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Abstract
This paper presents a novel set-based model predictive
control for tracking, with the largest domain of attraction.
The formulation - which consists of a single optimization
problem - shows a dual behavior: one operating inside the
maximal controllable set to the feasible equilibrium set,
and the other operating at the N -controllable set to the
same equilibrium set. Based on some finite-time conver-
gence results, global stability of the resulting closed-loop
is proved, while recursive feasibility is ensured for any
change of the set point. The properties and advantages of
the controller have been tested on a simulation model.

1 Introduction
Model Predictive Control (MPC) is a strategy widely used
in industries, due to its ability to deal with multivariable
processes including both, state and input constraints.

A theoretical framework has been developed in the last
two decades, showing that MPC is a control technique ca-
pable to provide asymptotic stability, constraint satisfac-
tion and robustness, based on the solution of an on-line
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tractable optimization problem for both, linear and non-
linear systems ([30, 27, 7]).

Lyapunov theory ([18]) is a suitable framework to
prove asymptotic stability of a system controlled by an
MPC [27]. Different stabilizing formulations appeared
in literature: MPC with terminal equality constraint [26],
where the stability is guaranteed by imposing a terminal
constraint; MPC with terminal cost [5, 23, 15], where sta-
bility is achieved by incorporating into the cost function
a term that penalizes the terminal state; or MPC with ter-
minal inequality constraint [28], which replaces the ter-
minal equality constraint by an inequality one that forces
the terminal state to be in a positive invariant terminal set
containing the origin in its interior.

The stabilizing terminal constraint implicitly imposes
hard restrictions on the state, since only those states that
can be steered in a given number of steps to the termi-
nal region will be properly stabilized. These states de-
termine the so-colled closed-loop domain of attraction,
whose characterization is crucial because it represents a
domain of validity determined by the controller itself,
and not by the system dynamic and constraints. In this
context, any effort to modify the classical MPC formu-
lation to have a larger domain of attraction is remark-
ably beneficial, as it was stated in many seminal works
([17],[19],[22]).
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The most obvious way to enlarge the MPC domain of
attraction is by enlarging the prediction/control horizon.
Although this strategy is valid, it has two major draw-
backs. Firstly, a large increase in the computational cost.
Secondly, it is not unusual that during the operation of the
plant the operating point changes due to potential changes
in the parameters that are involved in the cost function.
The stabilizing design of the MPC may not be valid at the
new set point, and then, the feasibility of the controller
may be lost. Consequently, the controller may fail to track
the desired set point ([1, 4, 9, 20, 29, 31]).

Another approach, tending to enlarge the MPC domain
of attraction in a rather theoretical form, was presented in
[22]. The idea was to substitutes the terminal constraint
by a kind of contractive terminal constraint, which forces
the terminal state to pass form one control invariant set
to another. The proposed method reaches the maximum
domain of attraction (the so-called maximal controllable
set to the equilibrium, which is determined by the system
and the constraints), but the computation of the control
invariant sets, which may be computationally prohibitive,
must be carried out on line every time a change in the set
point occurs.

Regarding the aforementioned loss of feasibility un-
der set point changes, different solutions known as MPC
for Tracking (MPCT), were presented in [25, 9, 24, 1].
These strategies solve the problem of recursive feasibility
by penalizing the distance from the predicted trajectories
to some extra artificial optimization variables, which are
forced to be a feasible equilibrium. This way, not only
the recursive feasibility is ensured for any change of set
points, but also the domain of attraction is enlarged (al-
though it does not necessarily reach the maximum domain
of attraction, for a given prediction horizon).

A different strategy was presented in [13], where a
mode decomposition of the system is exploited by means
of the proper use of slack variables. This way, by con-
trolling separately the stable and unstable modes and by
properly penalizing the slack variables, an enlarged do-
main of attraction is obtained. In [12], following a similar
line, a sequence of disjoints nested control invariant sets
is used to force the system (by minimizing a sequence of
generalized Minkowsky functionals, associated to the se-
quence of sets) to reach a set of state than can be steered
to the set point in a number of steps equal to (or smaller
than) the control horizon. One drawback of the later strat-

egy is, again, the computation of the proposed sequence
of invariant sets. In addition, none of the two aforemen-
tioned strategies reach the maximal domain of attraction,
represented by the maximal controllable set of the system.

In this work we develop a novel MPC that combines
the good properties of the strategies presented in [22]
and [25], i.e. it enlarges the domain of attraction up to the
maximum controllable set for any fixed prediction hori-
zon without loss of feasibility under changes of the set
point. The method consists in a decomposition of the
maximum domain of attraction into a disjoint union of
embedded layers defined by controllable sets of the sys-
tem. The proposed controller shows a dual behavior, but
into an unified formulation. The first one steers the sys-
tem through those layers to reach a proper neighborhood
of the equilibrium set. The second one, analogous to the
classical MPCT, guarantees the asymptotic stability and
recursive feasibility under changes of the set point.

This paper is organized as follows. We set up our nota-
tion in Section 1.1. In Section 2 we present general def-
initions and necessaries results to formulate the proposed
MPC. For the sake of completeness we include in Sec-
tion 3 a brief recall of the MPCT. Section 4 is devoted
to describing in detail the proposed MPC. The proof of
the main results are address in Section 5. Finally, numeri-
cal simulations and conclusions can be found in Section 6
and 7, respectively.

1.1 Notation

We denote with N the sets of integers, N0 := N∪{0} and
Ii := {0, 1, . . . , i}. The euclidean distance between two
points x, y ∈ Rd by ‖x − y‖ := [(x − y)t(x − y)]1/2. If
P is a positive-definite matrix on Rd×d then we define the
quadratic form ‖x− y‖2P := (x− y)tP (x− y).

Let X ⊆ Rd. The open ball with center in x ∈ X and
radius ε > 0 relative to X is given by BX (x, ε) := {y ∈
X : ‖x − y‖ < ε}. Given x ∈ Ω ⊆ X , we say that
x is an interior point of Ω relative to X if the there exist
ε > 0 such that the open ball BX (x, ε) ⊆ Ω. The interior
of Ω relative to X is the set of all interior points and it is
denoted by intX Ω. In caseX = Rd we omit the subscript
in the latter definition, i.e. int Ω := intRd Ω. Finally,
let Ω1 and Ω2 two sets in Rd, we denote the difference
between Ω1 and Ω2 by Ω1 \ Ω2 := {x ∈ Ω1 : x /∈ Ω2}.
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2 Problem statement
In this section, some preliminaries and novel concepts
necessary to develop the main contribution of the work
will be presented.

2.1 Model description
Consider a system described by a linear discrete-time in-
variant model

x(i+ 1) = Ax(i) +Bu(i) (2.1)

where x(i) ∈ X ⊂ Rn is the system state at time i and
u(i) ∈ U ⊂ Rm is the current control at time i, where X
and U are compact convex sets containing the origin. As
usual, we shall assumed that the pair (A,B) is control-
lable, the state is measured at each sampling time.

The set of steady states and inputs of the system (2.1)
is given by

Zs := {(xs, us) ∈ X × U : xs = Axs +Bus}.

Thus, the equilibrium state and input sets are defined as

Xs := projX Zs and Us := projU Zs.

2.2 Definitions and properties
The following definitions introduce the main sets neces-
sary for the formulation of the MPC proposed in Sec-
tion 4. The significance of such definitions comes from
the fact that, to achieve the main properties (i.e., to pre-
serves the feasibility under any modification of the refer-
ence and to exhibit the maximal domain of attraction that
the system allows), the proposed MPC uses a set-based
cost function and constraints.

Definition 2.1 (Control Invariant Set). A set Ω ⊂ X is a
Control Invariant Set (CIS) of system (2.1) if for all x ∈ Ω,
there exists u ∈ U such that Ax+Bu ∈ Ω. Associated to
Ω is the corresponding input set

Ψ(Ω) := {u ∈ U : ∃ x ∈ Ω such that Ax+Bu ∈ Ω}.

Note that the set of steady states Xs is a CIS with its
corresponding input set Ψ(Xs) = Us.

Definition 2.2 (i-Step Controllable Set). Given i ∈ N and
two sets Ω ⊆ X and Ψ ⊆ U , the i-step controllable set
to Ω corresponding to the input set Ψ, of system (2.1), is
given by

Si(Ω,Ψ) := {x0 ∈ X : ∀ j ∈ Ii−1, ∃ uj ∈ Ψ such that

xj+1 = Axj +Buj ∈ X and xi ∈ Ω}.

For convenience, we define S0(Ω,Ψ) := Ω and
S∞(Ω,Ψ) :=

⋃∞
i=0 Si(Ω,Ψ), i.e. the set of admissible

states which can be steered to the set Ω by a finite se-
quence of admissible controls in Ψ.

According to the latter definition, the maximal do-
main of attraction that the constrained system allows, for
any set point x∗ in the equilibrium set Xs, is given by
S∞(Xs,U). Note that this set does not depend on the con-
trol strategy used to ensure the stability of the set point,
but only on the system dynamic and the input and state
constraints.

Now, we are going to define a special type of invariant
sets, which are a central concept of this work.

Definition 2.3 (Contractive CIS). Let Ω ⊂ S∞ :=
S∞(Ω,U) be a CIS. Then Ω is a contractive CIS if for all
x ∈ Ω, there exists u ∈ U such that Ax+Bu ∈ intS∞ Ω.

Note that the above definition is similar to the definition
of a γ-Control Invariant Set 1 (see [6, 2, 14]). Indeed, if
Ω is a γ-control invariant set then for all x ∈ Ω, there
exists u ∈ U such that Ax + Bu ∈ int Ω ⊆ intS∞ Ω.
Hence every γ-control invariant set is a contractive CIS.
However the inverse result is not necessary true. The im-
portance of considering the weakened concept of interior
relative to the set S∞ will be addressed in Remark 2.6 and
Remark 5.2.

The following result shows a geometric property of the
contractive CIS, analogous to the geometric properties of
CIS and γ-CIS presented in [8, Theorem 3.1] and [3,
Property 1] respectively.

Lemma 2.4 (Geometric property of contractive CIS). Let
Ω ⊂ S∞ be a compact and convex contractive CIS of
system (2.1). Then, Ω ⊆ intS∞ S1(Ω,Ψ(Ω)).

1Ω is a γ-Control Invariant Set (γ-CIS) if for x ∈ Ω there exists
u ∈ U such that Ax+Bu ∈ γΩ, for some γ < 1.

3



Proof. It is easy to see that Ω ⊆ S1(Ω,Ψ(Ω)) by the in-
variance property of the set. It remains to show that every
point of Ω is an interior point of S1(Ω,Ψ(Ω)) relative to
S∞. Let x ∈ Ω, since Ω is a contractive CIS, there exists
u ∈ Ψ(Ω) such that Ax + Bu ∈ intS∞ Ω. Then, there
exists ε > 0 such that BS∞(Ax + Bu, ε) ⊆ Ω. Since
Ax + Bu is a continuous function at x from S∞ to S∞,
then there exists δ > 0 such that for all x̃ ∈ BS∞(x, δ) we
have

Ax̃+Bu ∈ BS∞(Ax+Bu, ε) ⊆ Ω.

Hence x̃ ∈ S1(Ω,Ψ(Ω)). Therefore BS∞(x, δ) ⊆
S1(Ω,Ψ(Ω)), i.e. Ω ⊆ intS∞(S1(Ω,Ψ(Ω))).

The next lemma shows that the contractive invariance
property is inheritable for the controllable sets.

Lemma 2.5. Let Ω ⊂ X be a compact and convex con-
tractive CIS of system (2.1). Then for every i ∈ N, the
set Si(Ω,U) is a convex and compact contractive CIS of
system (2.1).

Proof. Since Ω is under the assumptions of Lemma 2.4
and Ψ(Ω) ⊆ U then

Ω ⊆ intS∞ S1(Ω,Ψ(Ω)) ⊆ intS∞ S1(Ω,U).

Hence S1(Ω,U) is a contractive CIS of system (2.1).
By [16] we know that S1(Ω,U) is compact and con-
vex. Therefore S1(Ω,U) is also under the assumptions
of Lemma 2.4. The result follows by induction.

Remark 2.6. The resemblance between definitions of
contractive CIS and γ-CIS could make us wonder the rea-
son to introduce this new type of set. Observe that in
Lemma 2.4 we prove a geometric property of the contrac-
tive CIS analogous to Property 1 in [3] for γ-CIS. How-
ever in this last property it is required that Ω ⊆ intX .
This requirement represents an obstacle in the proof of
Lemma 2.5 when we apply recursively Lemma 2.4 to the
sets Si(Ω,U), because it is usual that for i large enough
the sets Si(Ω,U) collapse in the boundary of the set X
(see Figure 2). Therefore they will not fulfill the hypothe-
sis Si(Ω,U)⊆ intX .

Now, we are going to define a class of sets that allows a
disjoint decomposition of the state space necessary in the
formulation of the propose MPC.

Definition 2.7 (k-Layer Set). Let Ω ⊂ X be a control
invariant set, Ψ ⊆ U an input set and N ∈ N. For
any k ∈ N0 we define the k-Layer Set by LkN (Ω,Ψ) :=
S(k+1)N (Ω,Ψ) \ SkN (Ω,Ψ).

Remark 2.8. In the above definition we ask for Ω to be
an invariant set. This implies that the i-Step Controllable
Sets Si(Ω,Ψ) , i ∈ N0, are nested (see Proposition 7
in [21]). Hence the k-Layer Sets are disjoint (see Fig-
ure 1) and even more

S∞(Ω,Ψ) = SN (Ω,Ψ) ∪
∞⋃
k=1

LkN (Ω,Ψ). (2.2)

Figure 1: The first five layers for the harmonic oscillator
system.

3 MPC for Tracking (MPCT)
The MPC for tracking ([25, 11, 10, 24, 9, 1]) attempts to
track any admissible target steady sate by means of ad-
missible evolutions, with the following ingredients: (i) an
artificial reachable set point in Xs, added as decision vari-
able, (ii) a stage cost that minimizes the deviation of the
predicted trajectory from this artificial steady state, and
(iii) an extra cost, the offset cost function, that penalizes
the deviation between the artificial set point and the real
(desired) set point.

The MPCT cost function has two terms. The first one is
a quadratic cost of the expected tracking error with respect

4



to the artificial steady state and input (xs, us). The second
one is the offset cost function VO(xs, x

∗), that penalizes
the deviation from the artificial steady state xs to the set
point x∗. This cost function is given by

VN (x, x∗;u, xs, us) =

N−1∑
j=0

‖xj − xs‖2Q + ‖uj − us‖2R

+ VO(xs, x
∗), (3.1)

where N is the control horizon, u is a sequence of N
future control inputs, i.e. u = {u0, · · · , uN−1}, xk
is the predicted state of the system at time k given by
xk+1 = Axk + Buk, with x0 = x. The offset cost func-
tion is required to be a convex and positive-definite func-
tion (see [25]). In our case, for simplicity, we will consid-
ered it as a quadratic form VO(xs, x

∗) = ‖xs − x∗‖2T .
In the case of terminal equality constraint, the MPCT

optimization problem PT
N (x, x∗) is given by

min
u,xs,us

VN (x, x∗;u, xs, us) (3.2)

s.t. x0 = x, (3.3)
xj+1 = Axj +Buj , j ∈ IN−1, (3.4)
xj ∈ X , uj ∈ U , j ∈ IN−1, (3.5)
(xs, us) ∈ Zs, (3.6)
xN = xs. (3.7)

Constraints (3.3)–(3.5) force to the predicted trajectory to
be consistent with the dynamic model equations while the
state and input constraints are fulfilled. Constraint (3.6)
ensures that the artificial variable (xs, us) is an admissible
equilibrium point. The terminal equality constraint (3.7)
forces the terminal state to be the artificial state. These
constraints ensure recursive feasibility, stability and en-
largement of the domain of attraction of the resulting con-
troller to SN (Xs,U) 2, avoiding the loss of feasibility in
presence of changes in the set point.

4 The proposed MPC
For a fixed control horizon N ∈ N, we are going to
present a novel stable MPC for tracking that has, for any

2In the traditional MPC the domain of attraction is SN (x∗,U),
which is significantly smaller than SN (Xs,U).

set point in the equilibrium set, x∗ ∈ Xs, the maximal do-
main of attraction, i.e., a domain of attraction given by the
maximum controllable set S∞. From now on, we simplify
the notation of Si(Xs,U) and Li(Xs,U), denoting them
by Si and Li, for any i = 0, 1, . . . ,∞.

Let x ∈ S∞. The following cost function is proposed

VN (x;u,xa,ua, xs) =

N−1∑
j=0

‖xj − xaj ‖2Q + ‖uj − uaj ‖2R

+ VO(xs, x
∗), (4.1)

where, as before, u := {u0, · · · , uN−1} represents a se-
quence of N future control inputs and xj is the predicted
state of the system at time j given by xj+1 = Axj +Buj ,
with x0 = x. The sequence of N state and control
auxiliary variables xa := {xa0 , · · · , xaN−1} and ua :=
{ua0 , · · · , uaN−1}, have the purpose of representing the
distance of the states xj and inputs uj to some sets that
we will define later. Finally, xs represents and artificial
variable in Xs and VO(xs, x

∗) = ‖xs − x∗‖2T .
The controller is derived from the solution of the opti-

mization problem PN (x, x∗) given by

min
u,xa,ua,xs

VN (x;u,xa,ua, xs) (4.2)

s.t. x0 = x, (4.3)
xj+1 = Axj +Buj , (4.4)
xj ∈ X , j ∈ IN−1, (4.5)
uj ∈ U , j ∈ IN−1, (4.6)
xaj ∈ Ωx, j ∈ IN−1, (4.7)

uaj ∈ Ψ(Ωx), j ∈ IN−1, (4.8)

xN ∈ Ωx, (4.9)
xs ∈ Xs, (4.10)

where Ωx is a target set depending on the position of the
initial state x, defined by

Ωx =

{
SkN , x ∈ LkN , with k ≥ 1
{xs}, x ∈ SN ,

(4.11)

and the set Ψ(Ωx) is the corresponding input set to Ωx.
Note that when the system is inside SN we have that Ωx =
{xs}, therefore the corresponding input set is Ψ(Ωx) =
{us}, with us such that xs = Axs +Bus.
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Considering the receding horizon policy, the con-
trol law is given by κMPC(x) = u̇0, where u̇0 is
the first element of the optimal input sequence u̇ =
{u̇0, · · · , u̇N−1}. The optimal cost is defined by

V̇N (x) := VN (x; u̇, ẋa, u̇a, ẋs)

where u̇, ẋa, u̇a, ẋs are the optimal solutions of Problem
PN (x, x∗).

The formulation of problem PN (x, x∗) depends on the
previous offline computation of the controllable sets SkN ,
for all k ∈ N. Since X is a compact set, the sequence Sk

converges (up to a given tolerance) in finite steps to the
set S∞. These sets are computed only once and they are
independent of any change on the set point, because these
controllable sets depend on the entire equilibrium set Xs

and not on x∗.
The following properties show that Problem PN (x, x∗)

presents a dual behavior depending on the position of the
initial state.

Property 4.1. When the current state x belongs to S∞ \
SN , there exists k ≥ 1 such that x ∈ LkN , and the arti-
ficial variable xs does not depend on any other optimiza-
tion variable. Therefore, by optimality, it will be equal to
x∗ ∈ Xs and ‖xs − x∗‖ = 0. Hence the problem to be
solved is equivalent to

min
u

N−1∑
j=0

dQ(xj ,Ωx) + dR(uj ,Ψ(Ωx)) (4.12)

s.t. x0 = x,

xj+1 = Axj +Buj , j ∈ IN−1,
xj ∈ X , j ∈ IN−1,
uj ∈ U , j ∈ IN−1,
xN ∈ Ωx,

with Ωx = SkN , dQ(xj ,Ωx) := min{‖xj−xaj ‖2Q : xaj ∈
Ωx} is a distance from the predicted state xj to the target
set Ωx and dR(uj ,Ψ(Ωx)) := min{‖uj − uaj ‖2R : uaj ∈
Ψ(Ωx)} is a distance from the control uj to the set Ψ(Ωx).

In other words, while the current state does not reach
theN -controllable set, the controller tries to minimize the
distance of the predicted trajectory to the next layer.

Property 4.2. When the controlled system reaches the set
SN , the target set is Ωx = {xs}. Then by constraint (4.9)

xN = xs, by (4.7) xa0 = xa1 = · · · = xaN−1 = xs, and
by (4.8) ua0 = ua1 = · · · = uaN−1 = us, with us such
that xs = Axs + Bus. This way, the MPCT described in
Section 3 is recovered.

5 Asymptotic stability
From now on we consider the following assumption.

Assumption 5.1. The set SN is a contractive CIS.

Remark 5.2. Note that the above assumption is not so
restrictive. For example it is sufficient to have SN ⊆
intS∞ SN+1, even when it is not true that SN ⊆ intSN+1

(see Figure 2 in the example presented in Section 6). In-
deed, if SN ⊆ intS∞ SN+1 then SN is a contractive CIS,
and by Lemma 2.5 all SkN are also contractive CIS, for
any k ≥ 1.

5.1 Preliminaries results
First of all note that the recursive feasibility is an immedi-
ate consequence of the nested property of the controllable
sets Si. However, the proof of attractivity is more subtle
since the optimal cost is not a Lyapunov function in the
entire domain of attraction. In order to prove that the real
trajectory produced by the proposed strategy reaches in a
finite number of steps the set SN , we need first to suppose
the opposite, i.e we need to proceed by contradiction. The
following lemma goes in this direction.

Lemma 5.3. Let x ∈ LkN for some k ≥ 1. Let {x(i)}∞i=0

be the sequence given by the closed-loop system x(i +
1) = Ax(i) + BκMPC(x(i)), with x(0) = x. If x(i) /∈
SkN for all i ∈ N then

dQ(x(i), SkN )→ 0, when i→∞. (5.1)

Proof. Suppose the solution of Problem PN (x(i), x∗) is
given by u̇ = {u̇0, . . . , u̇N−1}, u̇a = {u̇a0 , . . . , u̇aN−1},
ẋa = {ẋa0 , . . . , ẋaN−1}, ẋs = x∗ and the corresponding
optimal state sequence is given by ẋ = {ẋ0, . . . , ẋN},
where ẋ0 = x(i) and ẋN ∈ SkN . The optimal cost is
given by

V̇N (x(i)) =

N−1∑
j=0

‖ẋj − ẋaj ‖2Q + ‖u̇j − u̇aj ‖2R.

6



Since SkN is an invariant set, then there exists û ∈
Ψ(SkN ) such that x̂ = AẋN + Bû ∈ SkN . Then a
feasible solution to problem PN (x(i + 1), x∗) is û =
{u̇1, . . . , u̇N−1, û}, ûa = {u̇a1 , . . . , u̇aN−1, û}, x̂a =
{ẋa1 , . . . , ẋaN−1, ẋN} and x̂s = x∗. The state sequence
associated to the feasible input sequence û is given by
x̂ = {ẋ1, . . . , ẋN , x̂}. Since ẋ1 = x(i+ 1) /∈ SkN then it
is easy to see that ẋ1 ∈ LkN

3. Therefore the feasible cost
corresponding to û, ûa, x̂a and x̂s, is given by

VN (x(i+ 1); û, x̂a, ûa, x̂s) =

N−1∑
j=1

{
‖ẋj − ẋaj ‖2Q

+ ‖u̇j − u̇aj ‖2R
}

+ ‖ẋN − ẋN‖2Q + ‖û− û‖2R︸ ︷︷ ︸
=0

,

which means that

VN (x(i+ 1); û, x̂a, ûa, x̂s)− V̇N (x(i)) = −‖ẋ0 − ẋa0‖2Q
− ‖u̇0 − u̇a0‖2R
≤ −‖ẋ0 − ẋa0‖2Q
= −dQ(x(i), SkN ),

(5.2)

where (5.2) is immediate from Property 4.1. Hence the
optimal cost V̇N (x(i+ 1)) satisfies

V̇N (x(i+ 1))− V̇N (x(i)) ≤ VN (x(i+ 1); û, x̂a, ûa, x̂s)

− V̇N (x(i))

= −dQ(x(i), SkN ), (5.3)

which implies that {V̇N (x(i))}∞i=0 is a positive decreasing
sequence. Thus, V̇N (x(·)) converges and so

V̇N (x(i+ 1))− V̇N (x(i))→ 0

when i → ∞. Therefore, by (5.3), dQ(x(i), SkN ) → 0
when i→∞.

5.2 Main results
The following Lemma shows that, when we are under
the assumptions of Property 4.1, the closed-loop system
steers the current state from one layer to the next one.

3Note that ẋ1 /∈ S(k+2)N , otherwise ẋN it could not reachs the set
SkN in N − 1 steps.

Lemma 5.4 (Stepping through the layers). Let x ∈ LkN

for k ≥ 1. System (2.1) controlled by the implicit law
κMPC(·), provided by problem PN (x, x∗), reaches the
next layer L(k−1)N .

Proof. We proceed by contradiction. Suppose that the se-
quence {x(i)}∞i=0 given by the closed-loop system x(i +
1) = Ax(i) + BκMPC(x(i)), with x(0) = x, does not
reach the next layer L(k−1)N . Then x(i) /∈ SkN , for any
i ∈ N. Therefore, by Lemma 5.3, dQ(x(i), SkN ) → 0,
when i→∞.

Since by Lemma 2.5 SkN is a compact and con-
vex contractive CIS, then by Lemma 2.4 SkN ⊂
intS∞ S1(SkN ,Ψ(SkN )). Hence there exists i0 ∈ N such
that x0 := x(i0) ∈ S1(SkN ,Ψ(SkN )). Therefore there
exists u0 ∈ Ψ(SkN ) such that

x1 = Ax0 +Bu0 ∈ SkN .

From the contractive invariance of SkN there exist
u1, . . . , uN−1 ∈ Ψ(SkN ) such that xj+1 = Axj +Buj ∈
intS∞ SkN ⊂ SkN , for j = 1, . . . , N − 1. Since we are
under the assumptions of Property 4.1, the cost function
for this control sequence is

dQ(x0, SkN ) + dR(u0,Ψ(SkN ))︸ ︷︷ ︸
=0

+

N−1∑
j=1

dQ(xj , SkN ) + dR(uj ,Ψ(SkN ))︸ ︷︷ ︸
=0

= dQ(x0, SkN ),

while any control action that leaves x1 outside SkN pro-
duces a cost grater than dQ(x0, SkN ). Thus, x(i0 + 1) =
Ax(i0) + BκMPC(x(i0)) ∈ SkN , which contradicts the
fact that x(i) /∈ SkN , for all i ∈ N.

Now we have all the ingredients to present and prove
the main result of this work.

Theorem 5.5 (Attractivity in the maximal controllable
set). Let x ∈ S∞. Let {x(i)}∞i=0 be the sequence given by
the closed-loop system x(i+1) = Ax(i)+BκMPC(x(i)),
with x(0) = x. Then

dQ(x(i), x∗)→ 0, when i→∞. (5.4)
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Proof. Since x ∈ S∞ then, by (2.2), x ∈ SN or there
exists k0 ≥ 1 such that x ∈ Lk0N . In the first case
(x ∈ SN ), the problem PN (x, x∗) become the tracking
problem (see Property 4.2). So, the recursive feasibility
and the attractivity of {x∗} can be proved by means of
the same arguments as in [25]. In the second case, the
recursive feasibility can be easily obtained by induction,
noticing that any state in a kN -Layer belongs to the set
S(k+1)N = SN (SkN ), and so, there exists a feasible tra-
jectory which drives the closed-loop to SkN in N steps.
On the other hand, since x ∈ Lk0N we can apply re-
cursively Lemma 5.4 until the current state reaches the
set SN , which means that we are again under the con-
ditions of the first case and, therefore, the attractivity is
proved.

Corollary 5.6 (Asymptotic stability). The set point {x∗}
is asymptotically stable for the closed-loop system con-
trolled by κMPC(·), for all x ∈ S∞.

Proof. Since x∗ ∈ Xs ⊆ SN , our strategy inherits the
local stability for any x ∈ SN from the MPCT, using the
same Lyapunov function (see [25]). Then, the asymptotic
stability is a straightforward consequence of Theorem 5.5.

6 Illustrative Example
In this section some simulations results will be presented
to evaluate the proposed control strategy. First, a detailed
description of the system is made - accounting for the sets
associated to it - and then, the closed-loop simulations
are shown. Finally a performance comparison with other
strategies is made.

6.1 System description and dynamic simu-
lations

In order to show the benefits and the properties of the pro-
posed controller, we consider a constrained sampled dou-
ble integrator:

x(i+ 1) =

[
1 1
0 1

]
x(i) +

[
0 0.5
1 0.5

]
u(i),(6.1)

with the following constraints:

X = {x ∈ R2 : − 5 ≤ x1 ≤ 5; − 1 ≤ x2 ≤ 1},

U = {u ∈ R2 : ‖u‖∞ ≤ 0.05}.

Figure 2 shows the equilibrium set Xs, the controllable
set SN+1, and a sequence of sets SkN , k ∈ N, with a pre-
diction horizon N = 3. Observe that SN ⊂ intS∞ SN+1,
which implies that SN is a contractive CIS (see Re-
mark 5.2). So, the propose MPC will be tested under
the Assumption 5.1. Note also that the maximal domain
of attraction of system (6.1) is reached for k = 7, i.e
S∞ = S7N .

Figure 2: Sequence of controllable sets SkN for k =
1, . . . , 7 and N = 3. Zoom window shows that the set
SN belongs to the interior of SN+1 relative to S∞.

To test the dynamic performance of the closed-loop
system controlled by the proposed MPC, it is considered a
starting point in the farthest layer from the equilibrium set,
x0 = (−4.9; 0.96). Besides, a setpoint change has been
considered. Before the closed-loop system reaches the
initial setpoint x∗i = (−4; 0), the operating point switches
to x∗f = (3.5; 0), at time k = 70. The state space evo-
lution in Figure 3 clearly shows the capability of the pro-
posed controller to drive the closed-loop system toward
the desired setpoint, without loss of feasibility.
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Figure 3: Closed-loop system evolution starting from
x0 = (−4.9; 0.96). For time k ≤ 70 the setpoint is
x∗i = (−4; 0) and it is x∗f = (3.5; 0) for k > 70.

6.2 Performance comparison with other
strategies

In this section, the performance of the proposed MPC is
compared with two other strategies. The comparison will
be performed first with the MPCT proposed in [25], which
solves the problem of loss of feasibility under changes in
the setpoint and enlarges the domain of attraction of the
controller. Then, in a second stage, the proposed MPC
is compared with the MPC presented in [22], which also
exhibits the maximal domain of attraction that the system
allows for any prediction horizon.

In order to properly quantify the performances we pro-
posed the following controller’s index

Φ =
1

Tsim

Tsim∑
k=1

‖x(k)− x∗‖∞ + ‖u(k)− u∗‖∞,

(6.2)
where Tsim represents the total simulation time. Index
Φ penalizes the distance - given by the infinite norm -
between the states and inputs of the closed-loop system
with respect to the given setpoint.

a) The first strategy with which we will compare the
performance of the proposed controller is the MPC for
tracking with a terminal cost function and terminal in-
equality constraint, proposed in [25]. The terminal cost

function of this controller is given by Vf (x − xa) =
‖x− xa‖2P , which is a Lyapunov function for the system
under the local controller. The terminal constraint is given
by (x(N), xa, ua) ∈ Ωa

t , where Ωa
t is the so-called invari-

ant set for tracking, and it is also associated to the local
controller. The local (terminal) controller has been chosen
as the Linear Quadratic Regulator (LQR) with Q = 0.5In
and R = 2Im, and it is given by

KLQR =

[
0.0509 −0.3910
−0.4335 −0.7736

]
. (6.3)

Let Ωt be the projection of Ωa
t onto X , then the domain

of attraction is given by the set of states that can be ad-
missible steered to the set Ωt in N steps, i.e. SN (Ωt,U).

Figure 4 compares the domain of attraction of the
MPCT, SN (Ωt,U), with the domain of attraction of the
proposed MPC, S∞, with prediction horizon N = 3 in
both case. As it can be seen, the domain of attraction for
the proposed MPC is significantly larger than the MPCT
for the selected horizon. Even more, to reach the maxi-
mal domain of attraction with the MPCT, we would need
a prediction horizon of N = 18, i.e. S∞ = S18(Ωt,U),
which would produce a non negligible increase in the
computational cost.

Figure 4: S3(Ωt,U): Domain of attraction of the MPCT,
with prediction horizon N = 3. S∞: Domain of attrac-
tion of the proposed MPC, with the same prediction hori-
zon.
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The numerical comparison between the performance of
both controllers was made by using Index (6.2). To carry
out this comparison, several initial random points were
taken within the set S∞. Each initial point is steered to
the given setpoint by both controllers. The proposed MPC
design in this experiment used a prediction horizon N =
3. The MPCT is not able to control every point of S∞
with N = 3, so it is designing with horizon N = 18. The
average of the Index in every case is shown in Table 1.

Average of Φ
Proposed MPC 2.0480

MPC proposed in [25] 2.0053

Table 1: Performance of the proposed MPC and the
MPCT

As expected, the performance of the proposed con-
troller is not better than the one of the MPCT. In fact, the
better performance of the MPCT is justify by the larger
prediction horizon (N = 18). Anyway, it should be
noted that the performance difference is not significant,
and seems to be a reasonable price to pay to obtain a
meaningful prediction horizon reduction (N = 3).

b) The second strategy selected to compare the perfor-
mance of the proposed controller is the MPC presented
in [22]. The simulations will be made with the second
order unstable linear system presented in the aforemen-
tioned work, i.e.

x(i+ 1) =

[
1.2775 −1.3499

1 0

]
x(i) +

[
0
1

]
u(i),(6.4)

with X = {x ∈ R2 : ‖x‖∞ ≤ 5} and U = {u ∈
R : ‖u‖∞ < 1}. The controllers are designed with

equal parameters: N = 5, Q =

[
1 0
0 1

]
and R = 10.

Figure 5 presents the evolution of the closed-loop sys-
tem controlled by the proposed MPC for the initial point
x0 = (−4.17,−2).

Figure 5: Closed-loop system evolution starting from
x0 = (−4.17;−2) and the setpoint x∗ = (0; 0).

Once again, several initial random points inside S∞
are considered to be controlled and steered to the set-
point x∗ = (0, 0) by both controllers. Table 2 shows that
both controller show a similar performance according to
Index 6.2.

Average of Φ
Proposed MPC 0.6280

MPC proposed in [22] 0.6282

Table 2: Performance of the proposed MPC and the MPC
presented in [22]

Summarizing, in spite of overall strengths of previous
strategies to enlarged the domain of attraction [25, 22],
these did not achieve a single formulation that does not
lose feasibility under changes in the setpoint and reaches
the maximum domain of attraction that the system allows
for any prediction horizon. The present work proposed a
MPC that solves this weakness without having differences
in the performance. Even more, the proposed method
avoids the use of the Invariant Set of Tracking [25] -which
presents difficult computation in certain cases- and stores
considerably less controllable sets than the strategy pro-
posed by [22].
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7 Conclusions

A novel set-based MPC for tracking was presented, which
achieves the maximal domain of attraction that the con-
strained system under control allows for. The formula-
tion consider a fixed (arbitrary) prediction/control hori-
zon and, opposite to other existing strategies, have proved
to be recursively feasible and asymptotically stable under
any possible change of the set point. Furthermore, it pre-
serves the optimizing behavior (i.e., it does not only pass
from one state space region to the next, but also minimizes
a cost function in the path) for every initial condition in
the domain of attraction.

These benefits are achieved by solving a rather simple
on-line, set-based, optimization problem, which depends
on the off-line computation of a sequence of fixed con-
trollable sets (in contrast to what is made, for instance,
in [22], where the sets depend on the set point). The re-
sulting controller have been successfully compared with
other methods, by means of several simulating examples.
Future works include more challenging application exam-
ples and a detailed robust analysis/extension
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[14] A.H. González, A. Ferramosca, G.A. Bustos, J.L.
Marchetti, M. Fiacchini, and D. Odloak. Model
predictive control suitable for closed-loop re-
identification. Systems and Control Letters, 69:23–
33, 2014.

11

http://fondosdigitales.us.es/tesis/autores/1537/


[15] Lars Grüne. Nmpc without terminal constraints. In
proceedings of the IFAC conference on nonlinear
model predictive control, volume 2012, pages 1–13,
2012.

[16] E. C. Kerrigan. Robust Constraint Satisfaction: In-
variant Sets and Predictive Control. PhD thesis,
University of Cambridge, 2000.

[17] E. C. Kerrigan and J. M. Maciejowski. Invariant
sets for constrained discrete-time systems with ap-
plication to feasibility in model predictive control.
In Proceedings of the CDC, 2000.

[18] H. Khalil. Nonlinear Systems. Prentice-Hall, 3 edi-
tion, 2002.

[19] D. Limon. Control Predictivo de sistemas no lin-
eales con restricciones: estabilidad y robustez. PhD
thesis, Universidad de Sevilla, 2002.

[20] D. Limon and T. Alamo. Tracking model predic-
tive control. J. Baillieul and T. Samad Eds. Springer,
2014.
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