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Esta tesis trata el problema del diseño de un controlador predictivo para sistemas carac-
terizados por cambios en el punto de operación. La clásica formulación del controlador
predictivo, para regular el sistema al nuevo punto de operación deseado, garantiza
seguimiento de referencia en caso de sistemas que no estén sujeto a restricciones, pero
no resuelve el problema cuando hay restricciones. En esos casos, un cambio de referen-
cia puede producir una perdida de la factibilidad del problema de optimización por una
de las siguientes causas: (i) la restricción terminal para el nuevo punto de equilibrio
puede no ser un invariante y (ii) la region terminal para el nuevo punto de operación
podría no ser alcanzable en N pasos. Para recuperar la factibilidad, se requeriría el
recálculo del horizonte por lo que un cambio de referencia conllevaría el rediseño on-line
del controlador, lo que no será siempre posible.
En este trabajo de tesis se presenta una nueva formulación de control predictivo que
permite solucionar este problema. Las principales características de esta nueva for-
mulación son: un punto de equilibrio arti�cial considerado como variable de decisión,
un coste que penalice la distancia entre la trayectoria predicha y el punto de equilib-
rio arti�cial, un coste adicional que penalice la distancia entre el punto de equilibrio



arti�cial y el punto de equilibrio deseado, llamado coste de o�set, y una restricción ter-
minal extendida, el conjunto invariante para seguimiento. Este controlador garantiza
estabilidad y factibilidad recursiva para cualquier cambio de referencia. En esta tesis
se demuestra que una adecuada elección del coste de o�set garantiza la propiedad de
la optimalidad local del controlador. Además, se presenta una caracterización de las
regiones en las cuales esta propiedad se cumple.
El coste de o�set juega el papel de un optimizador en tiempo real (RTO) incorporado
en el mismo controlador predictivo. Así, este coste de o�set permite trabajar con plan-
tas no cuadradas, o con puntos de operación no alcanzables. En este ultimo caso, el
controlador lleva el sistema al punto de equilibrio más cercano, en el sentido que se
minimiza el coste de o�set. Además se demuestra que este coste de o�set se puede for-
mular como distancia a un conjunto. Esta formulación hace el controlador predictivo
para tracking propuesto, adecuado también para problemas de control por zonas. En
estos problemas el objetivo no es un punto �jo; es más bien una región dentro de la
cual se desea que las salidas permanezcan. Para este caso, en la tesis se propone un
controlador robusto basado en predicciones nominales y en restricciones contractivas.
En este trabajo se trata también el tema del control de sistemas de gran escala. Estos
sistemas se pueden ver como una serie de unidades operativas, interconectadas entre
ellas. Por lo tanto, esas plantas se pueden dividir en diferentes subsistemas que co-
munican entre ellos por medio de redes de varias naturalezas. El control total de esas
plantas usando controladores centralizados - un solo agente controlando todos los sub-
sistemas - es difícil de realizarse, por un lado por la elevada carga computacional, y por
el otro lado por la difícil organización y el mantenimiento del controlador centralizado.
Por lo tanto, una estrategia de control alternativa es el control distribuido. Se trata de
una estrategia basada en diferentes agentes controlando los diferentes subsistemas, que
pueden o no intercambiar informaciones entre ellos. La diferencia entre las diferentes
estrategias de control predictivo, es la manera de tratar el intercambio de informa-
ciones. En el control distribuido noncooperativo, cada agente toma decisiones sobre
su propio subsistemas considerando solo localmente las informaciones de los otros sub-
sistemas. Las prestaciones de la planta suelen converger a un equilibrio de Nash. Los
controladores distribuidos cooperativo, por otro lado, consideran el efecto de todas las
acciones de control sobre todos los subsistemas de toda la red. Cada agente optimiza
un coste global, como por ejemplo un coste centralizado. Por lo tanto, las prestaciones
de estos controladores convergen a un equilibrio de Pareto, como en el caso central-
izado. En este trabajo de tesis se propone una estrategia de control predictivo para
seguimiento distribuido cooperativo y se demuestra que el controlador lleva el sistema
al óptimo del centralizado.
La tesis toma en consideración también los sistemas nolineales. En particular, el con-
trolador propuesto se extiende al caso de sistemas no lineales y se proponen tres formu-
laciones, respectivamente con restricción terminal de igualdad, restricción terminal de
desigualdad y sin restricción terminal. En particular, para la formulación con restric-



ción de igualdad, se propone un método basado en el modelado LTV de las plantas. La
idea es diseãr un conjunto de controladores locales, cuya región de factibilidad cubra
el entero conjunto de puntos de equilibrio.
Finalmente, el trabajo de tesis trata el problema del diseño de controladores predictivos
con optimalidad económica. Esta formulación considera un funcional de coste basado
en objetivos económicos, en lugar del clásico funcional basado en errores de seguimiento,
y provee mejores prestaciones con respeto al objetivo que los estándar controladores
para seguimiento. En la tesis se presenta un controlador predictivo económico para
objetivos econónmicos cambiantes. Ese controlador es una formulación híbrida entre
el control predictivo para seguimiento y el controlador predictivo económico, dado que
hereda la factibilidad garantizada para cualquier cambio del objetivo del primero, y la
optimalidad con respeto al objetivo del segundo.
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This thesis deals with the problem of designing a model predictive controller (MPC) for
process characterized by changes in their setpoint. The traditional MPC formulation
as a regulation problem guarantees the setpoint tracking when there are no constraints
but may not solve the problem when there are constraints on the plant. In this case,
the change of setpoint may cause a loss of feasibility of the optimization problem,
mainly because of two reasons: (i) the terminal set shifted to the new operating point
may not be an admissible invariant set and (ii) the terminal region at the new setpoint
could be unreachable in N steps. In this case, a re-calculation of an appropriate value
of the prediction horizon is necessary to ensure feasibility, and this would require an
on-line re-design of the controller for each set point, which can be computationally
una�ordable.
In this thesis, a MPC formulation able to overcome this problem is presented. This
formulation is characterized by the use of an arti�cial steady state considered as deci-
sion variable, the use of a cost function which measures the distance of the predicted
trajectory to the arti�cial steady state, an additional cost that penalizes the distance
of the arti�cial steady state to the desired output (the o�set cost function), and an
extended terminal constraint, the invariant set for tracking. The thesis proves that a



suitable choice of the o�set cost function ensures the local optimality property of the
controller. Moreover, the thesis presents a characterization of the region in which this
property is ensured.
The o�set cost function plays the role of a real-time optimizer (RTO) built in the
MPC controller. This o�set cost function can deal with non-square plant, and with
unreachable setpoints. In this case the system is driven to the closest (in the sense the
o�set cost is minimized) admissible steady state. It is also proved that this function
can be formulated as a distance to a set. This formulation makes the MPC for tracking
suitable also for zone control problems, where the desired setpoint is not a �xed-point,
but the output are desired to lie in a set. For this case, a robust MPC for tracking
formulation is also presented. This MPC is based on the calculation of nominal pre-
diction and on the use of restricted constraints.
The thesis also addresses the control problem of large scale systems consisting of many
linked units. These systems can be considered as a number of subsystems connected by
networks of di�erent nature. The overall control of these plants by means of a central-
ized controller - a single agent controlling all subsystems - is di�cult to realize, because
of the high computational burden and the di�culty of managing the interchanges of in-
formation between the single units. Hence, distributed control is an alternative control
strategy; that is, a control strategy based on di�erent agents - instead of a centralized
controller - controlling each subsystems, which may or may not share information. The
di�erence between these distributed control strategies is in the use of this open-loop in-
formation: noncooperative controllers, where each agent makes decisions on the single
subsystem considering the other subsystems information only locally and which make
the plant converge to a Nash equilibrium; cooperative distributed controllers consider
the e�ect of the control actions on all subsystems in the network and makes the system
converge to the Pareto optimum. A cooperative distributed MPC for tracking linear
systems is presented in this thesis. The proposed MPC is able to guarantee recursive
feasibility and convergence to the centralized target.
The thesis also deals with nonlinear systems. In particular, the MPC for tracking is
extended to deal with nonlinear systems and formulated with equality terminal con-
straint, inequality terminal constraint and without terminal constraint. The calculation
of the terminal ingredients, in the case of inequality terminal constraint, is not trivial.
This thesis proposes a method for their calculation, based on an LDI. The idea is to
design a set of local predictive controllers, whose feasible regions cover the entire steady
state manifold.
Finally, the thesis focuses on the topic of economic MPC. This MPC formulation is char-
acterized by considering an economic function as stage cost, providing better optimal
performance with respect to the economic criterion. The thesis presents an economic
MPC for changing economic criteria, which is able to provide the optimality properties
of the economic MPC, and at the same time to ensure feasibility under any change of
the economic criterion, enlarging also the domain of attraction of the controller.
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Chapter 1

Introduction

The aim of this chapter is to describe the motivation and objectives of this thesis and to
introduce the research work done. First of all, the problem of controlling systems characterized
by changes of their operating points is introduced as motivation of this thesis. Then, an
overview of the control strategy used in this work, Model Predictive Control (MPC), is given.
Finally, the issues for which this work proposed a solution, will be presented.

1.1 Motivation of the thesis

In recent years, operation techniques in the process industries has made important progress,
due to the need for production in a safe, clean, and competitive way and satisfying the
necessities of the market, with respect to both demand and quality. Two reasons justify
this fact: on one hand, the need to satisfy the necessities of a market which is even more
diversi�ed because of its social and cultural habits and the need for strict safety controls on
products as well as variety and quality, which all results in a shorter product life cycle. On the
other hand, the need to favor sustainable growth, minimizing both environmental impact and
resource consumption. Both factors contribute to the desire for the most e�cient production
which satis�es requirements and limits imposed on the products. For all this, it is desirable to
look for control techniques which provide control laws that optimize some e�ciency criteria
and guarantee the satisfaction of the limits imposed on the products. Model predictive control
is one of the few techniques which permit this problem to be solved (Camacho and Bordons,
2004).

Typically, in industries, the processes are operated at optimal operation points at which
they should remain in order to maximize their e�ciency. However, we cannot just talk of
just one optimal operating point: processes are in fact characterized by a range of operating
points at which they should be for a time. The selection of a point from this range depends
on the variety of product, economic request or situations in which the plant might be.

The aim of this work is to develop an advanced control strategy for constrained processes
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with changing operating points, that permits e�cient, �exible and integral operation in such
a way that, using the available resources, the security and quality of products are guaranteed.

1.2 Control of plants with changing operating points

The proposed control problem, is characterized by two main aspects, which de�ne the entire
nature of this problem. First of all, the large range of operation of the plant are considered,
and this stresses the nonlinear nature of its dynamics (implicit in the equations associated to
mass, energy and momentum balances) and the uncertainty level (structural and parametric)
associated to its state space representation. Moreover, it is important to remark that this kind
of plant are characterized by complex dynamics, usually de�ned by systems characterized by
coupled algebraic, ordinary di�erential or partial di�erential equations.

The second determining aspect is the presence of constraints. These constraints can
be limits on the manipulated variables variables, or limits on the process variables. They
can derive from the physical limits of the variables or from limits in the plant evolution
zone due to economical, environmental or operational reasons. The presence of constraints
in�uences systems behavior, in particular stressing their nonlinear nature. They can also
cause performance loss and instability (Mayne, 2001).

The traditional way to approach this control problem consists on a multilayer control
structure (Tatjewski, 2008). This structure is in general a hierarchical structure where the
lower level control deals with the regulation of the plant. This task is usually done by PID
or by programmable logic controllers (PLC) connected in a network. The higher level control
is usually a multivariable advanced controller, which determines the input of the lower level
control in order to keep the system at the desired operating point. This operating point is
calculated by a setpoint optimizer - a real time optimizer (RTO) - according to data, economic
criteria, or information coming from the plant. This structure is shown in �gure 1.1. The
task of the high-level controller is to keep the system at the desired operating point. When
the RTO provides a change of the setpoint, the high-level control has to react in order to
move the system to the new operating point. This task is not trivial, due to the changes of
dynamics that may appear at the new setpoint, and to the necessity of guarantee constraints
satisfaction. In order to manage signi�cant changes of the operating point, the high-level
controller is usually designes as a two-layer structure (Becerra et al., 1998): the lower layer
deals with the regulation of the system, while the upper one has the task of adapting the
controller to the new setpoint, that is managing the transitory when the operating point
changes. This scheme is shown in �gure 1.2. Adaptive controllers such as the classic gain
scheduling belong to this scheme. Another kind of adaptive advanced controllers are the so
called reference governors (Gilbert et al., 1994, 1999). The aim of the reference governors
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Figure 1.1: Hierarchical control structure.

is to manage, in a certain way, the references, in order to avoid constraints violation when
the setpoint changes. The design of this kind of controller does not take into account the
e�ciency or the performance of the process. The only aim is to avoid the violation of the
limits. This aspect is discussed in (Bemporad et al., 1997). Reference governors are also
successfully used in case of nonlinear systems (Bemporad, 1998b; Angeli and Mosca, 1999;
Gilbert and Kolmanovsky, 2002).

Model predictive control (Qin and Badgwell, 1997) is one of the most successful advanced
control strategies, due to the nature of its control law, based on the minimization of a con-
strained optimum criterion. In the case of model predictive control, there are a lot of formula-
tions oriented to the management of large transitions. These controllers are able to calculate
the optimal control action on the basis of a performance criterion, allowing signi�cant changes
of the operating point. The stability guarantee is based on a hierarchical structure, like the
one shown in �gure 1.2: the higher sublevel deals with the commutation between the predic-
tive controller and the other controller oriented at the recuperation of the system in case of
loss of feasibility.

Integral control is another way of approaching the problem. In this case, the advanced
control strategy (generally predictive control) is associated to an economical objective. Hence,
some of the optimization tasks move from the setpoint optimizer to the advanced controller,
in order to incorporate the cost associated to the transitions into the operation point determi-
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Figure 1.2: Hierarchical control structure with adaptive higher level.

nation. In (Becerra and Roberts, 1996; Becerra et al., 1997, 1998) a di�erent way to integrate
model predictive control with on-line optimization of economical objectives are considered,
such as the multi-objective control problems in which both the regulation objective and the
economical one are minimized. In (Vesely et al., 1998) a method for complex system steady
state optimization that can be solved by means of algebraic equations, is presented. However,
these works do not provide stability, robustness and convergence studies.

In conclusion, the hierarchical structure guarantees stability and constraint satisfaction but
gives worse performance than integral control due to the independent design of the control
layers. The integral control structures do not provide stability and constraint satisfaction.
Hence, in case of operating points large transition it is necessary the design of a control
strategy which permit the uni�cation of the integral control at only one level, minimizing a
performance index and guaranteeing at the same time constraints satisfaction and stability.

Model predictive control (MPC) is one of the most successful techniques of advanced
control in the process industry (Camacho and Bordons, 2004), because it allows the control of
systems subjected to constraints, minimizing an optimum criterion and guaranteeing stability
and convergence to the equilibrium point (Mayne, 2001; Rawlings and Mayne, 2009). In �gure
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1.3 is shown how the predictive controller replaces the two-layer control structure. Hence, in
this thesis, it is proposed as the strategy to approach the considered problem.
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Figure 1.3: Integral Control Structure.

Model predictive control has been one of the hot topic in the academy in the last years,
and now the control problem and the theoretical framework are well understood (Mayne et
al., 2000; Rawlings and Mayne, 2009; Limon, 2002). Moreover, it has been proved that MPC
is also a powerfull control strategies for the case of robust control problems with constraints
(Mayne et al., 2000; Limon, 2002; De Nicolao et al., 1996; Magni et al., 2001c; Fontes and
Magni, 2003; Limon et al., 2005, 2006a). The stabilizing design of MPC controllers is based
on the calculation of invariant sets (Blanchini, 1999; Bertsekas, 1972).

In the case of linear system with or without uncertainties, there exist e�cient control
strategies which allows to control the plant ensuring stability and constraints satisfaction.
Some techniques in order to simplify the optimization problem allowing its online solution
have been proposed in (Alamo et al., 2005). At the same time, techniques devoted to the
calculation of the explicit solution of the MPC have been presented in (Bemporad et al., 2002;
Jones et al., 2007; Zeilinger et al., 2008; Jones and Morari, 2010).



6 1.3. Model Predictive Control

As for nonlinear systems, the control problem is more complex and requires the solution of a
nonlinear optimization problem. In order to relax the computational burden, conditions for
ensuring stability even in case of suboptimal solutions of the optimization problem, have been
proposed in (Scokaert et al., 1999). Robust nonlinear model predictive control has achieved
great results in the last years (Magni et al., 2001c; Limon et al., 2006a, 2009a), but its high
computational burden makes this problem still open.

1.3 Model Predictive Control

One of the most successful control techniques for constrained systems is model predictive
control (MPC). The main idea of MPC is to use a dynamic model of a system to forecast
system behavior and, based on this prediction, take the best decision (Rawlings and Mayne,
2009). MPC is capable of ensuring an admissible evolution of the system while optimizing the
closed-loop performance measured by a cost function that takes into account the error with
the desired setpoint. The cost function is based on the prediction of the future evolution of
the system by means of the prediction model of the form

x(j + 1) = f(x(j), u(j))

The cost function usually considered is in the form:

VN (x;u) =
N−1∑
j=0

ℓ(x(j), u(j)) + Vf (x(N)),

where u(j) is the future sequence of control action computed at the current sampling time k,
and x(j) is the predicted state at sampling time k, considering that x(0) = x.
The function ℓ(x, u) is known as stage cost, while the cost-to-go Vf (x) is the terminal cost
function.

The best decision is taken by optimizing the cost function: the optimal future sequence u0

of control actions is computed to minimize the predicted cost while satisfying the constraints.
This optimization problem is mathematical programming problem that can be posed as follow:

min
u

VN (x,u)

s.t.

x(0) = x,

x(j + 1) = f(x(j), u(j)),

u(j) ∈ U j = 0, · · · , N − 1

x(j) ∈ X j = 0, · · · , N − 1

x(N) ∈ Ω.
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The additional constraint on the terminal state is added for ensuring stability.

The feedback is achieved by means of the receding horizon technique: the �rst element
of the optimal control sequence u0 is applied to the system and the optimization problem is
re-computed at each sample time. Thus, the control law is given by

h(x) = u0(0;x)

The optimal performance in MPC would be achieved if the whole predicted evolution of the
system would be considered, but this leads to an in�nite-horizon approach that cannot, in
general, be solved. Thus, MPC considers a �nite prediction horizon, which makes the problem
tractable at the expense of the loss of the good properties of the optimal control problem, such
as stability and inherent robustness. To overcome this problem, some additional conditions
must be considered in the controller design (Mayne et al., 2000; Rawlings and Mayne, 2009).

There exist di�erent stabilizing formulations of MPC:

• MPC with terminal equality constraint (Kwon and Pearson, 1977): the stability con-
dition is adding an additional constraint over the state at the end of horizon x(N)

(terminal state) called terminal constraint:

x(N) = x∗s

where x∗s is the desired steady state.

• MPC with terminal cost (Bitmead et al., 1990): the stability condition is adding a new
term to the cost function that penalizes the state at the end of the horizon.

• MPC with inequality terminal constraint (Michalska and Mayne, 1993): The terminal
equality constraint is replaced by a set Ω that has to ful�l certain conditions.

x(N) ∈ Ω

This approach provides a larger domain of attraction and less numerical problems than
the equality constraint approach.

• MPC with terminal cost and constraint (Sznaier and Damborg, 1987): This approach
is the result of the union of the last 2 techniques, adding a terminal cost to the cost
function and using an inequality terminal constraint.

In (Mayne et al., 2000) and (Rawlings and Mayne, 2009) all these formulations are analyzed
and it is established that adding a terminal cost together with a suitable terminal constraint
has resulted to be essential to the stabilizing design. These conditions can be write down as
follows:
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Let Ω be a set in Rn, let Vf (x) be a positive de�nite function, continuous at the origin
and let h(x) be a control law such that,

• for all x ∈ Ω ⊆ X, then f(x, h(x)) ∈ Ω and h(x) ∈ U

• for all x ∈ Ω, we have that

Vf (f(x, h(x))− Vf (x) ≤ −ℓ(x, h(x))

Based on this, the optimal cost can be considered as a Lypaunov function: the invariant
condition on terminal set Ω ensures feasibility of the closed-loop evolution of the system,
while the condition on terminal function Vf (x) guarantees convergence.

1.3.1 MPC and the setpoint changes

Usually, a higher level real time optimizer provides to the process plant a target or desired
setpoint. If this operating point changes then the lower level control law must deal with
this setpoint change. The classic solution is to translate the system to the new steady state
(Muske and Rawlings, 1993). This solution guarantees the setpoint tracking when there are
no constraints but may not solve the problem when the plant has constraints.

If the optimal control law is calculated by means of an in�nite horizon regulator, any
admissible setpoint can be tracked in an admissible way, for the nominal case. However, the
computational e�ort to calculate an in�nite horizon optimal control law is una�ordable due to
the presence of constraints, and hence �nite prediction horizons N are usually considered. In
this case, the change of setpoints can produce a loss of feasibility of the optimization problem,
mainly because the terminal region at the new setpoint could be unreachable in N steps,
which makes the optimization problem unfeasible for not ful�lling the terminal constraint.
Moreover, the terminal set calculated for a certain equilibrium point may not be an invariant
set for the new setpoint. In this case, a re-calculation of an appropriate value of the prediction
horizon is necessary to ensure feasibility. Therefore, this would require an on-line re-design of
the controller for each setpoint, which can be computationally una�ordable.

Example 1.1 Consider a LTI system given by:

A =

[
1 1

0 1

]
, B =

[
0.0 0.5

1.0 0.5

]
, C =

[
1 0

]
The system is constrained to ∥x∥∞ ≤ 5 and ∥u∥∞ ≤ 0.3. Consider also an MPC with
weighting matrices Q = I2 and R = I2.
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In �gure 1.4 the loss of feasibility problem under a setpoint change is illustrated.
Consider that the current state is x0,the current target is r1, the set O∞(r1) is the maximal
invariant set for the system controlled by u = K(x−x1)+u1, (where (x1, u1) is the steady state
and control action for the system at setpoint r1) which is the terminal constraint for an MPC
controller with horizon N = 3; in this case, the domain of attraction of the controller is X3(r1),
drawn in dashed-dotted line. Suppose that the setpoint changes to r2 at a certain sampling
time. The �rst consequence is that set O∞(r1) translated to the steady state corresponding to
r2 is not an admissible invariant set, since the constraint would be clearly violated. This leads
to a loss of feasibility. Consider, then a new controller with invariant set O∞(r1) and domain
of attraction X3(r2), plotted in dashed line. Due to the fact that x0 is not into X3(r2), the
MPC with this horizon is unfeasible. In order to recover feasibility, the prediction horizon
should be enlarged to N = 6.

Figure 1.4: Loss of feasibility of the optimization problem derived from a non-admissible
terminal condition or a short horizon.

This simple example shows how a setpoint change can produce a loss of feasibility derived
from a non-admissible terminal condition or a short horizon.
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1.3.2 MPC and the tracking problem

In order to overcome the loss of feasibility problem several solutions have been proposed: in
(Rossiter et al., 1996; Chisci and Zappa, 2003) an auxiliary controller that is able to recover
feasibility in �nite time is used leading to a switching strategy. The controllers proposed in
(Pannocchia and Rawlings, 2003; Pannocchia, 2004; Pannocchia and Kerrigan, 2005) consider
the change of the setpoint as a disturbance to be rejected; thus, this technique is able to steer
the system to the desired setpoint, but only when the variations of the setpoint are small
enough, providing a conservative solution.

A di�erent approach has been proposed in the context of the reference governors (Gilbert
et al., 1999; Bemporad et al., 1997). This control technique assumes that the system is
robustly stabilized by a local controller, and a nonlinear �ltering of the reference is designed
to ensure the robust satisfaction of the constraints. These controllers ensure robust tracking
without considering the performance of the obtained controller nor the domain of attraction.

The problem of tracking in the case of nonlinear MPC has been considered in many works
in literature. In (Findeisen et al., 2000) a nonlinear predictive control for setpoint families is
presented, which considers a pseudolinearization of the system and a parametrization of the
setpoints. The stability is ensured thanks to a quasi-in�nite nonlinear MPC strategy, but the
solution of the tracking problem is not considered. In (Magni et al., 2001b) an output feedback
receding horizon control algorithm for nonlinear discrete-time systems is presented, which
solves the problem of tracking exogenous signals and asymptotically rejecting disturbances
generated by a properly de�ned exosystem. In (Magni and Scattolini, 2005) an MPC algorithm
for nonlinear systems is proposed, which guarantees local stability and asymptotic tracking of
constant references. This algorithm need the presence of an integrator preliminarily plugged
in front of the system to guarantee the solution of the asymptotic tracking problem. In
(Magni and Scattolini, 2007) an MPC algorithm for continuous-time, possibly non-square
nonlinear systems is presented. The algorithm guarantees the tracking of asymptotically
constant reference signals by means of a control scheme were the integral action is directly
imposed on the error variables rather than on the control moves.

In (Limon et al., 2008a) a novel MPC for tracking is proposed, which is able to lead the
system to any admissible setpoint in an admissible way. The main characteristics of this con-
troller are: an arti�cial steady state considered as a decision variable, a cost that penalizes the
error with the arti�cial steady state, an additional term that penalizes the deviation between
the arti�cial steady state and the target steady state (the so-called o�set cost function) and
an extended terminal constraint, the invariant set for tracking. This controller ensures that
under any change of the steady state target, the closed-loop system maintains the feasibility
of the controller, converging to the target if admissible. The additional ingredients of the
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controller have demonstrated to a�ect the closed-loop performance of the controlled system
(Alvarado, 2007).

1.4 Robustness in Model Predictive Control

It is well known that under mild conditions, MPC is able to ensure some degree of robustness
(Scokaert et al., 1997; De Nicolao et al., 1996; Limon et al., 2002). When the uncertainties are
big enough, a robust design must be accomplished. To this aim, an uncertainty model must
be considered; this is typically considered as an external disturbance acting on the dynamics
in a parametric way or by means of an additive term in the model function.

The traditional way of dealing with uncertainties in MPC is considering all their possible
realizations in the formulation of the optimization problem. In this way, the constraints on
state and input have to be ful�lled in a robust way, that is taking into account all their possible
realizations throughout the predicted evolution of the system. The cost function, hence, can
be based on nominal predictions, or can take into account the uncertainties considering the
worst-case scenario. This is the main idea of the so-called min-max formulation (Fontes and
Magni, 2003; Limon et al., 2006a; Mayne, 2001; Raimondo et al., 2009). Another way to deal
with uncertainties is by adding, in the stage cost, an extra term that penalizes the possible
uncertainties, like in the H∞ formulation (Magni et al., 2001c).

These solutions for the robust problem are conservative solutions, due to the open-loop
prediction that characterize MPC. To this aim, in literature there are lots of work based
proposing a closed-loop formulation (Scokaert and Mayne, 1998; Lee and Yu, 1997; Kerrigan
and Maciejowski, 2004; Mayne et al., 2006). In this formulation, the control problem is based
on the calculation of a sequence of control laws, which however gives a in�nite-dimensional
optimization problem. As a consequence, this solution seems to be only theoretical (Mayne
et al., 2000).
A particular formulation of closed-loop robust MPC, is the one proposed in (Kothare et al.,
1996). In this formulation, the disturbed plant is considered as a convex combination of linear
plants, and hence the control problem consist in �nding a linear control law that stabilizes all
the plants.

A trade-o� solution between the open and the closed-loop formulations is to add a robustly
pre-stabilized plant (Bemporad, 1998a; Chisci et al., 2001). This solution enhances robustness,
while the optimization problem can be cast as a mathematical programming problem similar
to the open-loop formulation. A recent novel robust MPC of this class based on the notion
of a tube of trajectories has been proposed (Langson et al., 2004). Using this notion, an
enhanced tube-based robust MPC controller has been proposed in (Mayne et al., 2005). This
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controller exploits the notion of invariant sets to obtain a robust control law based on nominal
predictions.

Recently, in (Limon et al., 2009a), input-to-state stability (ISS) has been presented as a
uni�ed framework for the analysis of the stabilizing properties of MPC in presence of distur-
bances.

1.5 The zone control problem

In many cases, the optimal economic steady state operating condition is not given by a
point in the output space (�xed set-point), but is a region into which the output should lie
most of the time. In general, based on operational requirements, process outputs can be
classi�ed into two broad categories: (i) set-point controlled, outputs to be controlled at a
desired value, and (ii) set-interval controlled, outputs to be controlled within a desired range.
For instance, production rate and product quality may fall into the �rst category, whereas
process variables, such as level, pressure, and temperature in di�erent units/streams may
fall into the second category. There are many reasons for using set-interval control in real
applications. One reason can be the necessity of let the output lying in a zone, for some
economic reason. Another one may be the presence of too much controlled outputs, and a
few number of manipulated variables to control them. Conceptually, the output intervals
are not output constraints, since they are steady state desired zones that can be transitorily
disregarded, while the (dynamic) constraints must be respected at each time. In addition, the
determination of the output intervals is related to the steady state operability of the process,
and it is not a trivial problem. An important aspect is the compatibility between the available
input set (given by the input constraints) and the desired output set (given by the output
intervals). In (Vinson and Georgakis, 2000) and (Lima and Georgakis, 2008), for instance, an
operability index that quantify how much of the region of the desired outputs can be achieved
using the available inputs, taking into account the expected disturbance set, is de�ned. As a
result a methodology to obtain the tightest possible operable set of achievable output steady
state is derived. Then, the operating control intervals should be subsets of these tightest
intervals. In practice, however, the operators are not usually aware of these maximum zones
and may select control zones that are not fully consistent with the maximum zones and the
operating control zones may be fully or partly unreachable. The MPC controller has to be
robust to this poor selection of the control zones.

From the point of view of the controller, several approaches have been developed to ac-
count for the set-interval control. (Qin and Badgwell, 2003), describes a variety of industrial
controller and mentions that they always provide a zone control option. That paper presents
two ways to implement zone control: 1) de�ning upper and lower soft constraints, and 2) using
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the set-point approximation of soft constraints to implement the upper and lower zone bound-
aries (the DMC-plus algorithm). One of the main problems of these industrial controllers (as
was stated in the same paper) is the lack of nominal stability. A second example of zone
control can be found in (Zanin et al., 2002), where the authors exemplify the application
of this strategy to a FCC system. Although this strategy has shown to have an acceptable
performance, stability cannot be proved, even if an in�nite horizon is used, since the control
system keeps switching from one controller to another throughout the continuous operation of
the process. A third example is the closed-loop stable MPC controller presented in (Gonzalez
and Odloak, 2009). In this approach, the authors develop a controller that considers the zone
control of the system outputs and incorporates steady state economic targets in the control
cost function. Assuming open-loop stable systems, classical stability proofs are extended to
the zone control strategy by considering the output set-points as additional decision variables
of the control problem. Furthermore, a set of slack variables is included into the formulation
to assure both, recursive feasibility of the on-line optimization problem and convergence of
the system inputs to the targets. This controller, however, is formulated for stable open-loop
stable systems, and since it considers a null controller as local controller, it does not achieve
local optimality. An extension of this strategy to the robust case, considering multi-model
uncertainty, was proposed in (González et al., 2009).

1.6 Optimization of process economic performance

As already discussed in section 1.2, the standard structure of all industrial advanced control
systems is characterized by a two-layer structure. The �rst level performs a steady state
optimization, and it is usually called as Real Time Optimizer (RTO). The RTO determines
the optimal setpoints and sends them to the second level, the advanced control systems,
which performs a dynamic optimization. In many control process, MPC is the advances
control formulation chosen for this level (Rawligns and Amrit, 2009).

The issue of this structure are related on the role of the RTO. The real-time optimizations
that this level performs are usually based on the stationary model of the plant. Each sample
time the economic criterion is optimized, in order to achieve the best value of the steady state
variables for the stationary plant. The result if this optimization is passed to the advanced
controller as a setpoint. The problem is that, usually, this setpoint results to be inconsistent
or unreachable with respect to the dynamic layer, and this happens mainly because of the
discrepancies between the stationary model of the RTO and the dynamic model used for
regulation. In (Rao and Rawlings, 1999) the authors propose some methods for solving this
problems and �nding a reachable steady state as close as possible to the unreachable setpoint
provided by the RTO.
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An hot topic in in control literature is nowadays the design economic controllers. This
kind of controllers are de�ned economic because the optimization performed by the RTO is
not a standard steady state optimization based on the dynamic of the system. What the RTO
minimizes is an economical criterion based on some aspects like the demand of production of
the process. Hence, the optimal setpoint calculated by the RTO may not coincide with the
dynamic steady state of the system (Kadam and Marquardt, 2007).

The interest of (Rawligns and Amrit, 2009) is that it pointed out the advantage of using
the advanced control layer - the dynamic MPC lawyer- to perform the economic optimization.
They �rst explore the case of unreachable setpoints and show that sometimes, it is better no to
reach the steady state quickly. They also consider the case of replacing the setpoint objective
function with a cost function minimizing some economic criterion. A stable MPC for the
case of unreachable setpoints is presented in (Rawlings et al., 2008), while in (Würth et al.,
2009) a stable in�nite-horizon (nonlinear) economic controller is presented. Stability using
the standard framework of Lyapunov function is proved in (Diehl et al., 2011) and (Huang et
al., 2011).

1.7 Large scale systems

In the process industries, plants are usually considered as large scale systems, consisting
of linked unit of operations. Therefore, they can be divided into a number of subsystems,
connected by networks of di�erent nature, such as material, energy or information streams
(Stewart et al., 2010). The overall control of these plants by means of a centralized controller -
a single agent controlling all subsystems - is di�cult to realize. The issue is not just a compu-
tational problem. Nowadays, the increased computational power, faster optimization solver,
and speci�c algorithms designed for large scale systems, makes the centralized control task
realizable (Bartlett et al., 2002; Pannocchia et al., 2007). Since each subsystem undertakes
a di�erent task, in order to achieve its optimal economic performance, sometimes it has to
disregard other subsystems information. In some other case, the interchange of information
between subsystem results to be important in order to achieve optimal performance. The real
issue is the organization and the maintenance of centralized controllers. Another common
way to control an overall plant is given by decentralized controller. In this formulation, each
subsystem is controlled independently, without interchange of information between di�erent
subsystems. The information that �ows in the network is usually considered as a disturbance
by each subsystem (Huang et al., 2003; Sandell Jr. et al., 1978; Raimondo et al., 2007a; Magni
and Scattolini, 2006). The drawback of this control formulation is the big loss of information
when the interaction between subsystems are strong (Cui and Jacobsen, 2002).

An hot topic in the control community is nowadays distributed control, that is, a con-
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trol strategy based on di�erent agents - instead of a centralized controller - controlling each
subsystems, which may or may not share information. There are di�erent distributed control
strategies proposed in literature. The di�erence between these distributed control strategies is
in the use of this open-loop information, allowing to de�ne basically to kind of distributed con-
trol formulations: noncooperative controllers and cooperative controllers. In noncooperative
controllers, each agent makes decision on the single subsystem considering the other subsys-
tems information only locally (Camponogara et al., 2002b; Dunbar, 2007). This strategy is
usually referred as noncooperative dynamic game, and the performance of the plant converge
to a Nash equilibrium (Ba³ar and Olsder, 1999). Cooperative distributed controllers on the
other hand, consider the e�ect of all the control actions on all subsystems in the network
(Venkat, 2006; Pannocchia et al., 2009; Stewart et al., 2010). Each controller optimize an
overall plant object function, such as the centralized object. Cooperative control makes the
system converging to the Pareto optimum, that is the centralized performance. Cooperative
control is a form of suboptimal control for the overall plant, and therefore stability is proved
resorting to suboptimal control theory (Stewart et al., 2010; Scokaert et al., 1999).

MPC is one of the most used control structure to cope with distributed control (Rawlings
and Mayne, 2009, Chapter 6). In (Magni and Scattolini, 2006) an MPC approach for nonlin-
ear systems is proposed, where no information is exchanged between the local controllers. An
input-to-state stability proof for this approach is given in (Raimondo et al., 2007b). In (Liu
et al., 2009, 2008) the authors present a controller for networked nonlinear systems, which is
based on a Lyapunov-based model predictive control. In (Venkat et al., 2007; Stewart et al.,
2010) a cooperative distributed MPC is presented, in which suboptimal input trajectories are
used to stabilize the plant.

1.8 Contributions of this thesis

The objective of this thesis is to study the tracking problem in model predictive control
for linear and nonlinear systems, analyzing in particular some issues like loss of feasibility,
optimality, economic optimality, zone control problems. In particular the MPC for tracking
(Limon et al., 2008a) is studied and extended to some control problems like optimal MPC,
zone control, nonlinear MPC, economic MPC, distributed MPC.
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1.8.1 MPC for tracking with optimal closed-loop performance

In chapter 2, an enhanced formulation of the MPC for tracking (Limon et al., 2008a) is
presented. The proposed controller inherits the main ingredients from the MPC for tracking
(Limon et al., 2008a), which are:

• An arti�cial steady state considered as a decision variable.

• A cost function that penalizes the error with the arti�cial steady state.

• An additional term that penalizes the deviation between the arti�cial steady state and
the target, (the so-called o�set cost function).

• An invariant set for tracking considered as extended terminal constraint.

In this chapter, the MPC for tracking is extended considering a general o�set cost function.
Under some su�cient conditions, this function ensures the local optimality property, letting
the controller achieve optimal closed-loop performance. Moreover, the chapter presents a
characterization of the region of local optimality and a non-expensive way to calculate it.

Besides, this novel formulation allows to consider any set of process variables as target
which makes the controller suitable for non-square plants. Furthermore, the proposed MPC
for tracking deals with the case that the target to track does not ful�l the hard constraints
or this is not an equilibrium point of the linear model. In this case the proposed controller
steers the system to an admissible steady state (di�erent to the target) which minimizes the
o�set cost function. This property means that the o�set cost function plays the same role as
a real time optimizer, which is built in the proposed MPC.

1.8.2 MPC for tracking target sets

In chapter 3 the application of MPC for tracking to the zone control problems, is presented.
The problem is addresses by designing an MPC for tracking a certain set, not a �xed point.
To this aim, the concept of distance to a set is introduced and exploited for the design of the
MPC control law. The proposed controller ensures recursive feasibility and convergence to
the target set for any stabilizable plant. This property holds for any class of convex target
sets and also in the case of time-varying target sets. For the case of polyhedral target sets,
several formulations of the controller are proposed that allows to derive the control law from
the solution of a single quadratic programming problem. One of these formulations allows
also to consider target points and target sets simultaneously in such a way that the controller
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steers the plant to the target point if reachable while it steers the plant to the target set in
the other case.

1.8.3 Robust MPC for tracking based on nominal predictions

Chapter 4 deals with the problem of robust tracking of uncertain linear systems. A robust
MPC based on nominal predictions is presented. The controller presented in (Ferramosca
et al., 2010a) and chapter 3 is extended to cope with the problem of robust tracking of
target sets in presence of additive disturbance. The proposed controller uses the results
presented in (Chisci et al., 2001), in which an MPC based on nominal predictions and restricted
constraints is presented, which ensures stability, robust satisfaction of the constraints and
recursive feasibility. The plant is assumed to be modeled as a linear system with additive
uncertainties con�ned to a bounded known polyhedral set. Under mild assumptions, the
proposed MPC is feasible under any change of the controlled variables target and steers the
uncertain system to (a neighborhood of) the target if this is admissible. If the target is not
admissible, the system is steered to the closest admissible operating point.

1.8.4 Distributed MPC for tracking

In chapter 5 a distributed MPC for tracking control strategy for constrained linear system is
presented. In particular the MPC for tracking presented in chapter 2 is extended to the case
of large scale distributed systems.

Among the di�erent solutions presented in literature, this chapter particularly focuses on
the cooperative formulation for distributed MPC presented in (Rawlings and Mayne, 2009,
Chapter 6), in (Venkat, 2006) and in (Stewart et al., 2010). In this formulation, the players
share a common objective, which can be considered as the overall plant objective. This means
that any player calculates its corresponding inputs by minimizing the same and unique cost
function, by means of an iterative (and hence suboptimal) distributed optimization problem.
Stability is proved by means of suboptimal MPC theory (Scokaert et al., 1999). Convergence
to the centralized optimal target and recursive feasibility after any change of the operation
point, are guaranteed by means of a centralized target problem solution and the use of a
speci�c warm start algorithm.
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1.8.5 MPC for tracking constrained nonlinear systems

Chapter 6 deals with the problem of design a MPC control strategy for tracking in case of
constrained nonlinear systems.

The controller presented in this chapter inherits the main features of the one presented in
chapter 2. Particular interest presents, in this context, the calculation of the terminal ingredi-
ents. Three formulations of the controller are presented, which consider respectively the cases
of terminal equality constraint, terminal inequality constraint and no terminal constraint.

As for the case of terminal inequality constraint, in particular, a method for the calculation
of the terminal constraint is proposed, based on the LTV modeling technique and the partition
method proposed in (Wan and Kothare, 2003a,b). The idea is to design a set of local predictive
controllers, whose feasible regions cover the entire steady state manifold.

1.8.6 Economic MPC for a changing economic criterion

Recently, a new MPC formulation aimed to consider an economic performance stage cost
instead of a tracking error stage cost, has been proposed in (Rawlings et al., 2008; Diehl et
al., 2011). In (Rawlings et al., 2008; Diehl et al., 2011) the authors show that this controller
is stable and asymptotically steers the system to the economically optimal admissible steady
state, and that the controlled system exhibits better performance with respect to the setpoint
than standard target-tracking MPC formulations.

If the economic criterion changes, the economically optimal admissible steady state where
the controller steers the system may change, and the feasibility of the controller may be
lost. In chapter 7, an economic MPC for a changing economic criterion is presented. This
controller result to be an hybrid formulation of both the MPC for tracking (Limon et al.,
2008a; Ferramosca et al., 2009a) and the economic MPC (Rawlings et al., 2008; Diehl et al.,
2011), since it inherits the feasibility guarantee of the MPC for tracking and the optimality
with respect to the setpoint of the economic MPC.
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Chapter 2

MPC for tracking with optimal

closed-loop performance

2.1 Introduction

Most of the MPC stability and feasibility results consider the regulation problem, that is
steering the system to a �xed steady state (typically the origin). It is clear that for a given
non-zero setpoint, a suitable choice of the steady state can be chosen and the problem can
be posed as a regulation problem translating the state and input of the system (Muske and
Rawlings, 1993). However, since the stabilizing choice of the terminal cost and constraints
depends on the desired steady state, when the target operating point changes, the feasibility of
the controller may be lost and the controller fails to track the reference (Rossiter et al., 1996;
Bemporad et al., 1997; Pannocchia and Kerrigan, 2005; Alvarado, 2007), thus requiring to
re-design the MPC at each change of the reference. The computational burden that the design
of a stabilizing MPC requires may make this approach not viable. For such case, the steady
state target can be determined by solving an optimization problem that determines the steady
state and input targets. This target calculation can be formulated as di�erent mathematical
programs for the cases of perfect target tracking or non-square systems (Muske, 1997), or by
solving a unique problem for both situations (Rao and Rawlings, 1999). In (Limon et al.,
2008a) an MPC for tracking is proposed, which is able to lead the system to any admissible
setpoint in an admissible way. The main characteristics of this controller are: an arti�cial
steady state is considered as a decision variable, a cost that penalizes the error with the
arti�cial steady state is minimized, an additional term that penalizes the deviation between
the arti�cial steady state and the target steady state is added to the cost function (the
so-called o�set cost function) and an invariant set for tracking is considered as extended
terminal constraint. This controller ensures that under any change of the steady state target,
the closed-loop system maintains the feasibility of the controller and ensures the convergence
to the target if admissible.

However, some problems still remain open in the formulation of the MPC for tracking.
These are mainly two: the potential loss of the optimality property due to the addition
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of the arti�cial steady state together with the proposed cost function and the convergence
of the closed-loop system when the target is not reachable (due to the constraints and/or
inconsistency with the equilibrium point equation). In this chapter, the MPC for tracking is
extended considering a general o�set cost function. Under some mild su�cient conditions, this
function ensures the local optimality property, letting the controller achieve optimal closed-
loop performance.
Besides, this novel formulation allows to consider any set of process variables as target which
makes the controller suitable for non-square plants. Furthermore, the proposed MPC for
tracking deals with the case that the target to track does not ful�l the hard constraints or
this is not an equilibrium point of the linear model. In this case this control law steers the
system to an admissible steady state (di�erent to the target) which minimizes the o�set cost
function. This property means that the o�set cost function plays the same role that the cost
function of a steady state target optimizer which is built in the proposed MPC.

2.2 Problem Description

Let a discrete-time linear system be described by:

x+ = Ax+Bu (2.1)

y = Cx+Du

where x ∈ Rn is the current state of the system, u ∈ Rm is the current input, y ∈ Rp is
the controlled output and x+ is the successor state. The solution of this system for a given
sequence of control inputs u and initial state x is denoted as x(j) = ϕ(j;x,u), j ∈ I≥0, where
x = ϕ(0;x,u). Note that no assumption is considered on the dimension of the states, inputs
and outputs and hence non square systems (namely p > m or p < m) might be considered.

The controlled output is the variable used to de�ne the target to be tracked by the con-
troller. Since no assumption is made on matrices C and D, these variables might be (a linear
combination of) the states, (a linear combination of) the inputs or (a linear combination of)
both.

The state of the system and the control input applied at sampling time k are denoted as
x(k) and u(k) respectively. The system is subject to hard constraints on state and control:

(x(k), u(k)) ∈ Z

for all k ≥ 0. Z ⊂ Rn+m is a compact convex polyhedron containing the origin in its interior.

Assumption 2.1 The pair (A,B) is stabilizable and the state is measured at each sampling
time.



Chapter 2. MPC for tracking with optimal closed-loop performance 23

The problem we consider is the design of an MPC controller κN (x) to track a (possible
time-varying) target output yt. If yt is an admissible steady output (that is, the corresponding
operation point ful�ls the constraints), the closed loop system evolves to this target without
o�set. If yt is not consistent with the linear model considered for predictions, namely, it is
not a possible steady output of system (2.1) or this is not admissible, the closed-loop system
evolves to an admissible steady state which minimizes a given performance index.

2.3 Preliminary results

The MPC for tracking (Limon et al., 2008a; Alvarado, 2007) is capable to ensure feasibility
under any change of setpoint due to the use of three main ingredients: the arti�cial reference,
the so-called o�set cost function and the invariant set for tracking.

In this section, the meaning and the role of these ingredients will be introduced.

2.3.1 Characterization of the steady state of the system

In this work, as in (Limon et al., 2008a), the term arti�cial reference will denote an admissible
equilibrium point of the system, which is used as auxiliary reference to track, due to the
constrained optimal control problem solved at any time instant k.

Consider a given steady output yt. The aim of this section is to derive a characterization
of the steady state and input (xs, us) which provides the desired output (if admissible), i.e.
yt = Cxs +Dus. If yt is not a possible steady output of system (2.1) or it is not admissible,
the steady state of the system is determined by a steady output that is the minimizer of a
certain performance index, the o�set cost function. This function will be introduce in the
next section.

Under assumption 2.1, any steady state and input of system (2.1) associated to yt must
satisfy the following equation:

[
A− In B

C D

][
xs

us

]
=

[
0n,1

yt

]
(2.2)
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Denoting zs = (xs, us) and

E =

[
A− In B

C D

]
, F =

[
0n,p

Ip

]
(2.3)

equation (2.2) can be written as

Ezs = Fyt

In (Limon et al., 2008a) the authors state that the steady state and input (xs, us) of the
system can be parameterized as a linear combination of a vector θ ∈ Rm, that is

(xs, us) = Mθθ (2.4)

where matrix M is such that

[A−InB]Mθ = 0

The steady controlled outputs are given by

yt = Nθθ (2.5)

where Nθ = [C D]Mθ.

The dimension of θ is m, which is the dimension of the subspace of steady states and
inputs that can be parameterized by a minimum number of variables. Hence, equation (2.4)
represents a mapping of (xs, us) and yt onto the subspace of θ. The set of setpoints yt that can
be admissibly reached is the subspace spanned by the columns of Nθ. Then this set depends
on the rank of matrix E. De�ning as r the rank of matrix E and as rp the rank of matrix Nθ,
we have these two cases:

1. If r = n+ p, then rp = p. Hence, the system can be steered to any setpoint yt.

2. If r < n+ p then rp < p. This implies that equation (2.2) has a solution only for those
setpoints yt contained in the linear subspace spanned by the columns of Nθ, and hence
not every reference yt can be reached. The usual way of overcoming this problem is
re-de�ning the system: new controlled variables, yc ∈ Rpc with pc ≤ rp are taken; these
new controlled variables are chosen as a linear combination of the actual outputs, i.e.
yc = Lcy = LcCx+ LcDu. Matrix Lc must be such that the rank of the new matrix

Ec =

[
A− In B

LcC LcD

]

is full row rank, i.e. its rank is n+ pc.
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Since the system is constrained, it should be steered to those steady states that satisfy the
constraints. The set of these admissible steady states and inputs is de�ned as

Zs = {z = (x, u) : z ∈ Z, and (A− In)x+Bu = 0}

Thus, the set of admissible steady states and the set of admissible inputs is de�ned as

Xs = Projx(Zs), Us = Proju(Zs)

respectively. The set of all admissible setpoints is denoted as Ys and it is given by

Ys = {y ∈ Rp : ∃zs = (xs, us) ∈ λZs such that y = Cxs +Dus}

with λ ∈ (0, 1). For a given admissible setpoint yt ∈ Ys, the steady state and input, i.e. zs,
such that the corresponding output is equal to yt is unique if and only if the rank of E is
equal to n +m. If the rank of E is less than n +m, then there exists in�nite steady states
and inputs zs such that the associated output is equal to yt.

2.3.2 The o�set cost function

In this section the o�set cost function and its role in the MPC for tracking are presented.

In the MPC for tracking (Limon et al., 2008a; Alvarado, 2007), in order to ensure the
feasibility of the problem for any desired setpoint, an arti�cial steady augmented state zs =

(xs, us) = Mθθ is introduced as a decision variable in the minimization of the performance
index. This means that, at any time k the controller �nds an optimum steady state (xs, us)

to which the system can converge maintaining the feasibility of the problem. Convergence to
the desired setpoint is ensured by adding a term VO = ∥θ − θt∥2T in the cost function (o�set
cost) that penalizes the deviation between the desired steady state (θt) and the arti�cial one
(θ).

In this work, a new formulation of the o�set cost function is used. For reason that will be
clear in the following of this dissertation, the formulation of VO(.) as a square of a norm has
been changed in a general convex o�set cost function. As it will be demonstrated later on,
under mild assumptions, this function provides signi�cant properties to the controlled system.

2.3.3 Calculation of the invariant set for tracking

In this section, the calculation of the terminal ingredients of the MPC for tracking (Limon et
al., 2008a; Alvarado, 2007), the invariant set for tracking, is presented.



26 2.3. Preliminary results

Consider the following controller

u = K(x− xs) + us, (2.6)

where (xs, us) is a desired steady state. It is well known that if the controller gain K stabilize
the closed-loop system, that is A+BK has all its eigenvalues inside the unit circle, then the
system is steered to the desired steady state. Since the system is constrained, this controller
leads to an admissible evolution of the system only in a neighborhood of the steady state.

Substituting (2.4) in (2.6), it results that

u = Kx+ [−K Im]

[
xs

us

]
= Kx+ [−K Im]Mθθ

= Kx+ Lθ

where L = [−K Im]Mθ ∈ Rm×m. Consider the augmented state xa = (x, θ), then the
closed-loop augmented system can be de�ned by the following equation[

x

θ

]+
=

[
A+BK BL

0 Inθ

][
x

θ

]
(2.7)

that is, x+a = Aaxa.

De�ne the following convex polyhedron for a given λ ∈ (0, 1)

Xa
λ = {xa = (x, θ) : z = (x,Kx+ Lθ) ∈ Z, zs = Mθθ ∈ λZ}

It is clear that the set of constraints for system (2.7) is Xa = Xa
λ=1. That is, both (x, u) =

(x,Kx+ Lθ) and (xs, us) = Mθθ must belong to Z.

We say that a set Ωa
t is an admissible invariant set for tracking, for system (2.7) constrained

to Xa, if ∀xa ∈ Ωa
t , then Aaxa ∈ Ωa

t and Ωa
t ⊆ Xa. By de�nition, the maximal admissible

invariant set for tracking is given by:

Oa
∞ = {xa : Ai

axa ∈ Xa,∀i ≥ 0}

Due to the unitary eigenvalues of Aa, this set might be not �nitely determined, i.e., described
by a �nite set of constraints (Gilbert and Tan, 1991). Hence, consider the maximal admissible
invariant set for tracking evaluated using Xa

λ as constraint set, which is given by

Oa
∞,λ = {xa : Ai

axa ∈ Xa
λ,∀i ≥ 0}

Taking into account that the controller given by (2.6) guarantees that (x, u) converges asymp-
totically to (xs, us) and following similar arguments to (Gilbert and Tan, 1991), it can be
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shown that for all λ ∈ (0, 1), Oa
∞,λ is �nitely determined and λOa

∞ ⊂ Oa
∞,λ ⊂ Oa

∞. Notice
that because λ can be chosen arbitrarily close to 1, the obtained invariant set can be made
arbitrarily close to the real maximal invariant set Oa

∞.

In what follows, superscript a denotes that set Ωa
t is de�ned in the extended state, while

no superscript denotes that set Ωt is de�ned in the state vector space x, i.e., Ωt = Projx(Ω
a
t ).

Hereafter O∞(xs) denotes the maximal invariant set of states that can be steered to xs in
an admissible way by the control law (2.6). It is easy to see that the computed polyhedral
set O∞,λ is such that

O∞,λ =
∪

xs∈λXs

O∞(xs)

It is clear that set λXs is contained in O∞,λ.

2.4 Enhanced Formulation of the MPC for tracking

In this section we present a novel formulation of the MPC for tracking which generalizes and
improves the one presented by the authors in (Limon et al., 2008a) and (Alvarado, 2007).
This new formulation maintains the main ingredients of the previous one:

(i) an arti�cial steady state and input is considered as decision variables

(ii) the stage cost penalizes the deviation of the predicted trajectory with the arti�cial
steady conditions

(iii) an o�set cost function is added to penalize the deviation between the arti�cial steady
state and the target setpoint

(iv) the invariant set for tracking is considered as extended terminal constraint.

In this work, this controller is extended to the case of considering a general o�set cost
function VO(·) de�ned as follows:

De�nition 2.2 Let the o�set cost function VO : Rp → R be a convex, positive de�nite and
subdi�erentiable function such that VO(0) = 0 and such that the minimizer of

min
ys∈Ys

VO(ys − yt)

is unique.
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As it will be shown in the next section, this formulation can provide optimal closed-loop
performance to the controller.

Remark 2.3 Notice that a subdi�erentiable function (Boyd and Vandenberghe, 2006) is a
function that admits subgradients. Given a function f , g is a subgradient of f at x if

f(y) ≥ f(x) + g′(y − x) ∀y

Notice also that, the term subdi�erential de�nes the set of all subgradients of f at x and is
noted as ∂f(x). This set is a nonempty closed convex set.

The proposed cost function of the MPC is given by:

VN (x;u, θ) =

N−1∑
j=0

∥x(j)−xs∥2Q+∥u(j)−us∥2R + ∥x(N)−xs∥2P+ VO(ys − yt)

where x(j) denotes the prediction of the state j-samples ahead, the pair (xs, us) = Mθθ is the
arti�cial steady state and input and ys = Nθθ the arti�cial output, all of them parameterized
by θ; yt is the target of the controlled variables. The controller is derived from the solution
of the optimization problem PN (x) given by

V 0
N (x) = min

u,θ
VN (x;u, θ)

s.t. x(0) = x,

x(j + 1) = Ax(j) +Bu(j),

(x(j), u(j)) ∈ Z, j=0, · · · , N−1

(xs, us) = Mθθ,

ys = Nθθ

(x(N), θ) ∈ Ωa
t

Considering the receding horizon policy, the control law is given by

κN (x) = u0(0;x)

Since the set of constraints of PN (x) does not depend on yt, its feasibility region does not
depend on the target operating point yt. Then there exists a polyhedral region XN ⊆ X such
that for all x ∈ XN , PN (x) is feasible. This is the set of initial states that can be admissibly
steered to the projection of Ωa

t onto x in N steps.

Consider the following assumption on the controller parameters:
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Assumption 2.4

1. Let R ∈ Rm×m be a positive de�nite matrix and Q ∈ Rn×n a positive semi-de�nite
matrix such that the pair (Q1/2, A) is observable.

2. Let K ∈ Rm×n be a stabilizing control gain such that (A+ BK) has the eigenvalues in
the unit circle.

3. Let P ∈ Rn×n be a positive de�nite matrix such that:

(A+BK)′P(A+BK)−P=−(Q+K ′RK)

4. Let Ωa
t ⊆ Rn+m be an admissible polyhedral invariant set for tracking for system (2.1)

subject to (2.2), for a given gain K. See 2.3.3 for more details.

It can be considered that Ωa
t contains the set of equilibrium points Ωeq = {(xs, θ) :

(xs, us) = Mθθ, (xs, us) ∈ λZ}. This is not restricting since if this is not the case, the convex
hull of Ωa

t and Ωeq is also an invariant set for tracking that ensures this condition.

The set of admissible steady outputs consistent with the invariant set for tracking Ωa
t is

given by:
{ys = Nθθ : (xs, us) = Mθθ, and (xs, θ) ∈ Ωa

t }

This set is equal to the set of all admissible outputs for system (2.1) subject to (2.2), that
is, Ys.

Taking into account the proposed conditions on the controller parameters, in the following
theorem asymptotic stability and constraints satisfaction of the controlled system are proved.

Theorem 2.5 (Stability) Consider that assumptions 2.1 and 2.4 hold and consider a given
target operation point yt. Then for any feasible initial state x0 ∈ XN , the system controlled by
the proposed MPC controller κN (x) is stable, ful�ls the constraints along the time and, besides

(i) If yt ∈ Ys then the closed-loop system asymptotically converges to a steady state and
input (xt, ut) such that yt = Cxt +Dut.

(ii) In other case, the closed-loop system asymptotically converges to a steady state and input
(x∗s, u

∗
s) and y∗s = Cx∗s +Du∗s where

y∗s = arg min
ys∈Ys

VO(ys − yt)
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Proof: Consider that x ∈ XN at time k, then the optimal cost function is given by V 0
N (x) =

VN (x,u0(x), θ0(x)), where (u0(x), θ0(x)) de�nes the optimal solution of PN (x) and u0(x) =

{u0(0;x), u0(1;x), ..., u0(N −1;x)}. The resultant optimal state sequence associated to u0(x)

is given by x0(x) = {x0(0;x), x0(1;x), ..., x0(N−1;x), x0(N ;x)}, where x0(j;x) = ϕ(j;x,u0(x))

and x0(N ;x) ∈ Ωt.

As standard in MPC (Mayne et al., 2000; Rawlings and Mayne, 2009, Chapter 2), de�ne
the successor state at time k+1, x+ = Ax+Bu0(0;x) and de�ne also the following sequences:

ũ(x)
∆
= [u0(1;x), · · · , u0(N−1;x),K(x0(N ;x)− x0s(x)) + u0s(x)]

θ̃(x)
∆
= θ0(x)

where (x0s, u
0
s) = Mθθ

0. Then, following a similar procedure to (Limon et al., 2008a), it is
proved that (ũ(x), θ̃(x)) is a feasible solution for the optimization problem PN (x+).

The state sequence due to (ũ(x), θ̃(x)) is x̃ = {x0(1;x), x0(2;x), ..., x0(N ;x), x0(N+1;x)},
where x0(N + 1;x) = (A + BK)x0(N ;x) + B(u0s(x) − Kx0s(x)), which is clearly feasible.
Compare now the optimal cost V 0

N (x), with the cost given by (ũ(x), θ̃(x)), ṼN (x+, ũ(x), θ̃(x)).
Taking into account the properties of the feasible nominal trajectories for x+, the condition
(4) of Assumption 2.4 and using standard procedures in MPC (Mayne et al., 2000; Rawlings
and Mayne, 2009, Chapter 2) it is possible to obtain:

ṼN (x+; ũ, θ̃)− V 0
N (x) = −∥x−x0s(x)∥2Q−∥u0(0;x)−u0s(x)∥2R−∥x0(N)−x0s(x)∥2P−VO(ys−yt)

+∥x0(N ;x)−x0s(x)∥2Q+∥K(x0(N ;x)−x0s(x))∥2R
+∥x0(N+1;x)−x0s(x)∥2P+VO(ys−yt)

= −∥x−x0s(x)∥2Q−∥u0(0;x)−u0s(x)∥2R

By optimality, we have that V 0
N (x+) ≤ ṼN (x+; ũ, θ̃) and then:

V 0
N (x+)− V 0

N (x) ≤ −∥x− x0s(x)∥2Q − ∥u0(0;x)− u0s(x)∥2R

Taking into account that V 0
N (x) is a positive de�nite convex function and that V 0

N (x+) −
V 0
N (x) ≤ 0, we have that (x0s, u

0
s) is an stable equilibrium point. Furthermore taking into

account that (Q1/2, A) is observable, it is derived that

lim
k→∞

|x(k)−x0s(x(k))|=0, lim
k→∞

|u(k)−u0s(x(k))|=0

Hence the system converges to an operating point (x0s, u
0
s) = Mθθ

0 such that (x0s, θ
0) ∈ Ωa

t .

Now, it is proved that the system converges to an equilibrium point. Pick an ε > 0, then
there exists a k(ε) such that for all k ≥ k(ε), |x−x0s(x)| < ε and |u0(0;x)−u0s(x)| < ε. Then,
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removing the time dependence for the sake of simplicity, it is inferred that

|x+ − x| = |x+ − x0s(x) + x0s(x)− x|
≤ |x+ − x0s(x)|+ |x0s(x)− x|
= |Ax+Bu0(0;x)−Ax0s(x)−Bu0s(x)|+ |x0s(x)− x|
≤ |A− I||x− x0s(x)|+ |B||u0(0;x)− u0s(x)|
≤ cε

where c = |A−I|+|B|. Therefore, for a given ε > 0, there exists a k(ε) such that |x+−x| ≤ cε.
Hence, the system converges to a steady state x∗s and this is such that x∗s = x0s(x

∗
s) =

Ax∗s +Bu∗s.

The proof will be �nished demonstrating that the equilibrium point (x∗s, u
∗
s) is the min-

imizer of the o�set cost function VO(ys − yt), proving the second assertion of the theorem.
The �rst one is a direct consequence of the latter.

This result is obtained by contradiction. Consider the following set of the optimal solu-
tions:

Γ = {ys : ys = argmin
y∈Ys

VO(y − yt)}

Consider that y∗s ̸∈ Γ. Then there exists a ỹs ∈ Γ, such that VO(ỹs−yt) < VO(y
∗
s −yt). De�ne

θ̃ as a parameter (contained in the projection of Ωa
t onto θ) such that ỹs = Nθθ̃.

In can be proved (Alvarado, 2007) that there exists a λ̂ ∈ [0, 1) such that for every λ ∈ [λ̂, 1),
the parameter θ̂ = λθ∗ + (1 − λ)θ̃ is such that the control law u = Kx + Lθ̂ (with L =

[−K, Im]Mθ) steers the system from x∗s to x̂s ful�lling the constraints.

De�ning as u the sequence of control actions derived from the control law u = K(x− x̂s)+

ûs , it is inferred that (u, θ̂) is a feasible solution for PN (x∗s) (Limon et al., 2008a). Then,
from assumption 2.4,

V 0
N (x∗s) ≤ VN (x∗s;u, ŷs)

=
N−1∑
i=0

∥x(i)−x̂s∥2(Q+K′RK)︷ ︸︸ ︷
∥x(i)− x̂s∥2Q + ∥K(x(i)− x̂s)∥2R +∥x(N)− x̂s∥2P + VO(ŷs − yt)

= ∥x∗s − x̂s∥2P + VO(ŷs − yt)

Then, considering the previous statements:

VN (x∗s, yt;u, ŷs) = ∥x∗s − x̂s∥2P + VO(ŷs − yt)

= ∥θ∗ − θ̂∥2M ′
xPMx

+ VO(ŷs − yt)

= (1− λ)2∥θ∗ − θ̃∥2M ′
xPMx

+ VO(ŷs − yt)
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The partial of VN about λ is:

∂VN

∂λ
= −2(1− λ)∥θ∗ − θ̃∥2M ′

xPMx
+ g′(y∗s − ỹs)

where g′ ∈ ∂VO(ŷs−yt), de�ning ∂VO(ŷs−yt) as the subdi�erential of VO(ŷs−yt). Evaluating
this partial for λ = 1 we obtain that:

∂VN

∂λ

∣∣∣∣
λ=1

= g∗
′
(y∗s − ỹs)

where g∗T ∈ ∂VO(y
∗
s − yt), de�ning ∂VO(y

∗
s − yt) as the subdi�erential of VO(y

∗
s − yt). Taking

into account that VO is a subdi�erentiable function, we can state that

g∗T (y∗s − ỹs) ≥ VO(y
∗
s − yt)− VO(ỹs − yt)

Considering that VO(y
∗
s − yt)− VO(ỹs − yt) > 0, it can be derived that

∂VN

∂λ

∣∣∣∣
λ=1

≥ VO(y
∗
s − yt)− VO(ỹs − yt) > 0

This means that there exists a λ ∈ [λ̂, 1) such that VN (x∗s;u, ŷs) is smaller than the value of
VN (x∗s;u, ŷs) for λ = 1, which equals to V 0

N (x∗s).

This contradicts the optimality of the solution and hence it is proved that (x∗s, u
∗
s) is the

optimal steady state of the system.

Finally, the fact that (x∗s, u
∗
s) is a stable equilibrium point for the closed-loop system is

proved. That is, for any ε > 0 there exists a δ > 0 such that for all |x(0) − x∗s| ≤ δ, then
|x(k) − x∗s| ≤ ε. Notice that the region B = {x : |x(k) − x∗s| ≤ ε} ⊆ XN and this is true
because x∗s ∈ int(XN ).

Hence, de�ne the function W (x, yt) = V 0
N (x, yt)−VO(y

∗
s − yt). Then, W (x∗s, yt) = 0. This

function is such that αW (|x−x∗s|) ≤ W (x, yt) ≤ βW (|x−x∗s|), where αW and βW are suitable
K∞ functions. In fact:

• W (x, yt) ≥ αl(|x − x0s|) + αO(|x0s − x∗s|). This comes from the fact that the stage cost
function is a positive de�nite function and from the de�nition of VO. Then

W (x, yt) ≥ αW (|x− x0s|+ |x0s − x∗s|)
≥ αW (|x− x∗s|)

• Notice that V 0
N (x, yt) ≤ VN (x, y∗s) + VO(y

∗
s − yt). Since V 0

N (x, yt) is continuous, there
exists a K∞ function βW such that VN (x, y∗s) ≤ βW (|x − x∗s|). Hence W (x, yt) ≤
βW (|x− x∗s|).
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Then, αW (|x(k) − x∗s|) ≤ W (x(k), yt) ≤ W (x(0), yt) ≤ βW (|x − x∗s|) and, hence, |x(k) −
x∗s| ≤ α−1

W ◦βW (|x(0)−x∗s|). So, picking δ = β−1
W ◦αW (ε), then |x(k)−x∗s| ≤ α−1

W ◦βW (δ) ≤ ε,
proving the stability of x∗s.

2.5 Properties of the proposed controller

2.5.1 Steady state optimization.

It is not unusual that the output target yt is not contained in Ys. This may happen when
there not exists an admissible operating point which steady output equals to the target or
when the target is not a possible steady output of the system (that is, this is not in the
subspace spanned by the columns of matrix Nθ). To deal with this situation in predictive
controllers, the standard solution is to add an upper level steady state optimizer to decide
the best reachable target of the controller (Rao and Rawlings, 1999).
From the latter theorem it can be clearly seen that in this case, the proposed controller steers
the system to the optimal operating point according to the o�set cost function VO(.). Then
it can be considered that the proposed controller has a steady state optimizer built in and
VO(.) de�nes the function to optimize. See that the only mild assumptions on this function
are to be convex, positive de�nite, subdi�erentiable and zero when the entry is null (to ensure
o�set-free control if yt ∈ Ys).

2.5.2 O�set cost function and stability.

Taking into account theorem 2.5, stability is proved for any o�set cost function satisfying as-
sumption 2.4. Therefore, if this cost function varies with the time, the results of the theorem
still hold.
This property allows as to tune the cost function along the time maintaining the stabilizing
properties of the controller. Besides, this property can be exploited to consider an o�set
cost function which depends on the target, namely VO(yt; ys − yt) de�ning di�erent opti-
mal criterium for the operating point selection depending on the chosen target (the example
illustrates this idea).
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2.5.3 Larger domain of attraction.

For a given prediction horizon, the proposed controller provides a larger region of attraction
than the one of the MPC for regulation. This remarkable property allows to extend the
controllability of the predictive controller to a larger region at expense ofm additional decision
variables. This increment of computational cost is similar to one the derived from incrementing
the prediction horizon by 1. This property makes the proposed controller interesting even for
regulation objectives.
On the other hand, for a given region of initial states, the necessary prediction horizon to
control the system is potentially smaller, which implies a lower computational cost.

2.5.4 Robustness and output feedback

It has been demonstrated that asymptotically stabilizing predictive control laws may exhibit
zero-robustness, that is, any disturbance may make the controller to be unfeasible or the
asymptotic stability property may not hold (Grimm et al., 2004). In this case, taking into
account that the control law is derived from a multiparametric convex problem, the closed-
loop system is input-to-state stable for su�ciently small uncertainties (Limon et al., 2009a).
This property is very interesting for an output feedback formulation (Messina et al., 2005),
since it allows to ensure asymptotic stability for the control law based on the estimated state
using an asymptotically stable observer. A robust formulation of the proposed controller
can be obtained by extending the formulation presented in (Alvarado et al., 2007b) for state
feedback and (Alvarado et al., 2007a) for output feedback. In this case, o�set free control can
be achieved by means of disturbances models (Pannocchia and Kerrigan, 2005) or adding an
outer loop which manages the targets (Alvarado, 2007).

2.5.5 QP formulation.

The optimization problem PN (x) is a convex mathematical programming problem that can be
e�ciently solved. In the case that the o�set cost function VO(ys − yt) is such that the region
{ys : VO(ys − yt) ≤ 0} is polyhedral, then PN (x) can be posed as a quadratic programming
by means of an epigraph formulation.
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2.5.6 Explicit formulation.

The structure of the equivalent optimization problem ensures that the proposed control law
κN (x) is a piecewise a�ne function of (x, yt) that can by explicitly calculated by means of
the existing multiparametric programming tools (Bemporad et al., 2002).

In the following section it is demonstrated that the proposed controller provides a locally
optimal control law.

2.6 Local Optimality

In this section, the local optimality properties of the MPC controllers is presented, and how
the MPC for tracking presented in this chapter is able to provide it.

Consider that system (2.1) is controlled by the control law u = κ(x, yt) to steer the system
to the target yt ∈ Ys. Let θt be the unique parameter such that yt = Nθθt and let (xt, ut)

be given by (xt, ut) = Mθθt. Assume that matrix Nθ is full column rank. Consider also a
quadratic cost function of the closed-loop system evolution when the initial state is x, given
by

V∞(x, yt, κ(·, yt))=
∞∑
j=0

∥x(j)−xt∥2Q + ∥κ(x(j), yt)−ut∥2R

where x(j) = ϕ(j;x, κ(·, yt)) is calculated from the recursion x(i+ 1) = Ax(i) + Bκ(x(i), yt)

for i = 0, · · · , j − 1 with x(0) = x. A control law κ∞(x, yt) is said to be optimal if it is
admissible (namely, the constraints are ful�lled along the closed-loop evolution) and it is
the one which minimizes the cost V∞(x, yt, κ(·, yt)) for all admissible x. It is clear that the
optimal control law (the so-called Linear Quadratic Regulator) is the best control law to be
designed according to the given performance index. The optimal cost function is denoted as
V 0
∞(x, yt) = V∞(x, yt, κ∞(·, yt)). The calculation of the optimal control law κ∞(x, yt) may

be computationally una�ordable for constrained systems, while for unconstrained, it can be
obtained from the solution of a Riccati's equation.

Model predictive controllers can be considered as suboptimal controllers since the cost
function is only minimized for a �nite prediction horizon. The standard MPC control law
to regulate the system to the target yt, κrN (x, yt), is derived from the following optimization
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problem P r
N (x, yt)

V r,0
N (x, yt) = min

u,θ

N−1∑
j=0

∥x(j)−xs∥2Q+∥u(j)−us∥2R + ∥x(N)−xs∥2P (2.8a)

s.t. x(0) = x, (2.8b)

x(j + 1) = Ax(j) +Bu(j), (2.8c)

(x(j), u(j)) ∈ Z, j = 0, · · · , N−1 (2.8d)

(xs, us) = Mθθ, (2.8e)

ys = Nθθ, (2.8f)

(x(N), θ) ∈ Ωa
t (2.8g)

∥ys − yt∥∞ = 0 (2.8h)

This optimization problem is feasible for any x in a polyhedral region denoted as Xr
N (yt).

Under certain assumptions (Mayne et al., 2000), for any feasible initial state x ∈ Xr
N (yt),

the control law κrN (x, yt) steers the system to the target ful�lling the constraints. However,
this control law is suboptimal in the sense that it does not minimizes V∞(x, yt, κ

r
N (·, yt)).

Fortunately, as stated in the following lemma, if the terminal cost function is the optimal cost
of the unconstrained LQR, then the resulting �nite horizon MPC is equal to the constrained
LQR in a neighborhood of the terminal region (Hu and Linnemann, 2002; Bemporad et al.,
2002).

Lemma 2.6 Consider that assumptions 2.1 and 2.4 hold. Consider that the terminal control
gain K is the one of the unconstrained linear quadratic regulator. Let θt be the parameter such
that yt = Nθθt. De�ne the set ΥN (yt) ⊂ Rn as

ΥN (yt) = {x̄ ∈ Rn : (ϕ(N ; x̄, κ∞(·, yt), θt) ∈ Ωw
t,K}

Then for all x ∈ ΥN (yt), V
r,0
N (x, yt) = V 0

∞(x, yt) and κrN (x, yt) = κ∞(x, yt).

This lemma directly stems from (Hu and Linnemann, 2002, Thm. 2).

The proposed MPC for tracking might not ensure this local optimality property under
assumptions of lemma 2.6 due to the arti�cial steady state and input and the functional cost
to minimize. However, as it is demonstrated in the following property, under some conditions
on the o�set cost function VO(·), this property holds.
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Assumption 2.7 Let the o�set cost function VO(.) be de�ned as in 2.2 and such that

α∥y∥ ≤ VO(y) ≤ β∥y∥, ∀y ∈ Ys

where α and β are positive real constants.

Lemma 2.8

Consider that assumptions 2.1, 2.4 and 2.7 hold. Then there exists a α∗ > 0 such that for all
α ≥ α∗:

• The proposed MPC for tracking is equal to the MPC for regulation, that is κN (x, yt) =
κrN (x, yt) and V 0

N (x, yt) = V r,0
N (x, yt) for all x ∈ Xr

N (yt).

• If the terminal control gain K is the one of the unconstrained linear quadratic regula-
tor, then the MPC for tracking control law κN (x, yt) is equal to the optimal control law
κ∞(x, yt) for all x ∈ Υ(yt).

Proof: First, de�ne the following optimization problem Pm
N,α(x, yt;α) as:

V m,0
N,α (x, yt, α) = min

u,θ

N−1∑
j=0

∥x(j)−xs∥2Q+∥u(j)−us∥2R + ∥x(N)−xs∥2P + α∥ys − yt∥1

s.t. x(0) = x,

x(j + 1) = Ax(j) +Bu(j),

(x(j), u(j)) ∈ Z, j = 0, · · · , N−1
(xs, us) = Mθθ̄,

ys = Nθθ̄,

(x(N), θ) ∈ Ωa
t

This optimization problem Pm
N,α(x, yt;α) results from the optimization problem P r

N (x, yt) with
the last constraint posed as an exact penalty function (Luenberger, 1984). Therefore, there
exists a �nite constant α∗ > 0 such that for all α ≥ α∗, V m,0

N,α (x, yt) = V r,0
N (x, yt) for all

x ∈ Xr
N (yt) (Luenberger, 1984; Boyd and Vandenberghe, 2006).

Considering that VO(y) ≤ β∥y∥. Then

V m,0
N,α (x, yt) ≤ V 0

N (x, yt) ≤ V m,0
N,β (x, yt)

Since β ≥ α ≥ α∗, we have that for all x ∈ Xr
N (yt)

V r,0
N (x, yt) ≤ V 0

N (x, yt) ≤ V r,0
N (x, yt)
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and hence V 0
N (x, yt) = V r,0

N (x, yt).

The second claim is derived from lemma 2.6 observing that ΥN (yt) ⊆ Xr
N (yt).

Remark 2.9 In virtue of the well-known result on the exact penalty functions (Luenberger,
1984), the constant α can be chosen such that ∥ν(x, yt)∥1 ≤ α, where ν(x, yt) is the Lagrange
multiplier of the equality constraint ∥ys − yt∥∞ = 0 of the optimization problem P r

N (x, yt).
Since the optimization problem depends on the parameters (x, yt), the value of this Lagrange
multiplier also depends on (x, yt).

Remark 2.10 The local optimality property can be ensured using any norm, thanks to the
property of equivalence of the norms, that is ∃c > 0 such that ∥x∥q ≥ c∥x∥1. Otherwise, the
square of a norm cannot be used. With the ∥.∥2q norm, in fact, there will be always a local
optimality gap for a �nite value of α since ∥.∥2q is a (not exact) penalty function, (Luenberger,
1984). That gap can be reduced by means of a suitable penalization of the o�set cost function,
(Alvarado, 2007).

Remark 2.11 Assumption 2.7 can be easily satis�ed for any function V̂O(.) considering as
o�set cost function VO(y) = max(V̂O(y), α∥y∥) which is a convex function. If Ys is bounded,
the upper bound condition is directly ful�lled.

Some questions arise from this result as how a suitable value of the parameter α can be
determined for all possible set of parameters. Another issue is if there exists a region where
local optimality property holds for a given value of α. These issue are analyzed in the following
section.

2.6.1 Characterization of the region of local optimality

From the previously presented results, it can be seen that this issue can be studied by charac-
terizing the region where the norm of the Lagrange multiplier ν(x, yt) is lower than or equal to
α. Once this region is determined, the open questions on the local optimality can be answered.
The characterization of this region is done by means of results of multiparametric quadratic
programming problems (Bemporad et al., 2002; Jones and Maciejowski, 2006; Morari et al.,
2008).

To this aim, �rstly, notice that the optimization problem P r
N (x, yt) is a multiparametric

problem and the set of parameters (x, yt) such that P r
N (x, yt) is feasible is given by Γ =

{(x, yt) : x ∈ Xr
N (yt)}. It can be proved that this set is a polytope.
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This optimization problem can be casted as a multiparametric quadratic programming
(mp-QP) problem (Bemporad et al., 2002) in the set of the parameters (x, yt) ∈ Γ, which can
be de�ned as:

min
z

1

2
z′Hz

s.t. Gz ≤ W + S1x+ S2yt

Fz = Y + T1x+ T2yt

(2.9)

where

z =

[
u

θ

]
+ J1x+ J2yt (2.10)

with J1 and J2 suitable matrices. Gz ≤ W + S1x + S2yt describes the restrictions (2.8b)-
(2.8g), and Fz = Y +T1x+T2yt is the only equality constraint represented by equation (2.8h).
Notice that H > 0, then the problem is strictly convex.

The Karush-Kuhn-Tucker (KKT) optimality conditions (Boyd and Vandenberghe, 2006)
for this problem are given by:

Hz +G′λ+ F ′ν = 0 (2.11a)

λ(Gz −W − S1x− S2yt) = 0 (2.11b)

λ ≥ 0 (2.11c)

Gz −W − S1x− S2yt ≤ 0 (2.11d)

Fz − Y − T1x− T2yt = 0 (2.11e)

Solving (2.11a) for z and substituting in the other equations, we obtain a new set of
constraints for the Lagrange dual problem associated with the problem (2.9) which depends
on (λ, ν, x, yt). Then the following region:

∆ =

(λ, ν, x, yt) :

∣∣∣∣∣∣∣∣∣∣
λ′(GH−1G′λ+GH−1F ′ν +W + S1x+ S2yt) = 0

λ ≥ 0

−(GH−1G′λ+GH−1F ′ν +W + S1x+ S2yt) ≤ 0

FH−1G′λ+ FH−1F ′ν + Y + T1x+ T2yt = 0

 (2.12)

de�nes the set of (λ, ν, x, yt) which is solution of the KKT conditions. Thus, for any (x, yt) ∈
Proj(x,yt)∆, the solution of the KKT equations is (λ(x, yt), ν(x, yt)) such that

(x, yt, λ(x, yt), ν(x, yt)) ∈ ∆

Notice that Proj(x,yt)∆ is the set of (x, yt) where a feasible solution exists and hence Proj(x,yt)∆ =

Γ and it is polytope (Boyd and Vandenberghe, 2006).

Following the same arguments of (Bemporad et al., 2002), the �nite number of inequal-
ity constraints makes that there exists a �nite combination of possible active constraints.
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Consider the j'th combination and assume that λ̆j and λ̃j denote the Lagrange multipli-
ers vectors set of inactive and active inequality constraints respectively. Let Ğj , W̆ j , S̆j

1,
S̆j
2, and G̃j , W̃ j , S̃j

1, S̃j
2 be the corresponding matrices derived from a suitable partition

of matrices G, W , S1 and S2 for the set of inactive and active constraints. In virtue of
the complementary slackness condition, we have that λ̆j = 0 for inactive constraints and
G̃jH−1G̃′jλ̃j + G̃jH−1F ′ν+ W̃ j + S̃j

1x+ S̃j
2yt = 0 for active constraints. Then, the j'th com-

bination of active constraints remains active for every (x, yt, λ, ν) contained in the following
polyhedral region:

∆j=


(λ, ν, x, yt) : λ=(λ̃j , λ̆j)

∣∣∣∣∣∣∣∣∣∣∣∣

λ̆j = 0

λ̃j ≥ 0, j = 1, ..., N

ĞjH−1F ′ν + W̆ j + S̆1
j
x+ S̆2

j
yt > 0

λ̃j=−(G̃jH−1G̃′j)−1(G̃jH−1F ′ν+W̃ j+S̃1
j
x+S̃2

j
yt)

FH−1G̃′jλ̃j + FH−1F ′ν + Y + T1x+ T2yt = 0


(2.13)

It is clear that, the union of every region∆j of a possible combination of active constraints,
is such that ∆ =

∪
j ∆j and hence ∆ is a polygon.

Using these results, the maximum and the minimum value of ∥ν(x, yt)∥1 for all possible
values of (x, yt) can be computed, that is, the values of αmin and αmax such that for all
(x, yt) ∈ Γ, αmin ≤ ∥ν(x, yt)∥1 ≤ αmax. These are calculated by solving the following
optimization problems:

αmax = max
(x,yt,λ,ν)∈∆

∥ν∥1 = max
j

(
sup

(x,yt,λ,ν)∈∆j

∥ν∥1

)
(2.14)

αmin = min
(x,yt,λ,ν)∈∆

∥ν∥1 = min
j

(
inf

(x,yt,λ,ν)∈∆j

∥ν∥1
)

(2.15)

It is remarkable that each supremum and in�mum can be calculated by solving a set of linear
programming (LP) problems in the closure of ∆j . Besides, since the optimization problem
P r
N (x, yt) is such that the solution of the KKT conditions is unique, then the value of αmax

is �nite.

We are also interested in characterizing the set of (x, yt), Γ(α), such that the norm of the
associate Lagrange multiplier ν(x, yt) is bounded by α, that is:

Γ(α) = {(x, yt) : ∃(λ, ν) s.t. (λ, ν, x, yt) ∈ ∆ and ∥ν∥1 ≤ α}

This region can be characterized by means of the polyhedral partition of ∆. De�ning the set
Γj(α) = {(x, yt) : ∃(λ, ν) s.t. (λ, ν, x, yt) ∈ ∆j and ∥ν∥1 ≤ α}, which is a polyhedron, it can
be seen that Γ(α) is a polygon given by Γ(α) =

∪
j Γj(α). Notice that set Γ(α) is non-empty
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for α > αmin. Moreover if αmin < αa ≤ αb, then for all (x, yt) ∈ Γ(αa), ∥ν(x, yt)∥1 ≤ αa ≤ αb

and hence (x, yt) ∈ Γ(αb). Therefore, Γ(αa) ⊆ Γ(αb).

Resorting on the previously presented results, the following lemma can be derived.

Lemma 2.12

Consider that lemma 2.8 holds. Let αmax and αmin be the solution of (2.14) and (2.15)
respectively, then:

• For all α > αmin, there exists a polygon Γ(α) such that if (x, yt) ∈ Γ(α), then V r
N (x, yt) =

VN (x, yt).

• For all αmin < αa ≤ αb, Γ(αa) ⊆ Γ(αb). That is, Γ(α) grows monotonically with α.

• For all α ≥ αmax, Γ(α) = Proj(x,yt)∆ = Γ.

In the following theorem, the property of local optimality for the MPC for tracking is
stated.

Theorem 2.13 (Local optimality)

Consider that lemma 2.8 and lemma 2.12 hold. De�ne the following region

W(α, yt) = {x ∈ ΥN (yt) : (ϕ(i;x, κN (·, yt)), yt) ∈ Γ(α),∀i ≥ 0}

and let the terminal control gain K be the one of the unconstrained LQR. Then:

1. For all α > αmin, W(α, yt) is a non-empty polygon and it is a positively invariant set
of the controlled system.

2. If αmin < αa ≤ αb, then W(αa, yt) ⊆ W(αb, yt).

3. If α > αmin, x(0) and yt are such that x(0) ∈ Xr
N (yt), then

(a) There exists an instant k̄ such that x(k̄) ∈ W(α, yt) and κN (x(k), yt) = κ∞(x(k), yt),
for all k ≥ k̄.

(b) If α ≥ αmax then κN (x(k), yt) = κrN (x(k), yt) for all k ≥ 0 and there exist an
instant k̄ such that x(k̄) ∈ ΥN (yt) and κN (x(k), yt) = κ∞(x(k), yt) for all k ≥ k̄.

Proof:
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• From lemma 2.6 we have that set ΥN (yt) is an invariant set for the system controlled
by u = κrN (x, yt) and besides, κrN (x, yt) = κ∞(x, yt). Since the control law κrN (x, yt)

is a piece-wise a�ne (PWA) function of (x, yt), the controlled system is PWA and the
region ΥN (yt) is a polygon (Kerrigan, 2000).

On the other hand, set Ξ(α, yt) = {x : (ϕ(i;x, κN (·, yt)), yt) ∈ Γ(α),∀i ≥ 0} is the
maximum invariant set for the controlled system contained in the set {x : (x, yt) ∈ Γ(α)}
and besides in virtue of lemma 2.12 for all x ∈ Ξ(α, yt), κN (x, yt) = κrN (x, yt). The PWA
nature of the control law ensures that Ξ(α, yt) is a polygon.

Finally, noticing that W(α, yt) = ΥN (yt)∩Ξ(α, yt), we infer that W(α, yt) is a positively
invariant polygonal set for the system controlled by κN (x, yt) and for all x ∈ W(α, yt),
κN (x, yt) = κrN (x, yt) = κ∞(x, yt).

• Since αa ≤ αb, Γ(αa) ⊆ Γ(αb). In virtue of the monotonicity of the maximal invariant
set, Ξ(αa, yt) ⊆ Ξ(αb, yt) and this imply that W(αa, yt) ⊆ W(αb, yt).

• If x(0) ∈ Xr
N (yt), then the closed-loop system is asymptotically stable to (xs, us) = Mθθ,

where θ is such that yt = Nθθ. Given that W(α, yt) has a non-empty interior and
xs ∈ W(α, yt) for any α > αmin, there exist a k̄ when x(k̄) ∈ W(α, yt). Due to the
invariance of W(α, yt), x(k) ∈ W(α, yt) for all k ≥ k̄. Taking into account lemmas 2.8
and 2.12, kN (x(k), yt) = k∞(x(k), yt).

• From lemma 2.12, for all α ≥ αmax Γ(α) = Γ, Ξ(α, yt) = Xr
N (yt) and then W(α, yt) =

ΥN (yt). The result is derived from the last proposition.

From this theorem it can be inferred that for every α ≥ αmin, the MPC for tracking
is locally optimal in a certain region. In particular the value of αmin is interesting from a
theoretical point of view, because it is the critical value from which there exists a region of
local optimality. In order to ensure the local optimality property of the standard MPC, one
would like to know the maximal region into which the local optimality applies. This region is
given for any α ≥ αmax. Then, from a practical point of view it is interesting to know αmax,
but this requires the calculation of the partition of the feasibility region of the mp-QP and the
solution of a number of LPs. In the following corollary it is proposed a method to calculate
a value of α ≥ αmin for which the local optimality region is the invariant set for tracking, by
means of a single LP.

Corollary 2.14 Consider that hypotheses of theorem 2.13 hold. Let αΩ be the solution of the
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following LP optimization problem:

αΩ = max
x,θ

∥(FH−1F ′)−1(Y + T1x+ T2yt)∥1 (2.16)

s.t. yt = Nθθ

(x, θ) ∈ Ωa
t

Assume that α ≥ αΩ, then for all x(0) ∈ Xr
N (yt), there exists an instant k̄ such that

V 0
N (x(k), yt) = V 0

∞(x(k), yt) and κN (x(k), yt) = κ∞(x(k), yt), for all k ≥ k̄.

Proof: Assume that no inequality constraint is active, then the Lagrange multiplier λ is zero.
In this case, the KKT conditions are

−GH−1F ′ν −W − S1x− S2yt < 0

−FH−1F ′ν − Y − T1x− T2yt = 0

For any (x, θ) ∈ int(Ωa
t ), the optimal control law is the one of the unconstrained LQR,

that is u = KLQR(x−xs)+us, where (xs, us) = Mθθ and yt = Nθθ, such that (x, u) ∈ int(Z).
This means that no inequality constraint is active. Considering that u = KLQR(x−xs)+us is
the optimal control law of the unconstrained LQR, then for any (x, θ) ∈ int(Ωa

t ), kN (x, yt) =

KLQR(x − xs) + us and x ∈ ΥN (yt). Furthermore, for any (x(k̄), θ) ∈ int(Ωa
t ), (x(k), θ) ∈

int(Ωa
t ) for any k̄ ≥ k.

Hence, for any (x, θ) ∈ int(Ωa
t ), λ(x, yt) = 0, and then ν(x, yt) = −[(FH−1F ′)−1(Y + T1x+

T2yt)]. Moreover, ∥ν(x, yt)∥1 ≤ αΩ, for any (x, θ) ∈ int(Ωa
t ).

Taking into account all this facts, if α ≥ αΩ, then for any x(0) ∈ XN , there exists a k̄ > 0

such that (x(k̄), θ) ∈ int(Ωa
t ), and hence kN (x, yt) is the optimal control law.

2.7 Illustrative example

In this example, the properties of the controller presented in this chapter, are proved in
simulation. The system considered is the four tanks process, introduced in the Appendix A

2.7.0.1 O�set Minimization

The aim of the �rst test is to show the property of o�set minimization of the controller.
The o�set cost function has been chosen as VO = α∥ys − yt∥∞. In the test, �ve references
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have been considered:yt,1 = (0.3, 0.3), yt,2 = (1.25, 1.25), yt,3 = (0.35, 0.8), yt,4 = (1, 0.8) and
yt,5 = (h01, h

0
2). Notice that yt,3 is not an equilibrium output for the system. The initial state

is x0 = (0.65, 0.65, 0.6658, 0.6242). An MPC with N = 3 has been considered. The weighting
matrices have been chosen as Q = I4 and R = 0.01 × I2. Matrix P is the solution of the
Riccati equation and α = 50.
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Figure 2.1: State-space and time evolutions.

The projection of the maximal invariant set for tracking onto y, Ωy, the projection of the
region of attraction onto y, Y3, the set of equilibrium levels Ys and the state-space evolution
of the levels h1 and h2 are shown in �gure 2.1. The time evolutions are shown in �gures 2.2
and 2.3. The reference is depicted in dashed-dotted line, while the arti�cial reference and the
real evolution of the system are depicted respectively in dashed and solid line. As it can be
seen, when the reference is an admissible setpoint, the system can reach it without any o�set.
When the reference changes to an unreachable setpoint, the controller leads the system to the
closest equilibrium point, in the sense that the o�set cost function is minimized.
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Figure 2.2: Evolution of the levels h1 and h2.

2.7.0.2 Local Optimality

To illustrate the property of local optimality, the proposed controller has been compared with
the MPC for tracking with quadratic o�set cost function proposed in (Limon et al., 2008a).
The di�erence of the optimal cost value of these two controllers, V 0

N and V q,0
0 , with the one

of the MPC for regulation, V r,0
0 has been compared. To this aim, the quadratic o�set cost

function has been chosen as ∥ys − yt∥2Tp
with Tp = αI4. The optimal MPC for tracking o�set

cost function has been chosen as a 1-norm, VO = α∥ys−yt∥1. The system has been considered
to be steered to the point y = (h01, h

0
2), with initial condition y0 = (1.25, 1.25). In �gure 2.4

the value V r,0
N − V 0

N versus α is plotted in solid line and the value of V r,0
N − V q,0

N versus α

in dashed line. As it can be seen, V r,0
N − V q,0

N tends to zero asymptotically while V r,0
N − V 0

N

drops to (practically) zero for a certain value of α. This result shows that the optimality
gap can be made arbitrarily small by means of a suitable penalization of the square of the 2
norm, and this value asymptotically converge to zero (Alvarado, 2007), while in the case of
the 1-norm, the di�erence between the optimal value of the MPC for tracking cost function
and the standard MPC for regulation cost function becomes zero. This shows the bene�t of
the new formulation of the MPC for tracking.
Note how the value of V r,0

N −V 0
N drops to practically zero when α = 16. As we said in section

2.6, this happens because the value of α becomes greater than the value of the Lagrange
multiplier of the equality constraint of the regulation problem Pm

N,α(x, yt;α). In this test, the
equality constraint of Pm

N,α(x, yt;α) has been chosen as an ∞-norm, and hence, to obtain an
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Figure 2.3: Evolution of the levels h3 and h4 and �ows qa and qb.

exact penalty function, the o�set cost function of problem PN (x, yt) has been chosen as a
1-norm. To point out this fact, consider that, for this example, the maximum value of the
Lagrange multipliers of the equality constraint of the regulation problem Pm

N,α(x, yt;α), is
αmax = 15.3868. The value of αΩ, calculated by solving problem (2.16), is αΩ = 14.6588. In
the table, the value of V r,0

N −V 0
N in case of di�erent values of the parameter α is presented. Note

how the value seriously decrease when α becomes equals to αmax. So, using the procedure
described in section 2.6, we can determine the value of αmax such that V 0

N (x, yt) = V r,0
N (x, yt).

To de�nitely prove the optimal performances ensured by the proposed controller, the
optimal trajectories from the point y0 = (1.25, 1.25) to the point y = (h01, h

0
2) have been

calculated, for a value of α that varies in the set α = {2, 4, 6, 8, 10, 12, 14, αmax, 18, 20}. In
�gure 2.5 the state-space trajectories and the values of the optimal cost V∞ for α increasing are
shown. See how the trajectories get better and how the value of the optimal cost decreases as
the value of α increases. The optimal trajectory, in solid line, is the one for which α = αmax.
Notice that value of the optimal cost decreases from V∞ = 84.2693 to V∞ = 8.6084 when α

reaches the value of αmax.
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Figure 2.5: State-space trajectories and optimal cost for α varying.
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2.8 Conclusions

In this chapter an enhanced formulation of the MPC for tracking is presented. This formula-
tion generalizes the original one by considering a general convex function as o�set cost. This
o�set cost function allows to consider as target operating points states and inputs not consis-
tent with the prediction model. This case is particularly interesting for non-square plants or
for instance, when the target calculated by means of a non-linear model.
Under some assumptions, it is proved that the proposed controller steers the system to the
target if this is admissible. If not, the controller converges to an admissible steady state opti-
mum according to the o�set cost function. Besides, the closed-loop evolution is also optimal
in the sense that provides the best possible performance index.



Chapter 3

MPC for tracking target sets

3.1 Introduction

In this chapter the so called zone control problems and the application of MPC for tracking to
this kind of problems, is presented. In particular, the concept of distance to a set is introduced
and exploited for the design of the MPC control law.

3.1.1 Set-interval control in processing plants

In modern processing plants, MPC controllers are usually implemented as part of a multilevel
hierarchy of control functions (Kassmann et al., 2000; Tatjewski, 2008). At the intermediary
levels of this control structure, the process unit optimizer computes an optimal economic
steady state and passes this information to the MPC in a lower level for implementation. The
role of the MPC is then to drive the plant to the most pro�table operating condition, ful�lling
the constraints and minimizing the dynamic error along the path. In many cases, however,
the optimal economic steady state operating condition is not given by a point in the output
space (�xed set-point), but is a region into which the output should lie most of the time. In
general, based on operational requirements, process outputs can be classi�ed into two broad
categories: 1) set-point controlled, outputs to be controlled at a desired value, and 2) set-
interval controlled, outputs to be controlled within a desired range. For instance, production
rate and product quality may fall into the �rst category, whereas process variables, such as
level, pressure, and temperature in di�erent units/streams may fall into the second category.
The reasons for using set-interval control in real applications may be several, and they are
all related to the process degrees of freedom: 1) In some problems some inputs of a square
system without degrees of freedom are desired to be steered to a speci�c steady state values
(input set-points), and then to account for the lack of degrees of freedom, the use of output
zone control arises naturally (for example, it could be desirable, by economic reasons, to drive
feed-rate to its maximum). 2) In another class of problems, there are highly correlated outputs
to be controlled, and there are not enough inputs to control them independently. Controlling



50 3.1. Introduction

the correlated outputs within zones or ranges is one solution for this kind of problem (for
instance, controlling the dense and dilute phase temperatures on an FCC regenerator). 3) A
third important class of zone control problems relates to using the surge capacity of tanks to
smooth out the operation of a unit. In this case, it is desirable to let the level of the tank �oat
between limits, as necessary, to bu�er disturbances between sections of a plant. Conceptually,
the output intervals are not output constraints, since they are steady state desired zones that
can be transitorily disregarded, while the (dynamic) constraints must be respected at each
time. In addition, the determination of the output intervals is related to the steady state
operability of the process, and it is not a trivial problem. A special care should be taken
about the compatibility between the available input set (given by the input constraints) and
the desired output set (given by the output intervals). In (Vinson and Georgakis, 2000) and
(Lima and Georgakis, 2008), for instance, an operability index that quantify how much of the
region of the desired outputs can be achieved using the available inputs, taking into account
the expected disturbance set, is de�ned. As a result a methodology to obtain the tightest
possible operable set of achievable output steady state is derived. Then, the operating control
intervals should be subsets of these tightest intervals. In practice, however, the operators are
not usually aware of these maximum zones and may select control zones that are not fully
consistent with the maximum zones and the operating control zones may be fully or partly
unreachable. The MPC controller has to be robust to this poor selection of the control zones.

3.1.2 Review of MPC controllers for set-interval control

Set-interval control has been accounted in many controllers in literature. In (Qin and Badg-
well, 2003), it is mentioned that industrial controllers always provide a zone control option
and two ways are proposed to implement zone control: i) de�ning upper and lower soft con-
straints; ii) using the set-point approximation of soft constraints to implement the upper and
lower zone boundaries (the DMC-plus algorithm). The drawback of these industrial con-
trollers is the lack of nominal stability. Another example of zone is presented in (Zanin et al.,
2002). The great problem of the proposed strategy is that stability cannot be proved, even
if an in�nite horizon is used, since the control system keeps switching from one controller to
another throughout the continuous operation of the process. A third example can be found
in (Gonzalez and Odloak, 2009), where a closed loop stable MPC controller is presented. In
this approach, the authors develop a controller that considers the zone control of the system
outputs and incorporates steady state economic targets in the control cost function. The
standard stability proofs are extended to the zone control strategy by considering the output
set-points as additional decision variables of the control problem. Furthermore, a set of slack
variables is included into the formulation to assure both, recursive feasibility of the on-line op-
timization problem and convergence of the system inputs to the targets. An extension of this
strategy to the robust case, considering multi-model uncertainty, was proposed in (González
et al., 2009).
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From a theoretic point of view, the control objective of the zone control problem can be
seen as a target set (in the output space) instead of a target point, since inside the zones there
are no preferences between one point and another. In what follows, the controller presented
in chapter 2, is extended to deal with the zone control, generalizing the conditions of the
o�set cost function to use a distance to a convex target set. This controller ensures recursive
feasibility and convergence to the target set for any stabilizable plant. This property holds
for any class of convex target sets and also in the case of time-varying target sets. For the
case of polyhedral target sets, several formulations of the controller are proposed that allows
to derive the control law from the solution of a single quadratic programming problem. One
of these formulations allows also to consider target points and target sets simultaneously in
such a way that the controller steers the plant to the target point if reachable while it steers
the plant to the target set in the other case. Finally, it is worth to remark that the proposed
controller inherits the properties of the controller proposed in chapter 2.

3.2 Problem Statement

Let a discrete-time linear system be described by:

x+ = Ax+Bu (3.1)

y = Cx+Du

where x ∈ Rn is the current state of the system, u ∈ Rm is the current input, y ∈ Rp is
the controlled output and x+ is the successor state. The solution of this system for a given
sequence of control inputs u and initial state x is denoted as x(j) = ϕ(j;x,u), j ∈ I≥0, where
x = ϕ(0;x,u). Note that no assumption is considered on the dimension of the states, inputs
and outputs and hence non square systems (namely p > m or p < m) might be considered.
The controlled output is the variable used to de�ne the target to be tracked by the controller.
Since no assumption is made on matrices C andD, the outputs might be (a linear combination
of) the states, (a linear combination of) the inputs or (a linear combination of) both.
The state of the system and the control input applied at sampling time k are denoted as x(k)
and u(k) respectively. The system is subject to hard constraints on state and control:

(x(k), u(k)) ∈ Z (3.2)

for all k ≥ 0. Z ⊂ Rn+m is a compact convex polyhedron containing the origin in its interior.

Assumption 3.1 The pair (A,B) is controllable and the state is measured at each sampling
time.

The problem we consider is the design of an MPC controller κZN (x,Γt) such that for a given
(possibly time varying) convex target set (zone region) Γt it steers the outputs of system to a
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steady value contained into the target region satisfying the constraints (x(k), κZN (x(k),Γt)) ∈
Z throughout its evolution.

3.3 MPC for tracking zone regions

In what follows, an extension of the MPC for tracking (Limon et al., 2008a; Ferramosca et
al., 2009a) to the case of target sets is presented. In particular, in (Ferramosca et al., 2009a)
the controller is formulated considering a generalized o�set cost function. In this chapter, this
controller is extended to the case of considering a zone control strategy. The control object
is hence not to steer the system to a desired setpoint, but to lead the output into a speci�ed
region. To this aim, consider that the output target is a set, for instance a given polyhedron
Γt. The cost function of the MPC proposed is, hence, given by:

V Z
N (x,Γt;u, θ) ,

N−1∑
j=0

∥x(j)−xs∥2Q+∥u(j)−us∥2R+ ∥x(N)−xs∥2P+ VO(ys,Γt) (3.3)

where x(j) denotes the prediction of the state j-samples ahead, the pair (xs, us) = Mθθ is the
arti�cial steady state and input and ys = Nθθ the arti�cial output, all of them parameterized
by θ; Γt is the zone in which the controlled variables have to be steered. The o�set cost
function VO(ys,Γt) is such that the following assumption is ensured.

Assumption 3.2

1. Γt is a compact convex set.

2. VO(ys,Γt) is subdi�erential and convex w.r.t. ys.

3. If ys ∈ Γt, then VO(ys,Γt) ≥ 0. Otherwise, VO(ys,Γt) >0.

Let PZ
N (x,Γt) be the optimization problem that de�nes the controller for tracking of the zone

region for the system constrained by Z, with an horizon of length N and whose parameters
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are the actual state x and the target set Γt. This problem is de�ned as follows:

V Z,0
N (x,Γt) = min

u,θ
V Z
N (x,Γt;u, θ) (3.4a)

s.t. x(0) = x, (3.4b)

x(j + 1) = Ax(j) +Bu(j), (3.4c)

(x(j), u(j)) ∈ Z, j=0, · · · , N−1 (3.4d)

(xs, us) = Mθθ, (3.4e)

ys = Nθθ (3.4f)

(x(N), θ) ∈ Ωa
t (3.4g)

where Ωa
t is the polyhedron that corresponds to the invariant set for tracking, with feedback

controller K in the augmented state (x, θ). In what follows, the superscript 0 will denote the
optimal solutions of the optimization problem.

Considering the receding horizon policy, the control law is given by

κZN (x,Γt) , u0(0;x,Γt)

where u0(0;x,Γt) is the �rst element of the control sequence u0(x,Γt) which is the optimal
solution of problem PZ

N (x,Γt). Since the set of constraints of PZ
N (x,Γt) does not depend on Γt,

its feasibility region does not depend on the target region Γt. Then there exists a polyhedral
region XN ⊆ Rn such that for all x ∈ XN , PZ

N (x,Γt) is feasible. This is the set of initial states
that can be admissibly steered in N steps to the projection of Ωa

t onto x.

Consider the following assumption on the controller parameters:

Assumption 3.3

1. Let R ∈ Rm×m be a positive semide�nite matrix and Q ∈ Rn×n a positive semi-de�nite
matrix such that the pair (Q1/2, A) is observable.

2. Let K ∈ Rm×n be a stabilizing control gain such that (A+BK) is Hurwitz.

3. Let P ∈ Rn×n be a positive de�nite matrix such that:

(A+BK)′P(A+BK)−P=−(Q+K ′RK)

4. Let Ωa
t ⊆ Rn+m be an admissible polyhedral invariant set for tracking for system (3.1)

subject to (3.2), for a given gain K. See chapter 2 for more details.
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The set of admissible steady outputs consistent with the invariant set for tracking Ωa
t is given:

Ys , {ys = Nθθ : (xs, us) = Mθθ, and (xs, θ) ∈ Ωa
t }

This set is potentially the set of all admissible outputs for system (3.1) subject to (3.2),
(Limon et al., 2008a).

Taking into account the proposed conditions on the controller parameters, in the following
theorem asymptotic stability and constraints satisfaction of the controlled system are proved .

Theorem 3.4 (Stability) Consider that assumptions 3.1, 3.2 and 3.3 hold and consider
a given target operation zone Γt. Then for any feasible initial state x0 ∈ XN , the system
controlled by the proposed MPC controller κZN (x,Γt) is stable, ful�ls the constraints throughout
the time evolution and, besides

(i) If Γt ∩ Ys ̸= ∅ then the closed-loop system asymptotically converges to a steady output
y(∞) ∈ Γt.

(ii) If Γt∩Ys = ∅, the closed-loop system asymptotically converges to a steady output y(∞) =
y∗s , such that

y∗s , arg min
ys∈Ys

VO(ys,Γt)

Proof: The proof of this theorem follows the same argument as the one of Theorem 1 in
Chapter 2, since the o�set cost function VO(ys,Γt) is convex, as stated in assumption 3.2.

3.4 Properties of the proposed controller

3.4.1 Steady state optimization

In practice it is not unusual that the zones chosen as target sets are not fully consistent with
the model and, thus, fully or partly unreachable. This may happen when no point in the zone
is an admissible operating point for the system.
From the latter theorem it can be clearly seen that in this case, the proposed controller steers
the system to the optimal operating point according to the o�set cost function VO(ys,Γt).
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Then it can be considered that the proposed controller has a steady state optimizer built in
and VO(ys,Γt) de�nes the function to optimize.

3.4.2 Feasibility for any reachable target zone

The controller is able to guarantee feasibility for any Γt and for any prediction horizon N .
Then, it can be derived that the proposed controller is able to track any admissible target
zone (i.e. Γt ∩ Ys ̸= ∅) even for N = 1, if the system starts from an admissible equilibrium
point. Nevertheless, a prediction horizon N > 1 is always a better choice, because, if on
one hand a small prediction horizon reduces the computational e�ort, on the other hand the
performances of the controller improve with N increasing.

3.4.3 Changing target zones

Taking into account theorem 3.4, stability is proved for any o�set cost function satisfying
assumption 3.2. Since the set of constraints of PZ

N (x,Γt) does not depend on Γt, its feasibility
region does not depend on the target zone Γt. Therefore, if Γt varies with the time, the results
of the theorem still hold. This property will be shown in the example.

3.4.4 Input target

The zone control problem can be formulated considering input targets ut that must satisfy
some constraint (i.e. umin ≤ ut ≤ umax) to allow the outputs to be inside of a certain zone
(Wang, 2002). These input targets are basically speci�c values for the inputs that are desirable
to achieve for economic reasons. The proposed controller can be formulated considering input
targets by de�ning an o�set cost function VO(us,Γut) subdi�erential and convex w.r.t. us,
where Γut is a convex polyhedron.
Moreover, all the results and properties of the proposed controller remain valid because this
case is equivalent to considering C = 0 and D = I.

3.4.5 Enlargement of the domain of attraction

The domain of attraction of the MPC is the set of states that can be admissible steered to
Ωt in N steps. The fact that this set is an invariant set for any equilibrium points makes this
set (potentially) larger than the one calculated for regulation to a �xed equilibrium point.
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Consequently, the domain of attraction of the proposed controller is (potentially) larger than
the domain of the standard MPC. This property is particularly interesting for small values of
the control horizon.

3.4.6 Terminal constraint

The optimization problem PZ
N (x,Γt) can also be formulated by posing the terminal constraint

as a terminal equality constraint, by considering P = 0 and Ωa
t such that:

Ωa
t , {(x, θ) : Mθθ ∈ Z, x = Mxθ}

3.4.7 Convexity of the optimization problem

Since all the ingredients (functions and sets) of the optimization problem PZ
N (x,Γt) are con-

vex, then it derives that PZ
N (x,Γt) is a convex mathematical programming problem that can

be e�ciently solved in polynomial time by specialized algorithms (Boyd and Vandenberghe,
2006).

3.5 Formulations of the MPC for tracking target sets leading

to QP problems

It is clear from the previous sections that one of the results of the controller presented in this
chapter, is the concept of distance from a set. The optimization problem PZ

N (x,Γt) is a convex
mathematical programming problem that can be e�ciently solved by specialized algorithms
(Boyd and Vandenberghe, 2006). From a practical point of view, it is desirable that, even
considering a distance from a set as an o�set cost function, the optimization problem PZ

N (x,Γt)

still remains a Quadratic Programming problem. To this aim, in this section, three di�erent
implementations of the MPC for tracking with target sets are presented, which ensures that
the optimization problem can be formulated as a QP problem.

Consider the target set Γt and de�ne as yt a speci�c point that belongs to the zone region,
typically the center of the zone. As it has been stated in theorem 3.4, in the problem of
tracking a target set, three situations can be addressed.

a) There not exists an admissible steady output in the zone, i.e. Γt ∩ Ys = ∅.
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b) There exists an admissible steady state in the zone, but the desired output is not ad-
missible, i.e. Γt ∩ Ys ̸= ∅ and yt ̸∈ Ys.

c) There exists an admissible steady state in the zone and the desired output is admissible,
i.e. Γt ∩ Ys ̸= ∅ and yt ∈ Ys.

These three situations are shown in �gure 3.1 where the double integrator system presented
in (Limon et al., 2008a) has been considered. This system is given by

A =

[
1 1

0 1

]
, B =

[
0.0 0.5

1.0 0.5

]
, and C =

[
1 0

0 1

]
.

which is constrained to ∥x∥∞ ≤ 5 and ∥u∥∞ ≤ 0.3. In the picture, the domain of attraction
XN for N = 3, the invariant set for tracking Ωt, and the region of admissible steady state
Xs are depicted respectively in black solid line, black dashed line and red line. Notice that
Xs ≡ Ys, since C = I2. The three target set situations previous mentioned are represented
by the three boxes labeled as a), b) ad c). The center of each box, depicted as a circle, is the
desirable target point into the zone region, yt. In particular the zone region and the desirable
target point for each case are:

a) Γt = {1 ≤ y1 ≤ 2.6,−1.9 ≤ y2 ≤ −1.1} and yt = (1.8,−1.5).

b) Γt = {−1.65 ≤ y1 ≤ −0.05,−0.9 ≤ y2 ≤ −0.1} and yt = (−0.85,−0.5).

c) Γt = {−4.3 ≤ y1 ≤ −2.7,−0.45 ≤ y2 ≤ −0.35} and yt = (−3.5,−0.05).

The controller presented in this chapter will steer the system to that point which minimizes
the o�set cost function. This point can be a point belonging to Ys (case a)) or a point
belonging to the intersection of Ys with Γt (cases b) and c)). The controller implementation
presented in section 3.5.3, in the case c), will steer the system exactly to the desired setpoint
yt.

3.5.1 Distance from a set: ∞-norm

Consider that Γt is a set-interval zone de�ned as

Γt , {y : ymin ≤ y ≤ ymax}

where the inequality is component-wise. De�ne as yt the desirable target point into the zone
region, typically the center of the zone.
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Figure 3.1: Target sets for the double integrator system.

In this implementation, the o�set cost function is chosen as the distance from ys to the
target region Γt, measured by a ∞-norm. Hence, the o�set cost function VO(ys,Γt) is given
by:

VO(ys,Γt) , min
y∈Γt

∥ys − y∥∞

Consider the following lemma:

Lemma 3.5 (Rockafellar, 1970) The set Ξ , {ys : min
y∈Γt

∥ys − y∥∞ ≤ λ} is given by

y + λ1 ≤ ymax

−y − λ1 ≤ −ymin

λ ≥ 0

where 1 ∈ Rp is a vector of all unitary elements.

Thanks to this lemma, and considering the o�set cost function in its epigraph form, the
optimization problem PZ

N (x,Γt) can be posed as a standard quadratic programming problem,
by adding a new decision variable λ, such that

VO(ys,Γt) ≤ λ
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.

Thanks to the previous statements, the cost function can be written in the form:

V Z
N (x,Γt;u, θ, λ),

N−1∑
i=0

∥x(i)−xs∥2Q+∥u(i)−us∥2R+ ∥x(N)−xs∥2P+ λ

where λ is a new optimization variable, and the optimization problem PZ
N (x,Γt) is posed as:

V Z,0
N (x,Γt) = min

u,θ,λ
V Z
N (x,Γt;u, θ, λ)

s.t. (3.4b), (3.4c), (3.4d), (3.4e), (3.4f), (3.4g)

ys + λ1 ≤ ymax

−ys − λ1 ≤ −ymin

λ ≥ 0

which is a formulation of PZ
N (x,Γt) as a QP problem.

In �gure 3.2 the trajectories for the double integrator system, from the initial state x0 =

(−3, 2), for the three situations above mentioned, using a ∞-norm distances are plotted.

See how the controller steers the system to the point that minimize the ∞-norm distance.
In particular, see that in cases b) and c) the system converges to a point inside the zone
regions. The role of the ∞-norm is important in cases such a). In this case, in fact, the
system converges to one of those points that minimize the ∞-norm distance from the target
region.

3.5.2 Distance from a set: 1-norm

Consider that Γt is a set-interval zone de�ned as

Γt , {y : ymin ≤ y ≤ ymax}

De�ne as yt the desirable target point into the zone region, typically the center of the zone.

In this implementation, the o�set cost function is chosen as the distance from ys to the
target region Γt, measured using a 1-norm:

VO(ys,Γt) , min
y∈Γt

∥ys − y∥1
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Figure 3.2: The double integrator system: ∞-norm distance.

As in the previous case, the optimization problem PZ
N (x,Γt) can be posed as a standard

quadratic programming problem, by considering the o�set cost function in its epigraph form
VO(ys,Γt) ≤ λ and by resorting the following lemma.

Lemma 3.6 (Rockafellar, 1970) The set Ξ , {ys : min
y∈Γt

∥ys − y∥1 ≤ λ} is given by

1
′y + λ ≤ 1

′ymax

−1′y − λ ≤ −1′ymin

λ ≥ 0

The cost function to minimize is given by (3.5) and the optimization problem PZ
N (x,Γt)

is given by:

V Z,0
N (x,Γt) = min

u,θ,λ
V Z
N (x,Γt;u, θ, λ)

s.t. (3.4b), (3.4c), (3.4d), (3.4e), (3.4f), (3.4g)

1′ys + λ ≤ 1′ymax

−1′ys − λ ≤ −1′ymin

λ ≥ 0
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where λ is a new optimization variable, and which is a formulation of PZ
N (x,Γt) as a QP

problem.

In �gure 3.3 the trajectories for the double integrator system, from the initial state x0 =

(−3, 2), for the three situations above mentioned, using a 1-norm distances are plotted.
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Figure 3.3: The double integrator system: 1-norm distance.

See how the controller steers the system to the point that minimize the 1-norm distance.
In particular, see that in cases b) and c) the system converges to a point inside the zone
regions. The role of the norm is important in this case a). In this case, the system converges
to one of those points that minimize the 1-norm distance (see also �gure 3.2).

3.5.3 Scaling factor

In this implementation, the target region is de�ned as

Γt , yt ⊕ Ξt
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where yt is a desired target point and Ξt is a polyhedron that de�nes the zone. The o�set
cost function VO(ys,Γt) is chosen as a kind of distance from ys to the target region Γt, given
by

VO(ys,Γt) = min
λ,y

λ

s.t. λ ≥ 0

y − yt ∈ λΞt

This measure is such that, if y ̸∈ Γt then λ > 1, and if y ∈ Γt then λ ∈ [0, 1]. In particular, if
y = yt, hence λ = 0. Therefore, λ has the double role of measuring the distance to a set and
to a point.

In order to formulate the optimization problem as a QP, the cost function is chosen as in
(3.5) and is minimized considering the following constraint:

ys − yt ∈ λΞt

with λ ≥ 0. This means that ys should remain in a zone that is an homothetic transformation
of Γt centered in yt.

Then, the optimization problem PZ
N (x,Γt) is given by:

V Z,0
N (x,Γt) = min

u,θ,λ
V Z
N (x,Γt;u, θ, λ)

s.t. (3.4b), (3.4c), (3.4d), (3.4e), (3.4f), (3.4g)

ys − yt ∈ λΞt

λ ≥ 0

where λ is an optimization variable, and which is a formulation of PZ
N (x,Γt) as a QP problem.

Notice that problem PZ
N (x,Γt) is a QP problem, for any Ξt that is a convex polyhedron.

In �gure 3.4 the trajectories for the double integrator system, from the initial state x0 =

(−3, 2), for the three situations above mentioned, using the homothetic transformation method
are plotted.

The zone regions are depicted in solid line while their homothetic transformation are
depicted in dotted line. Notice that, when yt ∈ Γt ∩ Ys, the homothetic transformation of Γt

is the target point yt. See how the controller steers the system to the point that minimize the
o�set cost function w.r.t. the homothetic transformation.
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Figure 3.4: The double integrator system: homothetic transformation.

3.6 Illustrative example

In this section, an example to test the performance of the proposed controller, is presented.
The system adopted is the 4 tanks process presented in the Appendix A. The objective of
the controller is to maintain the system within some speci�ed zones.

The objective of the simulation is to show how the proposed controller manages a target
set given by a combination of both, output setpoints and output zones. To this aim, �ve
changes of these target sets have been considered (see table 3.1, where (h01, h

0
2) is the point

around which the system has been linearized de�ned in the Appendix A), that are in fact
changes of the zones into which the outputs should be steered. In particular, in the third
change of reference, we considered the case in which both target set and desirable setpoint
are not admissible (Γt ∩ Ys = ∅ and yt ̸∈ Ys), while the case in which both target set and
desirable setpoint are admissible is considered in the other cases (Γt ∩ Ys ̸= ∅ and yt ∈ Ys).

It is convenient to remark that, inside the zones, there are no preferences between one
point and another. Moreover, an other objective of the example is to show the 3 di�erent
implementations of the controller, presented in section 3.5.
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Table 3.1: Target zones used in the example

Γt ymin ymax

Γt,1 (0.20, 0.20) (0.40, 0.40)

Γt,2 (1.15, 1.15) (1.35, 1.35)

Γt,3 (0.30, 0.75) (0.40, 0.85)

Γt,4 (0.95, 0.75) (1.05, 0.85)

Γt,5 (h01, h
0
2)− (0.05, 0.05) (h01, h

0
2) + (0.05, 0.05)

3.6.1 Distance from a set: ∞-norm

In this section, the results of the simulations for the ∞-norm distance from a set implemen-
tation of the o�set cost function are presented. Figure 3.5 shows the state-space evolution of
the system.
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Figure 3.5: State-space evolution for the ∞-norm formulation.

The projection of the domain of attraction onto y, YN for N = 3, the projection of the
invariant set for tracking Ωy = Projy(Ωt), and the region of admissible steady outputs Ys are
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depicted in solid and dashes dotted line. The zone regions are represented as boxes, and the
desirable target points yt, are represented as circles and considered as the center of the target
zones.
In Figure 3.6 and 3.7 the time evolution of h1, h2, h3, h4, qa and qb is depicted.
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Figure 3.6: ∞-norm formulation: evolution of h1 and h2.

The evolutions of the outputs and the arti�cial references are drawn respectively in solid
and dashed line. The zones are drawn in dotted lines. See how the controller steers (whenever
possible) the system into the output zone, even if the initial condition stays out of the zone.
Furthermore, if the output zone is not admissible, that is Γt∩Ys = ∅, the controller steers the
system to the admissible point that minimizes the o�set cost function. This can be seen in
the third output zone change (from sample 500 to 750), in which the outputs h1 and h2 are
steered to stationary value out of the corresponding zones. In the other cases, it can be seen
that the controller steers the outputs into the zones. This happens because Γt ∩ Ys ̸= ∅ and
yt ∈ Ys. Furthermore, and despite it was not simulated, the proposed algorithm also allows
the possibility to include input target, i.e., speci�c values for the inputs that are desirable to
achieve for economic reasons.

3.6.2 Distance from a set: 1-norm

In this example, the controller is set-up for considering a 1-norm as o�set cost function. The
results of the simulations are presented in �gure 3.8, which shows the state-space evolution
of the system, and in �gures 3.9 and 3.10, which show the time evolution of the outputs and
of the inputs.
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Figure 3.7: ∞-norm formulation: evolution of h3, h4 qa and qb.

In Figure 3.8 the projection of the domain of attraction onto y, YN for N = 3, the
projection of the invariant set for tracking Ωy = Projy(Ωt), and the region of admissible steady
outputs Ys are depicted in solid and dashes dotted line. The zone regions are represented as
boxes, and the desirable target points yt, are represented as circles and considered as the
center of the target zones. In �gures 3.9 and 3.10, the time evolution of h1, h2, h3, h4,
qa and qb is depicted. The evolutions of the outputs and the arti�cial references are drawn
respectively in solid and dashed line. The zones are drawn in dotted lines. As in the previous
case, the controller steers (whenever possible) the system into the output zone, even if the
initial condition lies out of the zone. In the third output zone change (from sample 500 to
750), it can be seen how the outputs are steered to a stationary value out of the corresponding
zones, which is the one that minimizes the o�set cost function. This happens because the
target zone is not admissible (Γt ∩ Ys = ∅). In the other cases, the controller steers h1 and
h2 into the zone. This happens because Γt ∩ Ys ̸= ∅ and yt ∈ Ys. This formulation, as the
previous one, can also cope with input targets.
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Figure 3.8: State-space evolution for the 1-norm formulation.
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Figure 3.9: 1-norm formulation: evolution of h1 and h2.

3.6.3 Scaling factor

The last controller implementation proposed in section 3.5, the scaling factor, is presented in
this section. Figures 3.11, 3.12 and 3.13 show the result of this case's simulation, which are
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Figure 3.10: 1-norm formulation: evolution of h3, h4 qa and qb.

respectively the state-space evolution of the system and the time evolution of outputs and
inputs.

As in the two previous cases, in �gure 3.11 the projection of the domain of attraction
onto y, YN for N = 3, the projection of the invariant set for tracking Ωy = Projy(Ωt), and
the region of admissible steady outputs Ys are depicted in solid and dashes dotted line. The
polyhedra Ξt that de�ne the zone regions are represented as boxes, and the desirable target
points yt, are represented as circles and considered as the center of the target zones. In Figure
3.12 and 3.13, the time evolution of h1, h2, h3, h4, qa and qb is depicted. The evolutions of the
outputs and the arti�cial references are drawn respectively in solid and dashed-dotted line.
The zones are drawn in thick-solid lines. The main di�erence between this implementation
and the previous is that when Γt ∩ Ys ̸= ∅ and yt ∈ Ys the controller steers the system
to exactly yt, while if Γt ∩ Ys = ∅ (third reference), the controller steers the system to the
admissible point that minimizes the o�set cost function. This last simulation shows that the
controller account for the frequent practical case in which a combination of output set-point
and zones is given. This last implementation allows the possibility to include input target, as
well.
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Figure 3.11: State-space evolution for the scaling factor formulation.

3.7 Conclusions

The zone control strategy is implemented in applications where the exact values of the con-
trolled outputs are not important, as long as they remain inside a range with speci�ed limits.
In this chapter, an extension of the MPC for tracking for zone control has been presented, in
which the controller considers a set, instead of a point, as target. The concept of deviation
between two points used in the o�set cost function has been generalized to the concept of
distance from a point to a set. A characterization of the o�set cost function has been given as
the minimal distance between the output and some point inside the target set. Three di�erent
formulations of the o�set cost function have been proposed, to obtain a QP problem.
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Figure 3.12: Scaling factor formulation: evolution of h1 and h2.
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Figure 3.13: Scaling factor formulation: evolution of h3, h4 qa and qb.



Chapter 4

Robust MPC for tracking target sets

based on nominal predictions

4.1 Introduction

This chapter deals with the problem of robust tracking of target sets for constrained uncer-
tain linear systems. Usually, in case of robust MPC problems, the control objective is to
ensure stability despite the uncertainties and robust constraint satisfaction while a certain
performance index is optimized. At the same time, dealing with a tracking problem requires
feasibility to be guaranteed under any setpoint change.

Several solutions have been proposed in literature to solve the robust tracking problem. In
(Rossiter et al., 1996; Chisci and Zappa, 2003) an auxiliary controller that is able to recover
the feasibility in �nite time is used leading to a switching strategy. The controllers proposed
in (Pannocchia and Kerrigan, 2005; Pannocchia, 2004) are based on the robust MPC proposed
in (Chisci et al., 2001) but consider the change of the setpoint as a disturbance to be rejected;
thus, this technique is able to steer the system to the desired setpoint, but only when the
variations of the setpoint are small enough; so this solution results to be conservative.

A di�erent approach has been proposed in the context of the reference governors (Gilbert
et al., 1999; Bemporad et al., 1997). This control technique assumes that the system is
robustly stabilized by a local controller, and a nonlinear �ltering of the reference is designed
to ensure the robust satisfaction of the constraints. These controllers ensure robust tracking
without considering the performance of the obtained controller.

A recent approach to the design of robust MPC for constrained linear systems is the so-
called tube-based robust MPC (Langson et al., 2004; Mayne et al., 2005). In this case, using a
suitable compensation of the e�ect of the uncertainty based on the nominal trajectory, a tube
containing the uncertain trajectories is calculated. This is centered in the nominal trajectory
and its section is the minimum robust invariant set. This property allows to formulate the
robust MPC control problem as the solution of a optimization control problem based on
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nominal predictions.

This robust MPC formulation has been extended to the case of MPC for tracking set-
points in (Limon et al., 2010a). The controller has demonstrated to be a nice solution to the
robust control problem, but the main drawback found is the calculation of the minimum robust
invariant set, since its complexity grows exponentially with the dimension of the system.

In this chapter, a robust MPC based on nominal predictions is presented. The controller
presented in (Ferramosca et al., 2010a) is extended to cope with the problem of robust track-
ing of target sets in presence of additive disturbance. The proposed controller uses the results
presented in (Chisci et al., 2001), in which an MPC based on nominal predictions and re-
stricted constraints is presented, which ensures stability, robust satisfaction of the constraints
en recursive feasibility. The plant is assumed to be modeled as a linear system with ad-
ditive uncertainties con�ned to a bounded known polyhedral set. Remarkably, this robust
control does not require the calculation of the minimum robust invariant set and the obtained
properties result to be similar to the ones of the tube-based robust controller.

The derived controller, under mild assumptions, is feasible under any change of the con-
trolled variables target and steers the uncertain system to (a neighborhood of) the target if
this is admissible. If the target is not admissible, the system is steered to the closest admissible
operating point.

4.2 Problem statement

Consider a plant described by the following uncertain discrete-time LTI system

x+ = Ax+Bu+ w (4.1)

y = Cx+Du

where x ∈ Rn is the state of the system at the current time instant, x+ denotes the successor
state, that is, the state of the system at next sampling time, u ∈ Rm is the manipulated
control input, y ∈ Rp is the controlled variables and w ∈ Rn is an unknown but bounded state
disturbance. In what follows, x(k), u(k), y(k) and w(k) denote the state, the manipulable
variable, controlled variable and the disturbance respectively, at sampling time k.

The plant is subject to hard constraints on state and control:

(x(k), u(k)) ∈ Z (4.2)

where Z = X× U is a compact convex polyhedron containing the origin in its interior.
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De�ne also the plant nominal model, given by (4.1) neglecting the disturbance input w:

x̄+ = Ax̄+Bū (4.3)

ȳ = Cx̄+Dū

The plant model is assumed to ful�l the following assumption:

Assumption 4.1

• The pair (A,B) is controllable.

• The uncertainty vector w is bounded and lies in a compact convex polyhedron containing
the origin in its interior

W = {w ∈ Rn : Aww ≤ bw} (4.4)

that is, w(k) =
(
x(k + 1)−Ax(k)−Bu(k)

)
∈ W for all (x(k), u(k)) ∈ Z.

• The state of the system is measured, and hence x(k) is known at each sample time.

It is remarkable that no assumption is considered on the number of inputs m and outputs
p, allowing thin plants (p > m), square plants (p = m) and �at plants (p < m). Moreover,
it is not assumed that (A,B,C,D) is a minimal realization of the state-space model. This
allows us to use state-space models derived from input-output models, that is, using as state
a collection of past inputs and outputs of the plant (Camacho and Bordons, 2004). The
necessity of an observer is also avoided while the global uncertainty and the noise can be
posed as additive uncertainties in the state-space model (4.1).

The aim of this chapter is to �nd a control law u(k) = κN (x(k),Γt) such that the system
is steered into a (possibly time varying) region Γt, which de�nes the range into which the
controlled outputs should remain ful�lling the plant constraints (x(k), u(k)) ∈ Z, despite the
uncertainties.

4.3 Robust MPC with restricted constraints

In this section, the robust MPC for tracking with restricted constraints (Chisci et al., 2001)
is brie�y introduced. In this robust MPC formulation the keystone is to use predictions
based on the nominal system, that is neglecting the disturbance input w, and to restrict the
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constraints set X and U, by subtracting a robust positive invariant set, at any step of the
prediction horizon.

This controller is based on a pre-stabilization of the plant using a state feedback control
gain K, such that AK = A + BK has all its eigenvalues in the unit circle. The controlled
system is then given by

x(k + 1) = AKx(k) +Bc(k) + w(k)

u(k) = Kx(k) + c(k)

The notion of robust positively invariant (RPI) set (Kolmanovsky and Gilbert, 1998; Rakovic
et al., 2005) plays an important role in the design of robust controllers for constrained systems.
This is de�ned as follows:

De�nition 4.2 A set Ω is called a robust positively invariant (RPI) set for the uncertain
system x(k + 1) = AKx(k) + w(k) with w(k) ∈ W if AKΩ⊕W ⊆ Ω.

It will be also useful to de�ne the so-called reachable sets, that are outer bounds of the
forced response of the system due to the uncertainty.

De�nition 4.3 The reachable set in j steps, Rj, is given by

Rj ,
j−1⊕
i=0

Ai
KW

This is the set of states of the nominal closed-loop systems which are reachable in j steps
from the origin, under the disturbance input w, (Chisci et al., 2001). This set satis�es the
following properties:

(i) It is given by the recursion Rj ⊕Aj
KW = Rj+1with R1 = W.

(ii) AKRj ⊕W = Rj+1 = Rj ⊕Aj
KW

(iii) The sequence of sets Rj has a limit R∞ as j → ∞, and R∞ is a robust positive invariant
set.

(iv) R∞ is the minimal RPI set.
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The proposed robust MPC consider a set of restricted constraints on the nominal predic-
tions in the optimization problem. These sets are given by:

X̄j , X⊖ Rj

Ūj , U⊖KRj

It is important to introduce the following assumption

Assumption 4.4 The sets X̄j and Ūj exist if and only if R∞ ⊂ Xj for all j ≥ 0.

Moreover, the cost function to minimize is de�ned as follows:

V c
N (x; c) =

N−1∑
j=0

∥c(j)∥2Ψ (4.5)

where c = {c(0), c(1), ..., c(N − 1)} and Ψ = Ψ′ > 0 is given by Ψ = R + B′PB. In (Chisci
et al., 2001) and (Pannocchia and Rawlings, 2003) it is proved that, in the case that K is the
gain of the LQR, minimizing V r

N (x; c) is equivalent to minimizing the following cost function

Ṽ c
N (x; c) =

N−1∑
j=0

∥x̄(j)∥2Q + ∥ū(j)∥2R + ∥x̄(N)∥2P (4.6)

where x̄(j) is the nominal prediction of the model for ū(j) = Kx̄(j) + c(j); P is the unique
solution of the Riccati equation.

(A+BK)′P (A+BK)−P =−(Q+K ′RK)

In fact, the equivalence between cost (4.5) and (4.6) holds since

Ṽ c
N (x; c) = V c

N (x; c) + ∥x̄(0)∥2P
Then, taking K = KLQR, minimizing the cost (4.5) is equivalent to minimize the cost of the
predicted nominal trajectory.

The control objective is to design a nonlinear state feedback krN (x), such that the system
robustly ful�lls the constraints. Then the following optimization control problem P r

N (c) is
proposed:

min
c

V r
N (x; c)

s.t. x̄(0) = x, (4.7)

x̄(j+1)=AK x̄(j)+Bc(j), j ∈ I[0,N−1] (4.8)

ū(j)=Kx̄(j)+c(j), j ∈ I[0,N−1] (4.9)

x̄(j) ∈ X̄j , j ∈ I[0,N−1] (4.10)

ū(j) ∈ Ūj , j ∈ I[0,N−1] (4.11)

x̄(N) ∈ Σ0 ⊖ RN (4.12)
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where Σ0 is a polyhedron (Kolmanovsky and Gilbert, 1998), de�ned as:

Σ0 , {x : Ai
Kx ∈ X̄i,KAi

Kx ∈ Ūi, for i ≥ 0}

That is, a robust invariant set for the system x+ = AKx + w for w ∈ W contained in
XK = {x ∈ X : Kx ∈ U}.

The control law is given by

krN (x) = Kx(k) + c0(0;x(k)) (4.13)

where c0(0;x(k)) is the �rst term of the optimal sequence calculated at x(k).

In (Chisci et al., 2001, Theorem 8) is also proved that, given a feasible initial condition
x(0), system (4.1) under the control law u(k) = krN (x(k)) satis�es that:

• x(k) ∈ X and u(k) ∈ U, for all k ≥ 0

• lim
k→∞

c0(0;x(k)) = 0

• x(k) → R∞ as k → ∞

That is, the uncertain system ful�ls the constraints for any possible uncertainty, and
the control law tends to the linear controller. Then the controlled system is steered to the
minimum invariant set.

These results are derived from the demonstration that the sequence

c̃(x(k + 1)) = {c0(1;x(k)), · · · , c0(N − 1;x(k)), 0} (4.14)

is a feasible solution for x(k + 1), provided the sequence c0(x(k)).

In the next section, this control law is extended to the case of tracking target sets.

4.4 Robust MPC for tracking zone regions based on nominal

predictions

In this section the proposed controller is presented. The proposed controller is a robust
formulation of the MPC for tracking zone regions (Ferramosca et al., 2010a) based on the
robust MPC presented in (Chisci et al., 2001).
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As in the regulation case, the nominal model of the plant (4.3) is considered to be subject
to the restricted constraints:

X̄j , X⊖ Rj (4.15)

Ūj , U⊖KRj

As in the nominal case presented in the previous chapter, every nominal steady state and
input zs = (xs, us) is a solution of the equation

[
A− In B

] [ xs

us

]
= 0n,1 (4.16)

Therefore, there exists a matrix Mθ ∈ R(n+m)×m such that every nominal steady state and
input can be posed as

zs = Mθθ (4.17)

for certain θ ∈ Rm. The subspace of nominal steady outputs is then given by

ys = Nθθ (4.18)

where Nθ , [C D]Mθ.

De�ning Z̄ , X̄N × ŪN , the set of admissible nominal steady states and inputs and the
set of admissible nominal controlled variables are given by

Z̄s
∆
= {(x, u) ∈ Z̄ : (A− In)x+Bu = 0n,1}

Ȳs
∆
= {Cx+Du : (x, u) ∈ λZ̄s}

where λ ∈ (0, 1).

The proposed controllers is derived following the results presented in the last section.
Firstly, the cost function to minimize is introduced as follows:

VN (x,Γt; c, θ) ,
N−1∑
j=0

∥c(j)∥2Ψ + VO(ys,Γt) (4.19)

where the pair (xs, us) = Mθθ is the arti�cial steady state and input and ys = Nθθ the arti�cial
output, all of them parameterized by θ; Γt is the zone in which the controlled variables have
to be steered. VO(ys,Γt) is the so-called o�set cost function and it is such that the following
assumption is ensured

Assumption 4.5

1. Γt is a compact convex set.
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2. VO(ys,Γt) is subdi�erential and convex w.r.t. ys.

3. If ys ∈ Γt, then VO(ys,Γt) ≥ 0. Otherwise, VO(ys,Γt) >0.

In this case, the plant is pre-stabilized by the following control law

u(k) = Kx(k) + Lθ + c(k) (4.20)

where L = [−KI]Mθ. Then the nominal system can be rewritten as follows:

x̄+ = AK x̄+BLθ +Bc (4.21)

ū = Kx+ Lθ + c

The optimization problem PN (x,Γt) is now given by:

min
c,θ

VN (x,Γt; c, θ)

s.t. x̄(0) = x, (4.22)

x̄(j+1)=Ax̄(j)+Bū(j), j ∈ I[0,N−1] (4.23)

ū(j)=Kx̄(j) + Lθ + c(j), j ∈ I[0,N−1] (4.24)

x̄(j) ∈ X̄j , j ∈ I[0,N−1] (4.25)

ū(j) ∈ Ūj , j ∈ I[0,N−1] (4.26)

ys = Nθθ (4.27)

(x̄(N), θ) ∈ Ωa
t (4.28)

Notice that the decision variables are: (i) the sequence of the future actions of the nominal
system c and (ii) the parameter vector θ that determines the arti�cial target steady state,
input and output (xs, us, ys).

Considering the receding horizon policy, the control law is given by

κN (x,Γt) , Kx+ Lθ0(x,Γt) + c0(0;x,Γt)

where c0(0;x,Γt) is the �rst element of the control sequence c0(x,Γt) which is the optimal
solution of problem PN (x,Γt). Notice also that, in the following, the optimal value of the cost
function will be denoted as V 0

N (x,Γt; c, θ), the optimal value of the other decision variable as
θ0(x,Γt), the nominal optimal state trajectory as x̄0(x,Γt) and the optimal arti�cial reference
(x0s(x,Γt), u

0
s(x,Γt), y

0
s(x,Γt)).

Since the set of constraints of PN (x,Γt) does not depend on Γt, its feasibility region does
not depend on the target region Γt. The feasible set of the proposed controller is a polyhedral
region XN ⊆ Rn given by the set of initial states that can be steered into Ωt = Projx(Ω

a
t ) in

N steps ful�lling the constraint (4.25), for all admissible disturbances.
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4.4.1 Stability of the proposed controller

Consider the following assumption on the controller parameters:

Assumption 4.6

1. Let K ∈ Rm×n be a stabilizing control gain such that the eigenvalues of (A + BK) are
in the unit circle.

2. De�ne the extended state xa = (x, θ), and

Aa =

[
A+BK BL

0 Im

]
where L = [−K Im]Mθ. De�ne also

Xi
a = {(x, θ) : x ∈ X̄i,Kx+ Lθ ∈ Ūi,Mθθ ∈ λZs}

and
Σt = {xa : Ai

ax ∈ Xi
a, for i ≥ 0}

Then
Ωt = Σt ⊖ (RN × {0})

In the following theorem, stability and constraints satisfaction of the controlled system
are stated.

Theorem 4.7 (Stability) Consider that assumptions 4.1, 4.4, 4.5 and 4.6 hold and consider
a given target operation zone Γt. The system controlled by the proposed MPC controller
κN (x,Γt) is such that:

(i) For all initial condition x(0) ∈ XN and for every Γt, the evolution of the system
is robustly feasible and admissible, that is, x(j) ∈ XN and (x(j), κN (x(j),Γt)) ∈ Z,
∀w(k) ∈ W, k = 0, 1, · · · , j − 1.

(ii) limk→∞ c(k) = 0

(iii) If Γt∩ Ȳs ̸= ∅ then the closed-loop system asymptotically converges to a set ȳ(∞)⊕ (C+
DK)R∞, such that ȳ(∞) ∈ Γt.

(iv) If Γt∩Ȳs = ∅, the closed-loop system asymptotically converges to a set y∗s⊕(C+DK)R∞,
where y∗s is the reachable nominal steady output such that

y∗s , arg min
ys∈Ȳs

VO(ys,Γt)
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4.5 Stability proof

In this section, the stability proof of theorem 4.7 is presented. Firstly, it is necessary to
introduce some lemmas. To this aim, de�ne as (c0(x(k),Γt), θ

0(x(k),Γt)) the optimal solution
of problem PN (x,Γt) at the time instant k, where

c0(x(k),Γt) = {c0(0;x(k),Γt), c
0(1;x(k),Γt), ..., c

0(N − 1;x(k),Γt)}

De�ne the control sequence

c̃(x(k + 1),Γt) = {c0(1;x(k),Γt), ..., c
0(N − 1;x(k),Γt), 0}

and de�ne θ̃(x(k + 1),Γt) = θ0(x(k),Γt). Moreover, de�ne as x̃(j;x(k + 1),Γt) the j-th step
prediction, given x(k + 1). Hence

x̃(j;x(k + 1),Γt) = Aj
Kx(k + 1) +

j−1∑
i=0

Ai
KB
[
c̃(j − i− 1;x(k + 1),Γt) + Lθ̃(x(k + 1),Γt)

]
In what follows, the dependence from (x,Γt) will be omitted for the sake of clarity, namely,
x(j; k) will denote x(j;x(k),Γt).

Lemma 4.8 For all j = 0, ..., N − 1

x̃(j; k + 1)− x̄(j + 1; k) = Aj
Kw(k)

Proof: Since

x̄0(j + 1; k) = Aj
K x̄0(1; k) +

j−1∑
i=0

Ai
KB
[
c0(j − i; k) + Lθ0(k)

]
and

x̃(j; k + 1) = Aj
Kx(k + 1) +

j−1∑
i=0

Ai
KB
[
c̃(j − i− 1; k + 1) + Lθ̃(k + 1)

]
= Aj

Kx(k + 1) +

j−1∑
i=0

Ai
KB
[
c0(j − i; k) + Lθ0(k)

]
hence

x̃(j; k + 1)− x̄(j + 1; k) = Aj
K

[
x(k + 1)− x̄0(1; k)

]
= Aj

Kw(k)
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Lemma 4.9 If x̄0(j; k) ∈ X̄j, then x̃(j − 1; k + 1) ∈ X̄j−1, for all j = 0, ..., N .

Proof: Since x̃(j − 1; k + 1) = x̄0(j; k) +Aj−1
K w(k), then

x̃(j − 1; k + 1) ∈ X̄j ⊕Aj−1
K W = X⊖

[ j−1⊕
i=0

Ai
KW

]
⊕Aj−1

K W

= X⊖
[ j−2⊕
i=0

Ai
KW

]
= X̄j−1

Lemma 4.10 If Kx̄0(j; k) + c0(j; k) +Lθ0(k) ∈ Ūj, then Kx̃(j − 1; k+1)+ c̃(j− 1; k+1)+
Lθ̃(k + 1) ∈ Ūj−1, for all j = 1, ..., N − 1.

Proof: Taking into account that

Kx̄0(j; k) + c0(j; k) + Lθ0(k) = Kx̃(j−1; k+1)−KAj−1
K w(k) + c̃(j−1; k+1) + Lθ̃(k+1)

hence
Kx̃(j − 1; k + 1) + c̃(j − 1; k + 1) + Lθ̃(k + 1) ∈ Ūj ⊕Aj−1

K W

and
Ūj ⊕Aj−1

K W = U⊖KRj ⊕Aj−1
K W = U⊖KRj−1 = Ūj−1

Lemma 4.11 [Recursive feasibility of the terminal constraint]For all k ≥ 0,

(x̄0(N ; k), θ0(k)) ∈ Ωa
t

Proof: Consider that at time k (x̄0(N ; k), θ0(k)) ∈ Ωa
t . Since Ωa

t = Σt ⊖ (RN × 0), hence

(x̄0(N − 1; k + 1), θ0(k + 1)) ∈ Σt ⊖ (RN × 0)⊕ (AN−1
K W× 0)

Then, since (x̄0(N ; k + 1), θ0(k + 1)) = Aa(x̄
0(N − 1; k + 1), θ0(k + 1)), hence

(x̄0(N ; k + 1), θ0(k + 1)) ∈ AaΣt ⊖ (AK(RN ⊖AN−1
K W)× 0)
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Taking into account that AK(RN ⊖AN−1
K W) = RN ⊖W, then

(x̄0(N ; k + 1), θ0(k + 1)) ∈ AaΣt ⊕ ((W⊖ RN )× 0) ⊆ Σt ⊖ (RN × 0) = Ωa
t

4.5.1 Proof of theorem 4.7

In what follows, it will be proved that the closed-loop system is ISS for all x(0) ∈ XN .

Proof: From lemmas 4.8, 4.9, 4.10 and 4.11, it is derived that the couple (c̃(k+1), θ̃(k+1))

is a feasible solution of problem PN (x,Γt).

Consider now the optimal value of the cost function V 0
N (x(k),Γt), due to the optimal

solution of problem PN (x(k),Γt), given by (c0(k), θ0(k)). De�ne

ṼN (x(k+1),Γt; c̃, θ̃) =

N−1∑
j=0

∥c̃(j; k+1)∥2Ψ +VO(ys,Γt)

Comparing ṼN (x(k+1),Γt; c̃, θ̃) with V 0
N (x(k),Γt), we have that

ṼN (x(k + 1),Γt; c̃, θ̃)− V 0
N (x(k),Γt) = −∥c0(0; k)∥2Ψ

and hence, by optimality:

V 0
N (x(k + 1),Γt)− V 0

N (x(k),Γt) ≤ −∥c0(0; k)∥2Ψ

Since Ψ > 0, we can state that:
lim
k→∞

c0(0; k) = 0

and (ii) is proved.

The fact that c0(0; k) → 0 implies that u(k) → K(x(k)− x0s(k)) + u0s(k), and hence:

x(k) → x0s(k)⊕ R∞, u(k) → u0s(k)⊕KR∞

Using the same arguments as in the chapter 2, it can be proved that (x0s(k), u
0
s(k)) converges

to the optimal equilibrium point (x∗s, u
∗
s) which is the minimizer of the o�set cost function

VO(ys,Γt).

Now, the stability of the equilibrium point will be proved. If the uncertainty is null, then
(following chapter 2) the system is asymptotically stable in (x∗s, u

∗
s). If w ̸= 0, the continuity
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of the control law provides that the closed-loop system is such that the closed-loop prediction
ϕcl(j;x,w) = ϕ(j;x, kN (x,Γt), w) is continuous in x and w. Then, resorting to ISS arguments
(Limon et al., 2009a), it can be proved that there exist a KL function β and a K function γ

such that
|x(k)− x∗s| ≤ β(|x(0)− x∗s|, k) + γ(∥w∥)

for all initial state x(0) ∈ XN and all disturbances w(k).

4.6 Properties of the proposed controller

The proposed controller is a robust formulation of the MPC for tracking target sets presented
in chapter 3. As a consequence, it inherits all the good properties of that controllers:

• Steady state optimization The proposed controller steers the system to a neighbor-
hood of the optimal operating point according to the o�set cost function VO(ys,Γt).
Then it can be considered that the proposed controller has a steady state optimizer
built in and VO(ys,Γt) de�nes the function to optimize.

• Feasibility for any reachable target zone The controller is able to guarantee fea-
sibility for any Γt and for any prediction horizon N . Then, it can be derived that
the proposed controller is able to lead the system to any admissible target zone (i.e.
Γt ∩ Ȳs ̸= ∅) even for N = 1, if the system starts from an admissible equilibrium point.

• Changing target zones Since the set of constraints of PN (x,Γt) does not depend on
Γt, its feasibility region does not depend on the target operating point Γt. Therefore, if
Γt varies with the time, the results of theorem 4.7 still hold.

• Input target The proposed controller can be formulated considering input targets of the
form umin ≤ ut ≤ umax, by de�ning an o�set cost function VO(us,Γu,t) subdi�erential
and convex w.r.t. us, where Γu,t is a convex polyhedron.

• Enlargement of the domain of attraction The fact that the terminal constraint is
an invariant set for any equilibrium points makes this set (potentially) larger than the
one calculated for regulation to a �xed equilibrium point. Consequently, the domain
of attraction of the proposed controller is (potentially) larger than the domain of the
standard MPC. This property is particularly interesting for small values of the control
horizon.

• Optimization problem posed as a QP Since all the ingredients (functions and sets)
of the optimization problem PN (x,Γt) are convex, then it derives that PN (x,Γt) is a
convex mathematical programming problem that can be e�ciently solved in polynomial
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time by specialized algorithms (Boyd and Vandenberghe, 2006). As in (Ferramosca et
al., 2010a), this problem can be re-casted as a standard QP problem, with a certain
choice of the o�set cost function. In particular, three formulations allow this recasting:

(i) distance from a set as ∞-norm

VO(ys,Γt) , min
y∈Γt

∥ys − y∥∞ (4.29)

(ii) distance from a set as 1-norm

VO(ys,Γt) , min
y∈Γt

∥ys − y∥1 (4.30)

(iii) distance from a set as a scaling factor: in this implementation, the target region is
de�ned as

Γt , yt ⊕ Ξt

where yt is a desired target point and Ξt is a polyhedron that de�nes the zone.
Then

VO(ys,Γt) = min
λ,y

λ (4.31)

s.t. λ ≥ 0

y − yt ∈ λΞt

See (Ferramosca et al., 2010a) or chapter 3 for more details on how to recast the opti-
mization problem PN (x,Γt) to obtain a QP problem.

4.7 Illustrative example

In this example, the proposed controller has been tested in a simulation on the 4 tanks process
presented in the Appendix A. The objective of this test is to show how the controller maintains
the system within some speci�ed zones, rejecting the disturbances applied to the system.

To this aim, in the test, �ve target zones have been considered. The limits of these zones
are given in table. 4.1 Notice that (h01, h

0
2, h

0
3, h

0
4) is the point around which the system has

been linearized (see Appendix A). Notice also that Γt,3 is an unreachable zone for the system.

The initial state is x0 = (0.65, 0.65, 0.6658, 0.6242). An MPC with N = 3 has been
considered. The weighting matrices have been chosen as Q = I4 and R = 0.01 × I2. The
disturbances are bounded in the set W = {w : ∥w∥∞ ≤ 0.005}. The gain matrix K is the
given by the LQR, and matrix P is the solution of the Riccati equation. The o�set cost
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Table 4.1: Target zones used in the example

Γt ymin ymax

Γt,1 (0.20, 0.20) (0.40, 0.40)

Γt,2 (1.15, 1.15) (1.35, 1.35)

Γt,3 (0.30, 0.75) (0.40, 0.85)

Γt,4 (0.95, 0.75) (1.05, 0.85)

Γt,5 (h01, h
0
2)− (0.05, 0.05) (h01, h

0
2) + (0.05, 0.05)

function VO has been chosen as described in (4.31). This choice is motivated by the fact that,
if R∞ ⊆ Ξt, then the controller will steer the system into the zone, while in the other case the
system will be driven on the boundary of the zone. The system has been discretized using
the zero-order hold method with a sampling time of 15 seconds.

Figure 4.1 shows the state-space evolution of the system.

Figure 4.1: State-space evolution of the trajectories.
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The projection of the invariant set Ωt onto Y, Ωt,y is plotted in dashed-dotted line, while
the projection of the domain of attraction YN , with N = 3, is plotted in solid line. The region
of admissible steady outputs Ys is depicted in dashed line. The blue boxes represent the zones
while the light blue sets are the minimum robust invariant set R∞ centered in the equilibrium
point. The desirable target points yt, are represented as circles and considered as the center
of the target zones. See how the controller steers the system into the zone when is possible
and however always into the set y∗s ⊕ R∞, as stated in Theorem 4.7.
In Figures 4.2 and 4.3 the time evolution of h1, h2, h3, h4, qa and qb is depicted.
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Figure 4.2: Time evolution of h1 and h2.

The evolutions of the outputs and the arti�cial references are drawn respectively in solid
and dashed line. The zones are drawn in dotted lines. See how the controller steers the system
into the output zone, when is possible, rejecting the disturbances. As already said, Γt,3 is
not admissible, that is Γt ∩ Ys = ∅. In this case the controller steers the system to a region
y∗s ⊕ R∞, where y∗s is the admissible point that minimizes the o�set cost function. In the
other cases, it can be seen that the controller steers the outputs into the zones. This happens
because Γt ∩ Ys ̸= ∅ and yt ∈ Ys.
At the sample time T = 1050, an impulsive perturbation has been applied to the system. It
is clear from �gure 4.3 how the controller reacts to this perturbation. As a consequence, in
�gure 4.2 it is possible to see how, after the perturbation, the system is once again driven
into the target zone.
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Figure 4.3: Time evolution of h3, h4 qa and qb.

4.8 Conclusion

The zone control strategy is implemented in applications where the exact values of the con-
trolled outputs are not important, as long as they remain inside a range with speci�ed limits.
In this chapter, a robust extension of the MPC for tracking zone regions control has been
presented, based on nominal predictions and restricted constraints. From a tracking point of
view, the controller considers a set, instead of a point, as target. The concept of deviation
between two points used in the o�set cost function has been generalized to the concept of
distance from a point to a set. A characterization of the o�set cost function has been given
as the minimal distance between the output and some point inside the target set. The con-
troller ensures recursive feasibility and robust satisfaction of the constraints by using nominal
predictions and restricted constraints.





Chapter 5

Distributed MPC for tracking

5.1 Introduction

Large scale control systems usually consist of linked unit of operations and can be divided into
a number of subsystems controlled by di�erent agents which may or may not share informa-
tion. A �rst approach to this problem is decentralized control, in which interactions between
the di�erent subsystems are not considered (Sandell Jr. et al., 1978). The main issue of this
solution appears when the intersubsystem interactions become strong. Centralized control,
a single agent controls the plantwide system, is another traditional solution that can cope
with this control problem. The main problems of this solution are the computational burden
and the coordination of subsystems and controller. Distributed control schemes, where agents
share open-loop information in order to improve closed-loop performance, solve many of these
problems (Rawlings and Mayne, 2009, Chapter 6).
The di�erence between the distributed control strategies is in the use of this open-loop infor-
mation. In noncooperative distributed control each subsystem considers the other subsystems
information as a known disturbance (Camponogara et al., 2002a; Dunbar, 2007). This strat-
egy leads the whole system to converge to a Nash equilibrium. In cooperative distributed
control the agents share a common objective and optimize a cost function that can be consid-
ered as the whole system cost function (Venkat, 2006; Pannocchia et al., 2009; Stewart et al.,
2010). This strategy is a form of suboptimal control: stability is deduced from suboptimal
control theory (Scokaert et al., 1999) and converge to a Pareto optimum is ensured.

MPC is one of the most used control structure to cope with distributed control. In
(Magni and Scattolini, 2006) an MPC approach for nonlinear systems is proposed, where no
information is exchanged between the local controllers. An input-to-state stability proof for
this approach is given in (Raimondo et al., 2007b). In (Liu et al., 2009, 2008) the authors
present a controller for networked nonlinear systems, which is based on a Lyapunov-based
model predictive control. In (Venkat et al., 2007; Stewart et al., 2010) a cooperative distributed
MPC is presented, in which suboptimal input trajectories are used to stabilize the plant.

In this chapter, the MPC for tracking presented in (Limon et al., 2008a) and (Ferramosca



90 5.1. Introduction

et al., 2009a) is extended to the case of large scale distributed systems. Among the di�er-
ent solutions presented in literature, in this chapter we particularly focus our attention on
the cooperative formulation for distributed MPC presented in (Rawlings and Mayne, 2009,
Chapter 6), in (Venkat, 2006) and in (Stewart et al., 2010). In this formulation, the players
share a common objective, which can be considered as the overall plant objective. This means
that any player calculates its corresponding inputs by minimizing the same and unique cost
function, by means of an iterative (and hence suboptimal) distributed optimization problem.
Stability is proved by means of suboptimal MPC theory (Scokaert et al., 1999).

Consider a system described by a linear invariant discrete time model

x+ = Ax+Bu (5.1)

y = Cx+Du

where x ∈ Rn is the system state, u ∈ Rm is the current control vector, y ∈ Rp is the controlled
output and x+ is the successor state. The solution of this system for a given sequence of control
inputs u and initial state x is denoted as x(j) = ϕ(j;x,u) where x = ϕ(0;x,u). The state of
the system and the control input applied at sampling time k are denoted as x(k) and u(k)

respectively. The system is subject to hard constraints on state and control:

x(k) ∈ X, u(k) ∈ U (5.2)

for all k ≥ 0. X ⊂ Rn and U ⊂ Rm are compact convex polyhedra containing the origin in
their interior. It is assumed that the following hypothesis hold.

Assumption 5.1 The pair (A,B) is stabilizable and the state is measured at each sampling
time.

5.1.1 Characterization of the equilibrium points of the plant

The steady state, input and output of the plant (xs, us, ys) are such that (5.1) is ful�lled, i.e.
xs = Axs +Bus, and ys = Cxs +Dus.
We de�ne the sets of admissible equilibrium states, inputs and outputs as

Zs = {(x, u) ∈ X × U | x = Ax+Bu} (5.3)

Xs = {x ∈ X | ∃u ∈ U such that (x, u) ∈ Zs} (5.4)

Ys = {y = Cx +Du | (x, u) ∈ λZs} (5.5)

Notice that Xs is the projection of Zs onto X.
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The steady conditions of the system can be determined by a suitable parametrization. In
(Limon et al., 2008a) the authors state that the steady state and input (xs, us) of the system
can be parameterized as a linear combination of a vector θ ∈ Rm. In order to present the
results of this paper in a more intuitive way, we choose a steady output ys to parameterize
every equilibrium point (xs, us). This parametrization is possible if and only if Lemma 1.14 in
(Rawlings and Mayne, 2009, p. 83) holds. If this condition does not hold, the parametrization
presented in chapter 2 has to be used.

Under assumption 5.1 and Lemma 1.14 in (Rawlings and Mayne, 2009, p. 83), any steady
state and input of system (5.1) associated to this ys, namely, every solution of the following
equation, [

A− In B 0p,1

C D −Ip

] xs

us

ys

 =

[
0n,1

0p,1

]
(5.6)

is given by (xs, us) = Myys, where My is a suitable matrix.

5.1.2 Distributed model of the plant

In this chapter, a distributed control framework is considered based on a suitable partition of
the plant into a collection of coupled subsystems. In virtue of (Stewart et al., 2010, Section
3.1.1) and (Rawlings and Mayne, 2009, Chapter 6, pp. 421-422), we consider that the plant
given by (5.1) is partitioned in M subsystems (where M ≤ m) modeled as follows:

x+i = Aixi +

M∑
j=1

B̄ijuj (5.7)

yi = Cixi +
M∑
j=1

D̄ijuj

where xi ∈ Rni , uj ∈ Rmj , yi ∈ Rp
i , Ai ∈ Rni×ni and Bij ∈ Rni×mj . Without loss of generality,

it is considered that u = (u1, · · · , uM ).

As proved in (Stewart et al., 2010), any plant can be partitioned as proposed for a certain
de�nition of xi. If the couple (Ci, Ai) is observable, the inner state of the partition can be
calculated or estimated from the measured output of the subsystem yi.

For the sake of simplicity of the exposition, the results will be presented for the case of
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two players game. In this case, the plant can be represented in the form:

[
x1

x2

]+
=

[
A1

A2

][
x1

x2

]
+

[
B̄11

B̄21

]
u1+

[
B̄12

B̄22

]
u2

[
y1

y2

]
=

[
C1

C2

][
x1

x2

]
+

[
D̄11

D̄21

]
u1+

[
D̄12

D̄22

]
u2

The solution of this system, given the sequences of control inputs u1 and u2 and initial state
x is denoted as x(j) = ϕ(j;x,u1,u2) where x = ϕ(0;x,u1,u2).

The problem we consider is the design of a cooperative distributed MPC controller to track
a (possible time-varying) plant-wide target output yt = (yt,1, yt,2). The proposed distributed
controller will ensure convergence to the target if this is admissible or as close as possible if
not admissible. This control law is shown in the following section.

5.2 Cooperative MPC

Among the existing solutions for the distributed predictive control problem, we focus our
attention on the cooperative game (Stewart et al., 2010; Rawlings and Mayne, 2009, Chapter
6, p. 433). In this case, the two players share a common (and hence coupled) objective, which
can be considered as the overall plant objective.

V c
N (x, yt;u) =

N−1∑
j=0

∥x(j)−xt∥2Q + ∥u(j)−ut∥2R + ∥x(N)−xt∥2P

where x = (x1, x2), u = (u1,u2) and (xt, ut, yt) de�nes the state, input and output of the
target, that it is assumed to be an equilibrium point of the centralized model of the plant.

In cooperative distributed MPC, each i-th agent calculates its corresponding input ui by
solving an iterative decentralized optimization problem. The solution of the i-th agent at
the iteration p will be denoted as u[p]

i . Based on this, the solution of each agent at the next
iteration p + 1 is calculated from the solution of the optimization problem P c

i (x, yt,u
[p]) for

the i-th agent, that depends on the state x = (x1, x2), the target yt and the solution of the
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p-th iteration u[p] = (u
[p]
1 ,u

[p]
2 ). The optimization problem P c

i (x, yt,u
[p]) is given by:

u0
i = argmin

ui

V c
N (x, yt;u) (5.8a)

s.t. (5.8b)

xq(j + 1) = Aqxq(j) +

2∑
ℓ=1

Bqℓuℓ(j), q ∈ I1,2 (5.8c)

x1(0) = x1, x2(0) = x2 (5.8d)

(u
[p]
1 ,u

[p]
2 ) = u[p], (5.8e)

uℓ(j) = u
[p]
ℓ (j) ℓ ∈ I1,2 \ i, (5.8f)

(x1(j), x2(j)) ∈ X, (5.8g)

(u1(j), u2(j)) ∈ U, j = 0, ..., N − 1 (5.8h)

(x1(N), x2(N)) = xt (5.8i)

Denoting the optimal solution of this problem as u0
i , the solution at the current iteration p+1

will be given by

u
[p+1]
1 = w1u

0
1 + w2u

[p]
1 (5.9a)

u
[p+1]
2 = w1u

[p]
2 + w2u

0
2 (5.9b)

w1 + w2 = 1 w1, w2 > 0

At time k, the iterative method �nishes at the iteration p̄, once the computation time is
expired or a given accuracy of the solution is achieved. Then the best available solution
u1 = u

[p̄]
1 (0) and u2 = u

[p̄]
2 (0) is applied to the plant. Hence, the overall predictive controller

can be considered as a suboptimal MPC since the distributed solution is a suboptimal solution
of the centralized MPC problem.

Based on the stability theory of suboptimal MPC, it has been demonstrated that this de-
centralized approach ensures recursive feasibility, optimality (in case of uncoupled constraints)
and asymptotic stability under mild assumptions. See (Rawlings and Mayne, 2009, Chapter
6, pp. 446-453) and (Stewart et al., 2010) for a more detailed exposition.

If the setpoint of the controller (yt,1, yt,2) is changed, then the corresponding equilibrium
point of the optimization problem (xt, ut, yt) must be recalculated solving a target problem.
In distributed MPC this target problem is typically solved in a distributed way in such a way
that there is a target problem for each agent (Rawlings and Mayne, 2009, Section 6.3.4). If the
constraints of each subsystem are decoupled, then the distributed target problem ensures that
the distributed controller steers the system to the calculated target. But if the constraints of
the problem are coupled, then the optimality of the target problem might be lost, and the
controller might fail to steer the plant to the desired target. In this case, it is recommended
to use the centralized approach to solve the target problem.
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On the other hand, for a centralized or a distributed target problem solution, the dis-
tributed controller may become infeasible due to the change in the setpoint, leading to the
necessity of redesigning the controller.

In this chapter, a new cooperative distributed MPC for tracking is presented aimed to
ensure convergence to the centralized optimal target solution and guaranteeing feasibility
after any change of the setpoint of the plant.

5.3 Cooperative MPC for tracking

The distributed control scheme proposed in this chapter extends the MPC for tracking pre-
sented in (Limon et al., 2008a; Ferramosca et al., 2009a) to a cooperative distributed frame-
work. As in the centralized case, an arti�cial equilibrium point of the plant (xs, us, ys),
characterized by ys, is added as decision variable and the following modi�ed cost function is
considered:

VN (x, yt;u, ys) =
N−1∑
j=0

∥x(j)−xs∥2Q + ∥u(j)−us∥2R + ∥x(N)−xs∥2P + VO(ys, yt)

where x = (x1, x2), u = (u1,u2) and (xs, us, ys) is the arti�cial equilibrium point of the plant
given by ys. The function VO(ys, yt) is the so called o�set cost function and it is de�ned as
follows:

De�nition 5.2 Let VO(ys, yt) be a convex and positive de�nite function in ys such that the
minimizer of

min
ys∈Ys

VO(ys, yt)

is unique.

This function VO(ys, yt) is a measure of the (economic) cost associated to a given setpoint
ys. This function is typically chosen as a function of the distance ∥ys − yt∥ (Ferramosca et
al., 2009a).

The following assumptions are considered to prove stability of the controller:

Assumption 5.3

1. Let R ∈ Rm×m be a positive semide�nite matrix and Q ∈ Rn×n a positive semi-de�nite
matrix such that the pair (Q1/2, A) is observable.
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2. Let K ∈ Rm×n be a stabilizing control gain for the centralized system, such that (A+BK)
has all the eigenvalues in the unit cirle.

3. Let P ∈ Rn×n be a positive de�nite matrix for the centralized system such that:

(A+BK)′P(A+BK)−P=−(Q+K ′RK) (5.10)

4. Let Ωa
t ⊆ Rn+p be an admissible polyhedral invariant set for tracking for system (5.1)

subject to (5.2), for a given gain K (Limon et al., 2008a).
That is, given the extended state a = (x, ys), for all a ∈ Ωλ, then a+ = Aaa ∈ Ωa

t , where
Aa is the closed-loop matrix given by

Aa =

[
A+BK BL

0 Ip

]
and L = [−K, Ip]My. Furthermore Ωa

t must be contained in the polyhedral set Wλ given
by

Wλ = {(x, ys) ∈ X × Ys : Kx+ Lys ∈ U}

As in the regulation case, the control action to be applied at each sampling time is cal-
culated by an iterative method where an optimization problem for each agent is solved at
each iteration. The optimization problem that each i-th agent solves at the p+ 1 iteration is
denoted as Pi(x, yt,u

[p]) and it is given by:

(u0
i , y

0
s,i) = arg min

ui,ys
VN (x, yt;u, ys) (5.11a)

s.t. (5.11b)

xq(j + 1) = Aqxq(j) +

2∑
ℓ=1

Bqℓuℓ(j), q ∈ I1,2 (5.11c)

x1(0) = x1, x2(0) = x2 (5.11d)

(u
[p]
1 ,u

[p]
2 ) = u[p], (5.11e)

uℓ(j) = u
[p]
ℓ (j) ℓ ∈ I1,2 \ i, (5.11f)

(x1(j), x2(j)) ∈ X, (5.11g)

(u1(j), u2(j)) ∈ U, j = 0, ..., N − 1 (5.11h)

(x(N), ys) ∈ Ωa
t (5.11i)

Based on the solution of this optimization problem for each agent, namely u0
1 and u0

2, the
solution of the p+ 1-iteration is given by

u
[p+1]
1 = w1u

0
1 + w2u

[p]
1 (5.12a)

u
[p+1]
2 = w1u

[p]
2 + w2u

0
2 (5.12b)

y[p+1]
s = w1y

0
s,1 + w2y

0
s,2 (5.12c)

w1 + w2 = 1 w1, w2 > 0
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As in (Stewart et al., 2010), once the algorithm reaches the last iteration p̄, the inputs of the
plant are u1(k) = u

[p̄]
1 (0; k) and u2(k) = u

[p̄]
2 (0; k).

To proceed with the analysis of the proposed controller, we will denote

v = (u1,u2, ys)

v is said to be feasible at x if each optimization problem Pi(x, yt, (u1,u2)) is feasible for all
i ∈ I1:2. The set of states for which there exists a feasible v is denoted as XN . Notice that
this set is equal to the feasible set of the centralized MPC for tracking (Limon et al., 2008a),
i.e. the set of states that can be admissibly steered to Projx(Ω

a
t ) in N steps. Besides, we will

denote VN (x, yt,v) = VN (x, yt, (u1,u2)).

In order to de�ne precisely the proposed cooperative control scheme, the initial solution
v[0] of the iterative procedure (5.12) must be de�ned. Since the proposed distributed MPC
can be considered as a suboptimal formulation of the centralized MPC, this initialization
plays the role of the warm start of the suboptimal MPC and determines recursive feasibility
and convergence of the control algorithm. In cooperative MPC for regulation (Stewart et al.,
2010; Rawlings and Mayne, 2009), the warm start control sequence is obtained by discarding
the �rst input, shifting the rest of the sequence forward one step and setting the last input to
steady input of the target. In this paper we propose the following algorithm:

Algorithm 5.4

Given the solution v(k), the objective is to calculate the warm start at sampling time k+1,
denoted as

v(k + 1)[0] = (u1(k + 1)[0],u1(k + 1)[0], ys(k + 1)[0]).

1. De�ne the �rst candidate initial solution:

ũ1(k+1) = {u1(1; k), ..., u1(N − 1; k),uc,1(N)}
ũ2(k+1) = {u2(1; k), ..., u2(N − 1; k),uc,2(N)}

where
uc(N) = (uc,1(N), uc,2(N)) = Kx(N) + Ly0s(k)

is the centralized solution given by the centralized terminal control law, and x(N) =
ϕ(N ;x(k),u1(k),u2(k)).

2. De�ne the second candidate initial solution:

û1(k+1) = {ûc,1(0), ..., ûc,1(N − 1)}
û2(k+1) = {ûc,2(0), ..., ûc,2(N−1)}
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where (ûc,1(j), ûc,2(j)) = ûc(j) and

x̂(0) = x(k + 1)

x̂(j + 1) = (A+BK)x̂(j) +BLy0s(k), j ∈ I1:N−2

ûc(j) = Kx̂(j) + Ly0s(k)

3. IF (x(k + 1), y0s(k)) ∈ Ωa
t AND VN (x(k + 1), yt, û) ≤ VN (x(k + 1), yt, ũ)

SET

v(k + 1)[0] = (û1(k + 1), û2(k + 1), y0s(k))

ELSE

v(k + 1)[0] = (ũ1(k + 1), ũ2(k + 1), y0s(k))

As usual in the suboptimal MPC optimization algorithm, the proposed warm start for the
�rst optimization iteration p = 0 is given by the previous optimal sequence, shifted of one
position, with the last control move given by the centralized terminal control law applied to
the predicted terminal state of the overall plant and the same arti�cial steady output, that is
(ũ1(k + 1), ũ2(k + 1), ys(k)). But, according to the algorithm, when the state of the system
reaches the invariant set for tracking, that is (x(k + 1), y0s(k)) ∈ Ωa

t , it is desirable that the
distributed MPC achieves a better cost than cost of using the centralized terminal controller.
If this is not possible, that is VN (x(k+ 1), yt, û, ys(k)) ≤ VN (x(x+ 1), yt, ũ, ys(k)), hence the
centralized terminal control law is chosen as warm start. With this choice convergence, to the
optimal centralized target and controllability of the solution are ensured.

Remark 5.5 In case of terminal equality constraint, that is, Ωa
t = Xs×Ys, this algorithm can

be used taking as terminal controller the dead-beat controller, as matrix P the corresponding
solution of (5.10) and N ≥ n.

At each sampling time k, the initial warm start v[0](k) is calculated using algorithm 5.4
and then, v[p](k) is obtained from the iterative procedure given by (5.11) and (5.12). At a
certain number of iteration p̄, the �nal solution, denoted as

v(k) = (u
[p̄]
1 (k),u

[p̄]
2 (k), ŷ[p̄]s (k)),

is achieved. This solution is a function of: (i) the current state x(k) and (ii) the initial feasible
solution v[0](k) that depends on v(k − 1). Then, following (Stewart et al., 2010), the overall
control law can be posed as

v(k + 1) = g(x(k),v(k)) (5.13a)

x(k + 1) = Ax(k) +BHv(k) (5.13b)
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where g is a suitable function and H is an appropriate constant matrix.

The stabilizing properties of this controller are stated in the following theorem.

Theorem 5.6 [Asymptotic stability] Consider that the assumptions 5.1 and 5.3 hold. Let
XN be the feasible set of states of problem (5.11). Then for all x(0) ∈ XN and for all yt, the
closed-loop system is asymptotic stable and converges to an equilibrium point (x∗s, u

∗
s) = Myy

∗
s

such that
y∗s = arg min

ys∈Ys

VO(ys, yt)

Moreover, if yt ∈ Ys, then y∗s = yt.

5.4 Properties of the proposed controller

The proposed controller provides the following properties to the closed-loop system:

• As in the centralized case (see chapter 2), the domain of attraction of the proposed
controller is (potentially) larger than the domain of the standard distributed MPC,
since this set is de�ned for any equilibrium point.

• The proposed controller is able to track any changing setpoint, maintaining the recursive
feasibility and constraint satisfaction, since the optimization problem is feasible for any
yt.

• In cooperative MPC, the target problem solved in a distributed way, converges to the
centralized optimum only if the constraints are uncoupled. In case case of coupled con-
straints, it is recommended to use the centralized approach to solve the target problem
(Rawlings and Mayne, 2009, Section 6.3.4).
The proposed controller ensures convergence to the centralized optimal equilibrium
point, since every agent solves an optimization problem with a centralized o�set cost
function. Remarkably, this property holds for any suboptimal solution provided by the
controller due, for instance, to the e�ect of coupled constraints between agents, or to
a small number of iterations p̄. Furthermore, this equilibrium point is the admissible
equilibrium which minimizes the o�set cost function.

5.5 Stability proof

In this section, the proof of Theorem 5.6 and the lemmas necessary to this proof, are presented.
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Lemma 5.7 [Recursive feasibility] Given a feasible initial solution v[0](k), the solution v[p](k)
is feasible ∀p ≥ 0 and k ≥ 0,.

Proof:

• Recursive feasibility of the iteration p.

Consider k = 0 and p = 0. Since U and Ωa
t are convex sets and the two triples

(u0
1(x, yt,v

[0]),u
[0]
2 , y

[0]
s,1(x, yt,v

[0])) and (u
[0]
1 ,u0

2(x, yt,v
[0]), y

[0]
s,2(x, yt,v

[0])) are feasible
solutions, hence the convex combination of these solutions is also feasible. Similarly,
this is proved for any p ≥ 1.

• Recursive feasibility of the time instant k.

Consider that the solution v(k) is achieved and v[0](k+1) is calculated by the algorithm
5.4. If (x(k+1), y0s(k)) ∈ Ωa

t , and VN (x(k+1), yt, û) ≤ VN (x(k+1), yt, ũ), then v[0](k+

1) is feasible since the centralized terminal control law provides a feasible solution.
Otherwise, the standard shifted solution is used, which is feasible thanks to the feasibility
of the terminal controller.

Lemma 5.8 [Convergence of the algorithm] For any k ≥ 0 and p ≥ 0, the obtained cost
function is such that

VN (x(k), yt,v
[p+1](k)) ≤ VN (x(k), yt,v

[p](k))

Proof:

In this proof, the time dependence has been removed for the sake of simplicity. Given the
solution v[p](k), the following two solutions are computed

va = (u0
1(x, yt,u

[p]),u
[p]
2 , y[p]s )

vb = (u
[p]
1 ,u0

2(x, yt,u
[p]), y[p]s )

From the de�nition of Pi(x, yt,u
[p]), these two solutions are feasible for this optimization

problem. Besides both solutions provide a lower cost than v[p].
Then from convexity of the optimal cost function and the fact that v[p+1] is the optimal
solution of Pi(x, yt,u

[p]), we have that

VN (x, yt,v
[p+1]) ≤ w1VN (x, yt,va) + w2VN (x, yt,vb)

≤ w1VN (x, yt,v
[p]) + w2VN (x, yt,vb)

= VN (x, yt,v
[p])
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Lemma 5.9 [Local bounding] Let k be an instant such that (x(k), y
[0]
s (k)) ∈ Ωa

t . Then

VN (x(k), yt;u
[p]
1 (k),u

[p]
2 (k), y[p]s (k)) ≤ ∥x(k)− x[0]s (k)∥2P + VO(y

[0]
s (k), yt)

Proof: If (x(k), y[0]s (k)) ∈ Ωa
t , hence the initialization of the algorithm ensures that

VN (x(k), yt;u
[0]
1 (k),u

[0]
2 (k), y[0]s (k)) ≤ ∥x(k)− x[0]s (k)∥2P + VO(y

[0]
s (k), yt)

This fact and lemma 5.8 prove the lemma.

Lemma 5.10 Let y∞ and a time instant k such that, (x∞, u+(j; k)) = Myy∞ and ys(k) =
y∞. Then, V 0

N (x∞, yt) = VO(y∞, yt).

Proof: It is clear that y∞ is a �xed point for the closed-loop system. At time k: x(k) = x∞,
u(k) = u∞, ys(k) = y∞. This implies that x(k + 1) = x∞ and y

[0]
s (k + 1) = y∞, and hence

(x(k + 1), y
[0]
s (k + 1)) ∈ Ωa

t . Hence

V 0
N (x(k+1), yt) ≤ VN (x(k+1), yt;u

[0]
1 (k+1),u

[0]
2 (k+1), y[0]s (k+1))

≤ ∥x(k+1)−x[0]s (k+1)∥2P + VO(y
[0]
s , yt)

Since x(k + 1) = x∞ and y∞ = y
[0]
s (k + 1), hence V 0

N (x∞; yt) ≤ V0(y∞, yt).
Let V 0

N,c(x∞, yt) be the optimal centralized solution taking ys = y∞. Then, V 0
N,c(x∞, yt) =

VO(y∞, yt). Hence, since y∞ is a �xed point, y0s(k+1) = y∞. Therefore, (u0
1(k+1),u0

2(k+1))

is a suboptimal solution of the centralized problem, and hence

V 0
N (x(k + 1), yt) ≥ V 0

N,c(x(k + 1), yt) = V 0
N,c(x∞) = VO(y∞, yt)

which proves the lemma.

5.5.1 Proof of theorem 5.6

Proof: Given the initial solution in x(0), u[0]
1 (0) and u

[0]
2 (0), lemma 5.7 ensures that u0

1(k)

and u0
2(k) are admissible and moreover x(k) ∈ X for any k.

From lemma 5.8:

V 0
N (x(k+1), yt)−V 0

N (x(k), yt) ≤ VN (x(k+1), yt;u
[0]
1 (k+1),u

[0]
2 (k+1), y[0]s (k+1))−V 0

N (x(k), yt)

≤ VN (x(k+1), yt;ũ1(k+1),ũ2(k+1),y
0
s(k))−V 0

N (x(k), yt)

≤ −∥x(k)−x0s(k)∥2Q−∥u(k)−u0s(k)∥2R
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Given that the cost function is a positive de�nite function:

lim
k→∞

|x(k)−x∞|=0, lim
k→∞

|u(k)−u∞|=0, lim
k→∞

|ys(k)−y∞|=0

and (x∞, u∞) = Myy∞. By continuity, we can state that the system converges to a �xed
point.
Hence, using lemma 5.10, V 0

N (x∞, yt) = VO(y∞, yt). Using same arguments as in (Ferramosca
et al., 2009a, Theorem 1), we can state that y∞ is the minimizer of VO(ys, yt), that is y∞ = y∗s
and then x∞ = x∗s ∈ X and u∞ = u∗s ∈ U . Moreover, if yt ∈ Ys, then y∗s = yt.

Finally, the fact that (x∗s, u
∗
s) is a stable equilibrium point for the closed-loop system is

proved. That is, for any ε > 0 there exists a δ > 0 such that for all |x(0) − x∗s| ≤ δ, then
|x(k) − x∗s| ≤ ε. Notice that the region B = {x : |x(k) − x∗s| ≤ ε} ⊆ XN and this is true
because x∗s ∈ int(XN ).

Hence, de�ne the function W (x, yt) = V 0
N (x, yt) − VO(y

∗
s , yt). Then, W (x∗s, yt) = 0. This

function is such that αW (|x−x∗s|) ≤ W (x, yt) ≤ βW (|x−x∗s|), where αW and βW are suitable
K∞ functions. In fact:

• W (x, yt) ≥ αl(|x − x0s|) + αO(|x0s − x∗s|). This comes from the fact that the stage cost
function is a positive de�nite function and from the de�nition of VO. Then

W (x, yt) ≥ αW (|x− x0s|+ |x0s − x∗s|)
≥ αW (|x− x∗s|)

• Notice that

V 0
N (x, yt) ≤ VN (x, yt;v

[0](k)) ≤ |x− x∗s|2P + VO(y
∗
s , yt) ≤ βW (|x− x∗s|)

Hence W (x, yt) ≤ βW (|x− x∗s|).

Then, αW (|x(k) − x∗s|) ≤ W (x(k), yt) ≤ W (x(0), yt) ≤ βW (|x − x∗s|) and, hence, |x(k) −
x∗s| ≤ α−1

W ◦βW (|x(0)−x∗s|). So, picking δ = β−1
W ◦αW (ε), then |x(k)−x∗s| ≤ α−1

W ◦βW (δ) ≤ ε,
proving the stability of x∗s.

5.6 Illustrative example

In this section, an example to test the performance of the proposed controller, is presented.
The system adopted is the 4 tanks process presented in the Appendix A.
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5.6.1 Distributed model

In order to test de cooperative distributed MPC for tracking presented in the paper, the
linearized model presented in the Appendix A has been partitioned in two subsystems in such
a way that the two subsystems are interconnected through the inputs. The two subsystems
model are the following:

dx1
dt

=

[
−1
τ1

A3
A1τ3

0 −1
τ3

]
x1+

[
γa
A1

0

]
u1+

[
0

(1−γb)
A3

]
u2.

dx2
dt

=

[
−1
τ2

A4
A2τ4

0 −1
τ4

]
x2+

[
0

(1−γa)
A4

]
u1+

[
γb
A2

0

]
u2.

where x1 = (h1, h3), x2 = (h2, h4), u1 = qa and u2 = qb.

The overall control objective is to control the level of tanks 1 and 2 while ful�lling the
constraints on the levels and on the inputs.

5.6.2 Simulations

In the test, �ve references have been considered: yt,1 = (0.3, 0.3), yt,2 = (1.25, 1.25), yt,3 =

(0.35, 0.8), yt,4 = (1, 0.8) and yt,5 = (h01, h
0
2). Notice that yt,3 is not an equilibrium output

for the system. The initial state is x0 = (0.65, 0.65, 0.6658, 0.6242). Notice also that the
constraints on the model are coupled due to the dynamic. The setups for the two distributed
controllers are the followings:

• Agent 1: Q1 = I2, R1 = 0.01I1, N=3, w1 = 0.5.

• Agent 2: Q2 = I2, R2 = 0.01I1, N=3, w2 = 0.5.

The number of iterations of the suboptimal optimization algorithm has been chosen as
p̄ = 1. The gain K is chosen as the one of the LQR and the matrix P is the solution of the
Riccati equation. The invariant set for tracking has been calculating for the gain matrix K.
The o�set cost function VO(ys, yt) has been chosen following chapter 2.
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The projection of the maximal invariant set for tracking onto y, ΩY , the projection of the
region of attraction onto Y , Y3 and the set of equilibrium levels Ys, are plotted in �gure 5.1.
The results of the simulation are plotted in Figures 5.2 and 5.3.
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Figure 5.1: Steady output set, Ys, and projection of Ωt,K onto Y , Ωt,Y .

In �gure 5.2 the levels of tanks 1 and 2 are plotted. The evolutions of the systems are
plotted in solid lines, while the references and the arti�cial references are plotted respectively
in dashed-dotted and dashed lines.
See how the controller always steers the system to the given reference, and how the evolutions
follow the arti�cial references while the real one are unfeasible. The arti�cial references are
the optimal steady states that the system can reach in that moment with that prediction
horizons. Looking at their evolution, we can see the moment in which the desired reference
becomes a feasible point for the optimization problem. This moment in the �gure is the
moment in which the arti�cial reference (dashed-dotted line) (practically) reach the real one
(dashed line). Notice, also, that in the second change of reference, when the target setpoint
in unreachable (due to the constraints), the controller steers the system to the optimal steady
state of the centralized problem.
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The evolutions using the cooperative distributed MPC presented in (Rawlings and Mayne,
2009, Chapter 6, pp. 456-458), in case of a decentralized solution of the target problem, are
plotted in dotted lines. See how this controller steers the system to a di�erent steady state,
given by the solution of a decentralized target problem.
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Figure 5.2: Time evolution of tanks 1 and 2 levels.

In Figure 5.3 the levels of tanks 3 and 4 and the control actions, which are the �ows
from the pumps, are plotted in solid lines. The arti�cial references are also plotted in dashed
lines. state of the centralized problem. The evolutions using the cooperative distributed MPC
presented in (Rawlings and Mayne, 2009, Chapter 6, pp. 456-458), in case of a decentralized
solution of the target problem, are plotted in dotted lines.

The performance of the cooperative MPC for tracking with only one iteration has been
compared to the same controller with 10 iterations of the optimization algorithm. In �gures
5.4 and 5.5 a detail of this comparison is presented. This detail refers to the fourth change o
reference. The cooperative MPC for tracking with one iteration is plotted in solid black line,
while the one with 10 iterations is plotted in solid blue line. See how, increasing the number
of iterations, the controller seem to be faster and the overshoots to be reduced. The changes
in the control actions, also, result to be smoother.
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Figure 5.3: Time evolution of tanks 3 and 4 levels and of the �ows.

The performance of the two controller have been also compared calculating the following
closed-loop control performance measure:

Φ =
T∑

k=0

∥x(k)− xt∥2Q + ∥u(k)− ut∥2R − (∥x∗s − xt∥2Q + ∥u∗s − ut∥2R)

where T is the simulation time. The results in table 5.1 show that the closed-loop perfor-
mance using 10 iterations are better than using only one iteration, at expanse of a heavier
computational burden.

Table 5.1: Comparison of controller performance

Φ Average calculation time (s)

Cooperative MPC for tracking (1 iteration) 173.7353 0.1150

Cooperative MPC for tracking (10 iterations) 173.4893 0.6341
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Figure 5.4: Time evolution of tanks 1 and 2 levels.
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Figure 5.5: Time evolution of tanks 3 and 4 levels and of the �ows.

5.7 Conclusion

In this chapter, a cooperative distributed linear model predictive control strategy has been
proposed, applicable to any �nite number of subsystems, for solving the problem of tracking
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non-zero setpoints. The proposed controller is able to steer the system to any admissible
setpoint in an admissible way. Feasibility under any changing of the target steady state and
convergence to the centralized optimum are ensured. Under some assumptions, it is proved
that the proposed controller steers the system to the target if this is admissible. If not,
the controller converges to an admissible steady state optimum according to the o�set cost
function.





Chapter 6

MPC for tracking constrained

nonlinear systems

6.1 Introduction

This chapter is dedicated to the case of nonlinear systems and to the design of an MPC control
strategy for tracking a (possibly time varying) setpoint.

Tracking control of constrained nonlinear systems is an interesting problem due to the
nonlinear nature of many processes in industry mainly when large transitions are required, as
in the case of changing operating point.

In (Findeisen et al., 2000) a nonlinear predictive control for setpoint families is presented,
which considers a pseudolinearization of the system and a parametrization of the setpoints.
The stability is ensured thanks to a quasi-in�nite nonlinear MPC strategy, but the solution
of the tracking problem is not considered.

In (Magni et al., 2001b) an output feedback receding horizon control algorithm for non-
linear discrete-time systems is presented, which solves the problem of tracking exogenous
signals and asymptotically rejecting disturbances generated by a properly de�ned exosystem.
In (Magni and Scattolini, 2005) an MPC algorithm for nonlinear systems is proposed, which
guarantees local stability and asymptotic tracking of constant references. This algorithm
need the presence of an integrator preliminarily plugged in front of the system to guarantee
the solution of the asymptotic tracking problem. In (Magni and Scattolini, 2007) an MPC
algorithm for continuous-time, possibly non-square nonlinear systems is presented. The al-
gorithm guarantees the tracking of asymptotically constant reference signals by means of a
control scheme were the integral action is directly imposed on the error variables rather than
on the control moves.

Another approach to the tracking of nonlinear systems problem are the so-called reference
governors (Angeli and Mosca, 1999; Bemporad et al., 1997; Gilbert and Kolmanovsky, 2002).
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A reference governor is a nonlinear device which manipulates on-line a command input to a
suitable pre-compensated system so as to satisfy constraints. This can be seen as adding an
arti�cial reference, computed at each sampling time to ensure the admissible evolution of the
system, converging to the desired reference.

In (Chisci and Zappa, 2003) the tracking problem for constrained linear systems is solved
by means of an approach called dual mode: the dual mode controller operates as a regulator
in a neighborhood of the desired equilibrium wherein constraints are feasible, while it switches
to a feasibility recovery mode, whenever this is lost due to a setpoint change, which steers the
system to the feasibility region of the MPC as quickly as possible. In (Chisci et al., 2005) this
approach is extended to nonlinear systems, considering constraint-admissible invariant sets as
terminal regions, obtained by means of a LPV model representation of the nonlinear plant.

In (Limon et al., 2008a; Ferramosca et al., 2009a) an MPC for tracking of constrained
linear systems is proposed, which is able to lead the system to any admissible setpoint in
an admissible way. The main characteristics of this controller are: an arti�cial steady state
is considered as a decision variable, a cost that penalizes the error with the arti�cial steady
state is minimized, an additional term that penalizes the deviation between the arti�cial
steady state and the target steady state is added to the cost function (the so-called o�set

cost function) and an invariant set for tracking is considered as extended terminal constraint.
This controller ensures that under any change of the target steady state, the closed-loop
system maintains the feasibility of the controller and ensures the convergence to the target if
admissible.

In this chapter, this controller is extended to the case of nonlinear constrained systems.
Three formulations of the controller are presented, which consider respectively the cases of
terminal equality constraint, terminal inequality constraint and no terminal constraint.

6.2 Problem statement

Consider a system described by a nonlinear invariant discrete time model

x+ = f(x, u) (6.1)

y = h(x, u)

where x ∈ Rn is the system state, u ∈ Rm is the current control vector, y ∈ Rp is the
controlled output and x+ is the successor state. The function model f(x, u) is assumed to
be continuous at any equilibrium point. The solution of this system for a given sequence of
control inputs u and initial state x is denoted as x(j) = ϕ(j;x,u) where x = ϕ(0;x,u). The
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state of the system and the control input applied at sampling time k are denoted as x(k) and
u(k) respectively. The system is subject to hard constraints on state and control:

x(k) ∈ X, u(k) ∈ U (6.2)

for all k ≥ 0, where X ⊂ Rn and U ⊂ Rm are closed sets.

The steady state, input and output of the plant (xs, us, ys) are such that (6.1) is ful�lled,
i.e.

xs = f(xs, us) (6.3)

ys = h(xs, us) (6.4)

Let de�ne the set of admissible equilibrium states as

Zs = {(x, u) ∈ X × U : x = f(x, u)} (6.5)

Xs = {x ∈ X : ∃u ∈ U s. t. (x, u) ∈ Zs} (6.6)

Ys = {y = h(x, u) : (x, u) ∈ λZs} (6.7)

where λ ∈ (0, 1).

Assumption 6.1 Assuming that the system is observable, the output of the system univocally
de�nes each triplet (xs, us, ys), i.e.

xs = gx(ys), us = gu(ys) (6.8)

Remark 6.2 If system 6.1 is not observable, it is convenient to �nd a parameter θ ∈ Rnθ

such such that the triplet (xs, us, ys) is univocally de�ned.

The problem we consider is the design of an MPC controller κ(x, yt) to track a (possible
time-varying) target steady output yt, such that the system is steered as close as possible to
the target while ful�lling the constraints.

6.3 MPC for tracking

In this section, the proposed MPC for tracking is presented. The aim of this novel formulation
is to guarantee recursive feasibility for any (possibly changing) output target to be tracked
and, if possible, the convergence of the output of the plant to the target.
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The cost function of the proposed MPC is given by:

VN (x, yt;u, ys) =

N−1∑
j=0

ℓ((x(j)−xs), (u(j)−us))+VO(ys−yt)

where x(j) = ϕ(j;x,u), xs = gx(ys), us = gu(ys) and yt is the target of the controlled
variables.

The controller is derived from the solution of the optimization problem PN (x, yt) given
by:

min
u,ys

VN (x, yt;u, ys)

s.t.

x(0) = x,

x(j + 1) = f(x(j), u(j)), j=0, · · · , N−1

x(j) ∈ X, u(j) ∈ U j=0, · · · , N−1

xs = gx(ys)

us = gu(ys)

ys ∈ Ys

x(N) = xs

The optimal cost and the optimal decision variables will be denoted as V 0
N (x, yt) and (u0, y0s)

respectively. Considering the receding horizon policy, the control law is given by

κN (x, yt) = u0(0;x, yt)

Since the set of constraints of PN (x, yt) does not depend on yt, its feasibility region does not
depend on the target operating point yt. Then there exists a region XN ⊆ X such that for all
x ∈ XN and for all yt ∈ Rp, PN (x, yt) is feasible. This is the set of states that can reach any
admissible equilibrium point in N steps.

Consider the following assumption on the controller parameters:

Assumption 6.3

1. The model function f(x, u) is continuous in Zs.

2. There exists a K function αℓ such that the stage cost function ful�lls ℓ(z, v) ≥ αℓ(|z|)

3. Let the o�set cost function VO : Rp → R be a convex positive de�nite function such that
the minimizer

y∗s = arg min
ys∈Ys

VO(ys − yt)
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is unique. Moreover, there exists a K function αO such that VO(ys−yt) ≥ αO(|ys−y∗s |).

4. The system is weakly controllable at any equilibrium point (xs, us) ∈ Zs (Rawlings and
Mayne, 2009). That is, for any (u, ys) feasible solution of PN (x, yt), there exists a K∞
function γ such that,

N−1∑
i=0

|u(i)− us| ≤ γ(|x− xs|)

holds for all x ∈ XN .

5. The set of admissible output Ys is a convex set.

Remark 6.4 If Ys = {y = h(x, u) : (x, u) ∈ λZs} is not convex, then set Ys must be chosen
as a convex set contained in {y = h(x, u) : (x, u) ∈ λZs}.

The following theorem proves asymptotic stability and constraints satisfaction of the con-
trolled system.

Theorem 6.5 (Stability) Consider that assumptions 6.1 and 6.3 hold and consider a given
target operation point yt. Then for any feasible initial state x0 ∈ XN , the system controlled
by the proposed MPC controller κN (x, yt) is stable, converges to an equilibrium point, ful�ls
the constraints along the time and besides

(i) If yt ∈ Ys then lim
k→∞

|y(k)− yt| = 0.

(ii) If yt ̸∈ Ys, then lim
k→∞

|y(k)− y∗s | = 0, where

y∗s = arg min
ys∈Ys

VO(ys − yt)

Proof: Consider that x ∈ XN at time k, then the optimal cost function is given by V 0
N (x, yt) =

VN (x, yt;u
0(x), y0s(x)), where (u0(x), y0s(x)) de�nes the optimal solution of PN (x, yt) and

u0(x) = {u0(0;x), u0(1;x), ..., u0(N − 1;x)}. Notice that u0(0;x) = κN (x, yt). The resultant
optimal state sequence associated to u0(x) is given by x0(x) = {x0(0;x), x0(1;x), ..., x0(N −
1;x), x0(N ;x)}, where x0(0;x) = x, x0(1;x) = x+ and x0(N ;x) = x0s(x) = gx(y

0
s(x)).

As standard in MPC (Mayne et al., 2000; Rawlings and Mayne, 2009, Chapter 2), de�ne
the successor state at time k+1, x+ = f(x, κN (x, yt)) and de�ne also the following sequences:

ũ
∆
= [u0(1;x), · · · , u0(N−1;x), u0s(x)]

ỹs
∆
= y0s(x)
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where u0s(x) = gu(y
0
s(x)). It is easy to derive that (ũ, ỹs) is a feasible solution for the op-

timization problem PN (x+). Therefore, XN is an admissible positive invariant set for the
closed-loop system and hence the control law is well-de�ned and the constraints are ful�lled
throughout the system evolution.

The state sequence due to (ũ, ỹs) is x̃ = {x0(1;x), x0(2;x), ..., x0(N ;x), x0(N + 1;x)},
where x0(N ;x) = x0s(x) and x0(N + 1;x) = f(x0(N ;x), u0s(x)) = x0s(x). Hence,

x̃ = {x0(1;x), x0(2;x), ..., x0s(x), x0s(x)}

which is clearly feasible. Compare now the optimal cost V 0
N (x, yt), with the cost given by

(ũ, ỹs), ṼN (x+, yt; ũ, ỹs). Taking into account the properties of the feasible nominal trajec-
tories for x+, Assumption 6.3 and using standard procedures in MPC (Mayne et al., 2000;
Rawlings and Mayne, 2009, Chapter 2) it is possible to obtain:

ṼN (x+, yt; ũ, ỹs)− V 0
N (x, yt) = −ℓ((x−x0s(x)), (u

0(0;x)−u0s(x)))−VO(y
0
s−yt)

+ℓ((x(N ;x)−x0s(x)), (u
0
s(x)−u0s(x))) +VO(y

0
s−yt)

= −ℓ((x−x0s(x)), (u
0(0;x)−u0s(x)))

By optimality, we have that V 0
N (x+, yt) ≤ ṼN (x+, yt; ũ, ỹs) and then:

V 0
N (x+, yt)− V 0

N (x, yt) ≤ −ℓ((x−x0s(x)), (u
0(0;x)−u0s(x)))

= −ℓ((x−x0s(x)), (κN (x, yt)−u0s(x)))

Taking into account that the cost function is a positive de�nite function, we have that:

lim
k→∞

|x(k)− x0s(x(k))|=0, lim
k→∞

|u(k)− u0s(x(k))|=0

Now, it is proved that the system converges to an equilibrium point. Pick an ε > 0, then
there exists a k(ε) such that for all k ≥ k(ε), |x(k)− x0s(x(k))| < ε and |u(k)− u0s(x(k))| < ε.
Moreover, f(x, u) is continuous in Zs, and hence there exists α(ε) such that |f(x(k), u(k))−
f(x0s(x(k)), u

0
s(x(k)))| ≤ α(ε). Then, removing the time dependence for the sake of simplicity,

it is inferred that

|x+ − x| = |x+ − x0s(x) + x0s(x)− x|
≤ |x+ − x0s(x)|+ |x0s(x)− x|
= |f(x, u)− f(x0s(x), u

0
s(x))|+ |x0s(x)− x|

≤ α(ε) + ε

Therefore, for a given ε > 0, there exists a k(ε) such that |x+ − x| ≤ α(ε) + ε. Hence, the
system converges to a steady state x∞ and this is such that x∞ = x0s(x∞) ∈ Xs.
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Using lemma 6.18 (see the Appendix section of this chapter), it is proved that (x∞, u∞)

is the optimal steady state of the system, that is (x∞, u∞) = (x∗s, u
∗
s), where x

∗
s = gx(y

∗
s) and

u∗s = gu(y
∗
s).

Finally, the fact that (x∗s, u
∗
s) is a stable equilibrium point for the closed-loop system is

proved. That is, for any ε > 0 there exists a δ > 0 such that for all |x(0) − x∗s| ≤ δ, then
|x(k)− x∗s| ≤ ε.

To this aim, de�ne the function W (x, yt) = V 0
N (x, yt)−VO(y

∗
s − yt). Then, W (x∗s, yt) = 0.

This function is such that αW (|x − x∗s|) ≤ W (x, yt) ≤ βW (|x − x∗s|), where αW and βW are
suitable K∞ functions. In fact:

• W (x, yt) ≥ αl(|x − x0s|) + αO(|x0s − x∗s|). This comes from the fact that the stage cost
function is a positive de�nite function and from the de�nition of VO (assumption 6.3).
Hence

W (x, yt) ≥ αW (|x− x0s|+ |x0s − x∗s|)
≥ αW (|x− x∗s|)

• Notice that V 0
N (x, yt) ≤ VN (x, y∗s) + VO(y

∗
s − yt). Due to the weak controllability of x∗s

(assumption 6.3), there exists a K∞ function βW such that VN (x, y∗s) ≤ βW (|x − x∗s|).
Hence W (x, yt) ≤ βW (|x− x∗s|).

Then, αW (|x(k) − x∗s|) ≤ W (x(k), yt) ≤ W (x(0), yt) ≤ βW (|x − x∗s|) and, hence, |x(k) −
x∗s| ≤ α−1

W ◦βW (|x(0)−x∗s|). So, picking δ = β−1
W ◦αW (ε), then |x(k)−x∗s| ≤ α−1

W ◦βW (δ) ≤ ε,
proving the stability of x∗s.

Then, for all initial state x0 ∈ XN , the closed-loop system converges to an asymptotic
stable equilibrium point (x∗s, u

∗
s) and its domain of attraction is XN .

6.4 Properties of the proposed controller

Besides the asymptotic stability property, this controller also provides the following properties.
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6.4.1 Changing operation points

Considering that problem PN (x, yt) is feasible for any yt, then the proposed controller is able
to track changing operation points maintaining the recursive feasibility and admissibility.

6.4.2 Stability for any admissible steady state

Since property 6.4.1 holds for any value of the horizons N , it can be derived that the proposed
controller is able to track any admissible setpoint yt ∈ Ys, even for N = 1, if the system starts
from a feasible initial state.
Typically, the starting point of the controller is an equilibrium point. If this point is reachable,
i.e. x0 = gx(y0), y0 ∈ Ys, then the system can be steered to any reachable equilibrium point,
for any N .

6.4.3 Enlargement of the domain of attraction

The domain of attraction of the MPC is the set of states that can be admissible steered
to x∗s. The fact that for the proposed controller this set is considered with respect to any
equilibrium point, makes this set (potentially) larger than the one calculated for regulation to
a �xed equilibrium point. Consequently, the domain of attraction of the proposed controller
is (potentially) larger than the domain of the standard MPC. This property is particularly
interesting for small values of the control horizon.

6.4.4 Steady state optimization

It is not unusual that the output target yt is not contained in Ys. This may happen when
there not exists an admissible operating point which steady output equals to the target or
when the target is not a possible steady output of the system. To deal with this situation in
predictive controllers, the standard solution is to add an upper level steady state optimizer
to decide the best reachable target of the controller (Rao and Rawlings, 1999).
From the latter theorem it can be clearly seen that in this case, the proposed controller steers
the system to the optimal operating point according to the o�set cost function VO(·). Then
it can be considered that the proposed controller has a steady state optimizer built in and
VO(·) de�nes the function to optimize.
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6.5 Local optimality

The proposed controller can be considered as a suboptimal controller due to the formulation
of the stage cost. However, under mild assumption on the o�set cost function, it is possible to
prove that the MPC for tracking ensures the property of the local optimality. This property
states that, in a neighborood of the terminal region, the constrained �nite horizon MPC equals
the in�nite horizon one (Magni et al., 2001a; Hu and Linnemann, 2002). The standard MPC
control law for regulation to a target yt, krN (x, yt), derived from the following optimization
problem P r

N (x, yt):

V r,0
N (x, yt) = min

u,ys

N−1∑
j=0

ℓ((x(j)−xs), (u(j)−us)) (6.9)

s.t. (6.10)

x(0) = x, (6.11)

x(j + 1) = f(x(j), u(j)) j=0, · · · , N−1 (6.12)

x(j) ∈ X, u(j) ∈ U j=0, · · · , N−1 (6.13)

xs = gx(ys) (6.14)

us = gu(ys) (6.15)

ys ∈ Ys (6.16)

x(N) = xs (6.17)

|ys − yt|q = 0 (6.18)

ensures the local optimality. The domain of attraction of this problem is noted as Xr
N (yt) As

in the linear case (see chapter 2), in the MPC for tracking, this property can be ensured by
means of a suitable choice of the o�set cost function.

Assumption 6.6 Let the o�set cost function ful�ll assumption 6.3. Moreover there exists a
positive constant α such that:

VO(ys − yt) ≥ α|ys − yt|

Then, we can state the following property:

Property 6.7 Consider that assumptions 6.1, 6.3 and 6.6 hold. Then there exists an α∗

such that for all α ≥ α∗ and for all x ∈ Xr
N (yt), the MPC for tracking equals the MPC for

regulation, that is kN (x, yt) = krN (x, yt)
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Proof: De�ne problem P r
N,α(x, yt) as:

V r,0
N,α(x, yt) = min

u,ys

N−1∑
j=0

ℓ((x(j)−xs), (u(j)−us)) + α|ys − yt|p

s.t.

x(0) = x,

x(j + 1) = f(x(j), u(j)) j=0, · · · , N−1

x(j) ∈ X, u(j) ∈ U j=0, · · · , N−1

xs = gx(ys)

us = gu(ys)

ys ∈ Ys

x(N) = xs

where |.|p is the dual of norm |.|q1. Then, problem P r
N,α(x, yt) results from problem P r

N (x, yt)

with the last constraint posed as an exact penalty function (Luenberger, 1984). Therefore,
there exists a �nite constant α∗ > 0 such that for all α ≥ α∗, V r,0

N,α(x, yt) = V r,0
N (x, yt) for all

x ∈ Xr
N (yt) (Luenberger, 1984; Boyd and Vandenberghe, 2006).

Consider now, problem PN (x, yt). Taking VO(ys − yt) = α|ys − yt|p, with α ≥ α∗, we can
state that V 0

N (x, yt) = V r,0
N (x, yt) for all x ∈ Xr

N (yt).

6.6 MPC for tracking with terminal inequality constraint

This formulation of the proposed controller, as standard in MPC, relies on the calculation
of a suit terminal control law u = κ(x, ys) and on the use of an invariant set as terminal
constraint. The knowledge of this control law allows to use a prediction horizon Np larger
than the control horizon Nc, in such a way that the control action are extended using the
terminal control law (Magni et al., 2001a). The proposed cost function of the MPC is given
by:

VNc,Np(x, yt;u, ys) =

Nc−1∑
j=0

ℓ((x(j)−xs), (u(j)−us)) +

Np−1∑
j=Nc

ℓ((x(j)−xs), (κ(x(j), ys)−us))

+Vf (x(Np)−xs, ys)+VO(ys−yt)

where x(j) = ϕ(j;x,u), xs = gx(ys), us = gu(ys) and ys = gy(ys); yt is the target of the
controlled variables.

1The dual |.|p of a given norm |.|q is de�ned as |u|p , max
|v|q≤1

u′v. For instance, p = 1 if q = ∞ and vice

versa, or p = 2 if q = 2 (Luenberger, 1984).
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The controller is derived from the solution of the optimization problem PNc,Np(x, yt) given
by:

min
u,ys

VNc,Np(x, yt;u, ys)

s.t.

x(0) = x,

x(j + 1) = f(x(j), u(j)), j=0, · · · , Nc − 1

x(j) ∈ X, u(j) ∈ U, j=0, · · · , Nc−1

x(j + 1) = f(x(j), κ(x(j), ys)), j=Nc, · · · , Np − 1

x(j) ∈ X, κ(x(j), ys) ∈ U j=Nc, · · · , Np−1

xs = gx(ys), us = gu(ys)

(x(Np), ys) ∈ Γ

The optimal cost and the optimal decision variables will be denoted as V 0
Nc,Np

(x, yt) and
(u0, y0s) respectively. Considering the receding horizon policy, the control law is given by

κNc,Np(x, yt) = u0(0;x, yt)

Since the set of constraints of PNc,Np(x, yt) does not depend on yt, its feasibility region does
not depend on the target operating point yt. Then there exists a region XNc,Np ⊆ X such
that for all x ∈ XNc,Np and for all yt ∈ Rp, PNc,Np(x, yt) is feasible.

In order to derive the stability conditions, it is convenient to extend the notion of invariant
set for tracking introduced in (Limon et al., 2008a) to the nonlinear case.

De�nition 6.8 (Invariant set for tracking) A set Γ ⊂ Rn×Rp is an (admissible) invari-
ant set for tracking for system 6.1 controlled by κ(x, ys) if for all (x, ys) ∈ Γ we have that
x ∈ X, ys ∈ Ys, κ(x, ys) ∈ U , and (f(x, κ(x, ys)), ys) ∈ Γ.

This set can be read as the set of initial states and setpoints that provides an admissible
evolution of the system 6.1 controlled by u = κ(x, ys).

The following conditions on the terms of the proposed controller are assumed:

Assumption 6.9

1. Let the function gx(ys) be Lipshitz continuous in Ys.
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2. Let k(x, ys) be a control law such that for all ys ∈ Ys, the equilibrium point xs = gx(ys)
and us = gu(ys) is an asymptotically stable equilibrium point for the system x+ =
f(x, k(x, ys)).

3. Let Γ be an invariant set for tracking for the system x+ = f(x, k(x, ys)).

4. Let Vf (x − xs, ys) be a Lyapunov function for system x+ = f(x, k(x, ys)) such that for
all (x, ys) ∈ Γ

αf (|x− xs|) ≤ V (x− xs, ys) ≤ βf (|x− xs|)

and

Vf (f(x, k(x, ys))− xs, ys)−Vf (x− xs, ys) ≤ −l(x− xs, k(x, ys)− us)

where xs = gx(ys) and us = gu(ys), and where αf and βf are K functions. Moreover,
there exist b > 0 and σ > 1 which verify Vf (x1 − x2, ys) ≤ b∥x1 − x2∥σ for all (x1, ys)
and (x2, ys) contained in Γ.

Notice that the assumptions on the terminal ingredients are similar to the standard ones
but extended to a set of equilibrium points.

The following theorem proves asymptotic stability and constraints satisfaction of the con-
trolled system.

Theorem 6.10 (Stability) Consider that assumptions 6.3 and 6.9 hold and consider a given
target operation point yt. Then for any feasible initial state x0 ∈ XNc,Np, the system controlled
by the proposed MPC controller κNc,Np(x, yt) is stable, converges to an equilibrium point, ful�ls
the constraints along the time and besides

(i) If yt ∈ Ys then lim
k→∞

∥y(k)− yt∥ = 0.

(ii) If yt ̸∈ Ys, then lim
k→∞

∥y(k)− y∗s∥ = 0, where

y∗s = arg min
ys∈Ys

VO(ys − yt)

Proof: Consider that x ∈ XNC ,NP
at time k, then the optimal cost function is given by

V 0
NC ,NP

(x, yt) = VNC ,NP
(x, yt;u

0(x), y0s(x)), where (u
0(x), y0s(x)) de�nes the optimal solution

of PNC ,NP
(x, yt) and u0(x) = {u0(0;x), u0(1;x), ..., u0(Nc − 1;x)}. Notice that u0(0;x) =

κNc,Np(x, yt). The resultant optimal state sequence associated to u0(x) is given by x0(x) =

{x0(0;x), x0(1;x), ..., x0(Nc − 1;x), x0(Nc;x), ..., x
0(Np;x)}, where x0(0;x) = x, x0(1;x) =

x+, and x0(Nc;x) = f(x0(Nc − 1;x), κ(x, y0s)) and x0(Np;x) is such that (x0(Np;x), y
0
s(x)) ∈

Γ.
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As standard in MPC (Mayne et al., 2000; Rawlings and Mayne, 2009, Chapter 2), de�ne
the successor state at time k + 1, x+ = f(x, κNc,Np(x, yt)) and de�ne also the following
sequences:

ũ
∆
= [u0(1;x), · · · , u0(Nc−1;x), κ(x, y0s)]

ỹs
∆
= y0s(x)

It is easy to derive that (ũ, ỹs) is a feasible solution for the optimization problem PNC ,NP
(x+).

Therefore, XNC ,NP
is an admissible positive invariant set for the closed-loop system and hence

the control law is well-de�ned and the constraints are ful�lled throughout the system evolution.

The state sequence due to (ũ, ỹs) is x̃ = {x0(1;x), x0(2;x), ..., x0(Nc;x), ..., x
0(Np;x), x

0(Np+

1;x)}, where x0(Np + 1;x) = f(x0(Np;x), κ(x, y
0
s)), which is clearly feasible. Compare now

the optimal cost V 0
N (x, yt), with the cost given by (ũ, ỹs), ṼNC ,NP

(x+, yt; ũ, ỹs). Taking into
account the properties of the feasible nominal trajectories for x+, Assumption 6.9 and using
standard procedures in MPC (Mayne et al., 2000; Rawlings and Mayne, 2009, Chapter 2) it
is possible to obtain:

ṼNC ,NP
(x+, yt; ũ, ỹs)− V 0

NC ,NP
(x, yt) = −ℓ((x−x0s(x)), (u

0(0;x)−u0s(x)))

−Vf (x
0(Np;x)− x0s(x))−VO(y

0
s−yt)

+ℓ((x(Np;x)−x0s(x)), (κ(x, y
0
s)−u0s(x)))

+Vf (f(x
0(Np;x), κ(x, y

0
s))− x0s(x)) +VO(y

0
s−yt)

Given the de�nition of Vf (x−xs) from assumption 6.9 and since by optimality, V 0
NC ,NP

(x+, yt) ≤
ṼNC ,NP

(x+, yt; ũ, ỹs), then:

V 0
NC ,NP

(x+, yt)− V 0
NC ,NP

(x, yt) ≤ −ℓ((x−x0s(x)), (u
0(0;x)−u0s(x)))

= −ℓ((x−x0s(x)), (κNc,Np(x, yt)−u0s(x)))

Taking into account that the cost function is a positive de�nite function, we have that:

lim
k→∞

|x(k)− x0s(x(k))|=0, lim
k→∞

|u(k)− u0s(x(k))|=0

Hence the system converges to an operating point (x0s, u
0
s), such that x0s = gx(y

0
s) and u0s =

gu(y
0
s).

Now, it is proved that the system converges to an equilibrium point. Pick an ε > 0, then
there exists a k(ε) such that for all k ≥ k(ε), |x(k)− x0s(x(k))| < ε and |u(k)− u0s(x(k))| < ε.
Moreover, f(x, u) is continuous in Zs, and hence there exists α(ε) such that |f(x(k), u(k))−
f(x0s(x(k)), u

0
s(x(k)))| ≤ α(ε). Then, removing the time dependence for the sake of simplicity,
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it is inferred that

|x+ − x| = |x+ − x0s(x) + x0s(x)− x|
≤ |x+ − x0s(x)|+ |x0s(x)− x|
= |f(x, u)− f(x0s(x), u

0
s(x))|+ |x0s(x)− x|

≤ α(ε) + ε

Therefore, for a given ε > 0, there exists a k(ε) such that |x+ − x| ≤ α(ε) + ε. Hence, the
system converges to a steady state x∞ and this is such that x∞ = x0s(x∞) ∈ Xs.

Using lemma 6.19 (see the Appendix section of this chapter), it is proved that (x∞, u∞)

is the optimal steady state of the system, that is (x∞, u∞) = (x∗s, u
∗
s), where x

∗
s = gx(y

∗
s) and

u∗s = gu(y
∗
s).

Finally, the fact that (x∗s, u
∗
s) is a stable equilibrium point for the closed-loop system is

proved. That is, for any ε > 0 there exists a δ > 0 such that for all |x(0) − x∗s| ≤ δ, then
|x(k)− x∗s| ≤ ε.

To this aim, de�ne the functionW (x, yt) = V 0
NC ,NP

(x, yt)−VO(y
∗
s−yt). Then, W (x∗s, yt) =

0. This function is such that αW (|x−x∗s|) ≤ W (x, yt) ≤ βW (|x−x∗s|), where αW and βW are
suitable K∞ functions. In fact:

• W (x, yt) ≥ αl(|x − x0s|) + αO(|x0s − x∗s|). This comes from the fact that the stage cost
function is a positive de�nite function and from the de�nition of VO (assumption 6.3).
Hence

W (x, yt) ≥ αW (|x− x0s|+ |x0s − x∗s|)
≥ αW (|x− x∗s|)

• Notice that V 0
NC ,NP

(x, yt) ≤ VNC ,NP
(x, y∗s)+VO(y

∗
s−yt). Due to the weak controllability

of x∗s (assumption 6.3), there exists a K∞ function βW such that VNC ,NP
(x, y∗s) ≤

βW (|x− x∗s|). Hence W (x, yt) ≤ βW (|x− x∗s|).

Then, αW (|x(k) − x∗s|) ≤ W (x(k), yt) ≤ W (x(0), yt) ≤ βW (|x − x∗s|) and, hence, |x(k) −
x∗s| ≤ α−1

W ◦βW (|x(0)−x∗s|). So, picking δ = β−1
W ◦αW (ε), then |x(k)−x∗s| ≤ α−1

W ◦βW (δ) ≤ ε,
proving the stability of x∗s.

Recapping, it has been proved that for all initial state x0 ∈ XNC ,NP
, the closed-loop

system converges to an equilibrium point (x∗s, u
∗
s). Moreover, it has been demonstrated that

this equilibrium point is stable for the closed-loop system. Therefore, (x∗s, u
∗
s) is an asymptotic

stable equilibrium point for the closed-loop system and its domain of attraction is XNc,Np .
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Remark 6.11 Since XNc,Np ⊆ XNc,Np+1, taking Np ≥ Nc the domain of attraction of the
controller can be enlarged (Magni et al., 2001a). However, the result of theorem 6.10 and the
stability proof are still valid if a formulation with N = Nc = NP is chosen.

6.7 Calculation of the terminal ingredients

The conditions for the stabilizing design of the controller require the calculation of a control
law capable to locally asymptotically stabilize the system to any steady states contained in a
set. This problem is also present in the design of other controllers for tracking, such as the
command governors, (Angeli and Mosca, 1999; Bemporad, 1998b; Chisci et al., 2005; Chisci
and Zappa, 2003).

A remarkable property of the proposed MPC is that the controller must only stabilize the
system locally, and hence a number of existing techniques could be used. The local nature of
the obtained controller can be enhanced by using a prediction horizon larger than the control
horizon. Next, some practical techniques to cope with this problem are brie�y presented.

6.7.1 LTV modeling of the plant in partitions

This method exploits the LTV modeling technique and the partition method proposed in
(Wan and Kothare, 2003a,b).

The idea is to design a set of local predictive controllers, whose feasible regions cover the
entire steady state manifold. Then, an algorithm is used such that, given a reference yt and
the relative steady state conditions (xs(ys), us(ys)), we are able to determine the terminal
ingredients for the optimization problem PNc,Np(x, yt).

To this aim, consider system (6.1) subject to (6.2). Let (xs(ys), us(ys)) be a steady
condition such that, for any ys ∈ Ys, xs(ys) ∈ X and us(ys) ∈ U .

Choose the sets Bx = ∥x∥ ≤ εx ∈ Rn and Bu = ∥u∥ ≤ εu ∈ Rm (with εx and εu typically
small) and de�ne

Ỹs={ys∈ Ys :xs(ys) ∈ X −Bx, us(ys) ∈ U −Bu}.

Let Ysi be a partition of Ỹs, such that
∪

i Ysi = Ỹs. Then a suitable LTV representation
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of the model function must be found for each region

Xi =
∪

ys∈Ysi

xs(ys)⊕Bx, Ui =
∪

ys∈Ysi

us(ys)⊕Bu

For the sake of clarity, consider system (6.1) subject to (6.2), its steady state manifold and a
set Ysi centered in yis. Since by de�nition, the steady state manifold is a connected set, we
can always �nd another steady condition yi+1

s ∈ Ysi for which we can determine a set Ysi+1

centered in yi+1
s . Hence we can constructing this sets, until their union covers the steady state

manifold (Wan and Kothare, 2003b).

Notice that, since Ysi ⊆ Ỹs, hence Xi ⊆ X and Ui ⊆ U .

For all x ∈ Xi, u ∈ Ui and ys ∈ Ysi , there exists a LTV representation of system (6.1),
that is

f(x, u) = f(xs(ys), us(ys)) +

ni∑
j=1

λj [Aj(x− xs(ys)) +Bj(u− us(ys))] (6.19)

where [Aj Bj ] ∈ {[A1 B1], ..., [Ani Bni ]}

By continuity, there exists a control gain Ki ∈ Rm×n such that AKij = Aj + BjKi is
stable for all j and, moreover, there exists a suitable Lyapunov matrix Pi ∈ Rn×n for the
LTV, solution of

A′
Kij

PiAKij − Pi = −Q−K ′
iRKi

for all j.

De�ne the set ZKi = {z : z ∈ Bx, Kiz ∈ Bu} and let Ωi be an invariant set for the LTV
(6.19) contained in ZKi . Then, ∀ys ∈ Ysi and x0 ∈ xs(ys)⊕ Ωi,

x(k + 1) = f(x(k), u(k))

u(k) = Ki(x(k)− xs(ys)) + us(ys)

such that x(k) ∈ Xi ⊆ X and u(k) ∈ Ui ⊆ U .

Finally de�ne

Γi = {(x, ys) : x ∈ xs(ys)⊕ Ωi, ys ∈ Ysi} =
∪

ys∈Ysi

xs(ys)⊕ Ωi × Ysi

Then, ∀(x0, ys) ∈ Γi, (x(k), ys) ∈ Γi ⊆ Xi, u(k) ∈ U and it can be proved that Γi is an
admissible invariant set for tracking and that

Vfi(x− gx(ys), ys) = (x− gx(ys))
′Pi(x− gx(ys))
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is a suitable terminal cost function, ∀ys ∈ Ysi .

Hence Γ =
∪

i Γi is an invariant set for tracking.

Example 6.12 Consider a continuous stirred tank reactor (CSTR), (Chisci et al., 2005;
Magni et al., 2001a). Assuming constant liquid volume, the CSTR for an exothermic, irre-
versible reaction, A → B, is described by the following model:

ĊA =
q

V
(CAf − CA)− koe

(−E
RT

)CA

Ṫ =
q

V
(Tf − T )− ∆H

ρCp
koe

(−E
RT

)CA +
UA

V ρCp
(Tc − T )

where CA is the concentration of A in the reactor, T is the reactor temperature and Tc is the
temperature of the coolant stream. The objective is to regulate y = x2 = T and x1 = CA by
manipulating u = Tc. Consider also the following constraints on the system: 0 ≤ CA ≤ 1
mol/l, 280K ≤ T ≤ 370K and 280K ≤ Tc ≤ 370 K.
To the aim of calculating the terminal ingredients of the nonlinear MPC for tracking with
the method introduced above, the steady state manifold of the system has been divided in 4
partitions, given by Ys1 = [304.17; 320], Ys2 = [320; 340], Ys3 = [340; 355] and Ys4 = [355; 370]
respectively. The projection of the obteined regions in the state space are show in �gure 6.1.
Notice how the regions calculated for the four partitions, cover the entire steady state manifold.
The union of these regions provides the invariant set for tracking to be used as terminal
constraints.

6.7.1.1 Implementation

The construction of the terminal ingredients described so far is an o�-line task, during which
we store in a look-up table the di�erent ingredients Ysi(ys)

, Pi(ys), Ωi. On-line, we choose a
terminal condition given a reference yt.

1. For a given reference yt determine ys, and then determine i(ys) such that ys ∈ Ysi(ys)
.

2. Choose the terminal cost Vf (x(Np)− xs(ys), ys) as:

Vf (x(Np)− xs(ys), ys) = (x(Np)− xs(ys))
′Pi(ys)(x(Np)− xs(ys))

3. Choose the terminal constraint as:

x(Np)− xs(ys) ∈ Ωi

Remark 6.13 A drawback of this approach is that the size of Ωi could be very small. However,
taking Np ≫ Nc the domain of attraction of the controller can be enlarged (Magni et al.,
2001a).
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Figure 6.1: Di�erent terminal regions for the CSTR.

6.7.2 Feedback linearization

There exist some classes of model functions that allow to �nd a suitable feedback aimed to
linearize (Khalil, 1996; Isidori, 1995) or pseudolinearize (Findeisen et al., 2000; Rakovic et al.,
2006)the plant. The feedback linearization approach consists in �nding a transformation of
the nonlinear system using a suitable control action, given by the feedback, and such a change
of variables. This approach can be applied to systems in the form

x+ = f(x) + g(x)u

y = h(x)

where x ∈ Rn is the system state, u ∈ Rm is the current control vector, y ∈ Rp is the controlled
output and x+ is the successor state. The aim is to design a control input:

u = α(x) + β(x)v

which provides a linear transformation from the new input v to the output.

The aim of feedback linearization, is, hence, to rewrite the system in such a form that the
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states of the new system are the output y and its n − 1 derivatives, obtained using the Lie
derivative. The number of time the original system has to be di�erentiated to let the input u
appear as a linear term, is called relative dergree of the system (Khalil, 1996; Isidori, 1995).
Once the plant is represented by a linear model, the ingredients can be calculated as proposed
in (Limon et al., 2008a) and (Ferramosca et al., 2009a) for linear systems.

6.8 MPC for tracking without terminal constraint

The stabilizing design of MPC based on terminal ingredients requires the calculation of the
terminal control law, the terminal cost function and the terminal region. While the calculation
of the �rst two ingredients can be done by e�cient techniques, the calculation of the terminal
region may be cumbersome. Fortunately, in (Limon et al., 2006b) it has been proved that the
terminal constraint can be removed by a suitable weighting of the terminal cost function. In
fact, a larger weighting factor implies a larger domain of attraction of the predictive controller
without the terminal constraint. In this section it is demonstrated that this result can be also
applied to the MPC for tracking.

Consider that Vf (x−xs, ys) is a terminal cost function and κ(x, ys) a terminal control law
that satisfy assumption 6.9. De�ne the region Γα as follows

Γα = {(x, ys) : Vf (x− gx(ys), ys) ≤ α} (6.20)

and assume that Γα is an invariant set for tracking.

Let de�ne P γ
Nc,Np

(x, yt) the optimization problem resulting from removing the terminal
constraint (x(Np), ys) ∈ Γ and taking the weighted cost γVf (x − xs, ys) as terminal cost
function in the optimization problem PNc,Np(x, yt).

The following results are the extension of (Limon et al., 2006b). In the sequel it is assumed
that the hypothesis of theorem 6.10 hold.

Lemma 6.14 Let xγ,0(j;x, yt) be the optimal trajectory of the optimization problem P γ
Nc,Np

(x, yt)
for any γ ≥ 1.
If xγ,0(Np;x, yt) /∈ Γα, then xγ,0(j;x, yt) /∈ Γα for all j = 0, · · · , Np.

The proof of this lemma is given in (Limon et al., 2006b, Lemma 1).

Lemma 6.15 Let d = αℓ(β
−1
f (α)), then ℓ(x− gx(ys), u− gu(ys)) ≥ d for all (x, ys) /∈ Γα.
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Let V γ,0
Nc,Np

(x, yt) be the optimal cost of P γ
Nc,Np

(x, yt) and let de�ne the following level set

Υ̂Np,γ(yt) = {x : V γ,0
Nc,Np

(x, yt) ≤ ℓ(x− gx(ys), k(x, ys)− gu(ys)) + (Np − 1)d+ α} (6.21)

Then we can state the following theorem

Theorem 6.16 Let κγNc,Np
(x, yt) be the predictive control law derived from P γ

Nc,Np
(x, yt) for

any γ ≥ 1. Then for all x(0) ∈ Υ̂Np,γ(yt), the system controlled by κγNc,Np
(x, yt) is stable,

converges to an equilibrium point, ful�ls the constraints along the time and besides

(i) If yt ∈ Ys then lim
k→∞

∥y(k)− yt∥ = 0.

(ii) If yt ̸∈ Ys, then lim
k→∞

∥y(k)− y∗s∥ = 0, where

y∗s = arg min
ys∈Ys

VO(ys − yt)

Proof: First it is proved that for any x ∈ Υ̂Np,γ(yt) the optimal solution of the MPC problem
satis�es the terminal constraint. From Lemma 6.14 it is inferred that if the terminal region
is not reached, then all the trajectory of the systems is out of Γα and hence

V γ,0
Nc,Np

(x, yt) > ℓ(x− gx(ys), k(x, ys)− gu(ys)) + (Np − 1)d+ α

which implies that x ̸∈ Υ̂Np,γ(yt), which is a contradiction. Therefore for any x ∈ Υ̂Np,γ(yt),
we have that the optimal solution of the MPC satis�es the terminal constraint.

Now, it is proved that Υ̂Np,γ(yt) is an invariant set for the closed-loop system. Consider
that x ∈ Υ̂Np,γ(yt), then xγ,0(Np;x, yt) ∈ Γα. This fact plus the assumptions of theorem 6.10
make the monotonicity property of the optimal cost holds. Hence:

V γ,0
Nc,Np

(xγ,0(1;x, yt), yt) ≤ V γ,0
Nc,Np−1(x, yt) = V γ,0

Nc,Np
(x, yt)− ℓ(x− gx(ys), k(x, ys)− gu(ys))

≤ (Np − 1)d+ α

Asymptotic stability of the closed-loop system is proved following the same arguments as in
the proof of of theorem 6.10.

Using similar arguments as in (Limon et al., 2006b), it is easy to show that the set

ΥNp,γ(yt) = {x : V γ,0
Nc,Np

(x, yt) ≤ Npd+ α}

is also a domain of attraction of the proposed controller. Notice that, using this result, an
explicit expression of the optimal cost is not required.
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It is clear that taking a larger prediction horizon Np implies an enlargement of the region
of attraction ΥNp,γ(yt). Furthermore, as in (Limon et al., 2006b), a larger value of γ implies
also an enlargement of ΥNp,γ(yt). The following property can be derived:

Property 6.17 Assume that X and U are compact sets. Let D be a constant such that
ℓ(x− xs, u− us) ≤ D for all x ∈ X, u ∈ U and (xs, us) ∈ Zs. Let V̂O be a constant such that

VO(ys − yt) ≤ V̂O for all ys ∈ Ys and for all possible yt. Let be γ0 =
Np(D−d)+V̂O

α . Then

(i) ΥNp,γ0(yt) contains the domain of attraction of the controller with equality constraint,
i.e. XNc

(ii) For any γ ≥ γ0, the set ΥNp,γ0(yt) contains the domain of attraction of the controller
with the terminal constraint Γρα, where ρ = 1− γ0

γ .

6.9 Illustrative example

In this section, the three formulation of the nonlinear MPC for tracking presented in this
chapter, are tested on the 4 tanks process, described in the Appendix A.
The nonlinear continuous time model of the quadruple tank process system (Johansson, 2000)
can be derived from �rst principles as follows

dh1
dt

= − a1
A1

√
2gh1 +

a3
A1

√
2gh3 +

γa
A1

qa (6.22)

dh2
dt

= − a2
A2

√
2gh2 +

a4
A2

√
2gh4 +

γb
A2

qb (6.23)

dh3
dt

= − a3
A3

√
2gh3 +

(1− γb)

A3
qb

dh4
dt

= − a4
A4

√
2gh4 +

(1− γa)

A4
qa

See chapter 2 for details. The nonlinear discrete time model of system (6.9) is obtained by
discretizing equation (6.9) using a 5-th order Runge-Kutta method and taking as sampling
time Ts = 5s.

First, the controller with terminal equality constraint is presented. In the next section, the
nonlinear MPC for tracking using terminal inequality constraint is tested. Finally, another
test to show the properties of the MPC without terminal constraint is presented.

All the simulations have been run in MATLABr 7.10, using the fmincon function for the
optimizations.
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6.9.1 Equality terminal constraint

The objective of this test is to show how the nonlinear MPC for tracking works, in case of
equality terminal constraint. In the test, �ve references have been considered:yt,1 = (0.3, 0.3),
yt,2 = (1.25, 1.25), yt,3 = (0.35, 0.8), yt,4 = (1, 0.8) and yt,5 = (h01, h

0
2). Notice that yt,3 is not

an equilibrium output for the system. The initial state is x0 = (0.65, 0.65, 0.6658, 0.6242).
Two tests have been run, considering an MPC with N = 3 and N = 15 respectively. The
weighting matrices have been chosen as Qy = I2, Q = C ′QyC+0.01I4 and R = 0.01I2. Notice
that

C =

[
1 0 0 0

0 1 0 0

]
The o�set cost function has been chosen as VO = α∥ys − yt∥∞, whith α = 100.

In Figure 6.2 and 6.3 the time evolution of h1, h2, h3, h4, qa and qb is depicted.
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Figure 6.2: Evolution of h1 and h2 with N = 3.

The evolutions of the references, the outputs and the arti�cial references are drawn re-
spectively in dashed-dotted, solid and dashed line. See that the controller always steers the
system to the desired setpoint, whenever it is admissible. When the target is not an admis-
sible output (yt,3), the controller steers the system to the point that minimize the o�set cost
function.

In Figure 6.4 and 6.5 the time evolution of h1, h2, h3, h4, qa and qb is depicted.

The evolutions of the references is drawn in dashed-dotted line while the outputs and the
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Figure 6.3: Evolution of h3, h4 qa and qb with N = 3.
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Figure 6.4: Evolution of h1 and h2 with N = 15.

arti�cial references are drawn respectively in solid and dashed line. As in the previous test, the
controller always steers the system to the desired setpoint, when this point is admissible. In
case of not admissible target (yt,3), the controller steers the system to the point that minimizes
the o�set cost function. Notice that, due to the larger horizon, the controller is faster than
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Figure 6.5: Evolution of h3, h4 qa and qb with N = 15.

the previous one.

6.9.2 Inequality terminal constraint

In this section, a test that show the properties of the nonlinear MPC for tracking with inequal-
ity terminal constraint is presented. In particular, the terminal ingredients of the controller,
have been calculated using the method presented in section 6.7.1.

To this aim, the space of equilibrium points, has been partitioned in subspaces, based on
the geometry of set Ys. Based on this, seven di�erent regions of equilibrium points have been
obtained. For any region, the static gain K and the matrix P have been calculated solving
some LMIs. The seven region obtained and the relative values of K and P are the following:

• Ys1 = {ys : (0.2; 0.2) ≤ ys ≤ (0.42; 0.53)}

K1 =

[
0.0267 0.1213 0.1633 −0.3289

0.2401 0.1154 −0.2035 0.3473

]
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P1 =


17.7433 1.2019 12.2024 1.8258

1.2019 16.9910 1.5558 11.4664

12.2024 1.5558 23.7045 4.2748

1.8258 11.4664 4.2748 26.9804


• Ys2 = {ys : (0.2; 0.53) ≤ ys ≤ (0.42; 0.72)}

K2 =

[
0.0731 0.1902 0.2881 −0.1673

0.1361 −0.1086 −0.1398 0.2884

]

P2 =


17.2518 0.4228 11.5155 1.3011

0.4228 17.2691 0.1990 7.9675

11.5155 0.1990 18.3620 3.0846

1.3011 7.9675 3.0846 12.3569


• Ys3 = {ys : (0.42; 0.2) ≤ ys ≤ (0.87; 0.53)}

K3 =

[
−0.0837 0.1479 0.1109 −0.2378

0.1433 0.1627 −0.3395 0.3921

]

P3 =


25.0142 1.3224 16.9693 1.7039

1.3224 17.5763 1.8949 12.8116

16.9693 1.8949 31.7671 4.9483

1.7039 12.8116 4.9483 28.2461


• Ys4 = {ys : (0.42; 0.53) ≤ ys ≤ (0.87; 0.72)}

K4 =

[
−0.0632 0.1489 0.0746 −0.2851

0.1471 0.1015 −0.3714 0.3300

]

P4 =


26.6981 1.8242 21.7313 2.4324

1.8242 21.0805 2.3765 17.4553

21.7313 2.3765 50.4088 6.2126

2.4324 17.4553 6.2126 45.0831


• Ys5 = {ys : (0.42; 0.72) ≤ ys ≤ (0.87; 1.30)}

K5 =

[
−0.0225 0.2117 0.1708 −0.1772

0.0673 −0.0502 −0.3587 0.2684

]

P5 =


26.1159 0.4025 20.7702 1.5762

0.4025 22.3717 −0.7066 13.4132

20.7702 −0.7066 45.0959 3.8375

1.5762 13.4132 3.8375 22.0282
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• Ys6 = {ys : (0.87; 0.53) ≤ ys ≤ (1.30; 0.72)}

K6 =

[
−0.1317 −0.0301 0.0873 −0.3848

0.0266 0.1371 −0.0453 0.6802

]

P6 =


21.8742 −0.7686 9.3239 −1.6253

−0.7686 19.5727 0.2713 14.0839

9.3239 0.2713 11.5076 1.7596

−1.6253 14.0839 1.7596 25.8846


• Ys7 = {ys : (0.87; 0.72) ≤ ys ≤ (1.30; 1.30)}

K7 =

[
−0.0957 0.0075 0.1574 −0.3348

0.0834 −0.0168 −0.1525 0.4590

]

P7 =


26.7931 −0.7498 14.7933 −0.9438

−0.7498 24.2919 −0.7085 15.2670

14.7933 −0.7085 20.1643 1.9967

−0.9438 15.2670 1.9967 25.7673



Moreover, to counteract the small dimension of the ellipsoids, a prediction horizon Np

larger than the control horizon Nc, has been chosen. In particular the setup of the controller
has been the following: Nc = 3, Np = 20, Qy = I2, Q = C ′QyC + 0.01I4, R = 0.01I2. Notice
that

C =

[
1 0 0 0

0 1 0 0

]

and that the o�set cost function has been chosen as VO = α∥ys − yt∥∞, whith α = 100. As
in the previous test, �ve references have been considered:yt,1 = (0.3, 0.3), yt,2 = (1.25, 1.25),
yt,3 = (0.35, 0.8), yt,4 = (1, 0.8) and yt,5 = (h01, h

0
2), and the point x0 = (0.65, 0.65, 0.6658, 0.6242)

has been chosen as initial state.

In Figure 6.6 and 6.7 the time evolution of h1, h2, h3, h4, qa and qb is depicted.

The evolutions of the references is drawn in dashed-dotted line while the outputs and the
arti�cial references are drawn respectively in solid and dashed line. As in the previous testS,
the controller always steers the system to the desired setpoint, when this point is admissible.
When the target is a not adimissible setpoint, (yt,3), the controller steers the system to the
point that minimize the o�set cost function. Notice that, the controller sometimes seems to
loose continuity. These jumps are due to the fact that the controller moves from a terminal
ingredient to another.
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Figure 6.6: Evolution of h1 and h2 in case of inequality terminal constraint.

0 500 1000 1500
0

0.5

1

h 3

0 500 1000 1500
0

0.5

1

h 4

0 500 1000 1500
0

2

4

q a

0 500 1000 1500
0

2

4

samples

q b

Figure 6.7: Evolution of h3, h4 qa and qb in case of inequality terminal constraint.

6.10 Domains of attraction

In this section, a comparison of the domains of attraction of the controllers used for the simu-
lations of the previous tests, is presented. In case of nonlinear systems, it is not easy to exactly
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calculate the domains of attraction using the set control theory, as in case of linear systems.
For this reason, only estimations of these sets can be done. The estimation of the domains of
attraction presented in this section has been carried out solving the so-called Phase I problem
(Boyd and Vandenberghe, 2006, pag. 579).
In particular, a series of Phase I problems has been solved for a grid of points x = (h1, h2, h3, h4),
considering the constraints of the MPC problems as the set of inequalities and equalities.
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Figure 6.8: Domains of attraction of the controllers proposed in this example.

The results obtained are that, the two domain of attraction extimated for the MPC with
terminal equality constraint are X3 with Chebichev's radius r3 = 0.0518 for N = 3, and X15

with Chebichev's radius r15 = 0.1841 for N = 15. The domain of attraction extimated for the
MPC with inequality terminal constraint is a set X3,20 with Chebichev's radius r3,20 = 0.4546.
The results are also shown in �g 6.8. These sets represent the projection onto y of the domanins
of attractions extimated. The set of admissible steady output Ys is drawn in dashed line. The
projections of the domains of attraction of the MPC with equality terminal constraints are
drawn respectively in dotted line (Y3) for N = 3 and in dashed-dotted line (Y15) for N = 15.
See that, as obvious, the dimension of the feasible set grows with N . The projection of
the domain of attraction of the MPC controller with inequality terminal constraint, Y3,20 is
plotted in solid line.
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6.11 Conclusions

In this chapter the MPC for tracking for constrained nonlinear system has been presented.
This controller has been presented in three di�erent formulation: with equality terminal con-
straint, with inequality terminal constraint and without terminal constraint.
Under some assumptions, stability of the controller has been proved for the three di�erent
formulation presented. The controller steers the system to the target if this is admissible. If
not, the controller converges to an admissible steady state according to the o�set cost function.

6.12 Appendix

In this Appendix section, the technical lemmas used to prove Theorems 6.5 and 6.10 are
presented. In particular, this lemmas prove the optimality of the steady state.

Lemma 6.18 Consider system (6.1) subject to constraints (6.2). Consider that assumption
6.3 holds. Consider a given target yt and assume that for a given state x the optimal solution
of PN (x, yt) is such that x0s(x, yt) = gx(y

0
s(x, yt)) and u0s(x, yt) = gu(y

0
s(x, yt)). Let ỹs ∈ Ys be

given by

ỹs , arg min
ys∈λYs

VO(ys − yt)

Then

x0s(x, yt) = x̃s, u
0
s(x, yt) = ũs, y

0
s(x, yt) = ỹs

Proof: Consider that the optimal solution of PN (x, yt) is (x0s, u
0
s, y

0
s)

2. The optimal cost
function is V 0

N (x, yt) = VO(y
0
s − yt).

The lemma will be proved by contradiction. Assume that y0s ̸= ỹs.

De�ne ŷs given by

ŷs = βy0s + (1− β)ỹs β ∈ [0, 1]

Assuming Ys convex, this point is an admissiblo steady state. Therefore, de�ning as u

the sequence of control actions u = {ûs, ..., ûs}, it is easily inferred that (u, ŷs) is a feasible

2In this proof, the dependence of the optimal solution from (x, yt) will be omitted for the sake of clarity.
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solution for PN (x0s, yt). Then using standard procedures in MPC, we have that

V 0
N (x0s, yt) = VO(y

0
s − yt)

≤ VN (x0s, yt;u, ŷs)

=
N−1∑
j=0

ℓ((x(j)− x̂s), (u(j)− ûs)) + VO(ŷs − yt)

= VO(ŷs − yt)

De�ne W (x0s, yt, β)
∆
= VO(ŷs − yt) and notice that W (x0s, yt, β) = V 0

N (x0s, yt) for β = 1.
Taking the partial of W about β we have that

∂W

∂β
= g′(y0s − ỹs)

where g′ ∈ ∂VO(ŷs−yt) , de�ning ∂VO(ŷs−yt) as the subdi�erential of VO(ŷs−yt). Evaluating
this partial for β = 1 we obtain that:

∂W

∂β

∣∣∣∣
β=1

= g0
′
(y0s − ỹs)

where g0
′ ∈ ∂VO(y

0
s − yt), de�ning ∂VO(y

0
s − yt) as the subdi�erential of VO(y

0
s − yt). Taking

into account that VO is a subdi�erentiable function, from convexity (Boyd and Vandenberghe,
2006) we can state for every y0s and ỹs that

g0
′
(y0s − ỹs) ≥ VO(y

0
s − yt)− VO(ỹs − yt)

Taking into account that y0s ̸= ỹs, VO(y
0
s − yt)− VO(ỹs − yt) > 0, it can be derived that

∂W

∂β

∣∣∣∣
β=1

≥ VO(y
0
s − yt)− VO(ỹs − yt) > 0

This means that there exists a β ∈ [β̂, 1) such that W (x0s, yt, β) is smaller than the value of
W (x0s, yt, β) for β = 1, which equals to V 0

N (x0s, yt).

This contradicts the optimality of the solution and hence the result is proved.

Lemma 6.19 Consider system (6.1) subject to constraints (6.2). Consider that assumption
6.3 and 6.9 hold. Consider a given target yt and assume that for a given state x the optimal
solution of PNc,Np(x, yt) is such that x0s(x, yt) = gx(y

0
s(x, yt)) and u0s(x, yt) = gu(y

0
s(x, yt)).

Let ỹs ∈ λYs be given by
ỹs , arg min

ys∈λYs

VO(ys − yt)

Then
x0s(x, yt) = x̃s, u

0
s(x, yt) = ũs, y

0
s(x, yt) = ỹs
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Proof: Consider that the optimal solution of PNc,Np(x, yt) is (x
0
s, u

0
s, y

0
s)

3. The optimal cost
function is V 0

Nc,Np
(x, yt) = VO(y

0
s − yt).

The lemma will be proved by contradiction. Assume that y0s ̸= ỹs.

De�ne ŷs given by
ŷs = βy0s + (1− β)ỹs β ∈ [0, 1]

From continuity arguments it can be derived that there exists a β̂ ∈ [0, 1) such that for
every β ∈ [β̂, 1), (x0s, ŷs) ∈ Γ.

Therefore, de�ning as u the sequence of control actions derived from the control law
k(x, ŷs), it is easily inferred that (u, ŷs) is a feasible solution for PNc,Np(x

0
s, yt). Then from

assumption 6.9 and using standard procedures in MPC, we have that

V 0
Nc,Np

(x0s, yt) = VO(y
0
s − yt)

≤ VNc,Np(x
0
s, yt;u, ŷs)

=

Np−1∑
i=0

ℓ((x(i)− x̂s), (k(x(i), ŷs)− ûs)) + Vf (x(Np)− x̂s, ŷs) + VO(ŷs − yt)

≤ Vf (x
0
s − x̂s, ŷs) + VO(ŷs − yt)

≤ LVf
∥y0s − ŷs∥σ + VO(ŷs − yt)

= LVf
(1− β)σ∥y0s − ỹs∥σ + VO(ŷs − yt)

where LVf
= Lσ

g b and Lg is the Lipshitz constant of gx(·).

De�ne W (x0s, yt, β)
∆
= LVf

(1− β)σ∥y0s − ỹs∥σ + VO(ŷs − yt) and notice that W (x0s, yt, β) =

V 0
Nc,Np

(x0s, yt) for β = 1. Taking the partial of W about β we have that

∂W

∂β
= −LVf

σ(1− β)σ−1∥y0s − ỹs∥σ + g′(y0s − ỹs)

where g′ ∈ ∂VO(ŷs−yt) , de�ning ∂VO(ŷs−yt) as the subdi�erential of VO(ŷs−yt). Evaluating
this partial for β = 1 we obtain that:

∂W

∂β

∣∣∣∣
β=1

= g0
′
(y0s − ỹs)

where g0
′ ∈ ∂VO(y

0
s − yt), de�ning ∂VO(y

0
s − yt) as the subdi�erential of VO(y

0
s − yt). Taking

into account that VO is a subdi�erentiable function, from convexity (Boyd and Vandenberghe,
2006) we can state for every y0s and ỹs that

g0
′
(y0s − ỹs) ≥ VO(y

0
s − yt)− VO(ỹs − yt)

3In this proof, the dependence of the optimal solution from (x, yt) will be omitted for the sake of clarity.
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Taking into account that y0s ̸= ỹs, VO(y
0
s − yt)− VO(ỹs − yt) > 0, it can be derived that

∂W

∂β

∣∣∣∣
β=1

≥ VO(y
0
s − yt)− VO(ỹs − yt) > 0

This means that there exists a β ∈ [β̂, 1) such that W (x0s, yt, β) is smaller than the value of
W (x0s, yt, β) for β = 1, which equals to V 0

Nc,Np
(x0s, yt).

This contradicts the optimality of the solution and hence the result is proved.



Chapter 7

Economic MPC for a changing

economic criterion

7.1 Introduction

This chapter is dedicated to the problem of the Model Predictive Control based on economic
cost functions.

The standard procedures in all industrial advanced process control systems is to decom-
pose a plant's economic optimization in two levels. The �rst level performs a steady state
optimization, and it is usually called as Real Time Optimizer (RTO). The RTO determines
the optimal setpoints and sends them to the second level, the advanced control systems, which
performs a dynamic optimization. In many control process, MPC is used as the advanced
control formulation chosen for this level (Rawligns and Amrit, 2009).

In (Rawlings et al., 2008) the authors consider the problem of a setpoint that becomes
unreachable due to the system constraints. The usual method to handle this problem is to
transform the unreachable setpoint into a reachable steady state target using a separate steady
state optimization. This paper proposes an alternative approach in which the unreachable set-
point is retained in the controller's stage cost and objective function. The use of this objective
function induces an interesting fast/slow asymmetry in the system's tracking response that
depends on the system initial condition, speeding up approaches to the unreachable setpoint,
but slowing down departures from the unreachable setpoint. In (Rawligns and Amrit, 2009)
the authors consider the case of replacing the setpoint objective function with an objective
measuring some economic performance. In (Diehl et al., 2011) the authors also show that the
economic MPC schemes admit a Lyapunov function to establish stability properties.

If the economic criterion changes, for instance due to changes in the prices, expected
demand, etc., the economically optimal admissible steady state where the controller steers the
system may change, and the feasibility of the controller may be lost. This loss of feasibility
recall the tracking problem treated in (Limon et al., 2008a; Ferramosca et al., 2009a) for linear
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systems and in (Limon et al., 2009b) for nonlinear systems, and in the previous chapters of
this thesis. These controllers ensure that under any change of the setpoint, the closed-loop
system maintains the feasibility of the controller, ensures the convergence to the setpoint if
admissible (and the closest steady state if it is not), and inherits the optimality property of
the MPC for regulation.

In this chapter, an economic MPC for a changing economic criterion is presented. This
controller inherits the feasibility guarantee of the MPC for tracking (Limon et al., 2008a;
Ferramosca et al., 2009a) and the optimality of the economic MPC (Rawlings et al., 2008;
Diehl et al., 2011). A particular stage cost function is proposed for establishing asymptotic
stability.

7.2 Problem statement

Consider a system described by a nonlinear time-invariant discrete time model

x+ = f(x, u) (7.1)

where x ∈ Rn is the system state, u ∈ Rm is the current control vector and x+ is the successor
state. The solution of this system for a given sequence of control inputs u and initial state x

is denoted as x(j) = ϕ(j;x,u), j ∈ I≥0, where x = ϕ(0;x,u). The state of the system and
the control input applied at sampling time k are denoted as x(k) and u(k) respectively.

The system is subject to hard constraints on state and input:

x(k) ∈ X, u(k) ∈ U (7.2)

for all k ≥ 0, where X ⊂ Rn and U ⊂ Rm are closed sets.

The steady state and input of the plant (xs, us) are such that (7.1) is ful�lled, i.e. xs =

f(xs, us).
We de�ne the set of admissible equilibrium states as

Zs = {(x, u) ∈ X × U | x = f(x, u)} (7.3)

Xs = {x ∈ X | ∃u ∈ U such that (x, u) ∈ Zs} (7.4)

Notice that Xs is the projection of Zs onto X.

Assume that there existas a parameter θ ∈ Rnθ such that the couple (xs, us) is univocally
de�ned:

xs = gx(θ), us = gu(θ) (7.5)
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De�ne, then, Θ = {θ ∈ Rnθ | (gx(θ), gu(θ)) ∈ λZs}.

The controller design problem consists of deriving a control law that minimizes a given
performance cost index

N−1∑
j=0

l(x(j), u(j))

where l(x, u) de�nes the economic stage cost.

The model is assumed to satisfy the following assumption:

Assumption 7.1

1. Function l(x, u) : Rn × Rm → Rn is a non-negative function for any (x, u).

2. The model function f(x, u) and the economic stage cost function l(x, u) are Lipschitz
continuous in (x, u); that is there exist Lipschitz constants Lf , Ll > 0 such that, for all
(x, u), (x0, u0) ∈ X × U

|f(x, u)− f(x0, u0)| ≤ Lf |(x, u)− (x0, u0)|
|l(x, u)− l(x0, u0)| ≤ Ll|(x, u)− (x0, u0)|

3. (Weak controllability) De�ne the set

ZN (w)={(x,u) ∈ X × UN | x(j) ∈ X, u(j) ∈ U, j ∈ I0:N−1, x(N)=w}

for any w ∈ Xs, where x(j) = ϕ(j;x,u). It is assumed that there exist a set Ω ⊂ Rn and
a K∞-function η such that, for any (w, v) ∈ Zs and for any (x,u) such that (x−w) ∈ Ω
and (x,u) ∈ ZN (w), then

N−1∑
j=0

|u(j)− v| ≤ η(|x− w|)

4. The set of parameter Θ is a convex set.

Remark 7.2 If the set Θ = {θ ∈ Rnθ | (gx(θ), gu(θ)) ∈ λZs} results to be non-convex, then a
suitable convex set Θ contained in {θ ∈ Rnθ | (gx(θ), gu(θ)) ∈ λZs} must be chosen.

Given the economic stage cost, the economic controller should steer the system to the
optimal reachable steady state, which is de�ned as follows:
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De�nition 7.3 The optimal reachable steady state and input, (x∗s, u
∗
s), satisfy

(x∗s, u
∗
s) = argmin

x,u
l(x, u)

s.t. x = f(x, u)

x ∈ X, u ∈ U

7.3 Economic MPC

In the economic MPC the stage cost is an arbitrary economic objective, which does not
necessarily penalizes the tracking error to the optimal target (x∗s, u

∗
s). In (Rawlings et al.,

2008) and (Rawligns and Amrit, 2009), for instance, the authors use a stage cost of the
optimal control problem which measures distance from the setpoint even if this setpoint is
unreachable at steady state due to the problem constraints, but desirable for economic reasons.
In general, the economic MPC cost function is given by

V e
N (x,u) =

N−1∑
j=0

l(x(j), u(j))

The economic MPC control law is derived from the solution of the optimization problem
P e
N (x)

min
u

V e
N (x,u)

s.t.

x(0) = x,

x+ = f(x, u),

x(j) ∈ X, u(j) ∈ U, j ∈ I0:N−1

x(N) = x∗s

and is given by the receding horizon application of the optimal solution, κeN (x) = u0(0;x). The
optimal value of the cost function is noted as V e0

N (x). The feasible region of the optimization
problem is given by:

Xe
N = {x ∈ X | ∃(x,u) ∈ ZN (w), for w = x∗s}

The standard Lyapunov arguments to prove asymptotic stability of MPC cannot be used in
this case because the optimal cost is not necessarily decreasing along the closed-loop trajectory.
In (Rawlings et al., 2008) asymptotic stability for linear, stabilizable models with strictly
convex quadratic cost function is established, but a Lyapunov function is not found. In
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the paper (Diehl et al., 2011), asymptotic stability of economic MPC is established using
Lyapunov arguments. In order to �nd a suitable Lyapunov function, in (Diehl et al., 2011)
the authors made the following assumption:

Assumption 7.4 (Strong duality of the steady state problem) Let Lr(x, u) be the ro-
tated stage cost function given by

Lr(x, u) = l(x, u) + λ
′
(x− f(x, u))− l(xs, us)

where λ is a multiplier that ensures the rotated cost exhibits a unique minimum at (xs, us) for
all x ∈ X, u ∈ U . Then there exists a a K-function α1 such that Lr(x, u) ≥ α1(|x− xs|).

In (Diehl et al., 2011) it is proved that the predictive control law derived from the following
optimization problem P̃ e

N (x)

min
u

N−1∑
j=0

Lr(x(j), u(j))

s.t.

x(0) = x,

x+ = f(x, u),

x(j) ∈ X, u(j) ∈ U, j ∈ I0:N−1

x(N) = x∗s

is identical to the economic predictive control law, and that the optimal cost function is a
Lyapunov function, which demonstrates asymptotic stability as in standard MPC (Diehl et
al., 2011).

Remark 7.5 (Convex problems) In (Diehl et al., 2011) it is pointed out that in the convex
case it is easy to show that, if the steady state problem is feasible and l(., .) is strictly convex
in (x, u), Assumption 7.4 is always satis�ed.

When the economic objective of the controller changes, the optimal admissible steady
state (xs, us) (to which the system should be steered by the controller) changes as well. This
change may cause a loss of feasibility of the controller.

At the same time, the MPC for tracking constrained linear and nonlinear systems presented
in the previous chapters of this thesis, provides stability and convergence to the setpoint
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under changing operating points, but based on what has been explained in this section, it is
suboptimal with respect to an economic objective.

The main objective of this chapter is to combine the economic MPC proposed in (Diehl
et al., 2011) with the MPC for tracking proposed in (Limon et al., 2009b) in such a way that
the combined controller inherits the advantages of both formulations.

7.4 Economic MPC for a changing economic criterion

In this section the economic MPC for a changing economic criterion is presented. The cost
function proposed is composed by an economic stage cost function and an o�set cost function
as in (Limon et al., 2008a; Ferramosca et al., 2009a; Limon et al., 2009b). This o�set cost
function is de�ned as follows:

De�nition 7.6 Let VO(x, u) be a convex positive de�nite function such that the unique min-
imizer of

min
(x,u)∈Zs

VO(x, u)

is (xs, us).

The economic stage cost function is given by:

ℓt(z, v) = ℓ(z + x∗s, v + u∗s)

To the aim of proving stability of the controller, we need to introduce the rotated stage
cost function:

De�nition 7.7

Lt(z, v) = Lr(z + x∗s, v + u∗s)

This stage cost function satis�es the following properties:

Property 7.8

1. Lt(x− x∗s, u− u∗s) = Lr(x, u)
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2. Lt(0, 0) = Lr(x
∗
s, u

∗
s) = 0

3. Lt(z, v) ≥ α1(|z|) + α2(|v|) for certain K functions α1 and α2.

The economic MPC for a changing economic criterion proposed in this chapter solves, for
any current state x, the following optimization problem PN (x):

min
u,θ

VN (x;u, θ) (7.6)

s.t. (7.7)

x(0) = x, (7.8)

x+ = f(x, u), (7.9)

x(j) ∈ X, u(j) ∈ U, j ∈ I0:N−1 (7.10)

xs = gx(θ), us = gu(θ) (7.11)

θ ∈ Θ (7.12)

x(N) = xs (7.13)

(7.14)

where

VN (x;u, θ) =
N−1∑
j=0

Lt(x(j)− xs, u(j)− us) + VO(xs, us)

The optimal cost and the optimal decision variables will be denoted as V 0
N (x) and (u0, θ0)

respectively. The control law is given by κN (x) = u0(0;x).

Notice that, if we add the constraint x(N) = x∗s in PN (x), the optimization problem is
the same as P e

N (x).
The feasible region of the optimization problem is a compact set given by

XN = {x ∈ X | ∃(x,u) ∈ ZN (w), for w ∈ Xs}

Since {x∗s} ⊂ Xs, we have that Xe
N ⊂ XN .

The set XN is a feasible set of initial x such that one can reach any feasible steady state with
N admissible inputs.
The set Xe

N is a feasible set of initial x such that one can reach the optimal steady state with
N admissible inputs.
Then, the set XN is larger, and, in some applications much larger, than Xe

N , (Ferramosca et
al., 2010b).

In the following theorem, asymptotic stability of the proposed economic MPC for tracking
is stated.
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Theorem 7.9 If assumptions 7.1 and 7.4 hold, then (x∗s, u
∗
s) is an asymptotically stable equi-

librium point for the controlled system and its domain of attraction is XN .

The proof of Theorem 7.9 follows the same arguments as the proof of Theorem 1 in chapter
6

Proof: Consider that x ∈ XN at time k, then the optimal cost function is given by V 0
N (x) =

VN (x;u0(x), θ0(x)), where (u0(x), θ0(x)) de�nes the optimal solution of PN (x, yt) and u0(x) =

{u0(0;x), u0(1;x), ..., u0(N−1;x)}. Notice that u0(0;x) = κN (x). The resultant optimal state
sequence associated to u0(x) is given by x0(x) = {x0(0;x), x0(1;x), ..., x0(N−1;x), x0(N ;x)},
where x0(0;x) = x, x0(1;x) = x+ and x0(N ;x) = x0s(x) = gx(θ

0(x)).

As standard in MPC (Mayne et al., 2000; Rawlings and Mayne, 2009, Chapter 2), de�ne
the successor state at time k + 1, x+ = f(x, κN (x)) and de�ne also the following sequences:

ũ
∆
= [u0(1;x), · · · , u0(N−1;x), u0s(x)]

θ̃
∆
= θ0(x)

where u0s(x) = gu(θ
0(x)). It is easy to derive that (ũ, θ̃) is a feasible solution for the optimiza-

tion problem PN (x+). Therefore, XN is an admissible positive invariant set for the closed-loop
system and hence the control law is well-de�ned and the constraints are ful�lled throughout
the system evolution.

The state sequence due to (ũ, θ̃) is x̃ = {x0(1;x), x0(2;x), ..., x0(N ;x), x0(N+1;x)}, where
x0(N ;x) = x0s(x) and x0(N + 1;x) = f(x0(N ;x), u0s(x)) = x0s(x). Hence,

x̃ = {x0(1;x), x0(2;x), ..., x0s(x), x0s(x)}

which is clearly feasible. Compare now the optimal cost V 0
N (x), with the cost given by (ũ, θ̃),

ṼN (x+; ũ, θ̃). Taking into account the properties of the feasible nominal trajectories for x+,
Assumption 7.1 and using standard procedures in MPC (Mayne et al., 2000; Rawlings and
Mayne, 2009, Chapter 2) it is possible to obtain:

ṼN (x+; ũ, θ̃)− V 0
N (x) = −Lt((x−x0s(x)), (u

0(0;x)−u0s(x)))−VO(x
0
s, u

0
s)

+Lt((x(N ;x)−x0s(x)), (u
0
s(x)−u0s(x))) +VO(x

0
s, u

0
s)

= −Lt((x−x0s(x)), (u
0(0;x)−u0s(x)))

By optimality, we have that V 0
N (x+) ≤ ṼN (x+; ũ, θ̃) and then:

V 0
N (x+)− V 0

N (x) ≤ −Lt((x−x0s(x)), (u
0(0;x)−u0s(x)))

= −Lt((x−x0s(x)), (κN (x)−u0s(x)))
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Taking into account the property 7.8, we have that:

lim
k→∞

|x(k)− x0s(x(k))|=0, lim
k→∞

|u(k)− u0s(x(k))|=0

Hence the system converges to a point (x0s, u
0
s), such that x0s = gx(θ

0
s) and u0s = gu(θ

0
s).

Now, it is proved that the system converges to an equilibrium point. Pick an ε > 0, then
there exists a k(ε) such that for all k ≥ k(ε), |x(k)− x0s(x(k))| < ε and |u(k)− u0s(x(k))| < ε.
Then, removing the time dependence for the sake of simplicity, it is inferred that

|x+ − x| = |x+ − x0s(x) + x0s(x)− x|
≤ |x+ − x0s(x)|+ |x0s(x)− x|
= |f(x, u)− f(x0s(x), u

0
s(x))|+ |x0s(x)− x|

≤ Lf |x− x0s(x)|+ Lf |u− u0s(x)|+ |x0s(x)− x|
≤ (2Lf + 1)ε

Therefore, for a given ε > 0, there exists a k(ε) such that |x+ − x| ≤ (2Lf + 1)ε. Hence, the
system converges to a steady state x∞ and this is such that x∞ = x0s(x∞) ∈ Xs.

Since VO(xs, us) is convex, using lemma 7.17, it is proved that (x∞, u∞) is the optimal
steady state of the system, that is (x∞, u∞) = (x∗s, u

∗
s).

Finally, the fact that (x∗s, u
∗
s) is a stable equilibrium point for the closed-loop system is

proved. That is, for any ε > 0 there exists a δ > 0 such that for all |x(0) − x∗s| ≤ δ, then
|x(k)− x∗s| ≤ ε.

To this aim, de�ne the function W (x) = V 0
N (x) − VO(x

∗
s, u

∗
s). Then, W (x∗s) = 0. This

function is such that αW (|x − x∗s|) ≤ W (x) ≤ βW (|x − x∗s|), where αW and βW are suitable
K∞ functions. In fact:

• W (x) ≥ αl(|x − x0s|) + αO(|x0s − x∗s|). This comes from the fact that the stage cost
function is a positive de�nite function and from the de�nition of VO. Hence

W (x) ≥ αW (|x− x0s|+ |x0s − x∗s|)
≥ αW (|x− x∗s|)

• Notice that V 0
N (x) ≤ VN (x;u, θ∗) + VO(x

∗
s, u

∗
s). Due to the weak controllability of x∗s

(assumption 7.1), there exists a K∞ function βW such that VN (x;u, θ∗) ≤ βW (|x−x∗s|).
Hence W (x) ≤ βW (|x− x∗s|).
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Then, αW (|x(k) − x∗s|) ≤ W (x(k)) ≤ W (x(0)) ≤ βW (|x − x∗s|) and, hence, |x(k) − x∗s| ≤
α−1
W ◦ βW (|x(0) − x∗s|). So, picking δ = β−1

W ◦ αW (ε), then |x(k) − x∗s| ≤ α−1
W ◦ βW (δ) ≤ ε,

proving the stability of x∗s.

Recapping, it has been proved that for all initial state x0 ∈ XN , the closed-loop system
converges to an equilibrium point (x∗s, u

∗
s). Moreover, it has been demonstrated that this

equilibrium point is stable for the closed-loop system. Therefore, (x∗s, u
∗
s) is an asymptotic

stable equilibrium point for the closed-loop system and its domain of attraction is XN .

Property 7.10 (Changing economic criterion) Since the set of constraints of PN (x) does
not depend on (x∗s, u

∗
s), the proposed controller is able to guarantee the recursive feasibility,

admissibility and asymptotic stability for any change on-line of the economic criterion. In
fact, since the domain of attraction XN does not depend on the optimal steady state, for all
x(0) ∈ XN every admissible steady state is reachable. Moreover, since the trajectory remains
in XN , if the economic criterion (and hence the optimal steady state) changes, problem PN (x)
does not loose feasibility and the system is led to the new optimal steady state in an admissible
way.

The drawback of this formulation is that it requires the a priori calculation of λ and
(x∗s, u

∗
s). In the next section it is shown that in case of linear systems, the dependence on

λ can be removed as in (Diehl et al., 2011), by means of a suitable choice of the o�set cost
function.

7.4.1 Specialization to the linear case

Consider that the model function f(x, u) is linear, such that:

x+ = Ax+Bu

Consider also that the pair (A,B) is stabilizable.

In order to prove that the dependence from λ can be removed, a rotated o�set cost function
can be de�ned:

De�nition 7.11

ṼO(x,u) = VO(x, u)+λ
′
(x−x∗s)− VO(x

∗
s, u

∗
s)



Chapter 7. Economic MPC for a changing economic criterion 151

Notice that this rotated o�set cost function has to ful�ll assumption 7.1.4. Hence, if
VO(x, u) is convex, since λ

′
(x−x∗s) is convex, then ṼO(x,u) is also convex.

Hence, the cost function of the economic MPC problem for a changing economic criterion
in case of linear systems is given by:

ṼN (x;u, θ) =

N−1∑
j=0

Lt(x(j)− xs, u(j)− us) + ṼO(xs, us)

and the optimization problem P̃N (x) is given by

min
u,θ

ṼN (x;u, θ) (7.15)

s.t. (7.16)

x(0) = x, (7.17)

x+ = Ax+Bu, (7.18)

x(j) ∈ X, u(j) ∈ U, j ∈ I0:N−1 (7.19)

xs = gx(θ) ∈ λX (7.20)

us = gu(θ) ∈ λU (7.21)

x(N) = xs (7.22)

(7.23)

Lemma 7.12 The optimization problem P̃N (x) is equivalent to

min
u,θ

N−1∑
j=0

ℓt(x(j)− xs, u(j)− us) + VO(xs, us) (7.24)

s.t. (7.25)

x(0) = x, (7.26)

x+ = Ax+Bu, (7.27)

x(j) ∈ X, u(j) ∈ U, j ∈ I0:N−1 (7.28)

xs = gx(θ) ∈ λX (7.29)

us = gu(θ) ∈ λU (7.30)

x(N) = xs (7.31)

(7.32)
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Proof: Operating with the cost function we have that

ṼN (x;u, θ) =

N−1∑
j=0

Lt(x(j)− xs, u(j)− us) + ṼO(xs, us)

=
N−1∑
j=0

(
ℓt(x(j)− xs, u(j)− us) + λ

′
(x(j)− x(j + 1))−ℓt(x

∗
s, u

∗
s)
)

+VO(xs, us) + λ
′
(xs − x∗s)− VO(x

∗
s, u

∗
s)

=

N−1∑
j=0

ℓt(x(j)− xs, u(j)− us) + λ
′
(x− xs)−Nℓt(x

∗
s, u

∗
s)

+VO(xs, us) + λ
′
(xs − x∗s)− VO(x

∗
s, u

∗
s)

=

N−1∑
j=0

ℓt(x(j)− xs, u(j)− us) + λ
′
(x− xs)−Nℓt(x

∗
s, u

∗
s)

+VO(xs, us)− VO(x
∗
s, u

∗
s)

This is equivalent to optimize, at any instant, the cost function

VN (x;u, θ) =
N−1∑
j=0

ℓt(x(j)− xs, u(j)− us) + VO(xs, us)

proving the lemma.

From this lemma it is clear that, solving problem (7.24) instead of problem (7.15), gives
the same controller. The advantage is that is not necessary to know the value of λ.

7.5 Local economic optimality

The proposed economic MPC for a changing economic criterion may be considered as a
suboptimal controller (with respect to the setpoint) due to the stage cost to minimize. As
demonstrated in the following property, however, under mild conditions on the o�set cost
function VO(·), the proposed controller ensures the economic optimality property as in (Diehl
et al., 2011).

Assumption 7.13 There exist a positive constant γ such that

VO(x, u) ≥ γ|x− x∗s|

Then we can state the following property:
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Property 7.14 (Local optimality)

Consider that assumptions 7.1, 7.4 and 7.13 hold and assume that x0 ∈ XN . Then there exists
a α0 > 0 such that for all γ ≥ α0 and for all x ∈ Xe

N the proposed economic MPC for tracking
is equal to the economic MPC, i.e. κN (x) = κeN (x).

Proof: First, de�ne problem P̂ e
N (x), which is equivalent to problem P e

N (x), but rewritten as
follows:

min
u

N−1∑
j=0

Lt(x(j)−xs,u(j)−us) + VO(xs,us) (7.33)

s.t. (7.34)

x(0) = x, (7.35)

x+ = f(x, u), (7.36)

x(j) ∈ X, u(j) ∈ U, j ∈ I0:N−1 (7.37)

xs = gx(θ) ∈ λX (7.38)

us = gu(θ) ∈ λU (7.39)

x(N) = xs (7.40)

|x(N)− x∗s|q = 0 (7.41)

Let ν(x) be the Lagrange multiplier of the equality constraint |x(N) − x∗s|q = 0 of the opti-
mization problem P̂ e

N (x). We de�ne the following constant α0

α0 = max
x∈Xe

N

|ν(x)|

De�ne the optimization problem P̃N,γ(x) as a particular case of PN (x) with VO(x, u) , γ|x−
x∗s|p, where |.|p is the dual norm of |.|q1. This optimization problem results from P̂ e

N (x) with
the last constraint posed as an exact penalty function. Therefore, in virtue of the well-known
result on the exact penalty functions (Luenberger, 1984), taking any γ ≥ α0 we have that

V e0
N (x) = Ṽ 0

N,α0(x) ≤ Ṽ 0
N,γ(x) ≤ V e0

N (x)

and hence Ṽ 0
N,γ(x) = V e0

N (x) for all x ∈ Xe
N .

1The dual |.|p of a given norm |.|q is de�ned as |u|p , max
|v|q≤1

u′v. For instance, p = 1 if q = ∞ and vice

versa, or p = 2 if q = 2 (Luenberger, 1984).
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7.5.1 Specialization to the linear case

In case of linear systems, we need to make the following assumption, due to the de�nition of
the rotated o�set cost function 7.11

Assumption 7.15 There exist a positive constant γ̂ such that

VO(x, u)− VO(x
∗
s, u

∗
s) ≥ γ̂|x− x∗s|

Lemma 7.16

If assumption 7.15 holds, then for any γ > 0 there exists a γ̂ > 0 such that

ṼO(x, u) ≥ γ|x− x∗s|

Proof: Using the Cauchy−Schwarz's inequality, λ′
(xs − x∗s) ≤ |λ||xs − x∗s|. Take γ̂ > |λ|+ γ.

Then,

ṼO(xs, us) = VO(xs, us) + λ
′
(xs − x∗s)− VO(x

∗
s, u

∗
s)

≥ γ̂|xs − x∗s|+ λ
′
(xs − x∗s)

≥ |λ||xs − x∗s|+ γ|xs − x∗s|+ λ
′
(xs − x∗s)

= [|λ||x∗s − xs| − λ
′
(x∗s − xs)] + γ|xs − x∗s|

≥ γ|xs − x∗s|

7.6 Illustrative examples

In this section three examples are presented. The �rst one shows that the economic MPC for
a changing economic criterion inherits the large feasible set associated with MPC for tracking
(Limon et al., 2008a; Ferramosca et al., 2009a). In the second example, the role of the o�set
cost function in the local economic optimality property is shown. The third example shows
that the economic MPC for a changing economic criterion inherits the economic optimality
property of the economic MPC (Rawlings et al., 2008; Diehl et al., 2011).
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7.6.1 Feasibility: the CSTR case

The system considered is a continuous stirred tank reactor (CSTR), (Chisci et al., 2005; Magni
et al., 2001a). Assuming constant liquid volume, the CSTR for an exothermic, irreversible
reaction, A → B, is described by the following model:

ĊA =
q

V
(CAf − CA)− koe

(−E
RT

)CA (7.42)

Ṫ =
q

V
(Tf − T )− ∆H

ρCp
koe

(−E
RT

)CA +
UA

V ρCp
(Tc − T )

where CA is the concentration of A in the reactor, T is the reactor temperature and Tc is the
temperature of the coolant stream. The nominal operating conditions are: q = 100 l/min,
Tf = 350 K, V = 100 l, ρ = 1000 g/l, Cp = 0.239 J/g K, ∆H = −5×104 J/mol, E/R = 8750

K, k0 = 7.2× 1010min−1, UA = 5× 104 J/ min K and CAf = 1 mol/l.

The objective is to regulate y = x2 = T and x1 = CA by manipulating u = Tc. The
constraints are 0 ≤ CA ≤ 1 mol/l, 280K ≤ T ≤ 370K and 280K ≤ Tc ≤ 370 K. The nonlinear
discrete time model of system (7.42) is obtained by discretizing equation (7.42) using a 5-
th order Runge-Kutta method and taking as sampling time 0.03 min. The set of reachable
output is given by 304.17K ≤ T ≤ 370K. The outputs in this range are all controllable.

The economic stage cost function is l(x, u) = ∥x − xsp∥2Q + ∥u − usp∥2R where (xsp, usp)

de�nes the unreachable setpoint and Q = diag(1, 1/100) and R = 1/100 are the weighting
matrices. The function VO = α∥xs − xsp∥∞ has been chosen as the o�set cost function. The
controller has been implemented in Matlab 7.8 and the function fmincon has been used to
solve the optimization problem.

In Figure 7.1 the the evolution of the system for a change of setpoint is plotted. The system
has been considered to be steered from x0 = (0.7950, 332), u0 = 302.8986, to ysp = 400, and
then to ysp = 300. Both setpoints are unreachable. The optimal equilibrium points are
x∗s = (0.2057, 370), and x∗s = (0.9774, 304.17). A horizon N = 3 has been used. The evolution
of the system (solid line), the arti�cial reference2 xs (dashed line), and the real reference
(dashed-dotted line) are shown. Notice that the controller steers the system to the extremes
of the reachable range, even with the short horizon.

In �gure 7.2 the feasible sets XN of the proposed controller for N = 2, N = 10 and
N = 17 are depicted in solid blue, red and black lines, respectively. These regions have
been estimated solving a Phase I problem (Boyd and Vandenberghe, 2006) in a grid. The
dotted line represents the set of equilibrium points of the system. The controller has been

2As stated in chapter 2 of this thesis, the equilibrium point (xs, us) can be understood as an arti�cial
reference that the system could reach with a feasible evolution.
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Figure 7.1: Time evolution of T and CA.

compared with the economic MPC presented in (Diehl et al., 2011). The resulting feasible
set for N = 17, labeled as Ω17 is depicted in dashed line. Notice that this set is smaller than
the one obtained with the economic MPC for a changing economic criterion using an horizon
N = 17. Moreover, notice how the sets XN cover the entire steady state manifold, even for
N = 2, thus showing that the new formulation has increased the domain of attraction of the
controller.

7.6.2 Local optimality

In this example, the local optimality property is shown. To this aim, the di�erence between
the optimal cost of the MPC presented in (Diehl et al., 2011), V e0

N , and the one presented in
this chapter, V 0

N , are compared.

The test consisted in calculating the optimal costs V 0
N and V e0

N , for steering the system
from x0 = (0.7950, 332), u0 = 302.8986, to xsp = (1, 340), usp = 350, which is not a reachable
equilibrium point for the system. The optimal equilibrium point for the system, given xsp
and usp, is x∗s = (0.7255, 336.9019), u∗s = 303.1932. V 0

N , with N = 17, has been calculated
for di�erent values of α. In �gure 7.3 the value of V 0

N − V e0
N versus α is plotted. As can be

seen, V 0
N −V e0

N drops sharply to near zero for α = 9. As discussed in section 7.5, this happens
because the value of α becomes greater than the value of the Lagrange multiplier of the last
equality constraint of problem P e0

N , which is α0 = 8.1127.
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7.6.3 Economic Optimality

The object of this example is to show that the controller proposed in this paper inherits
the optimality with respect to the setpoint property from the economic MPC formulation
(Rawlings et al., 2008; Diehl et al., 2011). To this aim, a comparison of the optimality
performance of the three controllers - economic MPC, MPC for tracking (Limon et al., 2008a;
Ferramosca et al., 2009a), economic MPC for a changing economic criterion - has been made.

The cost functions are the following:
Economic MPC (E-MPC, (Rawlings et al., 2008; Diehl et al., 2011)):

V e
N (x;u) =

N−1∑
j=0

ℓ(x(j), u(j))

with the economic stage cost function considered as in the example presented in section 7.6.1,
that is ℓ(x, u) = |x− xsp|2Q + |u− usp|2R where (xsp, usp) de�nes the unreachable setpoint and
Q and R are the weighting matrices.
MPC for tracking (MPCT, (Limon et al., 2008a; Ferramosca et al., 2009a)):

V t
N (x;u, θ) =

N−1∑
j=0

|x(j)− xs|2Q+|u(j)− us|2R + |x(N)− xsp|2T

where |x(N)−xsp|2T is the o�set cost function.
Economic MPC for a changing economic criterion (E-MPCT):

VN (x;u, θ) =

N−1∑
j=0

ℓt(x(j)− xs, u(j)− us) + VO(xs, us)

The o�set cost function considered for the economic MPC for changing economic criterion
is VO = α|xs − xsp|∞, where α is chosen as the value of the Lagrange multiplier of the last
equality constraint of problem P e0

N (see section 7.5).

The controllers' performance have been assessed using the following closed-loop control
performance measure:

Φ =
T∑

k=0

|x(k)− xsp|2Q + |u(k)− usp|2R − (|x∗s − xsp|2Q + |u∗s − usp|2R)

where T is the simulation time.

The system considered is the double integrator:
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A =

[
1 1

0 1

]
, B =

[
0.0 0.5

1.0 0.5

]
, C =

[
1 0

0 1

]
.

Hard constraints on state and input have been considered: ∥x∥∞ ≤ 5 and ∥u∥∞ ≤ 0.3.

The setpoint considered is xsp = (6; 3), which is unreachable. The optimal steady state,
for the considered set of constraints, is x∗s = (5; 0.15). The MPC parameters are Q = I2 and
R = I2. The simulation time is T = 50.

The initial condition considered is x0 = (−4; 2). A horizon N = 10 has been used. The
value of α for the o�set cost function has been chosen as α = 373. As discussed in section
7.5, this value has been chosen greater than the value of the Lagrange multiplier of the last
equality constraint of problem P e0

N , which is α0 = 372.64.

The closed-loop performances of the three controllers are shown in table 7.1.

Table 7.1: Comparison of controller performance

Measure E-MPC MPCT E-MPCT

Φ 226.7878 304.3342 226.7878

The performance of the new formulation is equal to the economic MPC performance,
while the MPC for tracking has signi�cantly worse performance. This shows how the new
formulation inherits the optimality with respect to the setpoint from the economic MPC.

The closed-loop performances for a second simulation are shown in table 7.2. The setpoint
considered has been xsp = (4.85; 3), which is unreachable. The optimal steady state is xs =

(4.85; 0.15). The MPC parameters are Q = I2 and R = I2. The simulation time is T = 50.
The initial condition considered is x0 = (0;−1.5). A horizon N = 3 has been used. With this
shorter horizon, the initial state is infeasible for the economic MPC controller, but remains
feasible for the other two controllers.

Table 7.2: Comparison of controller performance

Measure E-MPC MPCT E-MPCT

Φ − 422.8128 385.1432

Notice that the new formulation again gives better closed-loop performance compared to
MPC for tracking.
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In Figure 7.4 the state space evolutions are depicted. The dashed line represents the
evolution of the E-MPCT presented in the paper, while the dashed-dotted one represents
the MPCT evolution. The feasible set for the proposed controller X3 (in solid edge) and the
one for the economic MPC Xe

3 (in dashed edge) are also depicted. The starting point x0 is
depicted as a dot, while the optimal steady state xs is depicted as a star. It is clear how
the two controllers have the same evolution while their trajectories lie outside of Xe

3. This is
because the E-MPCT follows the MPCT feasible trajectory while the E-MPC is unfeasible
for a N = 3 horizon. When the trajectories enter the feasible set of the E-MPC, Xe

3, the
evolution of the system controlled with the E-MPCT follows the optimal one.
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Figure 7.4: Feasible sets of the E-MPCT (solid edge) and of the E-MPC (dashed edge) and
state evolutions of the MPCT (dashed-dotted line) and of the E-MPCT (dashed line). The
E-MPCT follows the MPCT feasible trajectory while the E-MPC problem is unfeasible with
N = 3 moves. When the trajectory enters Xe

3, the E-MPCT follows the E-MPC optimal
trajectory.

This example illustrates the two main properties of the economic MPC for tracking: it
provides optimality with respect to the setpoint as in the economic MPC, and a large feasible
regions as in the MPC for tracking formulation.



Chapter 7. Economic MPC for a changing economic criterion 161

7.7 Conclusions

In this chapter, an MPC that handles a changing economic criterion has been presented,
which is a hybrid of the MPC for setpoint tracking (Limon et al., 2008a; Ferramosca et al.,
2009a) and the economic MPC (Rawlings et al., 2008; Diehl et al., 2011).
The results presented in this chapter have shown how the new formulation inherits the main
properties of the two other controllers: the feasibility guaranty of the MPC for tracking and
the optimality with respect to the setpoint of the economic MPC. The presented controller
is able to provide a larger domain of attraction, as the MPC for tracking, and at the same
time, a better performance with respect to the setpoint, as the economic MPC. Asymptotic
stability of the proposed controller has been also established.

7.8 Appendix

In this Appendix section, the technical lemma used to prove Theorems 7.9 is presented. In
particular, this lemmas prove the optimality of the steady state.

Lemma 7.17 Consider system (7.1) subject to constraints (7.2). Consider that assumptions
7.1 and 7.4 hold. Assume that for a given state x the optimal solution of PN (x) is such that
x0s(x) = gx(θ

0(x)) and u0s(x) = gu(θ
0(x)). Let θ̃ ∈ Θ be such that x̃s = gx(θ̃) and ũs = gu(θ̃)

are given by
(x̃s, ũs) , arg min

(xs,us)∈Zs

VO(xs, us)

Then
x0s(x) = x̃s, u

0
s(x) = ũs

Proof: Consider that the optimal solution of PN (x) is θ0. In the following, the dependence of
the optimal solution from x will be omitted for the sake of clarity. The optimal cost function
is V 0

N (x) = VO(x
0
s, u

0
s).

The lemma will be proved by contradiction. Assume that θ0 ̸= θ̃.

De�ne θ̂ given by
θ̂ = βθ0 + (1− β)θ̃ β ∈ [0, 1]

Assuming Θ convex, hence (x̂s, ûs) = (gx(θ̂), gu(θ̂)) is an admissible steady state. There-
fore, de�ning as u the sequence of control actions derived from the control law k(x, θ̂), it is
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easily inferred that (u, θ̂) is a feasible solution for PN (x0s). Then using standard procedures
in MPC, we have that

V 0
N (x0s) = VO(x

0
s, u

0
s)

≤ VN (x0s;u, θ̂)

=

N−1∑
j=0

Lt((x(j)− x̂s), (k(x(j), ŷs)− ûs)) + VO(x̂s, ûs)

= VO(x̂s, ûs)

De�ne W (x0s, β)
∆
= VO(VO(x̂s, ûs)) and notice that W (x0s, β) = V 0

N (x0s) for β = 1. Taking
the partial of W about β we have that

∂W

∂β
= g′(x0s − x̃s, u

0
s − ũs)

where g′ ∈ ∂VO(x̂s, ûs) , de�ning ∂VO(x̂s, ûs) as the subdi�erential of VO(x̂s, ûs). Evaluating
this partial for β = 1 we obtain that:

∂W

∂β

∣∣∣∣
β=1

= g0
′
(x0s − x̃s, u

0
s − ũs)

where g0
′ ∈ ∂VO(x

0
s, u

0
s), de�ning ∂VO(x

0
s, u

0
s) as the subdi�erential of VO(x

0
s, u

0
s). Taking

into account that VO is a subdi�erentiable function, from convexity (Boyd and Vandenberghe,
2006) we can state for every θ0 and θ̃ that

g0
′
(x0s − x̃s, u

0
s − ũs) ≥ VO(x

0
s, u

0
s)− VO(x̃s, ũs)

Taking into account that θ0 ̸= θ̃, VO(x
0
s, u

0
s)− VO(x̃s, ũs) > 0, it can be derived that

∂W

∂β

∣∣∣∣
β=1

≥ VO(x
0
s, u

0
s)− VO(x̃s, ũs) > 0

This means that there exists a β ∈ [β̂, 1) such that W (x0s, β) is smaller than the value of
W (x0s, β) for β = 1, which equals to V 0

N (x0s).

This contradicts the optimality of the solution and hence the result is proved.



Chapter 8

Conclusions and future work

8.1 Contribution of the thesis

This thesis dealt with the problem of designing a model predictive controller (MPC) for process
industries systems characterized by changes in their operating point. The traditional MPC
formulation to regulate the system the a desired setpoint guarantees the setpoint tracking
when there are no constraints but may not solve the problem when the plant has constraints.
In this case, the change of setpoint may cause a loss of feasibility of the optimization problem,
mainly because of two reasons: (i) the terminal set shifted to the new operating point may
not be an admissible invariant set, which means that the feasibility property may be lost and
(ii) the terminal region at the new setpoint could be unreachable in N steps, which makes the
optimization problem unfeasible. In this case, a re-calculation of an appropriate value of the
prediction horizon is necessary to ensure feasibility. Therefore, this would require an on-line
re-design of the controller for each setpoint, which can be computationally una�ordable.

In Chapter 2, an MPC formulation able to overcome this problem has been presented.
This formulation is characterized by the use of an arti�cial steady state considered as decision
variable, the use of a cost function which measures the distance of the predicted trajectory to
the arti�cial steady state, an additional cost that penalizes the distance of the arti�cial steady
state to the desired output (the o�set cost function), and an extended terminal constraint,
the invariant set for tracking. It is proved in this chapter, that a suitable choice of the o�set
cost function ensures the local optimality property of the controller, that is, the MPC for
tracking provides the same optimality as the unconstrained LQR. Moreover, it is presented a
characterization of the region in which this property is ensured.
Besides, the proposed MPC for tracking formulation allows to consider any set of process
variables as target which makes the controller suitable for non-square plants.

The proposed MPC for tracking deals with the case that the target to track does not ful�l
the hard constraints or it is not an equilibrium point of the linear model. In this case the
proposed controller steers the system to an admissible steady state (di�erent to the target)
which minimizes the o�set cost function. This property means that the o�set cost function
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plays the same role as a real-time optimizer (RTO), which is built in the proposed MPC. In
Chapter 3 it has been also proved that, this function can be formulated as a distance to a set.
This formulation makes the MPC for tracking suitable also for zone control problems, where
the desired setpoint is not a �xed-point, but the output are desired to lie in a set. It has been
proved in this chapter that the MPC for tracking target sets ensures recursive feasibility and
stability. The issue of this formulation is the way the optimization problem can be solved,
due to the non-trivial choice of the o�set cost function. In the chapter, three formulations of
the o�set cost function, that allow to formulate the optimization problem as a QP problem,
have been given.

In chapter 4, a robust MPC for tracking formulation for the zone control problem has been
presented, for the case of presence of additive disturbances. The proposed controller is an
MPC based on nominal predictions and constraints that get restricted each prediction step.
It has been proved that this controller ensures stability, robust satisfaction of the constraints
and recursive feasibility. The plant is assumed to be modeled as a linear system with additive
uncertainties con�ned to a bounded known polyhedral set. It has been proved that, under
mild assumptions, the proposed MPC is feasible under any change of the controlled variables
target and steers the uncertain system to (a neighborhood of) the target if this is admissible.
If the target is not admissible, the system is steered to the closest admissible operating point.

The thesis also focused on the problem of control of large scale systems. This kind of
systems usually consist of linked unit of operations and can be divided into a number of
subsystems, connected by networks of di�erent nature. The overall control of these plants by
means of a centralized controller is di�cult to realize, because of the elevate computational
burden and the di�cult to manage the interchanges of information between the single units.
Hence, an alternative control strategy is distributed control that is, a control strategy based on
di�erent agents - instead of a centralized controller - controlling each subsystems, which may
or may not share information. The di�erence between these distributed control strategies is
in the use of this open-loop information: noncooperative controllers, where each agent makes
decision on the single subsystem considering the other subsystems information only locally
and which make the plant converge to a Nash equilibrium; cooperative distributed controllers,
which consider the e�ect of all the control actions on all subsystems in the network and make
the system converging to the Pareto optimum. In Chapter 5 a cooperative distributed MPC
for tracking linear systems is presented. In this formulation, each agent knows the overall
plant objective, and optimizes it only with respect to its particular control action. As for the
target problem, the controller has been implemented with a centralized o�set cost function
and a centralized terminal constraint. It has been proved that, the proposed controller ensures
recursive feasibility and convergence to the centralized target.

The thesis has also dealt with nonlinear systems. In particular, in Chapter 6, the MPC
for tracking has been extended to cope with nonlinear systems. Three formulations of this
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controller have been proposed, respectively characterized by equality terminal constraint,
inequality terminal constraint and the absence of a terminal constraint. Stability and recursive
feasibility have been proved for all these formulations.
The calculation of the terminal ingredients, in the case of inequality terminal constraint, is
not trivial. This chapter also proposed an interesting method for their calculation, based on
an LTV modeling of the plant. The idea is to design a set of local predictive controllers, whose
feasible regions cover the entire steady state manifold. The MPC for tracking jumps from a
control law to another, according to the position of the arti�cial steady state in the steady
state subspace.

Finally, the thesis focused on the topic of economic MPC. The economic MPC controllers
are characterized by measuring an economic performance, instead of a distance to a setpoint as
in the stantad tracking formulation. This economic performance can be measured by putting
in the MPC cost function the real (possibly unreachable) target or by minimizing a generic
cost according to some economic criterion. This economic MPC formulation has shown to
provide better optimal performance with respect to the setpoint (or the economic criterion
considered) than the standard tracking formulation. But when the economic criterion changes,
the feasibility of the optimization problem may be lost. In Chapter 7, an economic MPC for
a changing economic criterion has been presented. The main advantage of this controller is
that it is able to provide the optimality properties of the economic MPC, and at the same
time ensure feasibility under any change of the economic criterion, enlarging also the domain
of attraction of the controller.

Summarizing, the aim of this thesis has been to study the problem of changing setpoint in
system controlled by an MPC controller. The formulation proposed has the great advantage
of always ensuring feasibility under any changes of the setpoint. The theoretical and simulated
results provided, show that how this formulation can cope with linear and nonlinear systems,
large scale system, zone control problems, economic problems, ensuring in any case local
optimality, recursive feasibility and asymptotic stability.

8.2 Future work

In this section, some possible lines of research deriving from this thesis are presented.

• Formulation of robust MPC for tracking controllers. The presence of disturbances in real
application is very common. Hence no control formulation can avoid this problem. The
controllers presented in this thesis can be all robusti�ed using the formulation presented
in Chapter 4, or the well known tube-based formulation (Mayne et al., 2006; Limon et
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al., 2010a). Another interesting research direction would be the min-max formulation
of the MPC for tracking.

• Formulation of the economic MPC for a changing economic criterion, with terminal
inequality constraint. This formulation would allow to �nd a controller that provide
an even larger domain of attraction. It would be also interesting to �nd a Lyapunov
function, to prove asymptotic stability using Lyapunov arguments.

• Formulation of the MPC for tracking target set for large scale systems. The zone control
problem are typical in process industries, as well as the presence of large scale system.
A possible new direction of research would be the formulation of the distributed version
of the MPC for tracking target sets.

• Di�erent distributed formulation of the MPC for tracking. In this thesis the cooper-
ative MPC formulation has been considered, for solving the distributed problem. An
interesting research direction would be studying di�erent MPC for tracking distributed
formulations, like the noncooperative, the decentralized or the game-theory based one.
Another interesting line would be also studying di�erent ways of solving the target
problem, instead of the centralized one.

• Application to real plants. The results presented in the thesis are mainly theoretical
and have been tested only in simulation. The application of the proposed controllers
to real plants, in order to verify the properties of the proposed controllers, would be a
natural consequence of this thesis.
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Appendix A

The four tanks process

In this appendix chapter, the system considered for the examples simulations of this thesis is
introduced.

A.1 The 4 tanks process

The four tanks plant (Johansson, 2000) is a multivariable laboratory plant of interconnected
tanks with nonlinear dynamics and subject to state and input constraints. One important
property of this plant is that it can be con�gured to work at operation points characterized by
multivariable zeros (minimum and non-minimum phase). A scheme of this plant is presented
in Figure A.1(a). The inputs are the voltages of the two pumps and the outputs are the water
levels in the lower two tanks.
A real experimental plant developed at the University of Seville is presented in Figure A.1(b).
The real plant can be modi�ed to o�er a wide variety of con�gurations such as one single
tank, two or three cascaded tanks, a mixture process and hybrid dynamics. Moreover the
parameters that de�ned the dynamics of each tank can be modi�ed by tuning the cross-
section of the outlet hole of the tank. The real plant has been implemented using industrial
instrumentation and a PLC for the low level control. Supervision and control of the plant
is carried out in a computer by means of OPC (ole for process control) which allows one
to connect the plant with a wide range of control programs such as LabView, Matlab or an
industrial SCADA. Additional information on the quadruple tank process of the University
of Seville are given in (Alvarado, 2007).

A state space continuous time model of the quadruple tank process system (Johansson,
2000) can be derived from �rst principles as follows
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(a) Scheme of the 4 tank process. (b) The real plant.

Figure A.1: The 4 tanks process.
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dh4
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= − a4
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√
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A4
qa

The plant parameters, estimated on the real plant are shown in table A.1.

The minimum level of the tanks has been taken greater than zero to prevent eddy e�ects in
the discharge of the tank. One important property of this plant is that the dynamics present
multivariable transmission zeros which can be located in the right hand side of the s plane
for some operating conditions. Hence, the values of γa and γb have been chosen in order to
obtain a system with non-minimum phase multivariable zeros.
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Table A.1: 4 tanks plant parameters

Value Unit Description

H1max 1.36 m Maximum level of the tank 1

H2max 1.36 m Maximum level of the tank 2

H3max 1.30 m Maximum level of the tank 3

H4max 1.30 m Maximum level of the tank 4

Hmin 0.2 m Minimum level in all cases

Qamax 3.6 m3/h Maximum �ow of pump A

Qbmax 4 m3/h Maximum �ow of pump B

Qmin 0 m3/h Minimal �ow

Q0
a 1.63 m3/h Equilibrium �ow (Qa)

Q0
b 2.0000 m3/h Equilibrium �ow (Qb)

a1 1.310e-4 m2 Discharge constant of tank 1

a2 1.507e-4 m2 Discharge constant of tank 2

a3 9.267e-5 m2 Discharge constant of tank 3

a4 8.816e-5 m2 Discharge constant of tank 4

A 0.06 m2 Cross-section of all tanks

γa 0.3 Parameter of the 3-ways valve

γb 0.4 Parameter of the 3-ways valve

h0
1 0.6487 m Equilibrium level of tank 1

h0
2 0.6639 m Equilibrium level of tank 2

h0
3 0.6498 m Equilibrium level of tank 3

h0
4 0.6592 m Equilibrium level of tank 4
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Linearizing the model at an operating point given by h0i and de�ning the deviation vari-
ables xi = hi − hoi and uj = qj − qoj where j = a, b and i = 1, · · · , 4 we have that:

dx

dt
=


−1

τ1
0 A3

A1τ3
0

0 −1
τ2

0 A4
A2τ4

0 0 −1
τ3

0

0 0 0 −1
τ4

x+


γa
A1

0

0 γb
A2

0 (1−γb)
A3

(1−γa)
A4

0

u

y =

[
1 0 0 0

0 1 0 0

]
x

where τi =
Ai
ai

√
2h0

i
g ≥ 0, i = 1, · · · , 4, are the time constants of each tank. This model

has been discretized using the zero-order hold method with a sampling time of 5 seconds.



Appendix B

Introducción

Este capítulo tiene como �n poner en contexto la tesis desarrollada. Para ello, en primer lugar
se presenta la relevancia que, en el campo de la industria, tiene el problema del control de
sistemas sometidos a amplios cambios en el punto de funcionamiento. A continuación se hace
un breve balance de las estrategias de control planteadas para la solucionarlo, enfocándose en
la estrategia que se considera adecuada para abordarlo: el control predictivo. Seguidamente se
hace un resumen de los controladores predictivos y se presenta de forma sucinta el problema de
la estabilidad con restricciones y cómo el control predictivo soluciona dicha problemática. Para
�nalizar se presentan los problemas de control que se pretenden resolver con el controlador
predictivo propuesto en esta tesis.

B.1 Motivación y objetivos de la tesis

La forma de operar procesos en la industria ha experimentado avances signi�cativos durante
los últimos años, guiados por la necesidad de producir de forma segura, limpia y en condi-
ciones competitivas, productos que satisfagan las necesidades del mercado, tanto en cuanto a
demanda como en cuanto a calidad y uniformidad. Dos razones justi�can este fenómeno: de
un lado, la necesidad de dar respuesta a un mercado que en función de sus hábitos sociales
y/o culturales se encuentra cada vez más diversi�cado y exige, además, productos sujetos a
estrictos controles de seguridad, variedad y calidad. De otro lado, la necesidad de propiciar un
crecimiento sostenible minimizando tanto el impacto medioambiental como el consumo de re-
cursos. Ambos factores contribuyen a que se desee producir de una más e�ciente satisfaciendo
las exigencias y límites impuestos a los productos.

Por lo tanto resulta deseable buscar técnicas que control que proporcionen leyes que opti-
micen ciertos criterios de e�ciencia garantizando al mismo tiempo la satisfacción de los límites
impuestos a los productos. Una de las pocas técnicas que permiten resolver este problema es
el control predictivo (Camacho and Bordons, 2004).

En la industria de procesos es habitual la existencia de un punto de operación óptimo o
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punto de funcionamiento en el cual el proceso debería permanecer con el �n de maximizar
su e�ciencia. Sin embargo, muchos procesos a lo largo de su normal funcionamiento se ven
sometidos a frecuentes cambios en su punto de funcionamiento, de forma que para éstos no
existe un punto de funcionamiento, sino más bien un rango de puntos de funcionamiento en
cualquiera de los cuales el proceso puede operar durante un período de tiempo. La selección
del punto de operación dentro de este rango se hará conforme a la diversidad de productos,
lotes o situaciones en las que la planta se pueda encontrar.

La �nalidad de este trabajo es el desarrollo de una estrategia de control avanzado de
procesos con puntos de operación cambiantes en presencia de restricciones que permitan una
operación e�ciente, �exible e integral de forma que, haciendo un uso racional de los recursos
disponibles, se garantice de manera uniforme la seguridad y calidad del producto.

B.1.1 El control de plantas con puntos de operación cambiantes

El problema de control que se acaba de plantear se caracteriza por dos aspectos que los
condicionan. El primer aspecto se deriva del amplio rango de operación que presentan las
plantas, el cual acentúa la naturaleza no lineal de sus dinámicas (implícita en las ecuaciones
constitutivas asociadas a los balances de materia, energía y cantidad de movimiento) y el
grado de incertidumbre (estructural y paramétrica) asociado a sus representaciones en espacio
de estados. Además en este tipo de plantas se caracteriza habitualmente por dinámicas
complejas, descritas por sistemas acoplados de ecuaciones algebraicas, diferenciales ordinarias
y ecuaciones en derivadas parciales.

A la naturaleza compleja del sistema se añade la presencia de restricciones en su operación.
Estas restricciones pueden ser límites en las variables que permiten manipular la plantas, así
como límites impuestos sobre variables del proceso y pueden derivar de límites físicos de las
variables o bien de límites en las zonas de evolución de la planta por motivos económicos,
medioambientales o de operación. La presencia de restricciones condiciona de forma notable
el comportamiento de los sistemas acentuando su aspecto no lineal, y pueden ser responsables
de pérdidas de rendimiento, mal funcionamiento de la planta e incluso inestabilidad (Mayne,
2001).

La forma tradicional de resolver este problema consiste en el diseño de una estructura de
control multi-nivel (Tatjewski, 2008). Esta estructura suele ser una estructura jerárquica en
el que un control a bajo nivel se encarga del control regulatorio de la planta, generalmente
realizada por PIDs o autómatas programables interconectados en red. Por encima de éste
se encuentra el control de alto nivel en el que se implementa una estrategia avanzada de
control, generalmente multivariable. El controlador de alto nivel determina las consignas de
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los controladores a bajo nivel para mantener el sistema en el punto de operación deseado. Este
punto de operación se determina por un nivel de control superior en el que se implementa un
optimizador en tiempo real de las consignas, de acuerdo con los datos de la planta y en base
a criterios económicos, provenientes del sistema de integración de información de la planta
(CIM). Esta estructura se ilustra en la �gura B.1. El control de alto nivel se suele diseñar

CIM
OPTIMIZADOR

DE
CONSIGNAS

Proceso

Planta
CONTROL DE
ALTO NIVEL

CONTROL DE
BAJO NIVEL

VM

VP

SP

PO

Figure B.1: Estructura de control jerárquico.

para regular el sistema en torno al punto de operación y evitar la violación de las restricciones.
Cuando el alto nivel indica un cambio de operación el controlador debe hacer frente a esta
contingencia, conduciendo el sistema hacia el nuevo punto de operación. Esta operación no es
trivial, ya que pueden aparecer problemas ya sea por el cambio de dinámica en el nuevo punto
o bien por garantizar la satisfacción de las restricciones en el transitorio al nuevo punto. Con
el �n de gestionar cambios signi�cativos en los puntos de operación, el control a alto nivel
se suele dividir en dos subniveles (Becerra et al., 1998): un subnivel inferior encargado de
regular el sistema y un subnivel superior encargado de la adaptación del controlador al nuevo
punto. Este esquema se ilustra en la �gura B.2 Dentro de este esquema se enmarcan por
ejemplo los controladores adaptativos (como el clásico gain scheduling de los aviones al variar
la altura de vuelo). Otros controladores de este tipo son los denominados controladores de
referencias o reference governors (Gilbert et al., 1994, 1999). Estos controladores corresponden
al subnivel superior y asumen que en el subnivel inferior se encuentra un controlador avanzado
que estabiliza la planta. Los controladores de referencias tienen como �n gestionar de forma
racional las referencias de un proceso con el �n de evitar la violación de restricciones cuando
el valor deseado de la consigna cambia. Es de alguna forma una so�sticación del conocido
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Figure B.2: Estructura de control jerárquico con alto nivel adaptativo.

�ltro de referencias con el �n de evitar la violación de restricciones. El diseño de este tipo
de controladores se hace sin atender a la e�ciencia del proceso y con el único �n de evitar la
violación de los límites. Este aspecto se trata en (Bemporad et al., 1997). Los controladores
de referencias también se han extendido con éxito al caso de dinámicas no lineales (Bemporad,
1998b; Angeli and Mosca, 1999; Gilbert and Kolmanovsky, 2002).

Una de las estrategias de control avanzado que más éxito han tenido en la industrial de
procesos ha sido el control predictivo (Qin and Badgwell, 1997) pues incorpora un criterio
óptimo y restricciones en la ley de control. En el caso del control predictivo existen formu-
laciones orientadas a gestionar grandes transiciones. Estos controladores permiten grandes
cambios en el punto de operación y determinan las acciones de control en base a un criterio
de desempeño. Sin embargo, la garantía de estabilidad se basa en una estructura jerárquica
como la que se muestra en B.2 en la que el subnivel superior se encarga de conmutar entre
el controlador predictivo y el otro controlador orientado a recuperar al sistema en caso de
pérdida de factibilidad.
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Otra forma de abordar este problema es el control integral en el que se estudian estrate-
gias de control avanzado (generalmente control predictivo) en el que se incorporan objetivos
económicos asociados a los cambios de operación. Por lo tanto, parte de la tarea de la op-
timización del proceso se traslada del optimizador de consignas, con el �n de incorporar de
alguna forma el coste asociado a las transiciones en la determinación del punto de operación.
En (Becerra and Roberts, 1996; Becerra et al., 1997, 1998) se plantean diferentes alternativas
para la integración en el control predictivo con optimización en línea de objetivos económi-
cos, como solución de un problema de control multiobjetivo, donde se minimizan tanto los
objetivos de regulación como los económicos. En (Vesely et al., 1998) se plantean los princip-
ios y propiedades básicas de un método factible para optimización de estado estacionario de
sistemas complejos de los dos niveles de un controlador jerárquico, de modo que el problema
se resuelve a través de la resolución de ecuaciones algebraicas. Sin embargo, en la mayoría de
estos trabajos no se lleva a cabo un estudio de la estabilidad, robustez y convergencia de los
esquemas desarrollados, ni del efecto de la interacción entre componentes.

En consecuencia, las estructuras jerárquicas con garantía de estabilidad y satisfacción
de restricciones producen un peor desempeño que un control integral debido a su diseño
independiente. Por otro lado las estructuras de control integral adolecen de estudios de
estabilidad y satisfacción de restricciones. Por ello resulta deseable diseñar estrategias de
control que permitan uni�car la solución de este problema de control integral para grandes
transiciones en un sólo nivel que garantice la estabilidad en presencia de restricciones y tenga
en cuenta la optimización de criterios de desempeño.
El control predictivo es una de las pocas estrategias que permite el control de sistemas con
restricciones atendiendo a un criterio óptimo y garantizando la estabilidad y convergencia al
punto de equilibrio (Camacho and Bordons, 2004; Mayne, 2001; Rawlings and Mayne, 2009).
Por ello, se propone utilizar el control predictivo como estrategia para abordar el problema
que se propone. En la �gura B.3 se observa que los dos niveles de control de la estructura
jerárquica se reemplazan por un sólo controlador predictivo que realiza simultáneamente la
tarea de la estabilización y del control al nuevo punto de consigna.

El control predictivo basado en modelo ha concentrado el esfuerzo de numerosos investi-
gadores en los últimos años, avanzando notablemente las bases teóricas, la comprensión del
problema de control, el estudio de sus características y limitaciones y procedimientos de dis-
eño estabilizante (Mayne et al., 2000; Rawlings and Mayne, 2009; Limon, 2002). Además el
control predictivo ha demostrado ser también una técnica efectiva para el control robusto con
restricciones (Mayne et al., 2000; Limon, 2002; De Nicolao et al., 1996; Magni et al., 2001c;
Fontes and Magni, 2003; Limon et al., 2005, 2006a). Como es bien sabido, el diseño esta-
bilizante de los controladores se basa en el cálculo de regiones invariantes (Blanchini, 1999;
Bertsekas, 1972).
En el caso de sistemas lineales con o sin incertidumbres, existen controladores e�cientes que
permiten controlar la planta con garantía de estabilidad y satisfacción de restricciones. En
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Figure B.3: Estructura de control integral.

este caso se han propuesto técnicas para simpli�car el problema de optimización a resolver
(Alamo et al., 2005) y permita una implementación e�ciente en línea (Bemporad et al., 2002).
Por otro lado también se han desarrollado técnicas para el cálculo explícito de la ley de control
vía la resolución de un problema multiparamétrico.
En el caso de sistemas no lineales, el problema es más complejo y requiere la solución de un
problema de optimización no lineal (Camacho and Bordons, 2004). Para relajar la carga com-
putacional se han establecido condiciones para garantizar la estabilidad en caso de soluciones
subóptimas (Scokaert et al., 1999). El control predictivo robustos para sistemas no lineales
ha madurado mucho recientemente (Magni et al., 2001c; Limon et al., 2006a, 2009a), pero su
complejidad computacional hace que se considere un problema aún sin cerrar. En este sentido
la aplicación de técnicas garantistas como (Limon et al., 2005) resultan prometedoras.



Appendix B. Introducción 179

B.2 El control predictivo basado en el modelo

La idea básica del control predictivo es la optimización de un coste relacionado con el com-
portamiento dinámico del sistema (Rawlings and Mayne, 2009), en el que se penaliza tanto
el error respecto al punto de equilibrio como el esfuerzo de control necesario para alcanzar
dicho equilibrio. Este coste se basa en la predicción de la evolución futura del sistema, que se
determina por medio de un modelo de tipo:

x(j + 1) = f(x(j), u(j))

El coste que se pretende optimizar suele ser dado por:

VN (x;u) =
N−1∑
j=0

ℓ(x(j), u(j)) + Vf (x(N)),

donde u(j) es la secuencia de acciones de control futuras calculadas en el instante k, y x(j) es
la predicción de los estados futuros del sistema calculada en el instante k, teniendo en cuenta
que x(0) = x.
La función ℓ(x, u) se denomina coste de etapa, mientras que la función Vf (x(N)) se denomina
coste terminal.

La ley de control se obtiene optimizando el funcional de coste: la secuencia óptima de
acciones de control futuras u0 es justamente la que minimiza el coste VN (x;u), sin violar las
restricciones. El problema de optimización es un problema de programación matemática y se
puede escribir de esta forma:

min
u

VN (x,u)

s.t.

x(0) = x,

x(j + 1) = f(x(j), u(j)),

u(j) ∈ U j = 0, · · · , N − 1

x(j) ∈ X j = 0, · · · , N − 1

x(N) ∈ Ω.

La restricción en el estado terminal x(N) se añade a �n de garantizar estabilidad.

En el control predictivo, la realimentación se obtiene utilizando la técnica conocida como
horizonte deslizante: se aplica al sistema el primer elemento de la secuencia óptima u0, y la
optimización se vuelve a repetir cada tiempo de muestreo. Le ley de control es:

h(x) = u0(0;x)
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La ley de control obtenida en un controlador predictivo surge de la optimización de un
criterio relacionado con el comportamiento del sistema, en el que se penaliza tanto el error
respecto al punto de equilibrio como el esfuerzo de control necesario para alcanzar dicho
equilibrio. Contrariamente a lo que dicta el sentido común, el hecho de que la actuación
aplicada sea óptima no garantiza que el sistema en bucle cerrado alcance el punto de equilibrio
tal y como se desea. El problema de la estabilidad tiene su origen en el desarrollo propio de los
controladores predictivos: la necesidad de utilizar un horizonte de predicción �nito e invariante
en el tiempo y la estrategia de horizonte deslizante. Por lo tanto, para evitar este problema, es
preciso tener en cuenta algunas condiciones en el diseño del controlador (Mayne et al., 2000;
Rawlings and Mayne, 2009).

En la literatura del control predictivo existen diferentes formulaciones estabilizantes:

• MPC con restricción terminal de igualdad: fue propuesto para garantizar estabilidad del
problema LQR con restricciones en (Kwon and Pearson, 1977) y extendido en (Keerthi
and Gilbert, 1988) a sistemas no lineales. La estabilidad se garantiza imponiendo como
restricción terminal

x(N) = x∗s

donde x∗s representa el estado de equilibrio deseado. En el caso de regulación al origen,
esta condición es equivalente a:

x(N) = 0

En (Mayne and Michalska, 1990), se formula este controlador para sistemas en tiempo
continuo y se relajan las condiciones para garantizar la estabilidad. En (Chisci et al.,
1994; Bemporad et al., 1995) se extiende esta condición a sistemas lineales descritos por
un modelo CARIMA, sin restricciones. En este caso, la restricción terminal se traduce
en una condición sobre las salidas y las entradas del sistema.

• MPC con coste terminal: la estabilidad se logra incorporando en la función de coste,
un término que penalice el estado terminal mediante el denominado coste terminal
(Bitmead et al., 1990; Rawlings and Muske, 1993).

• MPC con restricción terminal de desigualdad: la restricción terminal de igualdad se
relaja, extendiendo la restricción terminal a una vecindad del origen. Así, se establece
una restricción terminal de desigualdad de la forma

x(N) ∈ Ω

siendo el conjunto Ω el denominado conjunto terminal. Esta estrategia fue propuesta
en (Michalska and Mayne, 1993) para sistemas no lineales en tiempo continuo y sujeto
a restricciones. En este trabajo, se elige como región terminal un invariante positivo
del sistema no lineal controlado por un controlador local. Además, para garantizar
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la factibilidad se introduce como variable de decisión el horizonte de predicción. El
controlador así formulado garantiza que conduce al sistema a la región terminal, donde
el sistema pasa a regularse por el controlador local que lo estabiliza al origen. De ahí que
este controlador se denomine controlador MPC dual. Las bondades de esta formulación
son tan notables, que marcó las futuras líneas de investigación en estabilidad.

• MPC con coste y restricción terminal: esta es la estructura en la que se enmarcan las más
recientes formulaciones del MPC. El primer trabajo en el que se garantiza estabilidad
incorporando ambos ingredientes es en (Sznaier and Damborg, 1987) en el cual, para
sistemas lineales sujetos a restricciones politópicas, se considera como controlador local
el LQR y como región terminal un invariante asociado. En este trabajo se demuestra
que para cada estado, existe un horizonte de predicción su�cientemente largo, tal que
la solución óptima garantiza la satisfacción de la restricción terminal, lo que permite
eliminarla. En (De Nicolao et al., 1998) se propone como coste terminal el coste in�nito
incurrido por el sistema controlado por el controlador local. En (Magni et al., 2001a), se
propone una formulación implementable del controlador predictivo anterior. Se basa en
considerar como función de coste terminal una aproximación truncada del coste in�nito.
Pero lo más destacable de este trabajo es que considera un horizonte de predicción mayor
que el de control gracias a la incorporación del controlador local.

Todas las formulaciones de control predictivo con estabilidad garantizada se analizan en
(Mayne et al., 2000). En este trabajo se analizan las formulaciones existentes de controladores
predictivos con estabilidad garantizada y se establece que el control predictivo con coste
terminal y restricción terminal puede, bajo ciertas condiciones, estabilizar asintóticamente un
sistema no lineal sujeto a restricciones. Además se establecen condiciones su�cientes sobre
la función de coste terminal y la región terminal para garantizar dicha estabilidad. Estas
condiciones son las siguientes:

• La región terminal Ω debe ser un conjunto invariante positivo admisible del sistema. Es
decir, que debe existir una ley de control local u = h(x) tal que estabiliza el sistema en
Ω y además la evolución del sistema y las actuaciones en dicho conjunto son admisibles.

• El coste terminal V (x) es una función de Lyapunov asociada al sistema regulado por el
controlador local, tal que

V (f(x, h(x)))− V (x) ≤ −ℓ(x, h(x))

para todo x ∈ Ω. Por lo tanto, la ley de control local estabiliza asintóticamente el
sistema.

Bajo estas condiciones se garantiza que el coste óptimo es una función de Lyapunov: el
hecho de que Ω sea un conjunto invariante garantiza la factibilidad del controlador en todo
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instante, mientras que la condiciones sobre el coste terminal garantizan la convergencia. Todo
esto garantiza la estabilidad asintótica del sistema en bucle cerrado con restricciones.

B.2.1 El problema del cambio de referencia en el contexto de los contro-
ladores predictivos

Como se comentó previamente, en la estructura de control industrial un optimizador de
consignas es el responsable de proveer el punto de trabajo de la planta, de tal forma que
si el punto de trabajo cambia, el controlador a bajo nivel debe realizar dicho cambio. La
solución clásica es trasladar el problema al nuevo punto de trabajo (Muske and Rawlings,
1993). En ausencia de restricciones, esta solución siempre es válida. Cuando el problema
presenta restricciones, pueden aparecer problemas de perdida de factibilidad o estabilidad.
Por lo tanto es necesario un estudio adecuado de este problema.

Un control óptimo con horizonte in�nito que considere restricciones podría ser una solu-
ción válida, pues realizaría el cambio de referencia de forma admisible. Pero este tipo de
controladores no son implementables debido a que un horizonte in�nito implica un número
in�nito de variables de decisión. Así que habrá que utilizar un control predictivo con horizonte
�nito para resolver el problema. El problema con este tipo de controladores es que un cambio
de referencia puede producir una perdida de la factibilidad del problema de optimización por
una de las siguientes causas: (i) la restricción terminal calculada para un cierto punto de
equilibrio puede no ser un invariante admissible para el nuevo punto de equilibrio, lo que
puede provocar la perdida de factibilidad y (ii) la region terminal para el nuevo punto de
operación podría no ser alcanzable en N pasos, lo que haría de nuevo, perder la factibilidad
del problema. Esto requeriría el recálculo del horizonte para recuperar la factibilidad, por
lo que un cambio de referencia conllevaría el rediseño on-line del controlador, lo que no será
siempre posible.

Ejemplo B.1 Considérese el siguiente sistema LTI:

A =

[
1 1

0 1

]
, B =

[
0.0 0.5

1.0 0.5

]
, C =

[
1 0

]
sujeto a las siguientes restricciones en el estado y en el control: ∥x∥∞ ≤ 5 y ∥u∥∞ ≤ 0.3.
Tómese un controlador predictivo con matrices de ponderación del coste de etapa Q = I2 y
R = I2.

En la �gura B.4 se muestra el problema de la perdida de la factibilidad cuando se produce
un cambio de referencia. Supongamos que la planta se encuentra en el punto x0 y el estado
de referencia es r1, O∞(r1) es el máximo invariante para el sistema controlado por la ley de
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control u = K(x−x1)+u1 ((x1, u1) es el estado y la acción de control del sistema en equilibrio
en el estado de referencia r1). Dicho conjunto es también la restricción terminal para nuestro
MPC con horizonte N = 3, luego la región de atracción será X3(r1). Supóngase que en este
instante se cambia la referencia al punto r2. La region terminal ya no es válida puesto que
O∞(r1) trasladado al punto de referencia r2 es un invariante no admisible (las restricciones
serían violadas claramente) lo que nos lleva a una posible perdida de factibilidad. Por otro
lado el punto x0 no pertenece a la región de atracción X3(r2) con horizonte N = 3. Habría
que cambiar el horizonte a N = 6 para recuperar la factibilidad.

Figure B.4: Pérdida de la factibilidad debido a una región terminal no admisible o a un
horizonte insu�ciente.

Resumiendo, un cambio de referencia puede producir la perdida de la factibilidad debido a
una región terminal no admisible o a un horizonte insu�ciente.

B.2.2 El control predictivo y el problema del seguimiento de referencias

Con objeto de superar estos problemas se han propuesto varias soluciones, en (Rossiter et al.,
1996; Chisci and Zappa, 2003) se utiliza un controlador auxiliar que es capaz de recuperar la
factibilidad en tiempo �nito cuando esta de pierde por un cambio de referencia, es pues una
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estrategia de conmutación. Otra posible solución es la propuesta por (Pannocchia and Ker-
rigan, 2005; Pannocchia, 2004) considerando el cambio de referencia como una perturbación
a rechazar. De esta forma este controlador es capaz de llevar el sistema al punto deseado
pero solo cuando las variaciones en la referencia son pequeñas. Es por lo tanto, una solución
conservadora.

Un enfoque diferente es el que se le da a este problema en el contexto de los controladores
de referencia (Gilbert et al., 1999; Bemporad et al., 1997). Esta técnica de control asume que
el sistema está estabilizado de forma robusta por un controlador local, y se diseña un �ltro de
referencia no lineal para la satisfacción robusta de las restricciones. Este tipo de controlador es
capaz de seguir los cambios de referencia sin considerar el desempeño y la región de atracción
de dicho controlador. En (Findeisen et al., 2000) se propone un controlador predictivo para
familias de puntos de operación basado en pseudolinearización y en una parametrización de
los puntos de equilibrio.

En (Limon et al., 2008a) se propone una nueva formulación del control predictivo para
seguimiento de referencia, que permite mantener la factibilidad para cualquier cambio de
punto de operación. Las principales características de este controlador son: un punto de
equilibrio arti�cial considerado como variable de decisión, un coste que penalice la distancia
entre la trayectoria predicha y el punto de equilibrio arti�cial, un coste adicional que penalice
la distancia entre el punto de equilibrio arti�cial y el punto de equilibrio deseado, llamado
coste de o�set, y una restricción terminal extendida, el conjunto invariante para tracking. Este
controlador garantiza estabilidad y factibilidad recursiva para cualquier cambio de referencia.
Este controlador soluciona el problema de fectibilidad y estabilidad del MPC ante cambios de
punto de operación, pero el desempeño del sistema controlado puede verse afectado (Alvarado,
2007).

En el caso de sistemas no lineales, el problema de cambio de referencia ha sido tratado
en (Magni et al., 2001a, 2002; Magni and Scattolini, 2005). En particular, en (Magni et al.,
2001a) se presenta un algoritmo para sistemas no lineales basado en realimentación de la salida,
capaz de resolver el problema del seguimiento de señales exógenas, rechazando perturbaciones
asintóticamente. En (Magni and Scattolini, 2005) se presenta un algoritmo caracterizado por
la presencia de un integrador antes del sistema, a �n de garantizar la solución del problema
de seguimiento asintóticamente.

B.3 Formulaciones robustas de control predictivo

La forma habitual de considerar las incertidumbres en el control predictivo es incorporando
todas las posibles realizaciones de éstas en la solución del problema de optimización. Nótese
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que las restricciones en la evolución de los estados se deben satisfacer de una forma robusta,
es decir, para todas las posibles realizaciones de las incertidumbres. La incorporación de
restricciones en el estado complica notablemente el problema, pero, aún en el caso en el que
no haya restricciones sobre los estados, la restricción terminal siempre está presente en el
problema de optimización pues se añade para garantizar la estabilidad del controlador.

El coste a optimizar puede basarse en las predicciones nominales del sistema o bien con-
siderar el efecto de las incertidumbres tomando, por ejemplo, la peor situación posible. Esto
da lugar a la denominada formulación min-max (Fontes and Magni, 2003; Limon et al., 2006a;
Mayne, 2001). Otra formulación consiste en añadir un término en la función de coste de etapa
que pondera la posible incertidumbre, como en la formulación H∞.

Esta forma de considerar las incertidumbres es intuitiva y razonable, pero puede conducir
a soluciones muy conservadoras. Este conservadurismo radica en la naturaleza misma del
control predictivo: la predicción en bucle abierto. Este aspecto da lugar a la denominada
formulación en bucle cerrado y fue introducida en (Scokaert and Mayne, 1998; Lee and Yu,
1997) en el contexto del min-max. En esta formulación, el problema de control no está
planteado en términos de una secuencia de actuaciones, sino de una secuencia de leyes de
control lo cual hace que el problema de optimización implicado sea in�nito-dimensional. En
consecuencia, estos controladores constituyen una herramienta meramente teórica (Mayne et
al., 2000).

Dentro del control predictivo en bucle cerrado se pueden considerar otras formulaciones
como por ejemplo el trabajo presentado en (Kothare et al., 1996). En éste se propone un
controlador que estabiliza una planta incierta tal que se puede expresar en cada instante como
una combinación convexa de una serie de plantas lineales y que presenta restricciones en los
estados y en las actuaciones. En esta formulación se considera como variable de optimización
un controlador lineal que estabiliza todas las plantas y se puede plantear como un LMI que
se resuelve en cada instante.

También se pueden considerar dentro de los controladores en bucle cerrado los trabajos
(Bemporad, 1998a) y (Chisci et al., 2001) en los cuales se parametriza la ley de control con
una ley de control que estabiliza la planta nominal. El controlador predictivo por lo tanto se
formula con predicciones nominales y restricciones politopicas que se contraen a lo largo del
horizonte de predicción. Recientemente en (Mayne et al., 2005) se ha aprovechado esta idea
para diseñar un controlador robusto prealimentado basado en la noción de tubo (Langson et
al., 2004). Además, en (Chisci and Zappa, 1999) se añade una restricción adicional con el �n
de garantizar la satisfacción robusta de las incertidumbres. Esta idea se generaliza al caso no
lineal en (Kerrigan, 2000), donde se analiza utilizando la teoría de conjuntos invariantes la
satisfacción robusta de las restricciones.
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En (Limon et al., 2009a) se presenta el concepto de estabilidad entrada estados como
técnica para la análisis de estabilidad robusta de controladores predictivos, y se estudian
diferentes controladores existentes en literatura.

B.4 El control predictivo por zonas

En muchos casos, el punto de operación económico no está dado por un punto �jo, sino
más bien por una region en la cual la salida del sistema debería permanecer la mayoría del
tiempo. En general, debido a las necesidades en las operaciones, las salidas de un proceso
se pueden distinguir en dos categorías: (i) controladas en un punto de operación, (ii) salidas
controladas en un intervalo de operación. Por ejemplo, el ritmo de producción o la calidad de
producto pueden caer en el primer grupo, mientras que variables de proceso, como temperat-
uras, presiones, o niveles, se con�guran en la segunda categoría. Las razones que determinan
la importancia de trabajar con intervalos de operación, están relacionadas con los grados de
libertad del proceso: en general, las zonas de operación aparecen siempre cuando no hay su-
�cientes variables manipulada respeto a las controladas. A nivel de concepto, los intervalos
en las salidas de procesos no se deben de interpretar como restricciones en las salidas, pues
se trata de condiciones de equilibrio que se pueden despreciar temporalmente, mientras que
las restricciones se deben siempre satisfacer. Además, la determinación de zonas de salidas
está relacionada con la determinación del punto de operación de equilibrio del proceso, y por
lo tanto no se trata de un problema sencillo. La compatibilidad del conjunto de entradas
admisibles y de salidas deseadas necesita también un cuidado particular. En (Vinson and
Georgakis, 2000) y (Lima and Georgakis, 2008), por ejemplo, se de�ne un índice de operabil-
idad, que determina qué parte de la región de salida se puede alcanzar con el conjunto de
entradas disponible, teniendo en cuenta las posibles perturbaciones que se presenten. En la
practica, los operadores de plantas de proceso, no están al tanto de la presencia de estas zonas
de operación, y puede ocurrir que se escojan zonas no admisibles o no alcanzables.

En la literatura, se ha propuestos diferentes enfoques para el problema del control por
zonas. (Qin and Badgwell, 2003) describe diferentes controladores industriales que siempre
permiten la opción del control por zonas. En este trabajo, se presentan dos maneras de solu-
cionar el problema del control por zonas: 1) de�niendo restricciones blandas, y 2) usando la
aproximación de punto de equilibrio de restricciones blandas para determinar las cotas superi-
ores e inferiores de los intervalos (el conocido algoritmo DMC-plus). El principal problema de
esos controladores industriales es la falta de pruebas de estabilidad. Un segundo ejemplo de
control por zonas es el trabajo presentado en (Zanin et al., 2002), cuyo enfoque de control se
aplica a un sistema FCC. La estrategia de control propuesta en este trabajo presenta buenas
prestaciones, pero para ella no se puede demostrar estabilidad, pues el sistema de control con-
muta continuamente de un controlador a otro. Un controlador predictivo por zonas, estable
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en bucle cerrado se presenta en (Gonzalez and Odloak, 2009). En este trabajo se presenta un
controlador incorpora puntos de equilibrio económicos de referencia en el funcional de coste,
teniendo en cuenta la presencia de zonas de salida. La clásica demostración de estabilidad
se extiende al caso de las zonas de operación, asumiendo estabilidad del sistema en bucle
abierto. Al problema de optimización se añade un conjunto de variables de holgura, para
garantizar convergencia y factibilidad recursiva. Este controlador está diseñado para sistemas
estables en bucle abierto, y no permite obtener optimalidad local, puesto que se considera un
controlador local nulo. Una extensión de esta estrategia de control al caso robusto se presenta
en (González et al., 2009).

B.5 Optimización de prestaciones económicas

Como se comentó previamente, la estructura estándar de los sistemas de control industrial se
caracteriza por la presencia de dos niveles. El primer nivel realiza una optimización para el
calculo del punto de operación y se suele denominar de Optimizador en Tiempo Real (RTO).
El RTO determina el punto de operación óptimo y lo envía a la segunda capa, el sistema de
control avanzado, donde se realiza la optimización dinámica. En muchos procesos, el control
predictivo es la estrategia de control que se utiliza para este nivel (Rawligns and Amrit, 2009).

Los problemas de esta estructura jerárquica se relacionan con el papel que tiene el RTO.
Las optimizaciones que se realizan en esta capa se suelen basar en un modelo estático de la
planta. En cada instante de muestreo se optimiza un criterio económico, con el objetivo de
hallar el mejor punto de equilibrio para el modelo estático. El resultado de la optimización
se envía al controlador avanzado como punto de operación. El problema es que este punto de
operación suele ser inconsistente o no alcanzable, y eso ocurre por las inconsistencias entre el
modelo estacionario del RTO y el modelo dinámico del usado para la regulación. En (Rao and
Rawlings, 1999) los autores proponen métodos para resolver est problema y hallar el punto
de equilibrio mas cercano al punto de operación no alcanzable determinado por el RTO.

Un tema muy estudiado últimamente en la comunidad académica es el diseño de contro-
ladores económicos. Estos controlador se de�nen de esta manera en cuanto la optimizaciones
que realiza el RTO no están basadas en el modelo dinámico del sistema, si no más bien en
un criterio económico que tenga en cuenta de la demanda de producción del sistema. Por lo
tanto, los punto de operación óptimos que el RTO calcula no tienen porque coincidir con el
punto de equilibrio dinámico del sistema (Kadam and Marquardt, 2007).

En (Rawligns and Amrit, 2009) además se subrayan las ventajas de realizar las opti-
mizaciones económicas en el mismo controlador de alto nivel, en particular un controlador
predictivo. Los autores primero estudian el caso de puntos de operación no alcanzables y
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demuestran cómo muchas veces lo óptimo no es alcanzar rápidamente el punto de equilibrio.
Además, en este trabajo se considera el caso de substituir el clásico funcional de coste del pre-
dictivo, con un funcional que minimice algún criterio económico. En (Rawlings et al., 2008) se
presenta un controlador predictivo estable para el caso de puntos de operación no alcanzable.
(Würth et al., 2009) propone un controlador económico a horizonte in�nito que garantiza
estabilidad. En (Diehl et al., 2011) y (Huang et al., 2011) se proponen unos controladores
económicos que demuestran estabilidad usando funciones de Lyapunov.

B.6 Sistemas de gran escala

Las plantas en la industria de procesos suelen ser sistemas de gran escala, caracterizados por
diferentes unidades interconectadas entre ellas. Por lo tanto, esas plantas se pueden dividir en
diferentes subsistemas que comunican entre ellos por medio de redes de distinta naturaleza, sea
por ejemplo de materiales, energías y �ujos de informaciones (Stewart et al., 2010). El control
total de esas plantas usando controladores centralizados - un solo agente controlando todos
los subsistemas - es difícil de realizarse. No se trata sólo de un problema computacional. De
hecho hoy en día, la gran potencia computacional de las maquinas, así como la existencia de
algoritmos de optimización rápidos, hacen que el control centralizado sea una tarea realizable
incluso para problemas grandes. (Bartlett et al., 2002; Pannocchia et al., 2007). Puesto que
cada subsistema realiza una tarea diferente, a veces en la ejecución de sus operaciones cada
subsistema debe despreciar las informaciones de los otros subsistemas. En otras ocasiones,
el intercambio de informaciones entre los distintos subsistemas juega un papel importante en
las prestaciones óptimas de la planta. Por lo tanto, el verdadero problema es la organización
y el mantenimiento del controlador centralizado.

Otra estrategia de control muy utilizada, es el control descentralizado. En este caso, cada
subsistema se controla independientemente, sin algún intercambio de información entre los
diferentes subsistemas. La información que �uye en la red se considera como una perturbación
(Huang et al., 2003; Sandell Jr. et al., 1978). El inconveniente de esta formulación son
las perdidas de información cuando la conexión entre subsistemas es muy grande (Cui and
Jacobsen, 2002).

Hoy en día, unos de los temas mas discutidos en la comunidad cientí�ca del control au-
tomático es el control distribuido. Se trata de una estrategia de control basada en diferentes
agentes controlando los diferentes subsistemas, que pueden o no intercambiar informaciones
entre ellos. En literatura, hay diferentes estrategias de control propuestas. La diferencia entre
ellas está en la forma en que se tratan las informaciones. En el control distribuido no cooper-
ativo, cada agente toma decisiones sobre su propio subsistema considerando solo localmente
las informaciones de los otros subsistemas (Camponogara et al., 2002b; Dunbar, 2007). Esta



Appendix B. Introducción 189

estrategia de control se suele denominar también de juego dinámico no cooperativo, y las
prestaciones de la planta suelen converger a un equilibrio de Nash (Ba³ar and Olsder, 1999).
Los controladores distribuidos cooperativo, por otro lado, consideran el efecto de todas las
acciones de control sobre todos los subsistemas de toda la red. Cada agente optimiza un
coste global, como por ejemplo un coste centralizado. Por lo tanto, las prestaciones de estos
controladores convergen a un equilibrio de Pareto, como en el caso centralizado.

El control predictivo es una estrategia de control muy utilizada también en el marco
del control distribuido (Rawlings and Mayne, 2009, Chapter 6). En (Magni and Scattolini,
2006) se presenta un controlador predictivo no lineal, que se caracteriza por la ausencia de
intercambio de informaciones entre agentes. Una demostración de estabilidad entrada-estado
se provee en (Raimondo et al., 2007b). En (Liu et al., 2009, 2008) los autores presentan
un controlador para sistemas en red, basado en control predictivo. En (Venkat et al., 2007;
Stewart et al., 2010) se propone una estrategia de control predictivo distribuido cooperativo,
caracterizada por un algoritmo de resolución del problema de optimización subóptimo.

B.7 Contribuciones de la tesis

En este trabajo de tesis se ha abordado el análisis y diseño de controladores predictivos con
punto de operación cambiante basados en (Limon et al., 2008a). Esta formulación se ha
extendido a controladores predictivos óptimos, control por zonas, control distribuido, control
predictivo no lineal y económico, como se detalla a continuación.

B.7.1 Control predictivo para tracking con prestaciones óptimas en bucle
cerrado

En el capítulo 2 se presenta una mejorada formulación del MPC para tracking (Limon et al.,
2008a). El controlador propuesto hereda las características principales de MPC para tracking
(Limon et al., 2008a), que son:

• Puntos de equilibrio arti�ciales considerados como variable de decisión.

• Un funcional de coste que minimiza el error entre estado actual y punto de equilibrio
arti�cial.

• Un término adicional añadido a la función de coste, que penaliza la desviación entre la
referencia y la referencia arti�cial (el coste de o�set).
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• Se considera como restricción terminal en el estado y en la referencia arti�cial, un
invariante para tracking.

En ese capítulo, el MPC para tracking se extiende considerando un coste de o�set genérico.
Bajo algunas condiciones su�cientes, este coste garantiza la propiedad de la otpimalidad local,
proveyendo al controlador prestaciones óptimas en bucle cerrado. Además, el capítulo presenta
una caracterización de la región de optimalidad local y una manera para calcularla de bajo
coste computacional.

Esta nueva formulación permite considerar cualquier conjunto de variables de proceso
como referencia objetivo, de manera que el controlador resulta apto para plantas no cuadradas.
Además, el controlador propuesto se aplica a los casos de puntos objetivos inconsistentes con
el modelo de predicción o con las restricciones. En ese caso, el controlador lleva el sistema al
punto de equilibrio admisible que minimice el coste de o�set.

B.7.2 Control predictivo para control por zonas

En el capítulo 3 se presenta la extensión del MPC para tracking al problema del control
por zonas. El controlador se formula como un control en el que se pretende alcanzar un
conjunto objetivo, que de�ne las zonas de operación. En particular, se formula un coste de
o�set que explota el concepto de distancia a un conjunto. El controlador propuesto garantiza
factibilidad recursiva y convergencia al conjunto objetivo para cualquier planta estabilizable.
Esta propiedad se cumpla para cualquier clase de conjunto objetivo convexo, o variante en
el tiempo. En el capítulo además se proponen 3 formulaciones para lidiar con conjuntos
objetivos poliédricos, que permiten resolver el problema de optimización en la forma de la
programación cuadrática. Una de esas formulaciones permite considerar puntos objetivo o
conjuntos objetivo al mismo tiempo.

B.7.3 Control predictivo robusto basado en predicciones nominales

El tema del capítulo 4 es el problema del control predictivo para tracking robusto. Se propone
un controlador basado en predicciones nominales. Este controlador es una extensión del
controlador presentado en (Ferramosca et al., 2010a) y en el capítulo 3 al caso de la presencia
de incertidumbres aditivas. El controlador propuesto explota los resultados presentados en
(Chisci et al., 2001). La planta se asume lineal y las incertidumbres aditivas acotadas. El
controlador propuesto garantiza factibilidad para cualquier cambio de conjunto objetivo y
convergencia a un entorno del objetivo, si este es admisible. En el caso contrario, el controlador
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lleva el sistema al punto de equilibrio óptimo mas cercano (con respeto al coste de o�set).

B.7.4 Control predictivo distribuido para tracking

En el capítulo 5 se propone una estrategia de control predictivo distribuido para sistemas
lineales. En particular, el controlador predictivo para tracking presentado en el capítulo 2 se
extiende al caso de sistemas distribuidos de larga escala.

Entre las diferentes soluciones presentes en literatura, el capítulo se centra en particular
en la formulación del control predictivo distribuido cooperativo presentada en (Rawlings and
Mayne, 2009, Capítulo 6), en (Venkat, 2006) y en (Stewart et al., 2010). En esa formulación,
los agentes comparten un objetivo de control común, que se puede considerar como el objetivo
de control de la planta. Por lo tanto, cada agente calcula su secuencia de acciones de control
óptimas minimizando el único funcional de coste de forma distribuida. La estabilidad de los
controladores se demuestra por medio de la teoría del control predictivo subóptimo (Scokaert
et al., 1999). Convergencia al punto objetivo y factibilidad recursiva se garantizan por medio
del calculo centralizado de la referencia y de un especi�co algoritmo de inicialización.

B.7.5 Control predictivo para tracking de sistemas no lineales sujetos a
restricciones

En el capítulo 6 se trata el problema del diseño de un controlador predictivo para seguimiento
en caso de sistemas no lineales sujetos a restricciones.

El controlador propuesto en ese capítulo hereda las características principales del contro-
lador presentado en el capítulo 2. En particular, de particular interés resulta ser el problema
del cálculo de los ingredientes terminales. Se proponen tres formulaciones del mismo contro-
lador, respectivamente relativas a los tres casos de restricción terminal de igualdad, restricción
terminal de desigualdad, control predictivo sin restricción terminal.

En particular, para la formulación con restricción de igualdad, se propone un método
basado en el modelado LDI - inclusiones de diferencias lineales - de las plantas propuesto en
(Wan and Kothare, 2003a,b).
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B.7.6 Control predictivo económico para objetivos económicos cambiantes

En (Rawlings et al., 2008) y (Diehl et al., 2011) se propone una nueva formulación de control
predictivo, que considera un funcional de coste basado en objetivos económicos, en lugar
del clásico funcional basado en errores de tracking. En (Rawlings et al., 2008) y (Diehl et
al., 2011) los autores demuestran que ese controlador estabiliza el sistema en un punto de
equilibrio óptimo desde el punto de vista del criterio económico considerado, y provee mejores
prestaciones con respeto al objetivo que los estándar controladores para tracking.

Si el objetivo económico cambia por variación de la demanda, capacidad de producción,
etc., el punto de equilibrio óptimo puede que cambie, y en virtud de ello se puede perder la
factibilidad del controlador. En el capítulo 7 se presenta un controlador predictivo económico
para objetivos econónmicos cambiantes. Ese controlador es una formulación híbrida entre el
control predictivo para tracking (Limon et al., 2008a; Ferramosca et al., 2009a) y el controlador
predictivo económico (Rawlings et al., 2008; Diehl et al., 2011), dado que hereda la factibilidad
garantizada para cualquier cambio del objetivo del primero, y la optimalidad con respeto al
objetivo del segundo.
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