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Abstract : This paper deals with the tracking problem for constrained non-
linear systems using a model predictive control (MPC) law. MPC provides a
control law suitable for regulating constrained linear and nonlinear systems to
a given target steady state. However, when the target operating point changes,
the feasibility of the controller may be lost and the controller fails to track the
reference. In this paper, a novel MPC for tracking changing constant references
is presented. This controller extend a recently presented MPC for tracking for
constrained linear systems to the nonlinear case. The main characteristics of this
controller are: considering an artificial steady state as a decision variable, min-
imizing a cost that penalizes the error with the artificial steady state, adding
to the cost function an additional term that penalizes the deviation between
the artificial steady state and the target steady state (the so-called offset cost
function) and considering an invariant set for tracking as extended terminal
constraint. The properties of this controller has been tested on a constrained
CSTR simulation model.

1 Introduction

Model predictive control (MPC) is one of the most successful techniques of
advanced control in the process industry. This is due to its control problem
formulation, the natural usage of the model to predict the expected evolution of
the plant, the optimal character of the solution and the explicit consideration
of hard constraints in the optimization problem. Thanks to the recent deve-
lopments of the underlying theoretical framework, MPC has become a mature
control technique capable to provide controllers ensuring stability, robustness,
constraint satisfaction and tractable computation for linear and for nonlinear
systems [1].
The control law is calculated by predicting the evolution of the system and com-
puting the admissible sequence of control inputs which makes the system evolves
satisfying the constraints and minimizing the predicted cost. This problem can
be posed as an optimization problem. To obtain a feedback policy, the obtained
sequence of control inputs is applied in a receding horizon manner, solving the
optimization problem at each sample time. Considering a suitable penalization
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of the terminal state and an additional terminal constraint, asymptotic stability
and constraints satisfaction of the closed loop system can be proved [2].

Most of the results on MPC consider the regulation problem, that is steering
the system to a fixed steady-state (typically the origin), but when the target
operating point changes, the feasibility of the controller may be lost and the
controller fails to track the reference [3, 4, 5, 6]. Tracking control of constrained
nonlinear systems is an interesting problem due to the nonlinear nature of many
processes in industry mainly when large transitions are required, as in the case
of changing operating point.

In [7] a nonlinear predictive control for set point families is presented, which
considers a pseudolinearization of the system and a parametrization of the set
points. The stability is ensured thanks to a quasi-infinite nonlinear MPC stra-
tegy, but the solution of the tracking problem is not considered.

In [8] an output feedback receding horizon control algorithm for nonlinear
discrete-time systems is presented, which solves the problem of tracking exoge-
nous signals and asymptotically rejecting disturbances generated by a properly
defined exosystem. In [9] an MPC algorithm for nonlinear systems is proposed,
which guarantees local stability and asymptotic tracking of constant references.
This algorithm need the presence of an integrator preliminarily plugged in front
of the system to guarantee the solution of the asymptotic tracking problem.

Another approach to the tracking of nonlinear systems problem are the so-
called reference governors [10, 4, 11]. A reference governor is a nonlinear de-
vice which manipulates on-line a command input to a suitable pre-compensated
system so as to satisfy constraints. This can be seen as adding an artificial
reference, computed at each sampling time to ensure the admissible evolution
of the system, converging to the desired reference.

In [12] the tracking problem for constrained linear systems is solved by means
of an approach called dual mode: the dual mode controller operates as a regula-
tor in a neighborhood of the desired equilibrium wherein constraints are feasible,
while it switches to a feasibility recovery mode, whenever this is lost due to a
set point change, which steers the system to the feasibility region of the MPC as
quickly as possible. In [13, 14] this approach is extended to nonlinear systems,
considering constraint-admissible invariant sets as terminal regions, obtained by
means of a LPV model representation of the nonlinear plant.

In [15] an MPC for tracking of constrained linear systems is proposed, which
is able to lead the system to any admissible set point in an admissible way. The
main characteristics of this controller are: an artificial steady state is considered
as a decision variable, a cost that penalizes the error with the artificial steady
state is minimized, an additional term that penalizes the deviation between the
artificial steady state and the target steady state is added to the cost function
(the so-called offset cost function) and an invariant set for tracking is considered
as extended terminal constraint. This controller ensures that under any change
of the target steady state, the closed loop system maintains the feasibility of
the controller and ensures the convergence to the target if admissible. In this
paper, this controller is extended to the case of nonlinear constrained systems.

The paper is organized as follows. In section 2 the constrained tracking
problem is stated. In section 3 the new MPC for tracking is presented. In
section 4 an illustrative example is shown. Finally, in section 5 some conclusions
are drawn.
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2 Problem description

Consider a system described by a nonlinear invariant discrete time model

x+ = f(x, u) (1)
y = h(x, u)

where x ∈ IRn is the system state, u ∈ IRm is the current control vector, y ∈ IRp

is the controlled output and x+ is the successor state. The function model
f(x, u) is assumed to be continuous. The solution of this system for a given
sequence of control inputs u and initial state x is denoted as x(j) = φ(j, x,u)
where x = φ(0, x,u). The state of the system and the control input applied
at sampling time k are denoted as x(k) and u(k) respectively. The system is
subject to hard constraints on state and control:

x(k) ∈ X, u(k) ∈ U (2)

for all k ≥ 0. X ⊂ Rn and U ⊂ Rm are compact convex polyhedra containing
the origin in its interior.

The steady state, input and output of the plant (xs, us, ys) are such that (1)
is fulfilled, i.e. xs = f(xs, us) and ys = h(xs, us). Due to the relation derived
from these equalities, it is possible to find a parameter vector θ ∈ IRq which
univocally defines each triplet (xs, us, ys), i.e., these can be posed as xs = gx(θ),
us = gu(θ) and ys = gy(θ). This parameter is typically the controlled output ys

although another parameter could be chosen for convenience.
For a (possible time-varying) target steady condition (xt, ut, yt) given by

θt, the problem we consider is the design of an MPC controller κ(x, θt) such
that the system is steered as close as possible to the target while fulfilling the
constraints.

3 MPC for tracking

In this section, the proposed MPC for tracking is presented. This predictive
controller is characterized by the addition of the steady state and input as
decision variables, the use of a modified cost function and an extended terminal
constraint.

The proposed cost function of the MPC is given by:

VN (x, θt;u, θ)=
N−1∑

i=0

`((x(i)−xs), (u(i)−us))+Vf (x(N)−xs, θ)+VO(θ−θt)

where x(j) = φ(j, x,u), xs = gx(θ), us = gu(θ) and ys = gy(θ). The controller
is derived from the solution of the optimization problem PN (x, θt) given by:

V ∗
N (x, θt) = min

u,θ̄
VN (x, θt;u, θ)

s.t. x(j) = φ(j, x,u), j =0, · · · , N

x(j) ∈ X, u(j) ∈ U, j =0, · · · , N−1
xs = gx(θ), us = gu(θ)
(x(N), θ) ∈ Γ
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Considering the receding horizon policy, the control law is given by

κMPC
N (x, θt) = u∗(0; x, θt)

Since the set of constraints of PN (x, θt) does not depend on θt, its feasibility
region does not depend on the target operating point θt. Then there exists a
region XN ⊆ X such that for all x ∈ XN , PN (x, θt) is feasible. This is the set
of initial states that can be admissibly steered to the projection of Γ onto x in
N steps or less.

Consider the following assumption on the controller parameters:

Assumption 1

1. Let θ ∈ Θ be a parametrization variable of the steady state, input and
output, with Θ convex set.

2. Let gx, gu and gy be the defining functions of the steady state, input and
output of system (1), i.e., xs = gx(θ), us = gu(θ) and ys = gy(θ). Assume
that gx is a Lipschitz function.

3. Let k(x, θ) be a continuous control law such that for all θ ∈ Θ, system
x+=f(x, k(x, θ)) has xs = gx(θ) and us = gu(θ) as steady state and input,
and it is asymptotically stable.

4. Let Γ ⊂ IRn+q be a set such that for all (x, θ) ∈ Γ, x ∈ X, θ ∈ Θ,
k(x, θ) ∈ U and (f(x, k(x, θ)), θ) ∈ Γ.

5. Let Vf (x− gx(θ), θ) be a Lyapunov function for system x+=f(x, k(x, θ)):

Vf (f(x, k(x, θ))−gx(θ), θ)−Vf (x−gx(θ), θ)≤−l(x−gx(θ), k(x, θ)−gu(θ))

for all (x, θ) ∈ Γ. Moreover, there exist b > 0 and σ > 1 which verify
Vf (x1 − x2, θ) ≤ b‖x1 − x2‖σ for all (x1, θ) and (x2, θ) contained in Γ.

6. Let l(x, u) be a positive definite function and let the offset cost function
VO : IRp → IR be a convex, positive definite and subdifferentiable function.

The following theorem proves asymptotic stability and constraints satisfac-
tion of the controlled system.

Theorem 1 (Stability) Consider that assumption 1 holds and consider a given
target operation point parametrization θt, such that xt = gx(θt), ut = gu(θt) and
yt = gy(θt). Then for any feasible initial state x0 ∈ XN = Projx(Γ), the system
controlled by the proposed MPC controller κ(x, θt) is stable, fulfils the constraints
along the time and, besides

(i) If θt ∈ Θ then the closed loop system asymptotically converges to a steady
state, input and output (xt, ut, yt), that means limk→∞ ‖x(k) − xt‖ = 0,
limk→∞ ‖u(k)− ut‖ = 0 and limk→∞ ‖y(k)− yt‖ = 0.

(ii) If θt 6∈ Θ, the closed loop system asymptotically converges to a steady state
and input (x̃s, ũs), such that limk→∞ ‖x(k)− x̃s‖ = 0 and limk→∞ ‖u(k)−
ũs‖ = 0, where x̃s = gx(θ̃s), ũs = gu(θ̃s) and

θ̃s = arg min
θ∈Θ

VO(θ − θt)
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Proof.

Feasibility. The first part of the proof is devoted to prove the feasibility of the
controlled system, that is x(k+1) ∈ XN , for all x(k) ∈ XN and θt. Assume that
x(k) is feasible and consider the optimal solution of PN (x(k), θt), u∗(x(k), θt),
θ∗(x(k), θt). Define the following sequences:

u(x(k + 1), θt)
∆= [u∗(1; x(k), θt), · · · , u∗(N − 1; x(k), θt),

K(x∗(N ; x(k), θt), θ∗(x(k), θt))]

θ̄(x(k + 1), θt)
∆= θ∗(x(k), θt)

Then, due to the fact that x(k + 1) = f(x(k), u∗(0; x(k), θt)) and to condition
4 in assumption 1, it is easy to see that u(x(k + 1), θt) and θ̄(x(k + 1), θt) are
feasible solutions of PN (x(k + 1), θt). Consequently, x(k + 1) ∈ XN .

Convergence. Consider the feasible solution at time k + 1 previously pre-
sented. Following standard steps in the stability proofs of MPC [2], we get
that

V ∗
N (x(k+1), θt)−V ∗

N (x(k), θt) ≤ −l(x(k)−gx(θ∗(x(k), θt)), u(k)−gu(θ∗(x(k), θt)))

Due to the definite positiveness of the optimal cost and its non-increasing evo-
lution, we infer that limk→∞ ‖x(k) − gx(θ∗(x(k), θt)‖ = 0 and limk→∞ ‖u(k)−
gu(θ∗(x(k), θt)‖ = 0.

Optimality. Define x∗s(x(k),θt)=gx(θ∗(x(k),θt) and u∗s(x(k),θt)=gu(θ∗(x(k),θt).
Let Θ̃ be the convex set such that Θ̃ = {θ̃ : θ̃ = arg min

θ∈Θ
VO(θ − θt)}.

We proceed by contradiction. Consider that θ∗ 6∈ Θ̃ and take a θ̃ ∈ Θ̃,
then VO(θ∗ − θt) > VO(θ̃ − θt). Due to continuity of the model and the control
law, there exists a λ̂ ∈ [0, 1) such that, for every λ ∈ [λ̂, 1), the parameter
θ̄ = λθ∗ + (1− λ)θ̃ fulfils (x∗s, θ̄) ∈ Γ.
Defining as u the sequence of control actions derived from the control law k(x, θ̄),
it is inferred that (u, x∗s, θ̄) is a feasible solution for PN (x∗s, θt). Then from
assumption 1 and using standard procedures in MPC, we have that

V ∗
N (x∗s, θt) = VO(θ∗ − θt) ≤ VN (x∗s, θt;u, θ̄)

=
N−1∑

i=0

`((x(i)− x̄), (k(x(i), θ)− ū))

+Vf (x(N)− x̄, θ) + VO(θ̄ − θt)
≤ Vf (x∗s − x̄, θ) + VO(θ̄ − θt)
≤ LVf

‖θ∗ − θ̄‖σ + VO(θ̄ − θt)

= LVf
(1− λ)σ‖θ∗ − θ̃‖σ + VO(θ̄ − θt)

where LVf
= Lσ

g b and Lg is the Lipshitz constant of gx(·).
Define W (x∗s, θt, λ) ∆= LVf

(1−λ)σ‖θ∗−θ̃‖σ+VO(θ̄−θt). Notice that W (x∗s, θt, λ) =
V ∗

N (x∗s, θt) for λ = 1. Taking the partial of W about λ, we have that

∂W

∂λ
= −LVf

σ(1− λ)σ−1‖θ∗ − θ̃‖σ + gT (θ∗ − θ̃)
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where gT ∈ ∂VO(θ̄−θt) , defining ∂VO(θ̄−θt) as the subdifferential of VO(θ̄−θt).
Evaluating this partial for λ = 1 we obtain that:

∂W

∂λ

∣∣∣∣
λ=1

= g∗T (θ∗ − θ̃)

where g∗T ∈ ∂VO(θ∗−θt), defining ∂VO(θ∗−θt) as the subdifferential of VO(θ∗−
θt). Taking into account that VO is a subdifferentiable function, from convexity
[16] we can state that

g∗T (θ∗ − θ̃) ≥ VO(θ∗ − θt)− VO(θ̃ − θt)

Considering that VO(θ∗ − θt)− VO(θ̃ − θt) > 0, it can be derived that

∂W

∂λ

∣∣∣∣
λ=1

≥ VO(θ∗ − θt)− VO(θ̃ − θt) > 0

This means that there exists a λ ∈ [λ̂, 1) such that W (x∗s, θt, λ) is smaller than
the value of W (x∗s, θt, λ) for λ = 1, which equals to V ∗

N (x∗s, θt).
This contradicts the optimality of the solution and hence the result is proved,

finishing the proof.

Remark 1 The problem of computing the terminal conditions is not easy to
solve. In literature, this problem is handled in many ways, such as LDI [17] or
LPV [13, 12] model representations of the system. In [10] the authors state that
the command governors strategy ensures the viability property, which implies the
existence of such a not trivial invariant set.

Remark 2 The local nature of the terminal controller and the difficulty of com-
puting set Γ makes this set potentially small. In fact, a sensible choice of Γ is as
level sets of the local Lyapunov function. In order to minimize the effect of the
conservative nature of the terminal ingredients, a formulation with a prediction
horizon larger that the control horizon [18] can be used. This provides an en-
hanced closed loop performance and a larger domain of attraction maintaining
the stabilizing properties.

4 Example

This section presents the application of the proposed controller to the highly
nonlinear model of a continuous stirred tank reactor (CSTR), [18]. Assuming
constant liquid volume, the CSTR for an exothermic, irreversible reaction, A →
B, is described by the following model:

ĊA =
q

V
(CAf − CA)− koe

(−E
RT )CA (3)

Ṫ =
q

V
(Tf − T )− ∆H

ρCp
koe

(−E
RT )CA +

UA

V ρCp
(Tc − T )

where CA is the concentration of A in the reactor, T is the reactor temperature
and Tc is the temperature of the coolant stream. The objective is to regulate
y = x2 = T and x1 = CA by manipulating u = Tc. The constraints are
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0 ≤ CA ≤ 1 mol/l, 280K ≤ T ≤ 370K and 280K ≤ Tc ≤ 370. The nonlinear
discrete time model of system (3) is obteined by defining the state vector x =
[CA − Ceq

A , T − T eq]T and u = Tc − T eq
c and by discretizing equation (3) with

t = 0.03 min as sampling time. We considered an MPC with Nc = 3 and
Np = 10 and with Q = diag(1/0.5, 1/350) and R = 1/300 as weighting matrices.

The output y = x2 has been chosen as the parameter θ. To illustrate
the proposed controller, three references has been considered, Ref1 = 335 K,
Ref2 = 365 K and Ref3 = 340 K. In figures 1(a) and 1(b) the evolutions
of the states (solid lines), the artificial references (dashed lines) and the real
one (dashed-dotted line) are showed. See how the controller leads the system
to track the artificial reference when the real one is unfeasible. The artificial
reference represents the feasible trajectory determined by the value of θ̃s that
minimizes VO(θ − θt).
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(a) Evolution of CA.
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(b) Evolution of T .

Figure 1: Evolutions of the states.

The terminal region and cost function have been computed in an explicit
form, depending on θ. Linearizing the system around θ, the control gain has
been computed explicitly, depending on θ, K(θ). Defining AK(θ) = A +
BK(θ) and Q(θ)∗ = Q + K(θ)T RK(θ), P (θ) has been found as solution of
AK(θ)T P (θ)AK(θ)−P (θ) = −Q(θ)∗. Then, Vf (x−gx(θ), θ) = (x−gx(θ))T P (θ)(x−
gx(θ)) and Γ = {(x, θ) ∈ IRn+q : Vf (x−gx(θ), θ) ≤ α}, where α > 0 is such that
for all (x, θ) ∈ Γ, x ∈ X, u = K(θ)(x− gx(θ)) + gu(θ) ∈ U and

Vf (f(x, k(x, θ))−gx(θ), θ)−Vf (x−gx(θ), θ)≤−(x−gx(θ))T Q(θ)∗(x−gx(θ)).

5 Conclusion

In this paper a novel MPC controller for tracking changing references for con-
strained nonlinear systems has been presented, as extension, to the nonlinear
case, of the one presented in [15]. This controller ensures feasibility by means of
adding an artificial steady state and input as decision variable of the optimiza-
tion problem. Convergence to an admissible target steady state is ensured by
using a modified cost function and a stabilizing extended terminal constraint.
Optimality is ensured by means of an offset cost function which penalizes the dif-
ference between the artificial reference and the real one. The proposed controller
can be formulated with a prediction horizon larger than the control horizon.
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This formulation provides an enhanced closed loop performance and a larger
domain of attraction maintaining the stabilizing properties. The properties of
the controller have been illustrated in an example.
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