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Abstract In this paper we introduce the concepts of the Value of the Right Distribu-

tion (V RP ), the Performance Bound (PB) and the Worst-Case Performance Bound

(WPB), which allow us to quantify how much we lose if we guess the wrong dis-
tribution of the uncertain parameters affecting a stochastic optimization problem.
In order to show how they apply, we introduce a cost-based variant of the classical
Newsvendor problem and model it as a two-stage stochastic programming model.
For this problem, we first provide optimal solutions in closed form for different
probability distributions and then compute, both analytically and computation-
ally, the V RP measure and the corresponding performance bounds PB and WPB.
Finally, systematic numerical results are provided.

Keywords stochastic programming · value of the right distribution · worst-case
analysis · newsvendor problem

1 Introduction

Many real life decision problems are affected by uncertainty: there are several sit-
uations in which we are asked to take decisions even if some of the parameters are
unknown. One of the main paradigm to deal with problems with uncertain data,
both in the single period and multi-period decision-making process, is given by
Stochastic Programming (SP) (see [1,2,3,4]). A basic assumption in SP is that the
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probability laws of the uncertain parameters are known and only their realizations
are unknown when the optimization is carried out. The probability distributions
are often selected on the basis of a given time series of past observations. Doing
that, it is implicitly assumed that the future will be similar, or it can be predicted
from the past. However, this assumption can be not realistic in some cases, for
example for new products or services, and for failure of automatized processes. In
fact, different applications have shown that the choice of the appropriate prob-
ability model is crucial for the quality of the solution (see for example [5] for a
robust optimization approach to address the problem of optimally controlling a
supply chain subject to stochastic demand in discrete time and [6] where the value
of knowing in advance the probability distribution of rental demand for a new
bike-sharing service has been evaluated). Even the model class itself can be chosen
erroneously: on the basis of the available information (e.g. the support or low-
order moments) there exist multiple distributions that could represent the real
phenomenon, according to the available information. This fact is usually called
model ambiguity (see [7,8]). One way to deal with ambiguity is to investigate the
stability of the optimal solution in SP with respect to continuity properties of the
solution on model parameters (see [9ömisch1991,10,11]). Another way is given by
the Minimax Stochastic Optimization pioneered in [12], also known with the name
Distributionally Robust Optimization (DRO). DRO can be regarded as a natural
generalization of Stochastic Programming and Robust Optimization [13]. In DRO
optimal decisions are sought for the worst-case probability distribution within
a family of possible distributions defined by certain properties (like the support,
mean, covariance matrix, and upper bounds on its directional deviations). A grow-
ing literature in this direction both from theoretical and applied point of view can
be found in [14,15,16,17,18] and many others.

In the SP literature, several bounds and approximations have been proposed
to approximate the objective function value and to cope with the typical SP com-
putational complexity. The standard measure of the expected gain from solving a
stochastic model rather than its deterministic counterpart is given by the Value of

the Stochastic Solution (VSS) (see [19]), computed by comparing the solution values
of the stochastic and expected-value variant of the problem. A high VSS indicates
that stochastic programming models are necessary despite the computational ef-
forts involved. Easy-to-compute bounds have been also proposed in literature by
solving small size sub-problems instead of the big one associated with the large dis-
crete scenario tree model, representing a discretization of the underlying random
process (see for instance [20,21,22,23,24,25]). In [26] multistage approximations
obtained by reducing the number of stages in the original problem have been
proposed and the benefit of including an additional stage in the approximation
computed. All these methodologies measure the quality of the approximating so-
lution in terms of objective function values. Another approach, proposed in the
SP literature to assess the value of a given solution, is to approximate its relative
gap to the optimum value of the stochastic problem. To assess solution quality,
a Monte Carlo sampling-based procedure was proposed in [27] and [28] allowing
to estimate an upper bound on the optimality gap. A study on the structure of
the first-stage solution associated to the expected value formulation in terms of
basis/out-of-basis variables and reduced costs has been proposed in [29] and in
[30], as indicator for excluding/retaining decision variables in the corresponding
stochastic model.
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In the same spirit of the bounds and metrics described above, the goal of
this paper is to evaluate in the SP setting, how much we lose if we guess the
wrong distribution assuming to know only the support. In other words we evaluate
the objective function value increase when the decision-maker a priori selects the
most likely probability distribution (that we will call guessed probability distribution)
which differs with the true probability distribution (that we will call right probability
distribution). This applies in the case of new products or services for which the
time series are not available. For example, consider the case of the demand of a
new product which has to be observed on a daily basis. We assume a probability
distribution of the demand and solve to optimality the corresponding SP model.
Then, the first-stage solution of the SP model is applied on each day for a certain
number of days. The total cost we pay in the long run is equal to the expected
cost of the observed probability distribution, computed by applying the optimal
solution obtained on the basis of the guessed distribution. Our aim is to evaluate
the increase in the total cost obtained in this way with respect to the one we
have if the right distribution is used to solve to optimality the SP model. Since
the right distribution is not known in advance, we compute this increase with
respect to several probability distributions that are all candidates to be the true
probability distribution. If the maximum increase is small, this means that the
guessed probability distribution can be used safely. Otherwise, we know in advance
the maximum increase we will have. On this purpose we introduce the Value of the

Right Distribution (V RD), a new measure of ambiguity in SP, which allows us to
quantify the increase in the objective function value when the guessed probability
distribution does not match the right one. V RD can be seen as a generalization of
V SS in the following sense: when solving the expected-value problem we are in a
certain way assuming a guessed distribution, that is a singleton. Then we observe
the true distribution, and measure the loss we incurred for not having guessed the
right one.

Besides V RD, we introduce the Performance Bound (PB) of the guessed dis-
tribution with respect to the right one, and the Worst-case Performance Bound

(WPB). The new measure (V RD) and the bounds (PB and WPB) apply not
only when two or more probability distributions may be mismatched, but also
when the estimate of the type of the distribution is correct, but its parameters
may be wrong (more typically the standard deviation).

A similar study has been addressed in [31] questioning how relevant is to cap-
ture different properties of the uncertainty (e.g. means, support, correlations or
variances) for the specific decision model, which can lead to better models of the
uncertainty as well as to more effective data collection/analysis efforts. Their re-
sults numerically show on a case of maritime transportation, that some properties
have very little influence on the final decisions (e.g. the correlation properties
between the random variables) while others (e.g. the mean values) can lead to
noticeable increases in the expected cost if incorrectly estimated.

To investigate the V RD measure and the PB and WPB bounds, we adopt a
cost–based variant of the well known Newsvendor Problem (see [1]): we first provide
optimal solutions in closed form for several probability distributions having the
same support and then compute, both analytically and computationally, the V RP
measure and the corresponding PB and WPB bounds. A worst-case analysis is
carried out, showing the maximum increase in the objective function value that
can be obtained guessing a probability distribution different than the right one.
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Finally, a computational study shows, in a systematic way with respect to the
unit costs, how the expected objective function value varies when the probability
distribution varies.

The paper is organized as follows. In Section 2 we define the Value of the
Right Distribution V RD and the bounds PB and WPB. In Section 3 we introduce
a cost–based variant of the Newsvendor Problem. In Section 4 we show how to
compute the bounds for this problem. In Section 5 we show, by means of an
extensive experimental campaign, the interest of the proposed VRP, PB and WPB.
Conclusions follow.

2 The Value of the Right Distribution and the Performance Bounds in

Stochastic Programming

The following mathematical model represents a general formulation of a stochastic
program in which a decision maker needs to determine x in order to minimize the
expected total cost (see e.g. [1]):

min
x∈X

Eξz (x, ξ) = min
x∈X

{
f1(x) + Eξ [h2 (x, ξ)]

}
, (1)

where x is a first-stage decision vector restricted to the set X ⊆ Rn+, with Rn+ is the
set of non negative real vectors of dimension n, and Eξ stands for the expectation

with respect to a random vector ξ, defined on some probability space (Ξ,A, p) with
support Ξ and given probability distribution p on the σ−algebra A. The function
h2 is the value function of another optimization problem defined as

h2 (x, ξ) = min
y∈Y(x,ξ)

f2 (y;x, ξ) , (2)

which is used to reflect the costs associated to adapt to the information revealed
through a realization ξ of the random vector ξ. The term Eξ [h2 (x, ξ)] in (1) is
referred to as the recourse function. Let us denote with ξG and ξR the guessed and
right probability distributions of the random process ξ, respectively.
Let x∗G be the solution obtained by solving problem (1) using the probability
distribution ξG , and

RPG := EξGz(x
∗
G , ξG), (3)

be the optimal value of the associated objective function. We have the same for
the solution x∗R using the probability distribution ξR. Let us denote with

RPR := EξRz(x
∗
R, ξR), (4)

its optimal objective function value. Let the Expectation of the Guessed Distribution

(EGD)
EGD := EξRz(x

∗
G , ξR), (5)

be the objective function value of the solution x∗G computed on the basis of the
right distribution ξR.

Definition 1 The Value of the Right Distribution (V RD) is

V RD := EGD −RPR. (6)
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Note that V RD is always non–negative since EGD ≥ RPR being EGD based on
an out-of-sample solution x∗G . When the solution x∗G is optimal under the right
probability distribution ξR we have V RD = 0. The greater is V RD, the greater is
the objective function value increase of using the guessed distribution with respect
to the right one in problem (1).

Let us now define the Performance Bound (PB) of EGD with respect to RPR
as follows:

Definition 2 The Performance Bound (PB) of using the guessed distribution ξG
with respect to the right distribution ξR in problem (1) is:

PB(ξG , ξR) :=
EGD
RPR

. (7)

Note that this bound is always not lower than 1. It is equal to 1 when using the
guessed distribution we have the same objective function value than using the
right distribution in problem (1), corresponding to the case V RD = 0. The greater
is PB, the greater is the objective function value increase of using the guessed
distribution with respect to using the right one.

Finally, let us define the Worst-case Performance Bound of using the guessed
distribution with respect to using the right one in problem (1). Let I be a given
instance of the problem, i.e. a particular value for each deterministic parameter of
the problem. Notice that the instance I does not include the values of stochastic
parameters ξ and their probability distributions p. Then, we select a guessed prob-
ability distribution ξG , a right probability distribution ξR and the corresponding
parameters (i.e., support, mean, . . .). We denote with EGDI := EξRz

I(x∗G , ξR)

and RP IR := EξRz
I(x∗R, ξR) the objective function values in problem (1) of the so-

lutions x∗G and x∗R obtained by solving problem (1) in instance I, using the guessed
and the right distributions, respectively. Note that an instance is defined by the
data parameters of the problem, but not by the guessed and right probability
distributions. Therefore, the Worst-case Performance Bound can be computed for
any pair of probability distributions and for any value of the corresponding param-
eters. For the sake of simplicity, in the following, when we refer to a probability
distribution, we mean the probability distribution together with a given value of
the corresponding parameters.

Definition 3 The Worst-case Performance Bound (WPB) of using the guessed
distribution ξG with respect to the right distribution ξR in problem (1) is:

WPB := inf

{
γ ≥ 1 | EGD

I

RP IR
≤ γ ∀I

}
. (8)

We say that γ is tight if, for any γ′ < γ there exists an instance I ′ such that
EGDI

′

RP I
′
R

> γ′ (see [32]). For the sake of simplicity, in the following, we will omit the

reference to the instance I.

3 A cost-based variant of the Newsvendor Problem

In this section we introduce a cost–based variant of the Newsvendor Problem, a
classical problem in SP (see [1]). This problem is simply enough to allow us to
show in details the application of the previous definitions.
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The problem can be described as follows: a supplier replenishes a retailer facing
the stochastic demand ξ ∈ [0, b] ⊂ R+ of a single item. The retailer purchases
the item at a given unit procurement cost c and tackles unit holding cost h for
positive inventory level and unit stock-out cost v > c for negative inventory level,
after demand realization. Let α := v−c

v+h be the retailer’s cost ratio. The delivery is
assumed to be instantaneous (lead–time equal to zero). Backlogging is not allowed.
The sequence of the operations is the following: the order quantity is computed
before demand realization, these units are shipped and received by the retailer
and, at last, the demand that occurs is satisfied. The aim is to determine an
order quantity that minimizes the expected total cost, given by the sum of the
procurement cost, the holding cost and the stock–out cost.

Notice that the focus of the decision–maker is not on maximizing the profit as
in the classical Newsvendor problem (see [1]), but on minimizing the cost of the
service while ensuring a certain service level. If the service level is measured in
terms of stock-out cost, an optimal solution can be obtained by minimizing the
sum of the cost of the service and of the stock–out cost. This variant has several
practical applications: for example, the Newsvendor can represent an intermediate
node in a supply chain or an user providing a new service.

The problem can be formulated as a two–stage stochastic linear program with
recourse. Let us introduce the first–stage and the second–stage decision variables:

– x ≥ 0: first–stage decision variable corresponding to the order quantity. We
denote with x∗ the optimal order quantity. This decision must be taken before
the realization of the stochastic demand ξ;

– y(ξ): second–stage decision variable representing the inventory level after the
realized demand is satisfied; if y(ξ) is positive (i.e. y(ξ) = [y(ξ)]+), then an
inventory cost h[y(ξ)]+ will be paid for the amount left in the warehouse. If
y(ξ) is negative (i.e. y(ξ) = −[y(ξ)]−), then a stock-out cost v[y(ξ)]− will be
paid and no stock will be stored.

The cost-based variant of the Newsvendor problem can be then formulated as the
following two–stage stochastic linear program:

min
x

Eξz(x, ξ) := min
x

c x+ Eξ[h[y(ξ)]+ + v[y(ξ)]−] (9)

x− ξ = y(ξ) = [y(ξ)]+ − [y(ξ)]−

[y(ξ)]+ ≥ 0

[y(ξ)]− ≥ 0

x ≥ 0.

Notice that the objective function of model (9), because of the linearity of the
Expectation operator Eξ[·], can equivalently be rewritten as:

min
x

Eξ [c x+ h[y(ξ)]+ + v[y(ξ)]−] . (10)
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From the first constraint in problem (9), we have x = [y(ξ)]+ − [y(ξ)]− + ξ, and
by replacing it in (10), we have that problem (9) is equivalent to:

min
x

cEξ(ξ) + (c+ h)Eξ [[y(ξ)]+] + (v − c)Eξ [[y(ξ)]−] (11)

x− ξ = [y(ξ)]+ − [y(ξ)]−

[y(ξ)]+ ≥ 0

[y(ξ)]− ≥ 0

x ≥ 0.

Let Fξ be the cumulative probability distribution (CDF ) of the continuous
random variable ξ ∈ [0, b]. Then, model (11) can be analytically solved as stated
in the following proposition.

Proposition 1 If Fξ is invertible, an optimal order quantity is

x∗ = F−1
ξ (α),

where α = v−c
v+h is the retailer’s cost ratio.

We omit the proof, as it follows the lines of the one in [1] (pages 15-17).

4 The Performance Bound and the Worst-case Performance Bound for the

cost-based variant of the Newsvendor Problem: Exponential vs. Uniform

In this section, we compute the Performance Bound (PB) and the Worst-case
Performance Bound (WPB) for different demand distributions for the problem
described in Section 3. For simplicity and the sake of brevity, we will show how
to compute these bounds in the case the guessed distribution is a truncated Ex-
ponential and the right distribution is an Uniform, defined on the same support,
even if the bounds can be computed analytically in similar way for different pairs
of guessed and right probability distributions.

Let assume to know only the support [0, b] of the retailer’s demand distribution
and that the guessed retailer’s demand distribution ξG ∈ [0, b] follows the trun-
cated Exponential distribution E(λ), while the right distribution ξR ∈ [0, b] is the
Uniform U . Recall that α = v−c

v+h is the retailer’s cost ratio.
We first compute x∗ in closed–form for the two probability distributions, i.e.

x∗R≡U and x∗G≡E(λ), respectively.
Consider the truncated Exponential distribution E(λ), having the following

probability density function (PFD), fE(λ)(ξ;λ, 0, b) and the cumulative distribution
function (CDF), FE(λ)(ξ;λ, 0, b), in the interval [0, b], with parameter λ > 0:

fE(λ)(ξ;λ, 0, b) =

{
λe−λξ(1− e−λb)−1 if 0 ≤ ξ ≤ b,
0 otherwise,

and

FE(λ)(ξ;λ, 0, b) =

{
(1− e−λξ)(1− e−λb)−1 if 0 ≤ ξ ≤ b,
0 otherwise.
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Its expected value is equal to 1
λ−

b
eλb−1

. Note that limb→∞( 1
λ−

b
eλb−1

) = 1
λ , as in the

exponential distribution. Since in our setting, we assume to know only the support
[0, b] of the retailer’s demand, we choose λ = ( b2 )−1 such that the expected value

of the guessed distribution E(ξG ≡ E(2
b )) = 1

λ = b
2 . In this way also the means of

the guessed and right distributions are equal, i.e. E(ξG ≡ E(2
b )) = E(ξR ≡ U). We

perform the worst-case analysis in this case. Other choices of λ can be considered.

Proposition 2 If the retailer’s demand is described by a truncated exponential distri-

bution E(λ), in the interval [0, b], then x∗E(λ) = − 1
λ ln(1− α(1− e−λb)).

Proof Since FE(λ)(ξ;λ, 0, b) : R → [0, 1] is continuous from the right and strictly
increasing, then it is invertible. By setting FE(λ)(x;λ, 0, b) = α and solving this

equation in x, we have the thesis: x∗E(λ) = − 1
λ ln(1− α(1− e−λb)).

ut
Consider now the uniform distribution U , in the interval [0, b], having the follow-

ing probability density function PDF fU and the cumulative distribution function
CDF FU :

fU (ξ; 0, b) =

{
1
b if 0 ≤ ξ ≤ b,
0 otherwise,

and

FU (ξ; 0, b) =

{
ξ
b if 0 ≤ ξ ≤ b,
0 otherwise.

Proposition 3 If the retailer’s demand is described by the uniform distribution U , in
the interval [0, b], then x∗U = αb.

Proof Since FU (ξ; 0, b) : R→ [0, 1] is continuous from the right and strictly increas-
ing in the interval [0, 1], then it is invertible. By setting FU (x; 0, b) = α and solving
this equation in x, we have the thesis: x∗U = αb.

ut
We now provide the Performance Bound PB(ξG , ξR) and the Worst-case Per-

formance Bound (WPB) when the retailer’s guessed demand distribution ξG fol-
lows a truncated Exponential E(( b2 )−1) and the right distribution ξR follows an

Uniform U , both in the interval [0, b]. When λ = ( b2 )−1, then in Proposition 2,

ln(1 − α(1 − e−λb)) = ln(1 − α(1 − e−2)). For simplicity of notation let us denote
δ(α) := ln(1− α(1− e−2)).

Proposition 4 If the guessed distribution ξG for the retailer’s demand follows a trun-

cated Exponential E(( b2 )−1) and the right distribution ξR follows an Uniform U , both
in the interval [0, b], then

PB(ξE(( b
2
)−1), ξU ) =

EξU z(x
∗
E(( b

2
)−1)

, ξU )

EξU z(x
∗
U , ξU )

=
c+ 1

4 (v + h)δ(α)2 + (v − c)(1 + δ(α))

c+ α(c+ h)
.

Proof We have:

EξU z(x, ξU ) = cEξ(ξ) + (c+ h)

∫ x

0

(x− ξ)dFξ + (v − c)
∫ b

x

(ξ − x)dFξ =

= c
b

2
+ (c+ h)

∫ x

0

(x− ξ)

b
dξ + (v − c)

∫ b

x

(ξ − x)

b
dξ

= c
b

2
+ (c+ h)

x2

2b
+ (v − c) (b− x)2

2b
.
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Consider first the Exponential distribution E(λ). Recall that, thanks to Propo-
sition 2, x∗E(λ) = − 1

λ ln(1− α(1− e−λb)). If λ = ( b2 )−1, then x∗E(( b
2
)−1)

= − b2 ln(1−

α(1− e−2)) and since δ(α) = ln(1− α(1− e−2)), then, x∗E(λ) = − b2δ(α) and

EξU z(x
∗
E(( b

2
)−1)

, ξU ) =
b

2
[c+

1

4
(v + h)δ(α)2 + (v − c)(1 + δ(α))].

Consider now the Uniform distribution U in the interval [0, b]. Recall that,
thanks to Proposition 3, x∗U = αb. Therefore, we have:

EξU z(x
∗
U , ξU ) =

b

2
[c+ (c+ h)(α)2 + (v − c)(1− α)2] =

b

2
[c+ α(c+ h)].

Therefore,

PB(ξE(( b
2
)−1), ξU ) =

EξU z(x
∗
E(( b

2
)−1)

, ξU )

EξU z(x
∗
U , ξU )

=
c+ 1

4 (v + h)δ(α)2 + (v − c)(1 + δ(α))

c+ α(c+ h)
.

(12)

ut

Proposition 5 In the cost-based variant of the Newsvendor problem, the Exponential

distribution E(( b2 )−1) has a worst-case performance bound γ with respect to the Uni-

form distribution U , both in the interval [0, b], not greater than 1.2798 and the bound

is tight.

Proof We first compute an upper bound on PB(ξE(( b
2
)−1), ξU ) for any instance of

the problem:

PB(ξE(( b
2
)−1), ξU ) =

c+ 1
4 (v + h)δ(α)2 + (v − c)(1 + δ(α))

c+ α(c+ h)

≤ max

{
c

c
,
1
4 (v + h)δ(α)2 + (v − c)(1 + δ(α))

α(c+ h)

}
≤ 1

4

δ(α)2

α(1− α)
+

1 + δ(α)

1− α := β(α), (13)

as α = v−c
v+h and 1− α = c+h

v+h imply v + h = c+h
1−α and v − c = α(v + h).

Figure 1 shows the plot of the upper bound β(α) on PB(ξE(( b
2
)−1), ξU ) for

0 < α < 1.
To compute the worst-case performance bound γ, we optimally solve the fol-

lowing non-linear optimization problem:

max
α∈(0,1)

β(α) =
1

4

δ(α)2

α(1− α)
+

1 + δ(α)

1− α . (14)

Solving the following non–linear equation:

β′(α)=

−4α2+
(
2
(
e2−1

)
α2−3e2α+α+e2

)
ln2

((
1
e2
−1

)
α+1

)
+2
(
2
(
e2−1

)
α2−3e2α+α+e2−1

)
αln

((
1
e2
−1

)
α+1

)
4(α−1)2α2

((
e2−1

)
α−e2

) =0,

where the left-hand side is the first derivative β′(α) of the objective function of
problem (14) with respect to the decision variable α, we get the unique stationary
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Fig. 1 Upper bound β(α) on PB(ξE(( b
2
)−1)

, ξU ) for 0 < α < 1.

point α∗ = 0.7969, which is a global maximum since β′(α) > 0 for α < 0.7969
and β′(α) < 0 for α > 0.7969 (see Figure 1). Replacing this value in the objective
function, we have β(0.7969) =1.2798. Therefore, γ is not greater than 1.2798.

In order to prove that the bound is tight we provide the following instance I
′

such that PBI
′
(ξG , ξR)=1.2798. The instance I

′
is obtained setting c = 0, while

the other data parameters can assume any value. Fixing c = 0 in (12) we have
that:

PB(ξE(( b
2
)−1), ξU ) =

1

4

δ(α)2

α(1− α)
+

1 + δ(α)

1− α , (15)

which corresponds with β(α), and the thesis follows by the first part of the proof.
ut

5 Numerical Results

In this section, we propose numerical results on the Value of the Right Distribution
and the Performance Bounds, based on the cost-based variant of the Newsvendor
problem presented in Section 3.

Since the demand distribution is unknown, we select some of the most common
distributions to carry out our computational experiment: Uniform, Exponential,
Normal, Triangular. Moreover, we test several values of the parameters of the
Exponential and of the Normal distributions. This is to investigate the case when
the estimate of the type of the distribution is correct, but its parameters are wrong.
We set the problem parameters as follows:
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– procurement cost c ∈ {1, 100, 1000};
– holding cost h = 1;
– stock–out cost v ∈ {3/2c, 5c, 10c}. Note that, given these values, the retailer

cost ratio α is in the intervals (0, 1/3], (1/3, 2/3] and (2/3, 1] for all values of
c ∈ {1, 10, 100};

– probability distributions for the integer demand ξ = 0, 1, . . . , 200 truncated
over the support [0,200]:
– Uniform U [0, 200], having mean 100;
– Exponential E(1/100) truncated in the interval [0, 200], having mean 68.04;
– Exponential E(1/106) truncated in the interval [0, 200], having mean 99.99;
– Normal N (100, 10) truncated in the interval [0, 200], having mean 99.50;
– Normal N (100, 50) truncated in the interval [0, 200], having mean 99.61;
– Normal N (100, 100) truncated in the interval [0, 200], having mean 99.85;
– Triangular T (0, 100, 200) in the interval [0, 200] with mode 100, having

mean 100.

The probability corresponding to each value of the integer demand ξ = 0, 1, . . . , 200
is numerically computed as F (ξ + 1)− F (ξ), where F is the cumulative distribution
function (CDF). The mean of the truncated probability distribution over the sup-

port [0, 200] with integer values ξ = 0, 1, . . . , 200 is computed as
∑200
ξ=0 ξ·f(ξ)

F (200)−F (0) , where

f(ξ) denotes the probability mass functions (PMF) (see [33] for an introduction
to truncated discrete probability distributions). Figure 2 shows the corresponding
probability mass functions.

Fig. 2 Probability mass functions for different probability distributions in the interval [0,200].

Results are reported in the following tables. Table 1 shows the optimal order
quantities x∗. Columns 4–10 give, for each probability distribution, the correspond-
ing optimal order quantity for different values of procurement cost c and stock-out
cost v. Results show that, in general, the optimal order quantity is different with
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different probability distributions. However, when λ = 1/106, the model based on
the Exponential distribution always provides the same optimal solution than the
model based on the Uniform distribution. This is due to the shape of the Expo-
nential distribution, that tends to be very similar to the Uniform distribution for
such a small value of λ (see Figure 2). Moreover, we can note that, as expected,
the optimal order quantity increases with the stock-out cost v and, on average,
it is greater than the average value of the support b/2 = 100. Only for v = 1.5c
it is smaller than it. Finally, we can note that the optimal order quantity is sig-
nificantly affected by the value of λ in the Exponential distribution and by the
standard deviation in the Normal distribution.

c v α U E E N N N T
[0,200] (1/100) (1/106) (100,10) (100,50) (100,100) (0,100,200)

1 3/2c 0.20 40 19 40 91 60 46 63
1 5c 0.67 133 86 133 104 120 129 118
1 10c 0.81 164 123 164 109 142 158 140
10 3/2c 0.31 62 31 62 95 76 67 79
10 5c 0.78 157 113 157 107 137 151 134
10 10c 0.89 179 147 179 112 157 173 153
100 3/2c 0.33 66 33 66 95 79 70 81
100 5c 0.80 160 117 160 108 139 154 137
100 10c 0.90 180 150 180 112 159 175 155

Average: 126.78 91 126.78 103.67 118.78 124.78 117.78

Table 1 Optimal order quantities x∗ for different values of procurement cost c, stock-out cost
v and probability distributions.

We now show the results on the Value of the Right Distribution V RD and
the corresponding Performance Bound PB(ξG , ξR) for different pairs of guessed
and right probability distributions. For the sake of readability, the following tables
provide the percentage objective function value increase, computed as %PB :=
(PB−1)·100, instead of PB. For the simplicity of notation, we omit the dependence
by the probability distributions (ξG , ξR).

Tables 2–3 show the Value of the Right Distribution V RD and the correspond-
ing Percentage Performance Bound %PB, for each of the guessed probability dis-
tributions, when the right distribution is U [0, 200]. These tables are organized as
follows: the first column provides the procurement cost c, the second the stock-out
cost v and the third the corresponding value of α. Columns 4–9 in Table 2 show
the V RD, while the same columns in Table 3 give the %PB, for each of the guessed
probability distributions. Remember that V RD and %PB are equal to 0 when the
guessed probability distribution performs optimally. When the right distribution
is U [0, 200], this happens for E(1/106), while for the other distributions the V RD
and the %PB are always positive, increase with the procurement cost c and tend
to increase with the stock-out cost v. Besides, when the guessed distribution fol-
lows the Exponential distribution (see columns 3 and 4 of Table 3), we note that
the Worst-case Performance Bound WPB given in Proposition 5 is verified, since
for both the cases (λ = 1/100 and λ = 1/106), the %PB is always lower than 28%.
When the guessed distribution follows the Normal distribution, V RD and %PB
are significantly affected by c and v and by the standard deviation. In particu-
lar, V RD and %PB are very different for different cost combinations when the
standard deviation is 10: in fact, in this case %PB ranges from 2.36% to 60.59%.
Moreover, they tend to decrease when the standard deviation increases: the aver-
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age value of %PB is 22.94% when the standard deviation is 10, 2.95% when it is
50 and just 0.23% when it is 100. This is due to the shape of the corresponding
probability distributions (see Figure 2), that is very different than the Uniform
distribution when the standard deviation is 10, while it becomes more and more
similar when the standard deviation increases. Finally, the Triangular distribution
has a good performance, as the average %PB is 3.91% and the maximum is 8.30%.

Guessed distribution
c v α E E N N N T

(1/100) (1/106) (100,10) (100,50) (100,100) (0,100,200)

1 3/2c 0.20 22.66 0.00 16.37 2.56 0.25 3.38
1 5c 0.67 33.67 0.00 12.99 2.72 0.30 3.58
1 10c 0.81 45.90 0.00 82.64 13.19 0.97 15.70
10 3/2c 0.31 39.02 0.00 42.52 7.45 0.87 11.08
10 5c 0.78 247.25 0.00 319.03 51.49 4.79 67.97
10 10c 0.89 250.99 0.00 1114.67 117.28 7.87 164.73
100 3/2c 0.33 410.45 0.00 314.67 62.93 5.84 83.88
100 5c 0.80 2302.10 0.00 3367.19 548.51 44.55 658.07
100 10c 0.90 2273.81 0.00 11588.25 1121.04 67.71 1583.58

Average: 622.87 0.00 1873.15 214.13 14.79 288.00

Table 2 Value of the Right Distribution (V RD) when U [0, 200] is the Right distribution

Guessed distribution
c v α E E N N N T

(1/100) (1/106) (100,10) (100,50) (100,100) (0,100,200)

1 3/2c 0.20 1.90 0.00 11.67 1.83 0.18 2.41
1 5c 0.67 14.39 0.00 5.55 1.16 0.13 1.53
1 10c 0.81 17.36 0.00 31.25 4.99 0.37 5.94
10 3/2c 0.31 2.90 0.00 3.16 0.55 0.06 0.82
10 5c 0.78 13.24 0.00 17.09 2.76 0.26 3.64
10 10c 0.89 12.64 0.00 56.15 5.91 0.40 8.30
100 3/2c 0.33 3.07 0.00 2.36 0.47 0.04 0.63
100 5c 0.80 12.72 0.00 18.60 3.03 0.25 3.63
100 10c 0.90 11.89 0.00 60.59 5.86 0.35 8.28

Average: 10.01 0.00 22.94 2.95 0.23 3.91

Table 3 Percentage Performance Bounds (%PB) when U [0, 200] is the Right distribution

In Tables 4–9, we compute %PB for the remaining pairs (right vs. guessed) of
probability distributions. These tables are organized as Table 3.

The computational results in Table 4 show that, when E(1/100) is the Right
distribution, the best guessed probability distribution is N (100, 50), followed by
T (0, 100, 200). In the former case the average %PB is 6.65%, while in the latter it
is 6.85%.

The computational results in Table 5 show that, when E(1/106) is the Right
distribution, U [0, 200] is an optimal guessed probability distribution, as %PB is
equal to 0 in all instances. Moreover, N (100, 100) is very good, having an average
%PB equal to 0.23%.

The computational results in Table 6 show that, when N (100, 10) is the Right
distribution, all guessed probability distributions give a very large %PB and that
the best guessed probability distribution is T (0, 100, 200), followed by E(1/100).
The former has %PB equal to 20%, while the latter 22.40%. This is expected due
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Guessed distribution
c v α U E N N N T

[0,200] (1/106) (100,10) (100,50) (100,100) (0,100,200)

1 3/2c 0.20 5.22 5.22 50.83 18.28 8.38 20.83
1 5c 0.67 14.39 14.39 2.37 7.89 12.22 7.04
1 10c 0.81 11.24 11.24 1.51 2.62 8.36 2.11
10 3/2c 0.31 6.12 6.12 23.60 12.35 8.12 13.93
10 5c 0.78 9.91 9.91 0.23 3.12 7.52 2.40
10 10c 0.89 6.68 6.68 10.24 0.68 4.48 0.24
100 3/2c 0.33 6.30 6.30 20.52 11.82 7.84 12.80
100 5c 0.80 9.31 9.31 0.49 2.59 7.02 2.16
100 10c 0.90 5.88 5.88 12.27 0.54 4.13 0.16

Average: 8.34 8.34 13.56 6.65 7.56 6.85

Table 4 Percentage Performance Bounds (%PB) when E(1/100) is the Right distribution

Guessed distribution
c v α U E N N N T

[0,200] (1/100) (100,10) (100,50) (100,100) (0,100,200)

1 3/2c 0.20 0.00 1.90 11.68 1.83 0.18 2.41
1 5c 0.67 0.00 14.39 5.55 1.16 0.13 1.53
1 10c 0.81 0.00 17.35 31.24 4.99 0.37 5.94
10 3/2c 0.31 0.00 2.90 3.16 0.55 0.06 0.82
10 5c 0.78 0.00 13.24 17.08 2.76 0.26 3.64
10 10c 0.89 0.00 12.64 56.15 5.91 0.40 8.30
100 3/2c 0.33 0.00 3.07 2.36 0.47 0.04 0.63
100 5c 0.80 0.00 12.71 18.60 3.03 0.25 3.63
100 10c 0.90 0.00 11.89 60.58 5.86 0.35 8.28

Average: 0.00 10.01 22.93 2.95 0.23 3.91

Table 5 Percentage Performance Bounds (%PB) when E(1/106) is the Right distribution

Guessed distribution
c v α U E E N N T

[0,200] (1/100) (1/106) (100,50) (100,100) (0,100,200)

1 3/2c 0.20 21.37 31.23 21.37 11.98 18.55 10.57
1 5c 0.67 37.26 28.55 37.26 16.18 30.68 13.14
1 10c 0.81 77.74 14.22 77.74 43.51 68.40 40.40
10 3/2c 0.31 12.44 27.18 12.44 5.83 10.07 4.47
10 5c 0.78 42.22 1.75 42.22 23.00 36.46 20.12
10 10c 0.89 57.96 28.22 57.96 37.51 52.38 33.80
100 3/2c 0.33 10.74 26.46 10.74 4.66 8.84 3.78
100 5c 0.80 41.39 3.87 41.39 22.72 36.06 20.94
100 10c 0.90 54.30 28.44 54.30 36.20 49.99 32.75

Average: 39.49 21.10 39.49 22.40 34.60 20.00

Table 6 Percentage Performance Bounds (%PB) when N (100, 10) is the Right distribution

to the different shape of the PMF of the Normal distribution N (100, 10) compared
to the other ones (see Figure 2).

The computational results in Table 7 show that, when N (100, 50) is the Right
distribution, T (0, 100, 200) is the best possible guessed probability distribution,
having an average %PB equal to 0.08%.

The computational results in Table 8 show that, when N (100, 100) is the Right
distribution, U [0, 200] and E(1/106) are the best possible guessed probability dis-
tributions having an average %PB equal to 0.23%.

Finally, the computational results in Table 9 show that, when T (0, 100, 200) is
the Right distribution, N (100, 50) is the best possible guessed probability distri-
bution, having an average %PB equal to 0.08%.
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Guessed distribution
c v α U E E N N T

[0,200] (1/100) (1/106) (100,10) (100,100) (0,100,200)

1 3/2c 0.20 2.05 7.58 2.05 6.48 1.03 0.06
1 5c 0.67 1.86 14.27 1.86 3.12 0.90 0.05
1 10c 0.81 5.67 5.79 5.67 18.18 3.08 0.08
10 3/2c 0.31 0.93 8.11 0.93 1.75 0.40 0.03
10 5c 0.78 3.54 6.08 3.54 9.72 1.81 0.08
10 10c 0.89 4.96 1.25 4.96 32.37 2.77 0.18
100 3/2c 0.33 0.73 8.12 0.73 1.27 0.35 0.02
100 5c 0.80 3.66 5.08 3.66 10.41 1.93 0.04
100 10c 0.90 4.48 0.96 4.48 35.15 2.73 0.17

Average: 3.10 6.36 3.10 13.16 1.67 0.08

Table 7 Percentage Performance Bounds (%PB) when N (100, 50) is the Right distribution

Guessed distribution
c v α U E E N N T

[0,200] (1/100) (1/106) (100,10) (100,50) (0,100,200)

1 3/2c 0.20 0.15 3.12 0.15 9.96 0.94 1.39
1 5c 0.67 0.13 14.08 0.13 4.70 0.59 0.89
1 10c 0.81 0.43 13.37 0.43 26.88 2.63 3.36
10 3/2c 0.31 0.08 4.14 0.08 2.68 0.27 0.48
10 5c 0.78 0.27 10.80 0.27 14.60 1.39 2.08
10 10c 0.89 0.39 8.32 0.39 48.51 3.10 4.87
100 3/2c 0.33 0.06 4.29 0.06 1.98 0.24 0.36
100 5c 0.80 0.29 10.10 0.29 15.84 1.55 2.02
100 10c 0.90 0.30 7.67 0.30 52.46 3.07 4.85

Average: 0.23 8.43 0.23 19.73 1.53 2.26

Table 8 Percentage Performance Bounds (%PB) when N (100, 100) is the Right distribution

Guessed distribution
c v α U E E N N N

[0,200] (1/100) (1/106) (100,10) (100,50) (100,100)

1 3/2c 0.20 2.91 9.21 2.91 5.41 0.06 1.66
1 5c 0.67 2.59 14.89 2.59 2.79 0.03 1.39
1 10c 0.81 7.72 4.60 7.72 16.64 0.08 4.55
10 3/2c 0.31 1.38 9.42 1.38 1.39 0.05 0.71
10 5c 0.78 4.71 5.21 4.71 8.79 0.07 2.64
10 10c 0.89 7.22 0.56 7.22 29.66 0.17 4.46
100 3/2c 0.33 1.11 9.38 1.11 0.98 0.03 0.62
100 5c 0.80 4.86 4.21 4.86 9.38 0.06 2.79
100 10c 0.90 6.67 0.35 6.67 32.24 0.20 4.46

Average: 4.35 6.43 4.35 11.92 0.08 2.59

Table 9 Percentage Performance Bounds (%PB) when T (0, 100, 200) is the Right distribution

In conclusion, we can state that the selection of the guessed distribution is
critical to find near-optimal order quantities. Since the right distribution is revealed
a posteriori only, the previous analysis allows us also to conclude that, on average,
the two best guessed probability distributions are N (100, 50) and T (0, 100, 200), as
they provide an average %PB, with respect to all right probability distributions,
equal to 5.22% and 5.29% respectively, while %PB is 6.7% for N (100, 100), 7.93%
for U [0, 200] and E(1/106), 8.91% for E(1/100) and 14.89% for N (100, 10).
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6 Conclusions

In this paper we introduced the Value of the Right Distribution (V RD) in Stochas-
tic Programming, to quantify how much a decision-maker loses if she guesses a
wrong distribution. Besides V RD, the Performance Bound (PB) of the guessed
distribution with respect to the right one, and the Worst-case Performance Bound
(WPB) have been introduced allowing us to investigate the increase of the objec-
tive function value when two or more probability distributions are mismatched,
and when the selected distribution is correct, but its parameters are wrong. Then,
we introduced a cost–based variant of the well known Newsvendor Problem for
which optimal solutions can be obtained in closed-form for different probability
distributions having the same support. This variant has several practical appli-
cations: the newsvendor can represent an intermediate node in a supply chain or
an user providing a new service interested in minimizing its cost while ensuring a
certain service level. For this problem we computed PB and WPB to evaluate the
maximum increase in the objective function value that can be obtained guessing
a probability distribution different than the right one. We carried out a compu-
tational study that shows, in a systematic way in a given set of instances, how
the objective function value varies when the guessed and right probability distri-
butions vary. Besides, the results allow us to identify the best guessed probability
distribution.
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