The control law is
given by κN (x, p) = ∆u0(0;x), where ∆u0(0;x) is
the first element of the solution sequence ∆u0(x).

Remark 2. Notice that TssxN is the stationary
value that the system x+ = Ax will reach
asymptotically, provided that no unstable modes
are considered beyond N . As a result, the infinite
summation term of the cost converges, and can
be expressed as the sum of two single terms. A
rank condition necessary to ensure that constraint
TunxN = 0 can be fulfilled is shown in (Alamo et
al., 2012).

Remark 3. The domain of attraction of the con-
troller derived from the iterative application of
Problem PN (x, p) is given by the states that can
be steered in N steps to the equilibrium-stable
subspace of Rn, Wss−st = Wss⊕Wst, fulfilling the
constraints along the path. This set is the N -step
controllable set from X to Xss−st = Xss ⊕ Xst,
and will be denoted as XN .

Given that the economic cost is generally based
on a complex nonlinear model, problem PN (x, p)
is not easy to solve, mainly when large dimension
processes are considered. On the other hand, it is
known that to ensure convergence and recursive
feasibility a suboptimal solution of PN (x, p) could
be used. In this context, instead of directly
solve the complex one-layer problem, the convex
combination of an easy-to-obtain feasible solution
and an approximated optimal solution could be
used to obtain a decreasing cost.

4. A FEASIBLE AND AN APPROXIMATED
OPTIMAL SOLUTION TO THE ORIGINAL
ECONOMIC OPTIMIZATION PROBLEM

Let us consider a feasible solution to problem
PN (x, p),

∆̂u= {∆̂u0, ∆̂u1, · · · , ∆̂uN−1}

This feasible solution is a sequence of control
inputs which is associated to a corresponding
(infinite) sequence of states:
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x̂= {x̂1, x̂2, · · · , x̂ss}

Although the proper feasible solution to problem
PN (x, p) is the input sequence ∆̂u, we will name it

as (x̂, ∆̂u) in order to make explicit the associated
state sequence. The usual way to obtain a feasible
solution to problem PN (x, p), at a given sample
time k, is by using the shifted solution of the
same problem at time k − 1. As will be shown
later, this choice not only gives an easy-to-obtain
feasible solution, but allows to prove the closed-
loop convergence of the proposed strategy. For the
initial sample time, k = 0, when the (k − 1)-
solution is not available, a feasible solution can be
obtained by solving an optimization problem with
the cost V dyn

N (x;∆u), and the same constraints
that problem PN (x, p). Let us consider now an
approximated optimal solution to the original
problem PN (x, p), which can be obtained by
solving the following approximated problem:

Problem P app
N (x, p)

min
∆u

V app
N (x, p;∆u)

s.t.
x0 = x,
xj+1 = Axj +Buj , j ∈ I0:N−1

xj ∈ X, ∆uj ∈ ∆U, j ∈ I0:N−1

TssxN = xss, TunxN = 0,

where the approximated cost is given by

V app
N (x, p;∆u) = V dyn

N (x,∆u)

+∇Vss(x̂ss, p)
[
xss − x̂ss

]
,

and ∇Vss(x̂ss, p) represents the gradient of Vss

with respect to x, evaluated at the point x̂ss.

As it can be seen, this approximated optimal
solution tries to optimize problem PN (x, p) by
means of a simplified version of it. However, it
should be noted that this solution is suboptimal
(in the transient) with respect to the optimal
solution to the original problem PN (x, p) and
hence its direct application into the MPC scheme
does not guarantee convergence of the closed-loop
system to the optimal solution to the original
problem PN (x, p).

5. IMPROVING THE FEASIBLE ECONOMIC
MPC COST

Let us denote the optimal solution to problem
P app
N (x, p) (which we named approximated optimal

solution) as

∆u∗ = {∆u∗
0,∆u∗

1, · · · ,∆u∗
N−1}

x∗ = {x∗
1, x

∗
2, · · · , x∗

ss}.

The original cost VN (x,∆u) corresponding to

solutions (x̂, ∆̂u) and (x∗,∆u∗) are given, respec-
tively, by:

V̂ = VN (x, p; ∆̂u) =

∞∑
j=0

∥x̂j − x̂ss∥2Q + ∥∆̂uj∥2R

+Vss(x̂ss, p),

V ∗ = VN (x, p;∆u∗) =
∞∑
j=0

∥x∗
j − x∗

ss∥2Q + ∥∆u∗
j∥2R

+Vss(x
∗
ss, p)

Consider now a parameterized family of feasible
solutions, given by the convex combination of the
feasible solution and the approximated optimal
solution:

∆u(λ) = (1− λ)∆̂u+ λ∆u∗

x(λ) = (1− λ)x̂+ λx∗.

with λ ∈ [0, 1]. Define also the following perfor-
mance indexes:

V (λ) =

∞∑
j=0

∥xj(λ)− xss(λ)∥2Q + ∥∆uj(λ)∥2R

+Vss(xss(λ), p),

which is the original cost VN (x, p;∆u) parame-
terized in λ, and

Vg(λ) =
∞∑
j=0

∥xj(λ)− xss(λ)∥2Q + ∥∆uj(λ)∥2R

+V̂ss(x̂ss, p) +∇Vss(x̂ss, p)
[
xss(λ)− x̂ss

]
which is the original cost VN (x, p;∆u), with the
economic cost Vss(x, p) replaced by its first order
Taylor approximation.

Lemma 4. If (x̂, ∆̂u) ̸= (x∗,∆u∗), then

Vg(1) < Vg(0). (3)

PROOF. Notice that Vg(0) = V app
N (x, p; ∆̂u)

and Vg(1) = V app
N (x, p;∆u∗). Since (x̂, ∆̂u) ̸=

(x∗,∆u∗), (x∗,∆u∗) is the optimal solution to
problem P app

N (x, p), and V app
N (x, p;∆u) is convex

in (x,∆u); then (x∗,∆u∗) will produce a smaller

cost than (x̂, ∆̂u) - otherwise, the solution will

be exactly ((x̂, ∆̂u) - i.e., V app
N (x, p;∆u∗) <

V app
N (x, p; ∆̂u) and therefore Vg(1) < Vg(0)

Next, the main theorem of this work will be
presented.

Theorem 1. The following hold

(i) The pair (x(λ),∆u(λ)), for every λ ∈ [0, 1],
provides a feasible solution to PN (x, p).

(ii) If Vg(1) < Vg(0) = V̂ , then there exists a

λ̃ ∈ (0, 1] such that V (λ̃) < V (0) = V̂ .



AADECA 2012 - Semana del Control Automático - 23o Congreso Argentino de Control Automático
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PROOF. Taking into account that the con-
straints of problem PN (x, p) are convex with re-
spect to (x(λ),∆u(λ)) and that both the feasible

solution (x̂, ∆̂u) and the approximated optimal
one (x∗,∆u∗) are feasible for this problem, it
results that any convex combination of them is
a feasible solution. This proves the first claim of
the theorem. We now proceed to prove the second
claim of the theorem. The convexity of Vg(λ) with
respect to λ implies that Vg(λ) ≤ (1 − λ)Vg(0) +
λVg(1). Now, consider a point between xss(λ) and
x̂ss, which can be parameterized with a parameter
θ as xss(θ) = (1−θ)xss(λ)+θx̂ss. Since Vss(·, p) is
twice differentiable, one can affirm that for every
λ ∈ [0, 1] and θ ∈ [0, 1], there exists the Hessian
H(λ, θ) = H(xss(θ)); and, by the mean value
theorem, it follows that

Vss(xss(λ), p) = Vss(x̂ss, p)

+∇Vss(x̂ss, p)
[
xss(λ)− x̂ss

]
+
1

2

[
xss(λ)− x̂ss

]T
H(λ, θ)

[
xss(λ)− x̂ss

]
for every λ ∈ [0, 1] and for some θ ∈ [0, 1].
With the last equality, we now have that for every
λ ∈ [0, 1] and for some θ ∈ [0, 1],

V (λ) = Vg(λ) + λ2

(
1

2

)[
x∗
ss − x̂ss

]′
H(λ, θ)

[
x∗
ss − x̂ss

]
. (4)

Furthermore, since xss(θ) is a point between
xss(λ) and x̂ss, and xss(λ), a point between x∗

ss

and x̂ss, then an upper bound for the second term
in (4) can be computed as:

ρ = max
λ∈[0,1]

(
1

2

)[
x∗
ss − x̂ss

]′
H(λ)

[
x∗
ss − x̂ss

]
,

where H(λ) = H(xss(λ)). Then

V (λ)≤ Vg(λ) + λ2ρ

≤ (1− λ)Vg(0) + λVg(1) + λ2ρ

= Vg(0)− λ(Vg(0)− Vg(1)− λρ)

Since Vg(0) = V̂ , hence

V (λ) ≤ V̂ − λ(V̂ − Vg(1)− λρ)

Since it is assumed that Vg(1) < Vg(0) = V̂ , we

obtain that V̂ − λ(V̂ − Vg(1)− λρ) is positive for
λ smaller than

λ̃ = min
{
(V̂ − Vg(1))/ρ, 1

}
, (5)

which implies that

V (λ) < V̂ , ∀λ ≤ λ̃. (6)

This means that for every λ smaller than λ̃, the
pair (x(λ),∆u(λ)) provides not only a feasible

solution to the original problem, but also an im-
proved original cost when compared with the one
corresponding to the feasible solution (x̂, ∆̂u).

Remark 5. One can heuristically search for a
value of λ that gives a cost V (λ) smaller than
V̂ . What theorem (1) ensures, is that this value
of λ does exist.

Notice that θ can be obtained resorting to the
Back Tracking technique (Boyd and Vanden-
berghe, 2006).

6. PROPOSED ALGORITHM

Based on the results presented in section 5, an
iterative algorithm will be proposed now to obtain
an MPC policy:

Algorithm 1. At each sample time k,

(1) compute the feasible solution (x̂, ∆̂u) to
problem PN (x, p), using the shifted solution
applied to the system at the sample time
k − 1. If the current time is k = 0, compute
the feasible solution (x̂, ∆̂u) by solving the

reduced problem P dyn
N (x).

(2) compute the gradient of the economic cost
function Vss(x, p) with respect to x,∇Vss(x, p).

(3) compute the approximated optimal solution
to problem PN (x, p), (x∗,∆u∗), by solving
the approximated problem P app

N (x, p).

(4) compute the value of the parameter λ̃, as in
(5).

(5) from the solution (x0,∆u0)
∆
= (x(λ̃),∆u(λ̃)),

take the first input action of the sequence
∆u0 to implement the implicit MPC control

law, κN (x, p)
∆
= ∆u0(0;x).

Remark 6. Notice that in the last step of the
Algorithm (1), and provided that the sample
time of the process is enough large, the solution
(x(λ̃),∆u(λ̃)) can be iteratively improved, within
the current sample time, to obtain a better
approximation to the optimum.

7. CONVERGENCE OF THE PROPOSED
CONTROLLER

To prove the convergence of the proposed MPC,
we follows the usual steps found in the literature.

Theorem 2. Consider that assumption 1 holds,
and consider a given parameter p for the economic
cost Vss(x, p) = feco(x, p). Then, for any initial
state x ∈ XN , the system controlled by the
MPC control law derived from the application
of Algorithm 1 at each time step k is stable
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and fulfills the constraints throughout the time.
Furthermore, the closed-loop system converges
asymptotically to a steady state x0

s that satisfy

x∗
s = arg min

x∈Xss

feco(x, p).

PROOF.

Feasibility: The feasibility follows directly from
the fact that the set XN is a control invariant set
for system (A,B).

Convergence: Consider a state x ∈ XN , at a
given time k. Consider also the solution defined
in Algorithm (1), for this state,

∆u0(x) =
{
∆u0(0;x), · · · ,∆u0(N − 1;x)

}
,

and the corresponding state sequence

x0(x) =
{
x0(1;x), · · · , x0(∞;x)

}
,

where x0(∞;x) = x0
ss(x) and x0

ss(x) ∈ Xss. Now,
consider the state x+ = Ax + B∆u0(0;x) =
x0(1;x), at time k + 1, which is obtained by im-
plementing the control law of step 5 of Algorithm
1, and define the following feasible solution for
problem PN (x+, p) at time k + 1,

∆̃u =
{
∆u0(1;x), · · · ,∆u0(N − 1;x), 0

}
,

which is a sequence made by shifting the se-
quence ∆u0(x) and adding a null control action.
This solution has an associated state sequence,
x̃ =

{
x0(2;x), · · · , x0

ss(x), x
0
ss(x)

}
, where the

additional state is given by x0
ss(x) = Ax0

ss(x).
Now, two consecutive cost functions will be
compared. The cost function of Problem PN (x, p)
corresponding to ∆u0(x) is given by

V 0
N (x) = VN (x, p;∆u0(x))

= V dyn
N (x;∆u0(x)) + Vss(x

0
ss(x), p).

On the other hand, the cost function of Problem
PN (x+, p), at k+1, corresponding to ∆̃u, is given
by

VN (x+, p; ∆̃u) = V dyn
N (x+; ∆̃u) + Vss(x

0
ss(x), p).

If we compare now the consecutive costs, we have:

VN (x+, p; ∆̃u)− V 0
N (x) = V dyn

N (x+; ∆̃u)

− V dyn
N (x;∆u0)

= −∥x− x0
ss(x)∥2Q − ∥∆u0(0;x)∥2R

+ ∥x0
ss(x)− x0

ss(x)∥2Q
= −∥x− x0

ss(x)∥2Q − ∥∆u0(0;x)∥2R. (7)

Now, by Theorem (1), we have that the cost cor-
responding to the solution ∆u0(x+), V 0

N (x+) =
VN (x, p;∆u0(x+)), is such that V 0

N (x+) < VN

(x+, p; ∆̃u), because ∆̃u is a feasible solution to
problem PN (x+, p), at time k+1. So, from (7), it
follows that

V 0
N (x+) −V 0

N (x) ≤
− ∥x− x0

ss(x)∥2Q − ∥∆u0(0;x)∥2R. (8)

Since Q and R are definite positive, (8) implies
that both,

∣∣x− x0
ss(x)

∣∣ and ∣∣∆u0(0;x)
∣∣ tends to 0

as k → ∞, and so, the system converges to the
steady state given by x0

ss(x).

Economic optimality: We have shown that the
system converges to a steady state, that we will
call, for the sake of simplicity, xs. Now, we
will show that the this steady state necessarily
minimizes Vss. Consider that xs ̸= x∗

s, where

x∗
s = arg min

x∈Xss

feco(x, p).

Let us define xs(θ) = (1 − θ)xs + θx∗
s, with

θ ∈ [0, 1]. Since both x∗
s and xs are inXss, and this

set is convex, then a convex combination of these
points, xs(θ), is also in Xss. Furthermore, since
by Assumption (2) Vss is convex in x, we have
that for a given value of p, Vss(xs(θ), p) ≤ (1 −
θ)Vss(xs, p)+θVss(x

∗
s, p), and by optimality of x∗

s,
we have Vss(xs) > Vss(x

∗
s), and so Vss(xs(θ), p) ≤

(1 − θ)Vss(xs, p) + θVss(xs, p) = Vss(xs, p), for
every θ ∈ [0, 1]. Assuming that the system is
already stabilized at xs, and defining ∆unull =
{0, · · · , 0}, we have

VN (xs, p;∆unull) = V dyn
N (xs,∆unull) + Vss(xs, p)

= Vss(xs, p).

Now, we will show that if we apply to the system a
control sequence different from the null sequence,
we can obtain a better cost. Let us consider the
following control sequence:

∆u(θ) =

[
TunCoN
TssCoN

]† [
Tun

Tss

]
(x∗

s − xs)θ

=M1θ, for some θ ∈ (0, 1)

where Coj = [Aj−1B Aj−2B · · · B] is
the generalized controllability matrix, † is the
pseudo-inverse operator and, for simplicity, we
assume that rank(CoN ) = nun + m. For an
arbitrary small value of θ, this sequence is a
feasible sequence that produces the following state
sequence: xj(θ) = xs + [Co1 0n,(N−j)·m]∆u(θ) =
xs + [Coj 0n,(N−j)·m]M1θ, for j ∈ I0:N . This
state sequence fulfills the constraints of problem
PN (xs, p) and tends asymptotically to the sta-

tionary value xs(θ). The cost V dyn
N (xs,∆u(θ))

corresponding to this control and state sequences
is given by

VN (xs, p;∆u(θ))=V dyn
N (xs,∆u(θ))+Vss(xs(θ), p)

=∥[M2M1−(x∗
s−xs)]θ∥2Q̄+∥M1θ∥2R̄

+∥(CoNM1−(x∗
s−xs))θ∥2P +Vss(xs(θ), p)

where
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M2 =

 Co0 0n,N ·m
...

CoN−1 0n,m


The last cost can be re-written as:

VN (θ)=θ2(∥[M2M1−(x∗
s−xs)]∥2Q̄+∥M1∥2R̄

+∥(CoNM1−(x∗
s−xs))∥2P )+Vss(xs(θ), p)

This cost trivially satisfies VN (0) = Vss(xs, p).
Now, let us consider the derivative of VN (θ) with
respect to θ,

∂VN (θ)

∂θ
= 2θ(∥[M2M1 − (x∗

s − xs)]∥2Q̄ + ∥M1∥2R̄

+∥(CoNM1 − (x∗
s − xs))∥2P ) +

∂Vss(xs(θ), p)

∂θ

If we now evaluate this derivative at θ = 0, we
have

∂VN (θ)

∂θ

∣∣∣∣
θ=0

=
∂Vss(xs(θ), p)

∂θ

∣∣∣∣
θ=0

< 0, if xs ̸= x∗
s

The last inequality follows from the fact that
Vss(xs(θ), p) < Vss(xs, p). This means that a θ̂
does exist, such the cost corresponding to move
the system from xs to xs(θ̂) is smaller that the one
corresponding to remain in the stationary state
xs. So, the closed-loop system converges to the
economic optimal steady state x∗

s.

8. EXAMPLE

The properties of the proposed controller have
been tested in a simulation example, on the fluid
catalytic cracking unit (FCC) studied in (Zanin
et al., 2002) and (De Souza et al., 2010). In
this simplified version of the FCC system, the
output to be controlled are the temperature in
the dilute phase of the regenerator y1 (C), the
temperature in the dense phase of the regenerator
y2 (C), the conversion of the cracking reaction
y3 (%), the riser temperature y4 (C). The inputs
(that in the mode-decoupled model are implicitly
included into the state vector) are the total air
flow-rate of the two stage catalyst regenerator
u1 (ton/h), the valve opening of the regenerated
catalyst u2 (%), the gasoil feed flow-rate u3

(m3/h), the temperature of the feed u4 (C). As
for the controller setup, the weighting matrices
of the MPC cost function have been takens as
Q = C ′QyC, where Qy = diag(0.2, 0.1, 0.1, 1),
and R = diag(5, 5, 5, 5). Matrix P is taken as the
solution of the Lyapunov equation P = A′

stPAst+
Q. An horizon N = 3 has been considered.
The economic objective is to maximize the pro-
duction of liquified petroleum gas (LPG). This
function is a nonlinear function of the feed

properties and the process operating condition
(Zanin et al., 2002) and is given by VO =
−u3 × LPGV , where LPGV is the volumetric
yield of LPG. The system has the following con-
straints on the inputs: umax = (228, 98, 406, 235)′

and umin = (200, 50, 400, 234.9)′. A zone con-
trol strategy has been adopted, in such a way
that the outputs are required to lie into the
zone given by ymax = (705, 725, 95, 547)′ and
ymin = (695, 695, 60, 540)′. The sampling time
is Ts = 1 min. The initial steady state is
given by yss = (697.3, 699.4, 78.2, 544.4)′ and
uss = (220.7, 85, 404, 234.9)′. The results of the
simulation are presented in Figures 1, 2 and 3.
Figure 1 shows the production of LPG, while
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Fig. 1. Time evolution of the LPG production.

Figure 2 and Figure 3 show the time evolution
of outputs and inputs, respectively. The evolution
of the LPG production shows how the controller
proposed in this work satisfies the economic
objective in the same way as (De Souza et al.,
2010).
Notice also that, in order to maximize the
production of LPG, input u3 and u4 are pushed
by the controller to their maximum and minimum
bounds, respectively. This indicates that all four
degrees of freedom are used in order to maximize
the LPG production, while constraints are always
fulfilled. Figure 4 shows a comparison between
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Fig. 2. Evolution of the outputs.

the optimal cost obtained with the solution
provided by the proposed controller, that is V (λ),
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Fig. 3. Evolution of the inputs.
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Fig. 4. Comparison of the cost V (λ) (in solid line) with the

cost Vg(0) = V̂ (in dashed line).

and the optimal cost provided by the initial
feasible solution, that is Vg(0) = V̂ . See that,
as stated in the theorem, the value of V (λ) is
smaller than the values of V̂ . This means that the
proposed algorithm provides a better solution, in
the sense that the optimal cost is smaller.
Moreover, the performance of the proposed strat-
egy has been compared to the one provided by
Vg(0) = V̂ . The performance index used for this
comparison has been:

Φ =
1

T

T∑
k=0

∥x(k)− xss∥2Q + ∥∆u(k)∥2R

The obtained performance have been Φ(V (λ)) =
14.4894 and Φ(V̂ ) = 31.5921, showing that the
proposed controller provide better performance
than V̂ .

9. CONCLUSION

A new MPC that accounts for economic objectives
and is suitable for industrial application was
presented in this work. Based on the inclusion
of the gradient of the economic cost, the opti-
mization control problem remains a QP prob-
lem. Furthermore, the proposed controller ensures
stability and feasibility under any change of the
economic function, and has an extended domain

of attraction derived from the appropriate use of
a decoupled linear model.
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