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Abstract

We study the problem faced by a bike-sharing service provider who needs to
manage a fleet of bikes over a set of bike-stations, each with given capacity
and time-varying stochastic demand. In particular, we focus on One-way
bike sharing systems with transshipment in which: 1) The user can pick up
a bike at a station and drop it off at a different station; 2) Transshipment of
bikes among stations is performed at the end of the day, to have the optimal
number of bikes at each station at the beginning of the service on the next
day. For this problem, we propose two-stage and multistage stochastic opti-
mization models, to determine the optimal number of bikes to assign to each
station at the beginning of the service. Numerical results are provided for
the bike-sharing service “LaBiGi” in Bergamo (Italy), from which managerial
insights are drawn.

Keywords: Logistics, Bike-sharing, Stochastic programming,
Transshipment

1. Introduction

Bike-sharing systems contribute towards obtaining a more sustainable
mobility and decreasing traffic and pollution caused by motorized trans-
portation. In Fishman et al. [14], bike-sharing programs are extensively
analyzed, identifying sustainability challenges, bike-sharing schemes (e.g.,
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one-way, two-way), mode substitution and impacts, usage rates, user moti-
vation, preferences and purpose, safety concepts and re-balancing. The first
bike-sharing system was installed in Amsterdam in 1965 and, since then,
these systems have increased their popularity as a new transportation mode
in a large number of cities worldwide, counting more than 1,000 operating
systems and more than 300 planned or under construction.

Several interesting optimization problems can be studied to improve bike-
sharing systems: we refer to Laporte et al. [23] for a survey on the main
problems and methods arising in shared mobility systems. One of these is
the re-balancing problem and another one is the fleet sizing problem. For
the first problem, two types of repositioning can be distinguished: static
repositioning and dynamic repositioning. In the static case, the repositioning
occurs during the night when the traffic is low, the initial state of the system
is considered known and fixed, and the aim of the repositioning is to get the
system to a desired, predefined state. Most of the literature considers this
type of repositioning. Among the contributions we mention Raviv et al. [31]
and Dell’Amico et al. [9] which present mixed–integer linear programming
models for the static re-balancing problem. Different exact, heuristic and
metaheuristic algorithms for the this type of problem are proposed in Ho
and Szeto [19], Erdoğan et al. [12], Forma et al. [15], Dell’Amico et al. [10],
Alvarez-Valdes et al. [1] and Datner et al. [8]. Several variants of the static
re-balancing problem have been also studied: in particular Li et al. [25]
investigate the case in which multiple types of bikes are considered; Cruz et al.
[7] study the case in which only one vehicle is available; Ho and Szeto [18]
study the multi-vehicle bike-repositioning problem; Kloimüllner and Raidl
[22] study the case in which only full vehicle loads are allowed among the
rental stations; Szeto and Shui [37] study a bike repositioning problem that
determines the routes of the repositioning vehicles and the loading/unloading
quantities at each bike station to firstly minimize the positive deviation from
the tolerance of total demand dissatisfaction and then service time; finally
Wang and Szeto [38] formulate a mixed–integer linear programming model
to determine the repositioning of both good and broken bikes, minimizing
the total CO2 emissions. The effect of the randomness of user choices for
the static repositioning problem have been investigated in Fricker and Gast
[16] via stochastic optimization models while Erdoğan et al. [13] study the
relocation problem with demand intervals, in which the inventory level at
the stations is between given lower and upper bounds.

In the dynamic case, the repositioning system operates while the bike-
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sharing system is being used. Therefore, users are continuously taking and
leaving bicycles at the stations, modifying their states. Among the contri-
butions in this direction, Shu et al. [35] develop a network flow model to
estimate the flow of bikes within the network and the number of trips sup-
ported, given an initial allocation of bikes at each station. Regue and Recker
[32] propose a framework to solve the problem with a proactive approach
while Zhang et al. [39] propose a mixed–integer linear programming model
and a heuristic. Ghosh et al. [17] propose an optimization formulation to
reposition bikes using vehicles, considering the routes for vehicles and future
expected demand. Brinkmann et al. [4] study a stochastic-dynamic inven-
tory routing problem for bike sharing systems. Çelebi et al. [5] propose an
integrated approach to jointly considering location decisions and capacity
allocation. A dynamic green repositioning problem that simultaneously min-
imizes the total unmet demand and the fuel and CO2 emission cost of the
repositioning vehicle has been introduced in Shui and Szeto [36]. Legros [24]
apply a Markov Decision Process to decide which station should be priori-
tized, and the number of bikes to add or remove at each station, in order to
minimize the rate of arrival of unsatisfied users. Finally Schuijbroek et al.
[34] design a cluster-first route-second heuristic to determine service level
requirements at each station and routes to rebalance the inventory levels.

For the second problem (fleet sizing), Sayarshad et al. [33] presents an
optimization formulation to design a bike-sharing system for travel inside
small communities. Raviv and Kolka [30] study an inventory model for the
management of bike rental stations. In Lu [27] the goal is to compute the
number of bikes to assign to each bike-station on the basis of time-dependent
bike flows in time-space networks. However, in these papers, re-balancing is
not considered.

The first contribution of this paper is to propose two-stage and multi-
stage stochastic optimization models, which integrate these two decisions
with static repositioning. Multistage models allow us to split the day into a
given number of shorter subperiods.

In particular, we study the problem faced by a bike-sharing service provider
who needs to manage a fleet of bikes and a set of bike-stations with given ca-
pacity and stochastic demand. The corresponding probability distributions
are not stationary and can be different for different bike stations. The stud-
ied bike-sharing system is a one-way rental system, which allows the user
to pick a bike at one station and drop it off at a different bike-station. We
formulate this bike-sharing problem as a variant of the Newsvendor problem
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with transshipment (see Dong and Rudi [11] and Zhang [40] for the applica-
tion of transshipment in supply chain management) and investigate the role
of the stochasticity. Then, we apply the models to instances inspired by the
Bergamo bike-sharing service named “LaBiGi”, which started in May 2013
with 18 stations and then expanded in 2015 to a total of 22 stations located
in different areas in the city center. The system is integrated with a mobile
app, which allows the users to know in real time the number of available slots
in all bike-stations throughout the city.

We carry out a computational experiment aiming at answering the fol-
lowing questions:

1. How does the optimal assignment of bikes to stations depend on the
probability distribution of the rental demand?

2. How does the optimal expected total cost depend on the probability
distribution of the rental demand?

3. What is the Value of the Stochastic Solution?

4. What is the quality of the expected value solution when solving the
stochastic models?

5. What is the value of knowing in advance the probability distribution
of the rental demand (Value of Ambiguity)?

6. How does the optimal assignment of bikes to stations and optimal total
cost depend on the probability distribution of the rental demand?

7. What is the value of a solution obtained by a multistage optimization
model with respect to the one from the two-stage model?

8. What is the effect of letting bike stations have different capacities?

9. How does the allocation plan implemented by the LaBiGi bike-sharing
service perform compared to ones of the stochastic models?

The paper is organized as follows. Section 2 describes the bike-sharing
problem. Section 3 provides the two-stage and multistage stochastic op-
timization models formulations. Section 4 shows the computational results
that allow us to give an answer to the previous questions. Finally, managerial
insights and conclusions are drawn in Section 5.
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2. Problem Description

We consider the problem faced by a bike-sharing service provider who
needs to manage a fleet of bikes over a set of bike-stations with given capac-
ities, in order to serve the stochastic rental demand over space and time. A
unit procurement cost is paid for each bike assigned to each station at the
beginning of the service. The operational time frame is one day. The deliv-
ery of bikes to bike-stations is assumed to be instantaneous (lead time equal
to zero), as this operation can be carried out before the start of the service.
Backlogging is not allowed. A unit stock-out cost is paid if realized demand
exceeds the number of bikes assigned to a station, and a unit transshipment
cost is paid at the end of the rentals, when the bike-station inventory levels
are rebalanced. Each bike rental demand is defined by an origin-destination
pair, where the destination is unknown to the provider at the time of rental.
A stochastic demand to each origin-destination pair is assigned. The rent
must start at the user-defined time period or it is lost, determining a short-
age for the provider and a reduction of the service level for the user. A
shortage realizes when a rental demand arises in a bike-station, but no bikes
are available: The user quits the service and looks towards an alternative
transportation mode. A shortage causes a cost increase, a reduced service
level and a reduced likelihood of future rental requests. The number of bikes
that cannot be left in a bike-station as it is full when the user arrives at the
station determines an overflow: The user cannot quit the service until the
bike is redirected and positioned by the user in the nearest bike-station with
available capacity. An overflow causes a waste of time for the user and a cost.
Our aim is to determine the number of bikes to assign to each bike-station at
the beginning of the service, in order to minimize the expected total costs,
given by the sum of the procurement costs, the expected stock-out costs for
unmet demand, the expected time-waste costs for overflow and the expected
transshipment costs for repositioning bikes at the end of the service.

3. Stochastic Optimization Models

In this section, we present a two-stage and a multistage stochastic opti-
mization formulation for the problem described in the previous section. We
refer to Birge and Louveaux [3] and King and Wallace [21] for comprehensive
books on Stochastic Programming.
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3.1. A Two-Stage Stochastic Optimization Model

We first define the following notation:

Sets.

� B : set of bike-stations, B = {1, . . . , B};

� S : set of scenarios, S = {1, . . . , S} or finite set of possible realizations
of the uncertainty.

Deterministic parameters.

� c ∈ R+ : procurement cost per bike at each bike-station at the begin-
ning of the service;

� vi ∈ R+ : stock-out cost per bike at bike-station i ∈ B;

� wi ∈ R+ : time-waste cost per bike due to overflow at bike-station
i ∈ B;

� tij ∈ R+: unit transshipment cost per bike transshipped from bike-
station i to bike-station j, i, j ∈ B;

� ki ∈ Z+: capacity of bike-station i ∈ B.

Stochastic parameters. Let (Ξ,A, p) be a probability space with Ξ the set of
outcomes, σ-algebra A, probability p and ξ ∈ Ξ a particular outcome rep-
resenting the rental demand on each origin-destination pair of bike-stations.
We define:

� ξijs ∈ Ξ ⊂ Z+: rental demand from bike-station i to bike-station j in
scenario s, i, j ∈ B, s ∈ S.

� ps ∈ [0, 1]: probability of scenario s ∈ S. Notice that
∑S

s=1 ps = 1.

We now introduce the first-stage and second-stage variables. The first-stage
variables are defined as follows:

� xi: number of bikes to assign to bike-station i ∈ B at the beginning of
the service. We denote with x∗i an optimal number of bikes to assign
to bike-station i and with x = [x1, . . . , xB]T the first-stage decision
vector over all bike-stations. The decision must be taken before the
realizations of the random rental demand ξijs.
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After the placement of the bikes, the stochastic demands ξijs occur on
each origin-destination pair i, j ∈ B and the minimum of the available and
requested bikes is actually rented. Then, the surplus or shortage can be im-
mediately computed at each bike-station. The second-stage decision variables
are defined as follows:

� βijs: number of rented bikes from bike-station i to bike-station j in
scenario s;

� I+is : realized surplus of bikes at bike-station i in scenario s. Note that
the surplus does not involve any cost for the provider;

� I−ijs: realized shortage of bikes at origin-destination pair i, j in scenario
s;

� ρijs: number of redirected bikes from bike-station i to bike-station j in
scenario s;

� O+
is: residual capacity at bike-station i in scenario s;

� O−is: overflow at bike-station i in scenario s;

� τijs: number of transshipped bikes from bike-station i to bike-station j
in scenario s;

� T+
is : excess of bikes at bike-station i in scenario s;

� T−is : lack of bikes at bike-station i in scenario s.

Figure 1 shows the sequence of operations for any scenario s.
The problem can be formulated as the following two-stage integer stochas-

tic program:
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xi ξijs βijs

ρijs

τijs

Bikes are assigned to stations

Stochastic demands realize

Bikes are rented

Bikes are redirected

Bikes are transshipped

Second StageFirst Stage

Figure 1: Sequence of operations for any scenario s.

min c
B∑
i=1

xi +
S∑

s=1

ps

B∑
i=1

[
vi

B∑
j=1

I−ijs + wiO
−
is +

B∑
j=1

tijτijs

]
(1)

s.t. xi ≤ ki, ∀i ∈ B, (2)

βijs = ξijs − I−ijs, ∀i, j ∈ B,∀s ∈ S, (3)

I+is −
B∑
j=1

I−ijs = xi −
B∑
j=1

ξijs, ∀i ∈ B,∀s ∈ S, (4)

O+
is −O−is = ki − xi +

B∑
j=1

βijs −
B∑
j=1

βjis, ∀i ∈ B,∀s ∈ S, (5)

B∑
j=1

ρijs = O−is, ∀i ∈ B,∀s ∈ S, (6)

B∑
j=1

ρjis ≤ O+
is, ∀i ∈ B,∀s ∈ S, (7)

T+
is − T−is = ki −O+

is +
B∑
j=1

ρjis − xi, ∀i ∈ B,∀s ∈ S, (8)

B∑
j=1

τijs = T+
is , ∀i ∈ B,∀s ∈ S, (9)

B∑
j=1

τjis = T−is , ∀i ∈ B,∀s ∈ S, (10)

xi, I
+
is , O

+
is, O

−
is, T

+
is , T

−
is ∈ Z+, ∀i ∈ B,∀s ∈ S, (11)

τijs, βijs, ρijs, I
−
ijs ∈ Z+, ∀i, j ∈ B,∀s ∈ S. (12)8



The objective function (1) is the minimization of the expected total cost,
given by the sum of the procurement cost for the assigned bikes and the ex-
pected stock-out cost for shortage, the expected time-waste cost for overflow
and the expected transshipment cost for repositioning bikes at the end of the
service. Constraints (2) enforce the assigned bikes to be not greater than the
bike-station capacity. Constraints (3) compute the number of rented bikes,
given by the difference between the stochastic demand and the shortage. No-
tice that realized shortage has been defined as a variable. This makes the
model optimistic. Constraints (4) ensure the balance between surplus and
shortage, while constraints (5) ensure the balance between the residual quan-
tity and the overflow. Constraints (6) define the sum of all the redirected
bikes from a bike-station equal to its overflow, while constraints (7) guaran-
tee that the sum of all the redirected bikes to a bike-station cannot exceed its
residual capacity. Constraints (8) ensure the balance between exceeding and
failure. Constraints (9) define the sum of all the transshipped bikes from a
bike-station equal to its excess, while constraints (10) guarantee that the sum
of all the transshipped bikes to a bike-station is equal to its failure. At last,
constraints (11)-(12) define the integrality and non-negativity of first-stage
and second-stage variables.

3.2. A Multistage Stochastic Optimization Model
We now formulate a multistage stochastic optimization model for the

problem described in Section 2. The model aims at determining, for each
bike-station, the optimal number of bikes to assign to each bike-station at
the beginning of the service, to minimize the expected total cost, taking into
account the dynamic nature of rental demands over the day. The main draw-
back of the two-stage formulation is given by the assumption that each bike
is rented only once per day. In order to overcome this, we now split the
daily rental demand of each origin-destination pair into three rental demand
periods; morning, afternoon and evening, and we allow a bike to be rented in
all three periods. The night is reserved for transshipment operations in order
to re-balance the number of bikes in all the stations. The number of bikes
available in a period in a station, is hence a function of initial distribution,
rentals in the periods before, including re-directions and transshipment op-
erations. So a bike can be rented up to three times in a day. Let us introduce
the following notation, in addition to the one used in previous Section:

� N := {n : n = 0, . . . , N} : ordered set of nodes of the scenario tree
structure;
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� 0 ∈ N : root of the scenario tree;

� F := {n : n = N − F + 1, . . . , N} ⊂ N : set of the leaves of the
tree, that is the nodes in the last stage of the model; we have that the
number of scenarios S = F = |F|;

� pa(n): parent of node n ∈ N \ {0};

� xi0: total number of bikes to assign to bike-station i ∈ B at the begin-
ning of the service, represented by the root node 0 ∈ N ;

� pn: probability of node n ∈ N , defined as:

pn =

{
1
|F| if n ∈ F ,∑

m∈N\{0},pa(m)=n pm if n ∈ N \ F .

All the recourse variables are defined as in the previous section by replacing
the index s with n.
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The multistage model can be formulated as follows:

min c
B∑
i=1

xi0+
N∑

n=1

pn

[
B∑
i=1

[
vi

B∑
j=1

I−ijn+wiO
−
in

]]
+

N∑
n=N−F+1

pn

[
B∑
i=1

B∑
j=1

tijτijn

]
(13)

s.t. xi0 ≤ ki, ∀i ∈ B, (14)

βijn = ξijn − I−ijn, ∀i, j ∈ B,∀n ∈ N \ {0}, (15)

I+in −
B∑
j=1

I−ijn = xi0 −
B∑
j=1

ξijn, ∀i ∈ B,∀n ∈ N \ {0}, (16)

O+
in −O−in = ki − xi0 +

B∑
j=1

βijn −
B∑
j=1

βjin,∀i ∈ B,∀n ∈ N \ {0}, (17)

B∑
j=1

ρijn = O−in, ∀i ∈ B,∀n ∈ N \ {0}, (18)

B∑
j=1

ρjin ≤ O+
in, ∀i ∈ B,∀n ∈ N \ {0}, (19)

T+
in − T−in = ki −O+

in +
B∑
j=1

ρjin − xi0, ∀i ∈ B,∀n ∈ F , (20)

B∑
j=1

τijn = T+
in, ∀i ∈ B,∀n ∈ F , (21)

B∑
j=1

τjin = T−in, ∀i ∈ B,∀n ∈ F , (22)

xi0 ∈ Z+, ∀i ∈ B, (23)

τijn, T
+
in, T

−
in ∈ Z+, ∀i, j ∈ B,∀n ∈ F , (24)

βijn, ρijn, I
+
in, I

−
ijn, O

+
in, O

−
in ∈ Z+, ∀i, j ∈ B,∀n ∈ N \ {0}. (25)

The objective function (13) is the minimization of the expected total
cost, given by the sum of the procurement cost for the assignment of bikes
to stations at the beginning of the service, the expected stock-out cost for
the shortage, the expected time-waste cost for the overflow and the expected
transshipment cost for the transshipped bikes in the last time stage. Con-
straints (14) enforce the assigned bikes at the beginning of the day to be not
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greater than the bike-station capacity. Constraints (15) define the rented
quantities, given by the difference between the stochastic demand and the
shortage. Constraints (16) ensure the balance between surplus and shortage,
while constraints (17) ensure the balance between the residual quantity and
the overflow. Constraints (18) define the sum of all the redirected bikes from
a bike-station equal to its overflow, while constraints (19) guarantee that the
sum of all the redirected bikes to a bike-station cannot exceed its residual
capacity. Constraints (20) ensure the balance between exceeding and failure.
Constraints (21) define the sum of all the transshipped bikes from a bike-
station equal to its exceed, while constraints (22) guarantee that the sum of
all the transshipped bikes to a bike-station is equal to its failure, at the end
of last time period. Finally, constraints (23)-(24)-(25) define the integrality
and non-negativity of the first-stage and recourse variables, respectively.

4. Numerical Results

In this section, we provide numerical results to give an answer to the
questions we stated in the Introduction.

We use AMPL and CPLEX 12.8.0 to formulate and solve the stochastic
programming models. All the computations were run on a 64-bit machine
with 12 GB of RAM and a 3.2 gigahertz processor and all the models pre-
sented are solved to optimality. Summary statistics on the CPU time and
number of MIP iterations required by CPLEX to find an optimal solution
will be reported later.

4.1. Data Analysis and Scenario Generation for the Two-stage Model

We generate a set of instances inspired by the real bike-sharing service
“LaBiGi” in Bergamo (Italy). This service started in May 2013 with 18 bike-
stations. Then, it was expanded in 2015 and now has a total of 22 operational
bike-stations. Let B = {A ,B, . . . ,V } be the set of bike-stations. The mobile
app https://www.atb.bergamo.it/it/mobilita/bike-sharing allows the
user to know in real-time, the number of available slots in all bike-stations
throughout the city. Notice that the number of re-directed bikes ρijs modelled
in Section 3, can be interpreted as an approximation of what the app would
do in reality. Since the models optimize the system, while the app is myopic,
the models are optimistic. We first focus on the following instance:

- Unit procurement cost c = 2 (Euros);
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- Unit stock-out cost vi = 4 (Euros), i ∈ B;

- Unit time-waste cost wi = 8 (Euros), i ∈ B;

- Unit transshipment cost tij = 1 (Euros), i, j ∈ B;

- Bike-station capacity ki, i ∈ B;

where the unit procurement cost c is and the bike-station capacities ki are
set based on the Bergamo case, while the rest are our best guesses. Notice
that the system has recently been updated with a different capacity ki at
each station i. Results based on this case will be discussed in Section 4.10.
However, in order to understand how the probability distribution of rental
demands affect the optimal assignment of bikes and the total cost, we now
keep the capacities of the stations constant and equal to 30, as they were
originally in Bergamo. We generally allow stock-out and time-waste costs to
depend on bike-station (to reflect potential geographical preferences), but in
our example they are all bike-station independent. We deliberately choose a
large value of the time-waste cost w, since we want to penalize the overflow
and consequently the time-costly redirection of bikes carried out by the user
to find the nearest bike-station with an available slot. We assume that the
random variable rental demand ξij between each pair of bike-stations i and j
has a finite number of scenarios (as discussed in Section 3), and the outcomes
are integer and exogenous to the problem. Consequently, its probability dis-
tribution is not influenced by decisions. Several methods are adopted in
the literature for discretizing distributions and generating scenarios. Among
the most common we list: Conditional sampling, sampling from specified
marginals and correlations, moment matching, path-based methods and op-
timal discretization. For a short overview of scenario-generation methods,
see Chapter 4 of King and Wallace [21].

The data provided by the bike-sharing system on the stochastic rental
demand ξij between each pair of bike-stations i and j, are by the month
for the years 2013, 2014 and 2015, where we assume summer from April
to September and winter from October to March. However, since the time
scale of the model is a day, daily rental demands are then estimated by nor-
malizing monthly data by the number of days in a month and rounding to
the nearest integer below. We think this is good enough for our tests, but
are aware that our approximation underestimates the variation. Moreover,
due to the limited size of the available historical data, we compute for each
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origin-destination pair (i, j), the minimum mij and maximum demand Mij,
its expected value E[ξij] = ξ̄ij, its standard deviation σij and we assume
ξij ∈ [mij,Mij]. Since the inverse of the Kaplan-Meier estimate of the cu-
mulative distribution function (also known as the empirical cdf) of the real
rental demand cannot be built, due to the limited amount of available data,
we assume that there are four possible probability distributions: Uniform U ,
Exponential E , Normal N and Log-normal L and scenarios are sampled ac-
cording to a Monte Carlo sampling procedure for each of them. Consequently

we suppose that the four distributions have the same mean ξ̄ij :=
S∑

s=1

ξijs
S

.

For the standard deviation we suppose that, in the case of normal distribu-
tion, its standard deviation σNij is equal to the one derived from historical

data σij :=

√∑S
s=1(ξijs − ξ̄ij)2

S − 1
, while for the other probability distributions

we apply the corresponding definitions as follows:

� σUij =
√

1
12

(Mij −mij)2: standard deviation of the Uniform distribution

U ;

� σEij = ξ̄ij: standard deviation of the Exponential distribution E ;

� ζLij = ln(ξ̄ij) − 1
2

ln(1 + v2
ij): location parameter of the Log-Normal

distribution L;

� ηLij = ln(1 + v2
ij)

1
2 : scale parameter of the Log-Normal distribution L,

with vij the variation coefficient Papoulis [29]. Note that we do not require
the same standard deviation, otherwise we a-priori exclude some probability
distributions. We think such a requirement would be too strong for the prob-
lem we study, especially for new bike-stations for which no data are available.
In the following, we will consider the four aforementioned probability distri-
butions, even if the analysis can be done with any possible distribution which
match the mean ξ̄ij from the data. In section 4.7 we will analyze the value
of knowing in advance the probability distribution of rental demand.

Scenario trees, with increasing cardinality S = 100, 200, . . . , 1000, are
then generated using the four probability distributions listed above according
to Monte Carlo sampling. A discussion on the influence of the size of the
scenario tree with tests on the quality of the solution of the optimization
model is presented in the next section.
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In the following, we will focus our analysis on the winter months only, as
similar results were obtained for the summer months.

4.2. The Number of Scenarios for the Two-stage Model

We first perform an in-sample analysis (see Kaut and Wallace [20]) to
establish the number of scenarios to use in our computational study. The
analysis is carried out by optimally solving the two-stage stochastic program
with scenario trees of increasing size.

200 400 600 800 1,000
1,025

1,050

1,075

1,100

Cardinality of the scenario tree

T
o
ta
l
C
o
st

Exponential

(a)

200 400 600 800 1,000
450

475
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525

Cardinality of the scenario tree

T
o
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l
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st

Uniform Normal Log-normal

(b)

Figure 2: In-sample stability for the expected total cost under the Exponential distribution
(a) and Uniform, Normal and Log-normal distributions (b) of the rental demand.

The results, illustrated in Figure 2, show that the objective function value
is quite stable over the four probability distributions for an increasing number
of scenarios. In the following we use as benchmark scenario trees with 500
scenarios.

We now provide statistics concerning the performance of a state-of-the-
art solver (CPLEX 12.8.0) to find an optimal solution over 20 instances. In
particular, Table 1 reports the CPU time (in seconds) and the number of MIP
iterations required by CPLEX to find an optimal solution of the correspond-
ing two-stage stochastic programming model with its number of binary, inte-
ger, continuous variables and constraints (equalities and inequalities) where
the integrality on the recourse variables ρijs, I

+
is , I

−
ijs, O

+
is, O

−
is, T

+
is , T

−
is , i, j ∈
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B, s ∈ S, have been relaxed because of the integer nature of random demand.
Results are reported for an increasing number of scenarios S and refer to the
adjusted problem after presolve has been applied to the original problem.

Table 1: Summary statistics.

Number of Scenarios 100 300 500 700 900 1000
CPU time (s) 3.53 6.71 93.29 311.672 541.125 757.938
MIP iter. 9251 8115 52253 97350 115570 155553
Binary V. 10952 32805 54472 76197 98091 108784
Integer V. 3323 10137 16912 23460 30353 33757
Continuous V. 122053 366320 610362 854235 1098622 1220519
Eq. Constr. 27453 82520 137362 192035 247222 274519
Ineq. Constr. 2200 6600 11000 15400 19800 22000

4.3. Optimal Assignment of Bikes to Stations

In this section, we aim at answering our first question: How does the
optimal assignment of bikes to stations depend on the probability distribution
of the rental demand?

Table 2 shows the optimal number of bikes x∗i , i.e. the number of bikes
assigned to each bike-station i ∈ B at the beginning of the service, under the
four considered probability distributions, using 500 scenarios.

Table 2: Optimal number of bikes assigned to each bike-station i ∈ B for the four different
probability distributions.

x∗i Station i
A B C D E F G H I J K

U 30 0 2 3 3 11 28 3 6 28 11
E 15 3 10 6 14 26 14 18 18 23 20
N 30 0 2 3 3 12 28 3 6 28 11
L 30 0 2 3 3 11 28 3 6 28 11

x∗i Station i
L M N O P Q R S T U V Total

U 0 2 5 7 16 2 9 12 6 13 6 203
E 0 8 14 19 23 9 23 27 22 25 18 355
N 0 2 5 7 16 3 9 12 6 13 6 205
L 0 2 5 7 16 2 8 12 5 13 5 200

The results show that the optimal solutions under the assumption of Uni-
form, Normal and Log-normal distributions are similar, with a total number
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ranging from 200 to 205 (see last column), while a different behavior is ob-
tained with the Exponential distribution: When we place more under the
former distributions, we place less under the latter, and vice versa. This is
mainly due to the different shape of the Exponential distribution. The aver-
age optimal number of bikes over all the bike-sharing stations is 9 under the
assumptions of Uniform, Normal and Log-normal distributions, while it is 16
bikes under the assumption of the Exponential distribution. Interestingly,
the optimal stochastic solution suggests a fleet size, as the total number of
bikes initially allocated to the stations, to be less than 1/3 of the 660 = 30·22
available slots, for Uniform, Normal and Log-normal distributions while more
than 1/2 for the Exponential. This low “utilization rate” of slots is there to
avoid too high overflow, stock-out and transshipping costs.

4.4. Optimal Expected Total Cost

In this section, we aim at answering our second question: How does the
optimal expected total cost depend on the probability distribution of the
rental demand?

From Figure 2 we can see that the highest expected total costs are ob-
tained under the assumption of the Exponential distribution, while the lowest
is by the Uniform distribution. This is justified by the different values of the
standard deviations of the two distributions and the different shape of the
Exponential distribution.

We now carry out a systematic computational experiment to test how
the optimal solution of the two-stage model depends on the unit costs. The
obtained results are reported in Tables 3 and 4, which respectively show the
optimal total cost and, for the sake of completeness, the optimal first-stage
solution for the bike-stations A , B, J and P (the ones with the highest
rental demand), under the four probability distributions.

The results show that the optimal first-stage decisions and the corre-
sponding expected total cost vary depending on the ratio between the costs
c, v, w and t, on the demand distribution and the capacity of the bike-stations.
In particular, for instance 3, the optimal inventory levels are set to the min-
imum realization of the demand, while instance 8 sets them to the available
capacity (see Table 4).

4.5. Analyzing the Value of the Stochastic Solution

In this section, we aim at answering to our third question: What is the
value of the stochastic solution? This is done by considering the well known
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Table 3: Expected total cost for a given combination of unit cost parameters under the
assumption of Uniform U , Exponential E , Normal N and Log-normal L probability dis-
tributions.

Total cost
Instance Parameters U E N L

1 c = v = w = t = 5 1057 2015 1068 1036
2 c = w = t = 5, v = 5c 1400 3544 1436 1424
3 c = v = t = 5, w = 5c 1057 2015 1068 1037
4 c = v = w = 5, t = 5c 1057 2015 1068 1037
5 c = 5, v = 2c, w = 3c, t = 1

5c 1207 2637 1228 1198
6 c = 5, v = 3c, w = 2c, t = 1

5c 1270 2953 1298 1274
7 t = 5, v = 2t, w = 3t, c = 1

5 t 382 1215 395 396
8 t = 5, v = 3t, w = 2t, c = 1

5 t 412 1398 425 432

Table 4: Optimal number of bikes to assign to bike-stations A , B, J and P for a given
combination of unit cost parameters under the assumption of Uniform U , Exponential E ,
Normal N and Log-normal L probability distributions.

x∗

U E N L
Instance A G J P A G J P A G J P A G J P

1 18 17 17 8 4 3 6 6 16 17 14 9 4 4 3 4
2 30 30 30 18 19 20 30 30 30 30 30 19 30 30 30 18
3 10 11 12 9 4 3 6 4 8 6 6 4 10 13 14 9
4 12 15 15 9 4 3 6 6 11 13 14 9 12 18 16 9
5 30 28 29 17 16 15 24 25 30 28 28 17 30 28 28 16
6 30 28 30 18 18 17 28 28 30 29 29 18 30 29 29 17
7 30 29 30 19 19 18 28 28 30 30 29 19 30 29 29 18
8 30 30 30 19 21 22 30 30 30 30 30 20 30 30 30 19

the Value of the Stochastic Solution (V SS) (see Birge and Louveaux [3]).
V SS indicates the expected gain from solving the stochastic recourse prob-
lem (RP ) rather than its deterministic counterpart (in which the random
parameters are replaced with their expected values) and it is defined as fol-
lows:

V SS = EEV −RP, (26)

where EEV denotes the solution value of the RP model, having the first-
stage decision variables fixed at the optimal values obtained by setting the
coefficients equal to their expected values.

Table 5 shows the optimal number of bikes assigned to the bike-stations
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under the expected value demand ξ̄ij, i, j ∈ B. We get 105 bikes (see last col-
umn), which is not enough to deal with the high demand scenarios, yielding
a loss of approximately 30% of the total cost in a stochastic setting (see V SS
values in Table 6), with the largest loss (37.7%) in the case of the Exponential
distribution.

Table 5: Expected Value Solution x̄i(ξ̄), i ∈ B.

Station i
A B C D E F G H I J K

x̄i(ξ̄) 21 0 1 2 1 2 22 1 0 19 4

Station i
L M N O P Q R S T U V Total

x̄i(ξ̄) 0 1 2 2 10 0 3 5 1 6 2 105

Table 6: V SS and the corresponding losses, under the assumption of Uniform U , Expo-
nential E , Normal N and Log-normal L probability distributions of the rental demand.

Distribution
U E N L

V SS 145 406 144 140
V SS
RP · 100 29.8 37.7 29.0 28.7

4.6. Analyzing the Quality of the Expected Value Solution

In this section, we aim at answering our fourth question: What is the
quality of the expected value solution in the stochastic setting? An approach
to answer this question has been proposed in Maggioni and Wallace [28] and
extended in Crainic et al. [6]. Starting from the solution of the expected
value problem, it assesses whether 1) the deterministic model produced the
right non-zero variables, but possibly was off on the values of these vari-
ables; and 2) the deterministic solution is upgradable to become good (if
not optimal) in the stochastic setting. The resulting measures, called Loss
Using the Skeleton Solution (LUSS) and the Loss of Upgrading the Deter-
ministic Solution (LUDS) are obtained by restricting the values of the first
stage variables based on the solution of the expected-value problem. The
former is defined as the difference between the Expected Skeleton Solution
Value ESSV , obtained by fixing, in the stochastic program, the non-basic
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variables of the first stage expected value solution, and the objective value
of the stochastic problem RP , given by

LUSS = ESSV −RP. (27)

The latter measure LUDS, is defined as the difference of the Expected
Input Value EIV obtained by solving a restricted stochastic model by using
as a lower bound on all variables their corresponding values in the expected
value solution, and the objective value of the stochastic problem RP , given
by

LUDS = EIV −RP. (28)

Table 7 shows, for the four probability distributions, the value of LUSS
and of LUDS, and the corresponding percentage losses. The results show

Table 7: LUSS, LUDS, and the corresponding losses, under the assumption of Uniform
U , Exponential E , Normal N and Log-normal L probability distributions.

Distribution
U E N L

LUSS 16 56 14 66
LUSS
RP · 100 3.3 5.2 2.8 3.3

LUDS 0 12 0 1
LUDS
RP · 100 0.0 1.0 0.0 0.0

that LUSS is positive under all the four considered distributions: This means
that the deterministic solution has a somewhat bad structure (skeleton solu-
tion), allocating bikes in a lower number of stations than in the here-and-now
solution. More specifically, the expected value solution does not considers B,
I , L , Q (see Table 5), while the stochastic one only disregards stations B
(with exception of the Exponential distribution) and L (see Table 2). This
means that the expected value solution is bad in a stochastic setting, as it
chooses the wrong stations where to allocate bikes and, at the same time, it
allocates the wrong number of bikes in the selected stations.

From the last two lines of Table 7, we finally observe that the Expected
Value Solution is upgradeable to become good in the stochastic setting only
for the Uniform and Normal distributions, since in these two cases we have
LUDS = 0. This means that, for these two distributions, the number of bikes
allocated by the deterministic solution in all the stations, can be considered
as a lower bound for the optimal stochastic solution.
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4.7. Analyzing the Value of Ambiguity

In this section, we aim at answering our fifth question: What is the
value of knowing in advance the probability distribution of the rental demand
(Value of Ambiguity)?

A critical assumption of the stochastic programming approach, is that
the probability distribution of uncertain parameters, in this case the rental
demand, is known. However, such an assumption can be too strong in the
problem we study, especially for new bike-stations for which no data are
available. In this case, the decision-maker has to choose one distribution,
without having information on its true shape, to solve the model. Therefore,
the optimal solution obtained on the basis of this guessed probability distri-
bution can perform poorly under the true demand distribution, when it will
be revealed. To handle this case, in Section 4.1, we have assumed to know
just the support and the first moment of the probability distribution. Af-
ter selecting one probability distribution G (guessed), we optimally solve the
model using G with the parameters we know. Let x∗G be the corresponding
optimal value of the first-stage variables. Then, we compute the total cost of
x∗G by using the probability distribution R (the right one) that will actually
happen. We call this value Out-of-Distribution value (OD), while RPR is the
optimal cost of solving the model with the right probability distribution (for
the definition and more details see Bertazzi et al. [2]).

Table 8 reports the OD values and the percentage losses of the Value of
the Right Distribution (VRD), where V RD is computed as follows:

VRD = OD −RPR,

which is the loss from solving the two-stage stochastic program using a so-
lution obtained assuming a guessed probability distribution G instead of the
right oneR. VRD is a measure of the importance of ambiguity in the problem
considered. Results show that the ambiguity plays an important role only
when the Exponential distribution is considered as possible candidate to be
both right and guessed. The V RD is negligible for all the other possible mis-
matches between distributions, since the corresponding optimal first-stage
solutions are similar (see Table 2). We therefore see that the uncertainty
of the future, plays a crucial role for determining the Value of the Right
Distribution.

4.8. Testing the role of the standard deviation

In this section we aim to answer to our sixth question: How does the op-
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Table 8: Out-of-Distribution (OD) values and Value-of-the-Right-Distribution (VRD), un-
der the assumption of Uniform U , Exponential E , Normal N and Log-normal L probability
distributions.

. G
OD U E N L

(R = U) - 877 486 487
(R = E) 1348 - 1344 1355
(R = N ) 495 877 - 496
(R = L) 489 879 490 -

. G
V RD
RP · 100 U E N L
(R = U) - 80.45 0 0.20
(R = E) 25.27 - 24.90 25.92
(R = N ) 0 76.45 - 0
(R = L) 0.20 80.12 0.40 -

timal assignment of bikes to stations and total costs depend on the standard
deviation of the rental demand? We do not consider changing the standard
deviation of the Exponential and Uniform distributions since this would im-
ply changing also the mean of the Exponential distribution and the support
of the Uniform distribution. As example we report in Table 9 the optimal
number of bikes x∗i , i.e., the number of bikes assigned to each bike-station
i ∈ B at the beginning of the service, under the Normal probability distribu-
tion having standard deviation modified by ∆σNij = +20% and ∆σNij = −20%
relative to the one derived from the historical data, σij. Results show that
increasing the standard deviation by 20% implies assigning only one bike
more in station E with an increased cost of 2.81% (511.45 instead of 497),
while decreasing the standard deviation by 20% implies assigning only one
bike less in station H with a decreased cost of 2.75% (483.30 instead of
497). From the test we can conclude that if we know the support and the
probability distribution of the rental demand, it is not so crucial to have an
exact estimate of the standard deviation to find a good fleet size.

Table 9: Optimal number of bikes assigned to each bike-station i ∈ B for the Normal
probability distribution and standard deviation modified of ∆σNij = +20% and ∆σNij =
−20% from σij .

x∗i Station i
∆σNij A B C D E F G H I J K
+20% 30 0 2 3 4 12 28 3 6 28 11
−20% 30 0 2 3 3 12 28 2 6 28 11
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x∗i Station i Total Cost
∆σNij L M N O P Q R S T U V Total

+20% 0 2 5 7 16 3 9 12 6 13 6 206 511.45
−20% 0 2 5 7 16 3 9 12 6 13 6 204 483.30

4.9. Solving the Multistage Stochastic Programming Model

In this section we aim to answer our seventh question: What is the value
of the solution obtained by the two-stage stochastic optimization model with
respect to the one from the multistage one? In other words, we test the effect
of adding several stages (i.e., stages with branching) on the quality and cost
of the first-stage solution.

In the multistage setting, the day is split into three time periods: From
6 am to 12 noon, from 12 noon to 6 pm and from 6 pm to midnight, while
transshipment operations take place from midnight to 6 am. The demand in
the second period is assumed to be larger than in the first and in the third, but
the sum of the three corresponds to the daily demand of the corresponding
scenario considered for the two-stage model. Four-stages scenario trees with
increasing and constant branching factors (5 to 10) among periods have been
built, for a total number of scenarios from S = 5 × 5 × 5 = 125 to S =
10× 10× 10 = 1000. As for the two-stage case, in-sample stability has been
tested, identifying the minimum number of scenarios needed in order to get
stable results in terms of total costs. We ended up with S = 512 scenarios (see
Figure 3). We declare the four-stage scenario tree with S = 512 = 8× 8× 8
scenarios and N = 585 nodes, to be the true representation of the real world
and use it as a benchmark to compare the solution obtained using the two-
stage scenario tree described in Section 4.2.

As for the two-stage case we now provide statistics concerning the per-
formance of CPLEX 12.8.0 to find an optimal solution over 20 instances.
Table 10 reports the CPU time (in seconds) and the number of MIP itera-
tions required by CPLEX to find an optimal solution of the corresponding
multistage stochastic programming model with its number of binary, integer,
continuous variables and constraints. Results refer to the adjusted problem
after presolve has been applied to the original problem. As we see CPU times
are not significant in any of the cases.

Comparing Tables 2 and 11, we observe that the optimal number of bikes
to assign to each bike-station in the multistage setting (see Table 11), are
approximately 2/3 of what we obtained in the two-stage setting (see Table
2) in the case of Uniform, Normal and Log-normal distributions, while a
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Figure 3: In-sample stability for the expected total cost of the four-stage problem under
the assumption of (a) Exponential and (b) Uniform, Normal and Log-normal probability
distributions of rental demand.

Table 10: Summary statistics.

Number of Scenarios 125 216 343 512
CPU time (s) 1.96 3.57 6.48 9.67
MIP iter. 3553 5059 6931 9700
Binary V. 6171 9812 14639 20842
Integer V. 136443 230973 361498 533942
Continuous V. 22802 37879 58413 85370
Eq. Constr. 25552 42631 65959 96634
Ineq. Constr. 3410 5676 8778 12848

slightly larger number of bikes is obtained in case of Exponential distribu-
tion (in total 384 instead of 355). The results can be justified by the fact the
multistage model allows for more flexibility having more stages and conse-
quently more recourse decisions: Instead of assigning a large and costly (in
terms of procurement cost) number of bikes at the beginning of the service,
uncertain demand can be satisfied through renting and redirecting bikes over
the day, and finally transshipping them over the night, without incurring in
the risk of paying larger stock-out costs. The same considerations apply to
the total costs of the multistage model which is 2/3 of the two-stage one
for the former distributions, while slightly larger for the Exponential one.
However, we have to remember that these are in-sample objective values and

24



Table 11: Optimal number x∗i0 of bikes to place in each bike-station i ∈ B at the beginning
of the service, as solution of the multistage stochastic model.

x∗i0 Station i
A B C D E F G H I J K

U 13 0 1 2 2 8 10 2 3 12 7
E 25 2 12 7 15 27 18 20 19 28 22
N 16 0 2 2 4 9 14 3 6 16 9
L 14 0 2 2 3 9 13 2 6 15 7

x∗i0 Station i
L M N O P Q R S T U V Total

U 0 1 3 5 9 2 6 9 5 8 4 112
E 0 8 15 19 25 9 25 28 22 20 18 384
N 0 2 5 7 12 3 7 9 5 10 6 147
L 0 2 5 7 11 2 7 10 4 9 6 136

the true costs of the solutions, the out-of-sample objective values over the
four considered distributions, are likely to be higher. To see how much, we
can solve the multistage stochastic model and the first-stage variables fixed
to the solution of the two-stage model. We indicate with VMS the Value of
the Multistage Solution, which represents the expected gain from solving the
stochastic multistage problem (MRP) instead of the two-stage one, and it is
defined as follows:

VMS := E2RP −MRP, (29)

where E2RP denotes the solution value of the MRP model, having the first-
stage decision variables fixed at the optimal values obtained using the two-
stage model. Table 12 shows that the large number of assigned bikes by the
two-stage model yields a loss in a multistage setting, of approx 30% in the
case of Normal and Log-normal distribution, and of 57.57% for the Uniform
distribution, paying for a larger and unnecessary procurement cost. On the
other hand, in case of an Exponential distribution, the optimal two-stage
allocation performs well in a multistage setting, being able to face the high
demand standard deviation, because of the large number of bikes allocated
at the beginning of the day.

4.10. Solving the case of different capacity at different stations

In this section we aim at answering to our eighth question: What is the
effect of letting bike stations have different capacities? Table 13 shows the
number of available docks at the bike-sharing service “LaBiGi” after a recent
considerable reduction from a total number of 660 to only 283 available docks.
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Table 12: VMS and the corresponding losses, under the assumption of Uniform U , Expo-
nential E , Normal N and Log-normal L probability distributions of the rental demand.

Distribution
U E N L

VMS 157.28 29.19 108.85 111.54
VMS
RP · 100 57.57 2.55 29.46 31.76

Table 13: Capacity ki of each bike-station i ∈ B.

Station i
A B C D E F G H I J K

ki 22 10 10 17 19 12 20 8 8 20 10

Station i
L M N O P Q R S T U V Total

ki 19 8 10 10 10 18 10 8 12 12 10 283

Optimal number of bikes at the beginning of the service, under the four
considered probability distributions, in the two-stage and the multistage set-
ting are shown in Tables 14 and 15 respectively.

From Table 14 we observe that the optimal two-stage solutions in the
cases of Normal, Uniform and Log-Normal distributions, suggest to saturate
the capacities of stations A , G ,J ,K ,P,S ,U , while for all other stations
almost the same solutions as in Table 2 are obtained (the case with ki = 30).
This is not the case for the Exponential distribution where the capacities are
saturated only in stations J ,K ,P,S ,U , while for all the other stations a
lower number of bikes are allocated compared to the case of equal capacities.
The results show that the optimal solutions under the assumption of Uni-
form, Normal and Log-normal distributions are similar, with a total number
ranging from 163 to 168, while 208 with the Exponential distribution. As
observed before in the case of constant capacity, this is mainly due to the
different shape of the Exponential distribution. The average optimal num-
ber of bikes over all the bike-sharing stations is 7 under the assumptions of
Uniform, Normal and Log-normal distributions, while it is 9 bikes under the
assumption of the Exponential distribution. The optimal stochastic solution
suggests a fleet size, to be around 60% of the 283 available slots, for Uniform,
Normal and Log-normal distributions while 73% for the Exponential. This
avoids too high overflow, stock-out and transshipping costs. Besides, the re-
duction in the number of available docks from 660 to 283 implies an increase
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in costs of 10% for Uniform, Normal and Log-normal distributions and 15%
for Exponential because of larger overflow, stock-out and transshipping costs.

The optimal multistage solutions (see Table 15) suggest not to saturate
any available station and to allocate a lower number of bikes compared to the
case of constant capacity (see Table 11). Comparing Tables 14 and 15, we
observe that the optimal number of bikes to assign to each bike-station in the
multistage setting are approximately 60−80% of what we obtained in the two-
stage setting for the case of Uniform, Normal and Log-normal distributions,
while approximately 97.5% in the case of the Exponential distribution (in
total 203 instead of 208). The results can be again justified by the fact
the multistage model allows us for more flexibility having more stages and
consequently more recourse decisions: Instead of assigning a large and costly
(in terms of procurement cost) number of bikes at the beginning of the service,
uncertain demand can be satisfied through renting and redirecting bikes over
the day, and finally transshipping them over the night, without incurring in
the risk of paying larger stock-out costs. The same considerations apply to
the total costs of the multistage model, which is 50 − 70% of the two-stage
one for the former distributions, while higher for the Exponential one.

Table 14: Optimal number of bikes assigned to each bike-station i ∈ B for the four different
probability distributions obtained solving the two-stage stochastic program.

x∗i Station i
A B C D E F G H I J K

U 22 0 2 3 3 11 20 3 6 20 10
E 14 2 9 5 12 12 12 8 8 20 10
N 22 0 2 3 3 11 20 3 6 20 10
L 22 0 2 3 3 11 20 3 6 20 10

x∗i Station i Total Cost
L M N O P Q R S T U V Total

U 0 2 5 7 10 2 9 8 6 12 6 167 535.70
E 0 6 10 10 10 8 10 8 12 12 10 208 1238.762
N 0 2 4 7 10 2 8 8 5 12 5 163 549.56
L 0 2 5 7 10 3 9 8 6 12 6 168 536.34

4.11. A comparison with the implemented system

We now compare how the plan prescribed by the stochastic program
performs relative to what was the initial allocation plan in the actual system.
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Table 15: Optimal number of bikes assigned to each bike-station i ∈ B for the four different
probability distributions obtained solving the four-stage stochastic program.

x∗i0 Station i
A B C D E F G H I J K

U 13 0 1 2 2 7 11 2 3 13 7
E 20 2 10 7 14 10 14 7 8 20 9
N 16 0 2 2 3 8 14 3 6 16 7
L 14 0 2 2 3 9 13 2 6 15 7

x∗i0 Station i Total Cost
L M N O P Q R S T U V Total

U 0 1 3 5 8 3 6 7 5 7 4 110 273.625
E 0 7 8 7 9 9 7 8 12 5 10 203 1429.74
N 0 2 5 8 8 3 7 6 5 9 6 136 385.15
L 0 2 5 7 9 2 6 7 4 9 6 130 362.14

We derived the initial allocation of bikes to stations by collecting the number
of bikes at each station at 4 a.m., for each day of the considered months.
Table 16 shows what we found.

Table 16: Real initial allocation of bikes xREAL
i implemented by the “LaBiGi” bike-sharing

service.

Station i
A B C D E F G H I J K

xREAL
i 11 8 10 9 8 8 14 6 4 9 8

Station i
L M N O P Q R S T U V Total

xREAL
i 14 8 8 7 7 13 9 6 8 7 8 190

Table 17: Losses under the assumption of Uniform U , Exponential E , Normal N and
Log-normal L probability distributions of the rental demand, using the initial allocation
of bikes xREAL implemented by the “LaBiGi” bike-sharing service.

Problem Loss Distribution
U E N L

Two-stage Cost(xREAL)−RP
RP · 100 38.02 10.03 35.76 38.25

Multistage Cost(xREAL)−RP
RP · 100 58.57 8.01 39.30 40.16
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The performance of the allocation plan implemented by “LaBiGi” bike-
sharing service has been evaluated by computing its total cost in an out-of-
sample fashion substituting it in our two-stage and multistage models (see
Table 17 for the four probability distributions). We see that the two-stage
stochastic program allocates fewer bikes (15% fewer) in case of Uniform,
Normal and Log-Normal distributions compared to the implemented system,
yielding a saving of approximately 38% (see Table 17), while a little more
bikes (8% more) in case of Exponential with a saving of 10%. This is due
to lower overflow, stock-out and transshipping costs of our solution than the
“LaBiGi” allocation plan. The multistage stochastic model allocates 72% less
bikes in the case of the Uniform distribution with a saving of approximately
58% (see Table 17), while 40% less in case of the Normal and Log-Normal
distributions with a saving of 40% relative to the actual “LaBiGi” service.
This is again due to the higher flexibility of the multistage model having more
recourse decisions over the day avoiding to incur in the risk of paying larger
stock-out costs. As in the two-stage case, under Exponential distribution, the
optimal multistage stochastic programming solution allocates a little more
bikes (6% more) with a saving of 8% to the one in the real system. This can
be explained, as observed before, by the different shape of the Exponential
distribution having larger standard deviation which consequently allocates a
larger number of bikes at the beginning of the day.

It would have been useful to run a simulation on the actual Bergamo
system. But that would require access to data that has not been collected and
stored, namely actual demand data over shorter time periods, not just added
up over a month. Such data could of course be collected in the Bergamo
system, given the properties of the app, and it would allow for a much more
detailed analysis. Also, ambiguities, such as the type of distributions we
are facing, could be removed or reduced. We would recommend that this is
done in the future. But even that would suffer from the classical problem
that occurs almost whenever demand is an issue; What is measured is sales
(satisfied demand) and not actual demand.

It is clear that variation (if not randomness) is higher than what we have
used, given that we distributed the monthly demand evenly across days. We
also lack daily time patterns and dependencies in the demand, resulting from
for example people going into the city center in the morning and back to the
suburbs in the afternoon. Such patterns also increase variation (even if not
randomness) in actual demand. It is therefore fairly reasonable to say that
the real system is more noisy than the one we analyzed.
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Even so, there are some conclusions we can draw. One is that we do
believe that our multistage model, using better data as just indicated, com-
bined with simulation to verify, would help in Bergamo. The optimization
model can pick up patterns that are hard to utilize manually. We can cer-
tainly verify that the reduction in the station capacities was wise, and that
the capacities now are much closer to what they should be. We have also
shown that a deterministic model would definitely not be very useful.

5. Managerial Insights and Conclusions

In this paper we proposed two-stage and multistage stochastic optimiza-
tion models for a bike-sharing problem and tested it on the bike-sharing
system in Bergamo, named “LaBiGi”. The problem we studied allows us to
re-balance the number of bikes at each bike-station at the end of the service,
by transshipping bikes among bike-stations. Doing that, the number of bikes
at the beginning of the service on the next day is equal to the optimal num-
ber of bikes assigned to the bike-stations at the beginning of the service on
the current day. Optimal solutions for the two-stage and multistage models
have been provided under different assumptions of probability distributions
for the rental demand for each origin-destination pair. An analysis of the
optimal solutions obtained by varying the unit cost parameters is performed.

There are some general conclusions that can be drawn from this diverse set
of tests on our case from Bergamo. The first, and probably most important, is
that it is not safe to solve a deterministic model. A stochastic model will have
a larger set of bikes in the system in order to handle variation (more the higher
is the variance) and will also tend to use too few stations. The first issue
is rather classical (see for example Lium et al. [26] for a case from network
design), while the latter will be more problem dependent. Concerning the
fleet size, as the total number of bikes to allocate to the stations, in any
case it should be much less than the available slots for holding bikes; this to
prevent overflow, stock-out and transshipping costs.

We also learn that it might be important to use a multistage model as
that provides a more realistic picture of the reuse of bikes during the day.
Just looking at a two-stage model (and even more a one-stage deterministic
one) loses the dynamics of re-rentals. We also expect that if there are daily
patterns in the rental (to school in the morning, home in the afternoon), this
is even more important. Analyzing this is for later work.
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Future works will take into account correlations and dependencies for
rental demand, based on a larger set of real data, as we are still collecting.
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[12] Erdoğan, G., Battarra, M., Calvo Wolfler, R., 2015. An exact algorithm
for the static rebalancing problem arising in bicycle sharing systems.
European Journal of Operational Research 245, 667–679.
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