
NMPC Strategy for Mobile Robot

Navigation in an Unknown Environment

Iuro B. P. Nascimento ∗ Antonio Ferramosca ∗∗

Luciano C. A. Pimenta ∗,∗∗∗ Guilherme V. Raffo ∗,∗∗∗

∗Graduate Program in Electrical Engineering, Federal University of
Minas Gerais, CEP 31270-901, Belo Horizonte, Minas Gerais, Brasil.

(iuro@ufmg.br)
∗∗ CONICET - UTN Facultad Regional Reconquista, Santa Fe 3560,

Argentina. (ferramosca@santafe-conicet.gov.ar)
∗∗∗Department of Electronic Engineering, Federal University of Minas

Gerais, CEP 31270-901, Belo Horizonte, Minas Gerais, Brasil
(lucpim@cpdee.ufmg.br,raffo@ufmg.br)

Abstract: This work presents a Nonlinear Model Predictive Control strategy for mobile robot
navigation in unknown environments. The control system aims to reach a goal safely, as fast as
possible, minimizing the control effort, and the distance between the current trajectory and the
goal. A LIDAR (Light Detection and Ranging) sensor is used to obtain obstacles information as
these are approached by the robot. The LIDAR output is then processed to obtain inequality
constraints describing a collision-free area. This area is partitioned in convex subregions in order
to be used within the proposed NMPC approach to perform path tracking, ensuring obstacle
avoidance. Numerical results are provided to corroborate the performance of the system.

Resumo: Este trabalho apresenta uma estratégia de controle preditivo não linear para a
navegação de um robô móvel em um ambiente desconhecido. O sistema de controle é projetado
com o objetivo de levar o robô ao alvo de forma segura, com tempo mı́nimo, minimizando o
esforço de controle e a distância da trajetória ao alvo. A sáıda de um sensor LIDAR (Light
Detection and Ranging) é processada de forma a se obter restrições de desigualdade de uma
area livre de colisão a qual o robô pode se movimentar. Esta area livre é dividida em subpartes
convexas de forma a ser usada no NMPC proposto para seguimento de trajetórias assegurando
o evitamento de obstáculos. Resultados numéricos são apresentados de forma a demonstrar a
perfomance do sistema.

Keywords: NMPC; Mobile Robot; Obstacle Avoidance; Unknown Environment

Palavras-chaves: NMPC; Robô Móvel; Evitamento de Obstáculo; Ambiente Desconhecido

1. INTRODUCTION

Academic and Industrial researches of wheeled mobile
robots have been active in the past decades. There are
many applications, such as domestic tasks, access to dan-
gerous areas, planet exploration, agriculture, and mining.
In many cases, an indoor mobile robot is considered,
and in most works with a known and mapped environ-
ment. In these cases, problem solution can be divided into
two phases: trajectory planning and trajectory tracking
control. In this approach, the trajectory planning can
be obtained offline and can be executed only once. In
the literature, many algorithms undertake the planning
task. Some algorithms sample collision-free portions of the

? This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance
Codes 001 e 88887.136349/2017-00, by the projects INCT InSAC and
Universal under the grants CNPq 465755/2014-3 and 426392/2016-
7, and also by the Brazilian agency FAPEMIG.
Luciano C. A. Pimenta and Guilherme V. Raffo are also members of
the National Institute of Science and Technology (INCT) for Coop-
erative Autonomous Systems Applied to Security and Environment.

map to form graphs of paths, like probabilistic roadmaps
(PRM) (Kavraki et al., 1996), rapidly-exploring random
trees (RRT) (LaValle, 1998), and their asymptotically op-
timal versions PRM∗ and RRT∗ (Karaman and Frazzoli,
2011), among others. Depending on the characteristics of
the environment, this planning can have a high cost. Any
path tracking control strategy can combine with these
planners, altough they will not deal with changes in the
environment.

In other applications, the environment is unknown, and
therefore, the location and shape of obstacles are not
known beforehand. At every change in the environment or
every discovery of a new obstacle, the planning algorithm
needs to be recomputed, leading to a high computational
cost.

Some methods recompute part of the path to adapt to
small changes in the environment, as D∗(Stentz, 1994).
These methods will lead to a lower computational cost, al-
though they are designed to be efficient with small changes
in the environment. An entirely unknown environment will

DOI: 10.17648/sbai-2019-1115562751

http://dx.doi.org/10.17648/sbai-2019-111556


still demand a constant change of the path and therefore
be costly.

Another approach is to combine optimal path planning
and optimal control into a single optimization problem.
This approach has the advantage of obtaining an optimal
solution that takes into account the whole problem, con-
sidering the robot model, the constraints, and possibly an
economic criterion.

Model Predictive Control (MPC) is well suited to solve
this unified control problem. In the MPC framework, we
obtain an optimal control law by solving an optimal control
problem (OCP) with some performance index and subject
to path constraints such as obstacles, limits on states and
inputs, among others.

In the literature, many algorithms are using the MPC
framework for obstacle avoidance. Drozdova et al. (2016)
uses a laser scanner to detect obstacles and models them as
ellipses. The ellipses equations are used as inequality con-
straints in the OCP. Liu et al. (2018) combines VPH+ (en-
hanced vector polar histogram) and MPC for unmanned
ground vehicles (UGVs). VPH+ calculates directions to
avoid obstacles, and the MPC is used as a local planner
and to find optimal control values along with points in the
desired direction.

In some cases, the system model and the constraints
are nonlinear and non-convex, which leads to non-convex
optimal control problems. OCPs are often discretized
and solved as a nonlinear programming problem (NLP).
In many cases, non-convex optimization problems have
multiple minima solutions. The solution found will depend
on the trajectory’s initial guess. As an example, in a case
with one obstacle in front of the robot, there are at least
two possible paths, making a left turn and a right turn
to avoid the obstacle. Both of these paths will have a
local minima solution. There might be more local minima
solutions depending on the states, inputs, and constraints
used in the problem.

Liu et al. (2017) develops a Nonlinear MPC (NMPC)
strategy for an autonomous ground vehicle (AGV) truck
in an unknown environment with obstacles modeled as
polygons to obtain linear constraints. The OCP is non-
linear and non-convex. In this paper, it is explored several
local minima by considering more possible paths. It also
uses a cost function tailored to the truck model and state
variables.

The present work proposes an NMPC strategy of a wheeled
mobile robot in an unknown environment. Differently from
Liu et al. (2017), we use a generic quadratic functional
cost that could be used with other systems. We also use
computational geometry algorithms to model obstacles,
which is detected by a laser scanner sensor, as polygons.
In order to find a better local minima solution to the OCP,
we also explore more possible paths.

This work is organized as follows. Section 2 describes the
wheeled mobile robot model. Section 3 presents the pro-
posed control strategy. Section 4 shows the optimal control
problem (OCP) formulation, describing the generation of
obstacles constraints and the OCP formulation. Section 5

presents numerical simulation results, and section 6 con-
cludes the work.

2. DIFFERENTIAL WHEELED MOBILE ROBOT
MODEL

The differential wheeled mobile robot schematic is shown
in Fig. 1. A kinematic model is obtained by tracking a
point at a distance d in front of the robot’s geometric
center. The differential equations are given by

ẋ(t) =
VR(t) + VL(t)

2
(cosψ(t)− d sinψ)

ẏ(t) =
VR(t) + VL(t)

2
(sinψ(t) + d cosψ)

ψ̇(t) =
VR(t)− VL(t)

R

(1)

B

(x′, y′)

d
ψ

I x

y

2r
R

Figure 1. Schematic of differential drive mobile robot.

where VR and VL are the right and left wheels linear

velocities, respectively. x = [x y ψ]
T

is the state-space
vector of the system, where x and y are the position of
the robot body frame B w.r.t the inertial frame I. ψ is
the rotation of B w.r.t. I expressed in I. R is the distance

between the robot wheels. u = [VR VL]
T

is the vector of
inputs.

3. CONTROL STRATEGY

3.1 Problem Statement

Considering a wheeled mobile robot in an unknown envi-
ronment, the problem consists of moving the mobile robot
from an initial position to a target position as fast as
possible. The environment may contain static obstacles
with position, size, and shape not known a priori.

3.2 Control Scheme

The control strategy consists of two main tasks:

• generate the obstacle constraints;
• formulate and solve optimal control problems (OCPs).

The control system schematic is illustrated in Fig. 2.

The constraint generation (CG) task provides the con-
straints by processing a planar LIDAR (Light Detection
and Ranging) output in order to maintain the robot in the
obstacle-free region, which is called the safe region.

The NMPC task uses these constraints and others, such
as the mathematical model, states and inputs bounds
to formulate and solve the OCP. The obtained optimal
trajectory and inputs satisfying these constraints will be
feasible. These tasks will be described in detail in the next
sections.

DOI: 10.17648/sbai-2019-1115562752

http://dx.doi.org/10.17648/sbai-2019-111556


NMPCCG Mechanical System

Embedded System

Inputs

Internal States
Obstacle Information

Figure 2. System Schematic.

3.3 Constraint Generation

The CG task generates constraints to maintain the mobile
robot in a safe region, which is accomplished by processing
the LIDAR output.

In order to obtain these constraints, the CG models
obstacles as polygons by performing three subtasks: line
simplification; introduction of a safety margin; and a
convex decomposition of the safe region polygon. Fig. 3
shows a representation of the LIDAR output, where the
LIDAR distance range RLIDAR is finite, and the angles
have a range from −90o to 90o. Circular arcs where no
obstacles are found by the LIDAR are called openings.

Safe region

Obstacle

Sensor position

Obstacle

Opening

Opening

Opening

Figure 3. Typical polygon formed by LIDAR output.

Line Simplification: The Ramer-Douglas-Peucker (Ramer,
1972) algorithm is used to perform line simplification. The
algorithm is an iterative method where, given a maximum
error (ε) and a curve represented by a vector of points, it
finds simplified lines represented by a subset of the original
points.

The method initializes by marking the starting, ps, and
final, pf , points to be kept. It finds the point pm that is
farthest to the line formed by ps and pf . If pm is farther
out of the line than ε, pm is marked as to be kept, and the
algorithm is executed recursively with the lines formed by
ps and pm and the one formed by pm and pf .

Fig. 4 shows an example of line simplification. The orange
line connects the original points, and the blue line is the
simplified line.

Addition of a Safety Margin A safety margin is added
to the safe region polygon to take into consideration the
vehicle size and possible error in detecting and process-
ing obstacles. Some computational geometry algorithms
inflate and deflate polygons. In this work, it is used the
Vatti’s clipping algorithm (Vatti, 1992).

We only need to expand obstacles, not the openings. Fig.
5. shows an example of the expansion of obstacles.

70 80 90 100 110 120 130

35

40

45

50

55

60

65

70

75

Figure 4. Example of Ramer-Douglas-Peucker algorithm.

Obstacle

Sensor position

Safe region

Obstacle
Safety margin

Figure 5. Obstacle Polygon Expansion.

Convex Decomposition The safe region is usually non-
convex in the presence of obstacles. It is hard if not
impossible to describe a non-convex region as one function.
The safe region may also have other problems:

• The NLP solver will not explore other possible solu-
tions. It will find a solution near the initial guess.

• The safe region tends to have edges and/or corners
that are not twice differentiable. In this case, the
NLP solver will use numerical derivatives that have
a higher error. This error might be large enough to
cause the solver to have slow convergence or not
converge.

In order to deal with these problems, we decompose
the safe region into a set of convex polygon subregions.
These polygons will form sets of constraints, one set per
subregion. For each subregion polygon, each line equation
will form one inequality constraint, which is linear.

A problem arises when the robot needs to pass over a
narrow subregion. In such a case, it may become hard
for the solver to find a feasible solution to the OCP. In
order to mitigate this problem, two algorithms are used to
decompose the safe region: a polar decomposition and an
optimal convex decomposition. If the solver fails to reach
a feasible solution using the constraints obtained with the
optimal convex partition, the polar decomposition is used.
Fig. 6 shows an example of both decompositions. The polar
partitioning is not optimal, it will create more subregions,
and some of them may become narrow. Since the optimal
convex partition algorithm produces the minimum number
of partitions, it has a smaller chance of occurrence of a
narrow subregion.

DOI: 10.17648/sbai-2019-1115562753

http://dx.doi.org/10.17648/sbai-2019-111556


2

3

4

1

Sensor position

(a)

2

3

4

1

Sensor position

5

(b)

Obstacle

Obstacle

Obstacle

Obstacle

Figure 6. Polygon decomposition: (a) Polar Partition; (b)
Optimal Convex Partition.

On the one hand, the polar partitioning consists of creating
a new line from each obstacle vertex to the position of the
robot. On the other hand, the Optimal Convex Decom-
position algorithm is a dynamic programming algorithm
(Greene, 1983).

In order to explore more paths, all openings are considered
as a possible solution. A path from the robot position
through the subregions to each opening is obtained. In
order to choose which subregions to pass to reach the
opening, we create a graph where each node is a subregion,
and each edge represents the adjacency between two sub-
regions. Adjacent subregions share at least a line segment.
The path to each opening is obtained by using the Dijkstra
shortest path algorithm (Dijkstra, 1959).

As an example, Fig. 6 (b) shows a safe region polygon
decomposed into convex polygon subregions.

The start subregion is number 1, which also has an
opening. Subregions 3 and 4 also have openings. Fig. 7
shows the adjacency graph.

4 3

2

1

Figure 7. Adjacency Graph.

In this case, using a weight of 1 for each edge in the graph,
the best possible paths to each opening will be:

• 1

• 1→ 2→ 4
• 1→ 2→ 3

Considering the weights of the edges as 1, we aim to
find the best path with the smallest number of nodes or
subregions to go through. The phases number is mini-
mized, which reduces constraints number. Therefore the
computational cost is reduced.

After the decomposition, each subregion inequality con-
straints will be written as

Aiξj − bi ≤ 0, (2)

where ξj = [xj yj ]
T

, j = 1, 2...K with K points in the
discretized trajectory. Ai is a N × 2 matrix, bi and 0 are
N ×1 column vectors, N is the number of constraints, and
i = 1, 2, ...M with M subregions.

3.4 Nonlinear MPC Strategy

Using the subregion information, a constrained multi-
phase OCP is formulated. In a multi-phase OCP, the
trajectory is divided into segments where each segment
may have different dynamical equations and constraints.
Some problems demand changes in the system and/or
constraints along the planned trajectory. This is the case
of the stages of a spaceship launch. Each segment is one
phase of the multi-phase OCP.

For each opening, one subregion path is chosen through
a graph search, as explained in section 3.3 from the first
subregion to each subregion that has an opening. For each
of these paths, their constraints are used to formulate an
OCP. Since each path has an independent OCP, all paths
are formulated and solved in parallel. The solution with
the smallest cost is chosen.

4. OPTIMAL CONTROL PROBLEM FORMULATION

The multi-phase constrained OCP is formulated as follows

minimize
x,u,T1,...,TN

J = T
(
x(N)(TP ),xgoal(TP ), TP

)
+

N∑
i=1

[∫ Ti

Ti−1

I
(
x(i)(t),u(i)(t),

)
dt

]
(3)

subject to
∀i=1,...,N

ẋ(i)(t) = V
(
x(i)(t),u(i)(t)

)
(4)

x
(i)
min(t) ≤ x(i)(t) ≤ x(i)

max(t) (5)

u
(i)
min(t) ≤ u(i)(t) ≤ u(i)

max(t) (6)

F
(
x(i)(t)

)
≤ 0 (7)

G
(
u̇(i)(t)

)
≤ 0 (8)

x(i)(Ti−1) = x(i−1)(Ti−1) (9)

t ∈ [Ti−1, Ti], Ti−1 < Ti (10)

subject to F
[
x(N)(TN ),x(0)(T0)

]
≤ 0 (11)

T0 = 0, TN = Tp (12)

DOI: 10.17648/sbai-2019-1115562754

http://dx.doi.org/10.17648/sbai-2019-111556


where (3) is the cost functional, with one cost per each
of the N phases, and a terminal cost. Equations (4) to
(10) are constraints of each phase. Equations (11) and
(12) are constraints of all phases. xgoal is the target
state. (4) are the nonlinear dynamical equations (1) of
the mobile robot, with one set of equations (1) per phase.
Equations (5) and (6) are the states and inputs bounds.
Equation (7) is the position constraint. Equation (8) limits
the derivative of the inputs to account for unmodelled
actuator dynamics. Equations (9) are imposed to ensure
a continuous transition from each phase to the next.
Equation (10) enforces the phase start and final times to
be monotonically increasing. Equation (11) imposes the
initial state to be the current pose of the robot and a
terminal region on the final state. Finally, equation (12)
sets the initial time to 0 and the final time of the last
phase TN to be equal to the time horizon Tp. The cost
functions and constraints will be described in more detail
in the next sections.

4.1 Cost Functional

The multi-phase cost function of equation (3) is given by

J =wtTp +
∥∥x(N)(Tp)−xgoal

∥∥2
P

(13)

+

N∑
i=1

[∫ Ti

Ti−1

(∥∥x(i)(t)−xgoal

∥∥2
Q

+
∥∥u(i)(t)−ueq

∥∥2
R

)
dt

]
.

It includes one cost per each of the N phases, where the
energy of states far from the target state (xgoal) and the
energy of inputs far from the equilibrium values (ueq) are
penalized. Considering that the problem is non-convex,
the cost on the energy of inputs helps to have a smaller
chance of multiple solutions, and with a suitable choice
of the matrix R, avoid a solution with aggressive inputs.
The weighted cost on the time horizon Tp is to achieve
a minimum time solution. P , Q, and R are weighing
matrices.

4.2 State and Input Bounds

Equations (5) and (6) are the bounds on states and inputs
to take into account limits of the physical system. The
limits on each time point of state and input are xmin,
xmax, umin, and umax. When the LIDAR detects an
obstacle; the input maxima are lowered to Umaxconstrained

.
The value of Umaxconstrained

is selected according to the
robot to maintain safety in the presence of obstacles.

4.3 Path Constraints

Equation (7) is the path constraints. These constraints are
the subregion constraints of equation (2). Without obsta-
cles, no constraint is added to the OCP. From equation (2)
each subregion constraint is given by

Ãi = [Ai 0N×1]xj − bi ≤ 0. (14)

where N is the number of constraints in the subregion,
i = 1, 2, ...,M with M subregions, j = 1, 2, ...,K with K
points in the discretized trajectory, Ai is an N × 2 matrix
of equation (2).

4.4 Input Derivative Constraints

Equation (8) accounts to unmodelled dynamics of actua-
tors. Since real actuators do not change instantaneously
from minimum to maximum value, the constraint∣∣∣∣du(t)

dt

∣∣∣∣ ≤ dUmax (15)

limits the input variation. Umax = [dVrmax
, dVlmax ] is the

vector of maximum derivative values of wheels velocities.

4.5 State Continuity

In order to ensure a continuous transition between phases,
the dynamical equation (4) of phase i−1 needs to have its
final state equal to the initial state of phase i, as stated in
(9).

4.6 Terminal Constraints

Three different terminal constraints will be used depending
on whether the target states are inside the sensor field of
vision or not.

If the target state is not inside the sensor field of vision,
we ensure that the final state of the final phase is near the
border of the field of vision. The following constraint is
added

RLIDAR − δ ≤
∥∥∥ξ(N)(TN )− ξ(1)(T0)

∥∥∥ ≤ RLIDAR, (16)

where ξ(i)(t) =
[
x(i)(t) y(i)(t)

]T
, RLIDAR is the LIDAR

range, and δ is a small value to define the terminal region
near to the end of the sensor field of vision.

If the target state is inside the sensor field of vision, the
following inequalities are used as terminal constraints

xgoal − σ ≤ x(N)(TN ) ≤ xgoal + σ,

ygoal − σ ≤ y(N)(TN ) ≤ ygoal + σ,
(17)

where the terminal region, in this case, is a square of side
size of 2σ with its center on the target position ξgoal.
Equation (18) is added to plan a trajectory without wheels
velocities at the target position.

u(N)(TN ) = 0. (18)

5. RESULTS AND DISCUSSION

5.1 OCP Solution

At each sample time, all optimal control problems (OCPs)
with paths to all openings are solved in parallel, where
the solution with the smallest cost is chosen. The first
control signal of the chosen solution is applied to the
system. Each OCP of equations (3)-(12) is transcribed to
a Nonlinear Programming (NLP) Problem using the direct
method HP-adaptive pseudospectral (Darby et al., 2011)
and solved by the interior point algorithm with a filter line

DOI: 10.17648/sbai-2019-1115562755

http://dx.doi.org/10.17648/sbai-2019-111556


search implemented in IPOPT (Interior Point Optimizer)
(Wächter and Biegler, 2006).

The HP-adaptive pseudospectral is a direct collocation
method with an adaptive mesh refinement scheme to tran-
scribe a continuous-time OCP into an NLP. The method
approximates states and controls with a variable num-
ber of segments of a variable number of polynomial de-
grees. The dynamical equations of the system are trans-
formed into differential-algebraic constraints evaluated at
the Legendre-Gauss-Radau (LGR) points. In each seg-
ment, the states and controls are sampled at the LGR
points using the Lagrange polynomial as an interpolant.
Each segment is evaluated, and if its maximum error
is higher than a tolerance ε, the algorithm may decide
either by dividing into more segments or to augment the
polynomial approximation degree in order to reduce the
maximum error. Once all segments have their maximum
errors below the tolerance, the algorithm finishes.

The transcribed NLP is given by

minimize
x∈RN

f(x)

subject to gL ≤ g(x) ≤ gU
xL ≤ x ≤ xU

(19)

where x is the decision variable vector, g(x) are the
constraints, gU and gL are the upper and lower bounds
on the constraints, and xU and xL are the upper and
lower bounds of decision variables. Equality constraints
are enforced by making upper and lower bounds equal. The
IPOPT is designed to solve large scale NLPs of the form
of (19). IPOPT solves a barrier problem for a fixed value
of Lagrange multipliers µ and iteratively decreases this
value. When µ converges to zero, the Karush-Kuhn-Tucker
(KKT) conditions of the original problem are satisfied.

5.2 Results

Numerical results are obtained using Matlab R2017b and
Simulink software. The nonlinear dynamical model (1) is
simulated in Simulink, and the controller is implemented in
Matlab using the Casadi (Andersson et al., 2018) toolbox
for the formulation of the OCP and for providing exact
derivatives and Hessians by the automatic differentiation
tool. The Matlab Robotics System Toolbox provides a
class to handle 2D maps with software to emulate a 2D
LIDAR and other planar map-related functions.

The optimal convex decomposition algorithm used the
CGAL library (Hert, 2018) implementation of the dynamic
programming decomposition by Greene (1983). The Clip-
per library (Johnson, 2014) was used to provides polygon
offsetting methods. The implemented Rammer-Douglas-
Peucker algorithm was from Ahmadzadeh (2017).

The parameters used in the simulation are described in
Table 1.

Fig. 8, 9, and 10 show the results. Fig. 9 shows the
position, orientation, and their derivatives. The initial
robot orientation in the direction of the target is 90
degrees, and to avoid obstacles, the robot makes turns
with the orientation varying from 60 degrees to 115
degrees, as shown in Fig. 9. Due to the minimum time
cost, a good part of the controls signals is close to the

Table 1. Simulation Parameters.

Parameter Value

R 1 m
σ 0.1 m
δ 5 m

dVRmax , dVLmax 3 m/s2

ε 1
RLIDAR 100 m

wt 0.1
Q diag(1/2002, 1/2002, 1/(4π2))
R diag(1/(29 + 5)2, 1/(29 + 5)2)
P diag([1, 1, 1])

Umax 29 m/s
Umin −5 m/s

Umaxconstrained 9 m/s

maximum constrained value, as shown in Fig 10. Initially,
there is no obstacle in the LIDAR field of vision, and
the control signals are close to 29 m/s. From 0.5 s to
38.5 s obstacles appear and the maximum wheel velocity
is 9 m/s. After 38.5 s obstacles are behind the vehicle
and will not be detected by the LIDAR, therefore the
maximum velocity increases to 29 m/s. Around 40 s, the
target position is inside the LIDAR field of vision, and
the constraint of equation (18) is applied to stop at the
target position. Constraints (8) keeps the controls signals
in a smooth curve towards zero. This constraint prevents
on/off control signals switching between 29 and −5 m/s,
which are likely to occur due to the minimum cost. After
reaching the terminal region at approximately 46.2 s, robot
stops and the inputs are zero.

The 2D trajectory and environment presented in Fig. 8
shows a scene where obstacles are sufficiently close to
needing the reduction of velocity in order to avoid a
collision. The mobile robot moves throughout obstacles
with a safe distance due to the addition of a safety margin,
as described in section 3.3.2.

6. CONCLUSION

This work proposed a multi-phase NMPC control strategy
for a differential wheeled mobile robot in an unknown
environment. The task was completed as fast as possible
and taking into account the energy of states and inputs. A
LIDAR sensor output was processed in order to obtain a
safe area, which is modeled as a polygon. In order to avoid
non-convex constraints and to explore more possible paths,
the safe area was divided into convex polygons, which
compose the phase constraints of the NMPC. Simulation
results showed that it is possible to apply the proposed
NMPC strategy to the mobile robot. Future works will
focus on developing a hardware-in-loop simulation and
implementation in a mobile robot.

REFERENCES

Ahmadzadeh, R. (2017). Ramer-douglas-peucker.
Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., and

Diehl, M. (2018). CasADi – A software framework for
nonlinear optimization and optimal control. Mathemat-
ical Programming Computation.

Darby, C.L., Hager, W.W., and Rao, A.V. (2011). An
hp-adaptive pseudospectral method for solving optimal
control problems. Optimal Control Applications and
Methods, 32(4), 476–502.

DOI: 10.17648/sbai-2019-1115562756

http://dx.doi.org/10.17648/sbai-2019-111556


0 100 200 300 400 500 600 700
y (m)

0

20

40

60

80

100

x
(m

)

Figure 8. The state space trajectory. The initial position is in the green circle and the goal position is in the red circle.

x
(m

)
y

(m
)

ψ
(r

a
d

)

ẋ
(m

/
s)

ẏ
(m

/
s)

ψ̇
(r

a
d

/
s)

100

50

0

10

0

-10

40

20

0

10

0

-10

3

2

1

200

400

600

800

0 20 40

0 20 40

0 20 40 0 20 40

0 20 40

0 20 40

Figure 9. Position, orientation and derivatives.

t (s)

t (s)

V
r

(m
/
s)

V
l

(m
/
s)

Figure 10. Controls Signals

Dijkstra, E.W. (1959). A note on two problems in connex-
ion with graphs. Numerische Mathematik, 1(1), 269–
271.

Drozdova, E., Hopfgarten, S., Lazutkin, E., and Li, P.
(2016). Autonomous driving of a mobile robot using
a combined multiple-shooting and collocation method.
The 9th IFAC Symposium on Intelligent Autonomous
Vehicles (IAV 2016), 49(15), 193–198.

Greene, D.H. (1983). The decomposition of polygons into
convex parts. Computational Geometry, 1, 235–259.

Hert, S. (2018). 2D polygon partitioning. In CGAL User
and Reference Manual. CGAL Editorial Board, 4.13
edition.

Johnson, A. (2014). 2D polygon partition. In Clipper
Library. Angus Johson, 6.1.3 edition.

Karaman, S. and Frazzoli, E. (2011). Sampling-based algo-
rithms for optimal motion planning. The International
Journal of Robotics Research, 30(7), 846–894.

Kavraki, L.E., Svestka, P., Latombe, J.C., and Overmars,
M.H. (1996). Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEEE trans-
actions on Robotics and Automation, 12(4), 566–580.

LaValle, S.M. (1998). Rapidly-exploring random trees: A
new tool for path planning. Citeseer.

Liu, J., Jayakumar, P., Stein, J.L., and Ersal, T. (2017).
Combined speed and steering control in high-speed au-
tonomous ground vehicles for obstacle avoidance using
model predictive control. IEEE Transactions on Vehic-
ular Technology, 66(10), 8746–8763.

Liu, K., Gong, J., and Chen, H. (2018). Vph+ and
mpc combined collision avoidance for unmanned ground
vehicle in unknown environment. arXiv preprint
arXiv:1805.08089.

Ramer, U. (1972). An iterative procedure for the polygonal
approximation of plane curves. Computer Graphics and
Image Processing, 1(3), 244–256.

Stentz, A. (1994). Optimal and efficient path planning for
partially-known environments. In IEEE International
Conference on Robotics and Automation (ICRA), 3310–
3317 vol.4. doi:10.1109/ROBOT.1994.351061.

Vatti, B.R. (1992). A generic solution to polygon clipping.
Communications of the ACM, 35(7), 56–63.

Wächter, A. and Biegler, L.T. (2006). On the imple-
mentation of an interior-point filter line-search algo-
rithm for large-scale nonlinear programming. Math-
ematical Programming, 106(1), 25–57. doi:10.1007/
s10107-004-0559-y.

DOI: 10.17648/sbai-2019-1115562757

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.17648/sbai-2019-111556
http://www.tcpdf.org

