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Abstract

We introduce a stochastic multi-stage fixed charge transportation problem,
in which a producer has to satisfy an uncertain demand within a deadline.
At each time period, a fixed transportation cost can be paid to buy a trans-
portation capacity. If the transportation capacity is used, the supplier also
pays an uncertain unit transportation cost. A unit inventory cost is charged
for the unsatisfied demand. The aim is to determine the transportation ca-
pacities to buy and the quantity to send at each time period in order to
minimize the expected total cost. We prove that this problem is NP-hard,
we propose a multi-stage stochastic optimization model formulation, and we
determine optimal policies for particular cases, with deterministic unit trans-
portation costs or demand and zero fixed costs. Furthermore, we provide the
worst–case analysis of the rolling horizon approach, a classical heuristic ap-
proach for solving multi-stage stochastic programming models, applied to
this NP-hard problem and to polynomially solvable particular cases. Worst–
case results show that the rolling horizon approach can be very suboptimal.
We also provide experimental results.
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1. Introduction

The fixed charge transportation problem is a generalization of the classi-
cal transportation problem, where the transportation cost function from each
source to each sink is composed of a fixed value and a variable value propor-
tional to the quantity of the shipment. It has been studied in the past and in
the last years (see [17], [22], [1], [32], [2] and [37] for exact algorithms, [20],
[36] and [8] for heuristic algorithms, see [29], [3] and [41] for cases with uncer-
tain variables, see [11] for an extension of this problem with piecewise linear
transportation costs and [33] for an application of this problem to service
network design). It has several practical applications, such as distribution,
transportation, scheduling, location. Specifically, allocation of launch vehi-
cles to space missions, solid-waste management, process selection, teacher
assignment. Moreover, it is applicable for e-commerce companies such as
Amazon, Alibaba, eBay, Rakuten, Zalando, Groupon etc, which over the
past years, have transformed how people buy and sell online. The Internet
provides a fast and easy way for people to purchase things without visiting
an actual store. In Europe, the percentage of turnover on e-sales in 2014 rose
17% of the total turnover of enterprises with 10 or more employees, and this
percentage increases with the size of the company. At the same time, new
challenges arise in the e-commerce supply chain management due to demand
variations in time and higher requirements in delivery services. As a result,
a new optimization problem has to be addressed. This problem is by na-
ture stochastic and dynamic like the one addressed in this paper, in which a
producer has to ship an uncertain demand to a customer within a deadline.
We assume that transportation is outsourced, as in [7], [12], [13], [35] and
[43]. Combinatorial auctions are typically used in transportation procure-
ment to determine the best offer of transportation services (see [40]). We
assume that, for each time period, the transportation company offering the
best fixed transportation cost for a given transportation capacity, is known.
If the transportation capacity is used, the supplier also pays an uncertain
unit transportation cost with given probability distribution. A unit inven-
tory cost is charged for the quantity that remains to be sent at the end of
the time period. The aim is to determine the transportation capacities to
buy and the quantities to ship at each time period in order to minimize
the expected total cost. The deterministic counterpart of this problem can
be viewed as the Single-sink fixed charge transportation problem studied in
[19], [16], [10]. In fact, each time period can be viewed as a different source
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from which a quantity can be sent to the sink. However, at each time pe-
riod, we have to pay a unit backordering cost for the quantity not already
sent. A typical application for this problem is in long-haul transportation,
where containers or vehicles are rent to send products from one supplier to
a customer located in a different country.

The main contributions and research questions of the paper are as follows:

� to present a new problem, namely a stochastic multi-stage fixed charged
transportation problem;

� to formulate a new multi-stage mixed-integer stochastic optimization
model for this problem;

� to prove the computational complexity analysis of this problem;

� to prove worst-case performance bounds for the classical rolling horizon
approach by considering a sequence of multi-stage stochastic subprob-
lems with reduced time horizon;

� to provide extensive numerical experiments with the aim of understand-
ing:

1 the maximum dimension of the multi-stage stochastic program-
ming models, in terms of stages, that can be solved by a state-of-
the-art solver;

2 how sensitive the optimal policies and the optimal total cost are
with respect to the reduced time horizon;

3 the average performance of the rolling horizon approach in a given
set of instances, compared to the worst-case performance bounds.

More specifically, we first formulate a multi-stage mixed-integer stochastic
programming model (see [5] and [14] for a brief review of history and achieve-
ments of stochastic programming and for selected modeling issues concern-
ing applications of multi-stage stochastic programs). Multi-stage stochastic
mixed integer linear programs are among the most challenging optimization
problems combining stochastic programs and discrete optimization problems
(see [23, 38, 39, 34, 21, 31] for some major results in this area). Exact solu-
tion methods are in general based on branch and bound type algorithms or
branch and price methods, see [26]. Bounds and approximations for such a
class of problems are provided in [27, 28, 30].
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After proving that this problem is NP-hard, we design exact polynomial
time algorithms for the solution of two particular cases, having deterministic
unit transportation cost or demand. Our main aim is to provide the worst–
case analysis of the classical rolling horizon approach, a heuristic approach
frequently used to solve multi-stage stochastic programming models. In this
approach, a policy is computed by optimally solving a sequence of stochastic
programming subproblems having a reduced time horizon. At each iteration,
only the value of the first-stage variables is captured (we refer to [25], [24],
[18], [42], for applications of this approach to different problems, to [9] for a
classified bibliography of the literature and to [4] for the choice of the time
horizon, stages, methods for generating scenario trees). Since in most of
the cases the optimal policy of a multi-stage stochastic program cannot be
computed, an evaluation of the performance of the rolling horizon approach
with respect to the optimal policy is missing in the literature.

Worst-case analysis (see [15]) is a useful tool to give this comparison in
the worst case and, to the best of our knowledge, it has never been applied
to the rolling horizon approach. This analysis computes the value of the
ratio between the total cost of the heuristic approach and the optimal total
cost, in the worst case. Upper bounds on the total cost provided by the
heuristic approach and lower bounds on the optimal total cost are used to
prove the worst-case performance bound, that holds for any instance of the
problem. Then, a worst-case instance, or a sequence of worst-case instances,
are provided to show that the bound is tight, i.e. it is not overestimated.
More formally, a heuristic approach H, which gives a solution whose cost is
zH(I) on an instance I for which the optimal cost is z∗(I), has a worst–case

performance bound δ if zH(I)
z∗(I)

≤ δ, for any instance I. The ratio δ is tight

if, for any δ′ < δ, an instance I ′ exists for which zH(I′)
z∗(I′)

> δ′. Finally, we
provide a systematic computational experiment that allows us to show the
maximum dimension of the instances (in terms of number of stages) that
can be solved by using a state-of-the-art solver, the sensitivity of the optimal
total cost of the stochastic programming models solved at each iteration of
the rolling horizon approach with respect to increasing values of the reduced
time horizon, and finally, the average performance of the rolling horizon
approach in a given set of problem instances.

The paper is organized as follows. In Section 2 the stochastic fixed charge
transportation problem we study is formally described. In Section 3 a multi-
stage stochastic programming model is formulated. In Section 4 we prove

4



that this problem is NP-hard and provide exact polynomial time algorithms
for the solution of the two particular cases with deterministic demand or
unit transportation costs. In Section 5, the worst-case analysis of the rolling
horizon approach is provided. In Section 6 the computational results are
shown. Finally, in Section 7, we conclude the paper.

2. Problem Description

A producer has to ship an uncertain demand to a customer within a dead-
line H. The demand is composed of an uncertain number of units L, that is
a random variable having discrete probability distribution L defined over the
support U1 = {Lmin, . . . , Lmax}, where 0 < Lmin ≤ Lmax. A shipment can
be performed at any of the discrete time periods t ∈ T = {0, 1, . . . , H − 1},
paying a fixed transportation cost Qt to buy a transportation capacity Kt

and an uncertain unit transportation cost Pt. The fixed transportation cost
Qt is given. The unit transportation cost is described by a discrete ran-
dom variable having probability distributions Pt defined over the support
U2 = {m2, . . . ,M2}, where 0 < m2 ≤ M2. We assume that the probability
distributions Pt, t ∈ T , and L are stage independent and mutually indepen-
dent. The realization of the random variables in each time period is available
at the end of the time period. A unit inventory cost h is paid for the quantity
that remains to be sent at the end of time t. The aim is to determine, for
each time period t ∈ T , whether to buy the transportation service or not and
the quantity of the shipment, in order to minimize the expected total cost.

3. A Multi-stage Stochastic Programming Formulation

In this section, we present a multi-stage stochastic programming formu-
lation of the problem (see [6]). If we assume that the transportation cost
PH−1 := (P0, . . . , Pt, . . . , PH−1) and demand L are random parameters evolv-
ing as discrete-time stochastic processes with finite and discrete support, then
the information structure can be described in the form of a scenario tree. At
each stage t, there is a discrete number of atoms (nodes), where a specific
realization of the uncertain cost Pt and of the demand L takes place. We
assume that the information on the uncertain demand will be available after
the first period. There are H + 1 levels (stages) in the tree, that correspond
to specific times. Each node, except the root, is connected to a unique node
at stage t − 1, called the ancestor node, and to nodes at stage t + 1, called
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the successors ones. A scenario ω is a path through nodes from the root
node to a leave node. We indicate with Ω the set of scenarios and with p(ω)
the probability of scenario ω. Let Pt(ω) be the history of the ω-realization,
ω ∈ Ω, of the transportation costs up to stage t. We denote with L(ω), the
possible realizations of the demand to be shipped within the deadline H in
scenario ω ∈ Ω.
Let us now define the following notation:

Sets:

Ω = {ω}: set of scenarios

T ′ = {1, . . . , H − 1}: subset of discrete times

Deterministic Parameters:

Kt: transportation capacity offered at time t ∈ T
Qt: fixed transportation cost to buy the capacity Kt at time t ∈ T
h: unit inventory cost

Stochastic Parameters:

Pt(ω): realization of the unit transportation cost at time t ∈ T in
scenario ω ∈ Ω

Pt(ω): the history of the ω-realization of the unit transportation
cost up to stage t

L(ω): demand to be shipped within the deadline H in scenario
ω ∈ Ω

p(ω): probability of scenario ω ∈ Ω

Decision Variables:

y0 ≥ 0: quantity shipped at stage t = 0 at the uncertain cost
P0(ω)

x0 ∈ {0, 1}: 1 if capacity K0 is used at stage 0, 0 otherwise

yt(ω) ≥ 0: quantity shipped at stage t ∈ T ′ in scenario ω

xt(ω) ∈ {0, 1}: 1 if capacity Kt is used at stage t ∈ T ′ in scenario
ω, 0 otherwise.
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The risk-neutral mixed integer linear multi-stage stochastic programming
model is formulated as follows:

min Q0 · x0 +
∑
ω∈Ω

p(ω)

{
P0(ω) · y0+

+
∑
t∈T ′

[
Pt(ω) · yt(ω) +Qt · xt(ω) + h

(
L(ω)−y0−

t−1∑
k=1

yk(ω)

)]} (1)

s.t. y0+
∑

t∈T ′
yt(ω) = L(ω), ω ∈ Ω,

y0 ≤ K0 · x0,

yt(ω) ≤ Kt · xt(ω), t ∈ T ′, ω ∈ Ω,

yt(ω
′)=yt(ω

′′),∀ω′,ω′′ | (Pt(ω
′), L(ω′))=(Pt(ω

′′),L(ω′′)), t ∈ T ′,
y0 ∈ R+,

yt(ω) ∈ R+, t ∈ T ′, ω ∈ Ω,

xt(ω
′)=xt(ω

′′),∀ω′,ω′′ | (Pt(ω
′),L(ω′))=(Pt(ω

′′), L(ω′′)), t ∈ T ′,
x0 ∈ {0, 1} ,
xt(ω) ∈ {0, 1} , t ∈ T ′, ω ∈ Ω.

The first term in the objective function denotes the fixed transportation cost
paid at stage 0, while the second term the expected total cost of paying
the unit transportation cost Pt(ω), the fixed transportation cost Qt and the
inventory cost h in each scenario ω at each stage t ∈ T ′. The first con-
straint guarantees that, for each scenario ω, the total quantity shipped to
the customer within the deadline H is equal to L(ω). The second constraint
guarantees that the quantity y0 that can be sent at stage 0 is not greater
than the transportation capacity K0 when it has been bought, while it is
equal to 0 otherwise. The same is guaranteed for each stage t ∈ T ′ by the
third constraint. The fourth and seventh constraints represent the so-called
non-anticipativity constraints on the decision variables yt and xt. All the
other constraints define the decision variables of the problem. We denote the
optimal total cost of model (1), referred to as Case 1), with z∗.

4. Computational Complexity and Polynomially Solvable Cases

In this section, we prove the computational complexity of model (1) and
provide two polynomially solvable cases.
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Theorem 1. Model (1) is NP–hard.

Proof Consider the set of instances such that the unit transportation cost
is deterministic and equal to 0, the unit inventory cost h = 0 and the demand
is deterministic, say L. Then, model (1) becomes

min
∑
t∈T

Qt · xt

s.t.
∑
t∈T

yt = L,

yt ≤ Kt · xt, t ∈ T,
yt ≥ 0, t ∈ T,
xt ∈ {0, 1} , t ∈ T,

which is equivalent to the following Min Cost 0–1 Knapsack Problem:

min
∑
t∈T

Qt · xt

s.t.
∑
t∈T

Kt · xt ≥ L,

xt ∈ {0, 1}, t ∈ T,

which is known to be NP-hard. �
We now provide two polynomially solvable special cases, under the as-

sumption that the transportation capacity Kt =∞ and the fixed cost Qt = 0.
Similar results can be derived also for cases 2) and 3) with capacity con-
straints (Kt <∞, t ∈ T ) under the assumption that no fixed cost is paid.

4.1. Case 2) Deterministic demand (uncapacitated)

If we assume that the demand is deterministic, i.e. L(ω) = L, ω ∈ Ω,
there are no constraints on the capacities, i.e. Kt = ∞, and the fixed costs
Qt = 0, t ∈ T , then model (1) reduces to the following model:

min
∑
ω∈Ω

p(ω)

{
P0(ω)y0+

∑
t∈T ′

[
Pt(ω) · yt(ω)+h

(
L− y0 −

t−1∑
k=1

yk(ω)

)]}
(2)
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s.t. y0 +
∑
t∈T ′

yt(ω) = L, ω ∈ Ω,

yt(ω
′) = yt(ω

′′), ∀ ω′, ω′′ | Pt(ω
′) = Pt(ω

′′), t ∈ T ′,
y0 ∈ R+,

yt(ω) ∈ R+, t ∈ T ′, ω ∈ Ω.

This case would arise at the operational level, when a supplier has to ship
a known demand to a customer by using external transportation companies,
having to pay an unknown transportation cost.

Theorem 2. The optimal total cost of model (2) is

z∗ = min
t∈T
{E(Pt) + ht}L.

Therefore, an optimal policy can be computed in O(H) time.

Proof We first note that in the two-stage case (H = 1), since the unique
feasible solution is to send the overall quantity L at time 0, the optimal total
cost z∗ of model (2) is E(P0)L and the thesis is verified.

We now prove the theorem by induction on the deadline H.

� (Base Case) We consider the case of a three-stage problem (H = 2).
The model (2) reduces to the following model:

min
∑
ω∈Ω

p(ω) {P0(ω)y0 + P1(ω) · y1(ω) + h (L− y0)}

s.t. y0 + y1(ω) = L, ω ∈ Ω,

y1(ω′) = y1(ω′′),∀ ω′, ω′′ | P1(ω′) = P1(ω′′),

y0 ∈ R+,

y1(ω) ∈ R+, ω ∈ Ω.

From the first type of constraints, we have

y1(ω) = L− y0 ω ∈ Ω,

meaning that y1(ω) is constant, say y1, over all scenarios ω ∈ Ω. There-
fore, the non-anticipativity constraints are unnecessary. Substituting
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y1 = L − y0 in the objective function and taking into account that
y1 ≥ 0, the model reduces to the following model:

min
∑
ω∈Ω

p(ω) {P0(ω)y0 + (L− y0)(P1(ω) + h)}

s.t. y0 ≤ L,

y0 ∈ R+,

which is equivalent to

min (E(P1) + h)L+ (E(P0)− E(P1)− h)y0

s.t. y0 ≤ L,

y0 ∈ R+.

If mint∈{0,1}{E(Pt) + ht} = E(P0) then y∗0 = L and the corresponding
total cost z∗ = E(P0)L; otherwise y∗0 = 0, with total cost z∗ = (E(P1)+
h)L and the thesis is verified. Notice that in this case the stochastic
model corresponds to the (deterministic) expected value model.

(Inductive step) We assume now, as induction hypothesis, that the
thesis is verified for a model with deadline H. We need to prove
that the thesis is also verified for a model with deadline H + 1. If
mint∈{0,1,...,H}{E(Pt)+ht} = mint∈{0,1,...,H−1}{E(Pt)+ht}, the thesis fol-
lows by the induction hypothesis. Otherwise, if mint∈{0,1,...,H}{E(Pt) +
ht} = E(PH) + hH then y∗H(ω) = L, ∀ω ∈ Ω, and the corresponding
total cost z∗ = (E(PH) + hH)L, which again satisfies the thesis. �

4.2. Case 3) Deterministic unit transportation cost (uncapacitated)

If we assume that the unit transportation cost is deterministic, i.e. Pt(ω) =
Pt, ω ∈ Ω, there are no constraints on the capacities, i.e. Kt = ∞, and the
fixed costs Qt = 0, t ∈ T , then the model (1) reduces to the following model:

min
∑
ω∈Ω

p(ω)

{
P0y0+

∑
t∈T ′

[
Pt · yt(ω)+h

(
L(ω)−y0−

t−1∑
k=1

yk(ω)

)]}
(3)

s.t. y0 +
∑
t∈T ′

yt(ω) = L(ω), ω ∈ Ω,

yt(ω
′) = yt(ω

′′), ∀ ω′, ω′′ | L(ω′) = L(ω′′), t ∈ T ′,
y0 ∈ R+,

yt(ω) ∈ R+, t ∈ T ′, ω ∈ Ω.
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This case would arise at a tactical level, when a supplier owns the vehicles
to perform the shipping to the customer, while the demand is unknown.

Theorem 3. The optimal total cost of model (3) is

z∗ =

{
P0 · Lmin + mint∈T ′{Pt + ht}[E(L)− Lmin] if P0 = mint∈T{Pt + ht}
E(L) mint∈T ′{Pt + ht} otherwise.

Therefore, an optimal policy can be computed in O(H) time.

Proof We first note that the two-stage case (H = 1) is infeasible, since the
unique possibility would be to send the stochastic quantity L(ω) at stage
0 for all scenarios ω ∈ Ω, clearly impossible due to the non-anticipativity
constraints which force the solution y0 to be constant for all scenarios. For
this reason we assume H ≥ 2.

As before, we prove the theorem by induction on the deadline H.

� (Base Case) We consider the case of a three stage problem (H = 2).
The model (3) reduces to the following model:

min
∑
ω∈Ω

p(ω) {P0y0 + P1y1(ω) + h (L(ω)− y0)}

s.t. y0 + y1(ω) = L(ω), ω ∈ Ω,

y1(ω′) = y1(ω′′),∀ ω′, ω′′ | L(ω′) = L(ω′′),

y0 ∈ R+

y1(ω) ∈ R+, ω ∈ Ω.

From the first type of constraints, we have

y1(ω) = L(ω)− y0 ω ∈ Ω.

Substituting in the objective function and taking into account that
y1(ω) ≥ 0, the model reduces to the following:

min
∑
ω∈Ω

p(ω) {P0y0 + (P1 + h)(L(ω)− y0)} ,

s.t. y0 ≤ L(ω), ω ∈ Ω,

y0 ∈ R+,
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which is equivalent to

min (P1 + h)E(L) + (P0 − P1 − h)y0

s.t. y0 ≤ Lmin,

y0 ∈ R+.

If mint∈{0,1}{Pt + ht} = P0 then y∗0 = Lmin, y∗1(ω) = L(ω) − Lmin,
ω ∈ Ω, and the corresponding cost z∗ = P0Lmin+(P1 +h)[E(L)−Lmin];
otherwise y∗0 = 0 and y∗1(ω) = L(ω), with cost z∗ = E(L)(P1 + h) and
the thesis is verified.

(Inductive step) We assume now, as induction hypothesis, that the
thesis is verified for a model with deadline H. We need to prove
that the thesis is also verified for a model with deadline H + 1. If
mint∈{0,1,...,H}{Pt + ht} = mint∈{0,1,...,H−1}{Pt + ht}, the thesis follows
by the induction hypothesis. Otherwise, if mint∈{0,1,...,H}{Pt + ht} =
PH +hH then y∗H(ω) = L(ω), ∀ω ∈ Ω, and the corresponding total cost
z∗ = E(L)(PH + hH), which again satisfies the thesis. �

5. Worst-Case Analysis of the Rolling Horizon Approach

In this section, we evaluate the worst-case performance of the classical
rolling horizon approach in solving multi-stage stochastic programs with fi-
nite time horizon. In this heuristic approach, a policy is computed by optimal
solving a sequence of subproblems with less number of consecutive periods.
In particular, in the first step, the (W + 1)-stage stochastic programming
model defined on t = 0, 1, . . . ,W< H is optimally solved and only the values
of the first-stage decision variables x0 and y0 are captured as the decision
x

(W+1)S
0 to buy or not the capacity and the quantity y

(W+1)S
0 to send at

stage 0 in the rolling horizon policy. In the second step, the (W + 1)-stage
stochastic programming model defined on t = 1, 2, . . . ,W + 1 is optimally
solved by setting the demand equal to the residual quantity to be sent, given
by S(ω) = L(ω) − y0. Only the values of the new first-stage variables x1

and y1 are captured as the decision x
(W+1)S
1 (ω) to buy or not the capacity

and the quantity y
(W+1)S
1 (ω) to send on each scenario ω ∈ Ω at stage 1 in

the rolling horizon policy. This process is repeated until stage t = H −W .
After solving the last (W + 1)-stage stochastic programming model, a W -
stage stochastic programming model on t = H −W + 1, H −W + 2, . . . , H,
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is solved. Then, a (W − 1)-stage stochastic programming model on t =
H −W + 2, H −W + 3, . . . , H is solved. The process is repeated until the
2-stage stochastic programming model defined on t = H−1, H is solved (see
Figure 1). In the following, we denote the total cost of the rolling horizon
approach by z(W+1)S.

(a) (b)

(c) (d)

(e) (f)

Figure 1: The rolling horizon approach with W = 2 over H+1 stages. Follow the sequence
(a)-(b)-(c)-(d)-(e)-(f).

We now prove the worst-case performance bound of the rolling horizon
approach. Similar results hold true also for cases 2) and 3) with capacity
constraints (Kt <∞, t ∈ T ) and for reduced time horizon W > 2.

Case 1): stochastic demand and unit transportation cost.

Remember that in this case any 2-stage stochastic programming model
is infeasible. Therefore, we study the worst-case performance of the rolling
horizon approach with W = 2, based on the optimal solution of a sequence
of 3-stage stochastic programming models. The following theorem holds.

Theorem 4. In Case 1), there exists an instance such that z3S

z∗
−→∞.
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Proof Consider the following instance: Deterministic demand L = 1;
deadline H = 4; deterministic unit transportation costs Pt = 0, t ∈ T ; trans-
portation capacities K0 = K1 = K2 = L

2
and K3 = L; fixed transportation

costs Q0 = Q1 = Q2 = 1 and Q3 = ε << 1; unit inventory cost h = ε.
Let us apply the rolling horizon approach with W = 2. In the first

step, the first three-stage stochastic programming model is solved. Since
Q0 + hL

2
< Q1 + hL, x∗0 = 1 and y∗0 = L

2
. Therefore, in the rolling horizon

policy, we have x3S
0 = 1 and y3S

0 = L
2
. In the second step, since Q1 < Q2+hL

2
,

x∗1 = 1 and y∗1 = L
2
. Therefore, in the rolling horizon policy, we have x3S

1 = 1
and y3S

1 = L
2
. All remaining variables are equal to 0. Therefore, the total

cost is z3S = 2 + hL
2

= 2 + ε
2
.

The optimal total cost z∗ is not greater than the cost of the following
solution: x0 = x1(ω) = x2(ω) = 0, x3(ω) = 1 and y0 = y1(ω) = y2(ω) = 0
and y3(ω) = L, having total cost Q3 + 3hL = 4ε.

Therefore, in this instance

z3S

z∗
≥

2 + ε
2

4ε
→∞ for ε→ 0.

�
According to the previous theorem, a finite worst-case bound does not

exist. Consequently, a guarantee on the performance of the rolling horizon
approach is not at our disposal, implying that the rolling horizon approach
can be infinitely suboptimal.

Case 2) deterministic demand (uncapacitated).

In this case, we start studying the rolling horizon approach with W = 1,
where a two-stage stochastic programming model is solved at each iteration,
and then we study the case with W = 2. The following theorem holds.

Theorem 5. In Case 2), z2S

z∗
≤ M2

m2
and the bound is tight.

Proof Since the optimal solution of the two-stage stochastic programming
model solved at stage 0 is to send the overall quantity L at stage 0, the
policy provided by the rolling horizon approach with W = 1 is y2S

0 = L
and y2S

t (ω) = 0, t ∈ T ′, ω ∈ Ω. The corresponding total cost z2S is E(P0)L,
which is not greater than M2L.

Let us now compute the worst-case performance bound. If the optimal
policy is to send L at stage 0, then z∗ = E(P0)L and therefore the worst-case
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performance bound is equal to 1. Otherwise, a lower bound on the optimal
total cost z∗ is m2L. Therefore,

z2S

z∗
≤ M2

m2

.

We now prove that the bound is tight. Consider the following instance:
demand L = 1; deadline H = 2; probability distribution at stage 0: M2 with
probability 1; probability distribution at time 1: m2 with probability 1; unit
inventory cost h = 0.

The total cost of the rolling horizon approach with W = 1 is z2S = M2,
while the optimal total cost z∗ is m2. Therefore, in this instance

z2S

z∗
=
M2

m2

.

�
Consider now the rolling horizon approach with W = 2, where a three-

stage stochastic programming model is solved at each iteration. Let Lt be the
residual quantity to ship at stage t and ΩW

t be the set of scenarios obtained
by considering the probability distributions of the unit transportation costs
at time t and t+ 1. Then, the three-stage stochastic programming model to
solve at each time t = 0, 1, . . . , H − 2 is:

min
∑
ω∈ΩW

t

p(ω) {Pt(ω)yt + Pt+1(ω)yt+1(ω)}+ h (Lt − yt)

s.t. yt + yt+1(ω) = Lt, ω ∈ ΩW
t ,

yt ∈ R+,

yt+1(ω) ∈ R+, ω ∈ ΩW
t .

Note that the non–anticipativity constraints are not needed due to the first
type of constraints, as yt+1(ω) = Lt−yt is constant for all ω ∈ ΩW

t . Replacing
in the objective function and taking into account that yt+1(ω) ≥ 0, this model
can be written as follows:

min
∑
ω∈ΩW

t

p(ω) {Pt(ω)yt + (Pt+1(ω) + h)(Lt − yt)}

s.t. yt ≤ Lt,

yt ∈ R+,
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which is equivalent to

min [E(Pt+1) + h]Lt + [E(Pt)− E(Pt+1)− h]yt

s.t. yt ≤ Lt,

yt ∈ R+.

Therefore, if E(Pt) ≤ E(Pt+1) + h, then y∗t = Lt, otherwise y∗t = 0. This is
the quantity y3S

t (ω) to send at time t on each scenario ω ∈ Ω in the policy
provided by the rolling horizon approach with W = 2. At time H − 1 a
two-stage stochastic programming model is solved. Since a shipment can be
performed only at time H − 1, the optimal solution is simply y∗H−1 = LH−1.
This is the quantity y3S

H−1(ω) to send at time H − 1 on each scenario ω ∈ Ω.
Note that the overall quantity L is shipped in just one time t ∈ T . The
following theorem holds.

Theorem 6. In Case 2), z3S

z∗
≤ M2

m2
and the bound is tight.

Proof We first compute an upper bound on the cost z3S of the rolling
horizon approach with W = 2. Let τ be the time having y∗τ = L when the
three-stage stochastic programing model on τ, τ + 1, τ + 2 is solved (i.e. for
0 ≤ τ < H − 1) or when the two-stage stochastic programming model on
τ, τ + 1 is solved (i.e. for τ = H − 1). In order to have this solution, we need
to have E(P0) > E(P1) + h, E(P1) > E(P2) + h,. . . , E(Pτ−1) > E(Pτ ) + h.
The cost z3S is E(Pτ )L+ hτL, which is not greater than (M2 + hτ)L.

Since the optimal cost is equal to mint∈T {E(Pt) + ht}L (see Theorem
2), we have just two cases. In the first one, the policy is able to find the
optimal cost and therefore the worst-case performance bound is equal to
1. In the second case, since E(P0) > E(P1) + h, E(P1) > E(P2) + h,. . . ,
E(Pτ−1) > E(Pτ )+h, a lower bound on the optimal cost z∗ is (m2+h(τ+1))L,
meaning that L is shipped at minimum cost m2 at time τ + 1. Therefore,

z3S

z∗
≤ (M2 + hτ)L

(m2 + h(τ + 1))L
≤ M2

m2

.

We now prove that the bound is tight. Consider the following instance:
demand L = 1; deadline H = 3; probability distribution at time 0 and at
time 1: M2 with probability 1; probability distribution at time 2: m2 with
probability 1; unit inventory cost h = ε << 1.
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Let us apply the rolling horizon approach with W = 2. In the first
step, the first three-stage stochastic programming model is solved. Since
E(P0) < E(P1) + h, y∗0 = L. Therefore, y3S

0 = L and z3S = M2. The
optimal total cost z∗ is not greater than the cost of the following solution:
y0 = 0, y1(ω) = 0, y2(ω) = L having total cost m2 + 2ε. Therefore, in this
instance

z3S

z∗
≥ M2

m2 + 2ε
→ M2

m2

for ε→ 0.

�

Case 3) deterministic unit transportation cost (uncapacitated).

Remember that in this case any 2-stage stochastic programming model
is infeasible. Therefore, we study the worst-case performance of the rolling
horizon approach with W = 2, based on the optimal solution of a sequence
of 3-stage stochastic programming models. The following theorem holds.

Theorem 7. In Case 3), z3S

z∗
≤ max

{
M2

m2
, H − 1

}
and the bound is tight.

Proof Let us apply the rolling horizon approach with W = 2. In the first
step, the first three-stage stochastic program is solved. If P0 ≤ P1 + h, then
y∗0 = Lmin, otherwise, y∗0 = 0 (see Theorem 3). In the rolling horizon policy,
we capture only the value of the first stage variable y3S

0 . Therefore, we have
y3S

0 = Lmin in the former case and y3S
0 = 0 in the latter case. Then, at each

time 1 ≤ t < H−2, the corresponding three-stage stochastic model is solved
starting from time t. We have two cases:

1. Total quantity sent up to time t − 1 equal to 0, i.e.
∑t−1

τ=0 y
3S
τ = 0: if

Pt ≤ Pt+1 + h then y∗t = Lmin, otherwise y∗t = 0. Since in the rolling
horizon policy we just capture the value of the first-stage variable y3S

t ,
we have y3S

t = Lmin in the former case and y3S
t = 0 in the latter case.

2. Total quantity sent up to time t−1 equal to Lmin, i.e.
∑t−1

τ=0 y
3S
τ = Lmin:

since minω {L(ω)− Lmin} = 0, then y∗t = 0 and therefore y3S
t = 0.

At time H − 2, where the last three-stage stochastic model is solved,
if
∑H−3

τ=0 y
3S
τ = Lmin, then L(ω) − Lmin is shipped at time H − 1 in each

scenario ω. If
∑H−3

τ=0 y
3S
τ = 0, then L(ω) is shipped at time H − 1 in each

scenario ω. Therefore, y3S
H−1 = L(ω)−Lmin and z3S ≤ LminM2 + [M2 + (H −

1)h][E(L) − Lmin] = M2E(L) + (H − 1)h[E(L) − Lmin] in the former case,
while y3S

H−1 = L(ω) and z3S ≤ [M2 + (H − 1)h]E(L). in the latter one.
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Let us now compute a lower bound on the optimal total cost z∗. If
P0 = mint∈T{Pt+ht}, then z∗ ≥ m2Lmin +(m2 +h)[E(L)−Lmin] = m2E(L)+
h[E(L)− Lmin]. Otherwise, z∗ ≥ E(L)(m2 + h) (see Theorem 3).

Therefore, if P0 = mint∈T{Pt + ht}, then

z3S

z∗
≤ M2E(L) + (H − 1)h[E(L)− Lmin]

m2E(L) + h[E(L)− Lmin]
≤ max

{
M2

m2

, H − 1

}
.

Otherwise,

z3S

z∗
≤ [M2 + (H − 1)h]E(L)

(m2 + h)E(L)
≤ max

{
M2

m2

, H − 1

}
.

In order to prove that the bound is tight, consider the following two
instances.
Instance 1: Unit transportation cost Pt = 1

h
for all t ∈ T , where h is the unit

inventory cost assumed to be greater than 0. Let us apply the rolling horizon
approach with W = 2. Since P0 < P1 + h, y∗0 = Lmin. Therefore, y3S

0 = Lmin

and y3S
t (ω) = 0, for t = 1, 2, . . . , H − 2, while y3S

H−1(ω) = L(ω) − Lmin.
Therefore, z3S = 1

h
E(L) + (H − 1)h[E(L) − Lmin]. The optimal total cost

z∗ is not greater than the total cost of the solution in which y0 = Lmin and
y1(ω) = L(ω)−Lmin, that is z∗ ≤ 1

h
E(L) +h[E(L)−Lmin]. Therefore, in this

instance:

z3S

z∗
≥

1
h
E(L) + (H − 1)h[E(L)− Lmin]

1
h
E(L) + h[E(L)− Lmin]

→ H − 1 for h→∞.

Instance 2: Deadline H = 3, unit inventory cost h << 1, Lmin = h, unit
transportation costs P0 = P1 = m2 and P2 = M2. Let us apply the rolling
horizon approach with W = 2. Since P0 < P1 + h, y∗0 = Lmin. Therefore,
y3S

0 = Lmin and y3S
1 = 0, while y3S

2 (ω) = L(ω) − Lmin. Therefore, z3S =
m2Lmin + (M2 + 2h)[E(L) − Lmin]. The optimal total cost z∗ is not greater
than the total cost of the solution in which y0 = 0 and y1(ω) = L(ω), that is
z∗ ≤ (m2 + h)E(L). Therefore, in this instance:

z3S

z∗
≥ m2h+ (M2 + 2h)[E(L)− h]

(m2 + h)E(L)
→ M2

m2

for h→ 0.

�

18



6. Numerical Results

In this section, our aim is three-fold. First, we aim at understanding the
maximum dimension of the multi-stage stochastic programming models in
term of stages that can be solved by a state-of-the-art solver. Second, we
aim at understanding how sensitive are the optimal solutions and the op-
timal total cost of the (W + 1)-stage stochastic programming model with
respect to the reduced time horizon W . Third, we aim at comparing the av-
erage performance of the rolling horizon approach in a given set of instances
with respect to the worst-case performance bounds provided in the previous
section.

We use AMPL environment along CPLEX 12.5.1.0 solver to solve the
stochastic programming models (see [44]). All the computations were run
on a 64-bit machine with 12 GB of RAM and a 2.90 GHz processor. Since
the problem is new, benchmark instances are not available in the literature.
Therefore, we generate a set of instances inspired by a real case problem
provided by an Italian Logistics company named Gamba Logistica srl. In the
problem the supply of an uncertain number of pallets, is performed by tracks
with limited and different capacities in time due to groupage transportation.
The instances are built as follows:

1. Deadline H: up to 8 time periods.

2. Demand L: In the cases 1) and 3), having stochastic demand, the
support of the probability distribution is the set of integer numbers in
the interval [Lmin, Lmax], with Lmin = 8 pallets and Lmax = 12 pallets.
The probability distribution L is given by a Beta distribution B (α, β),
with α = 9 and β = 15, having average demand E(L) = 10.00875104
pallets. In the Case 2), we assume deterministic demand, L = 10
pallets.

3. Transportation capacities Kt (units of pallets): K0 = 6, K1 = 7, K2 =
4, K3 = 6, K4 = 9. These values are such that Kt < L, ∀t ∈ T ,
and

∑
t∈T Kt > L. We note that the capacity Kt corresponds to the

available capacity at time t and not to the capacity of the full track.

4. Unit transportation costs Pt (in Euros): in cases 1) and 2), having
stochastic unit transportation costs, the support of the probability dis-
tribution at each time t ∈ T is the set of integer numbers in the interval
[m2,M2], with m2 = 90 and M2 = 100. The probability distribution Pt
at time t ∈ T is given by a Beta Distribution B (αt, βt). The values of
αt and βt are shown in Table 1. They are selected in such a way that
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the expected values E(Pt) of the probability distributions are decreas-
ing over time, as shown in Table 2. In Case 3), having deterministic
costs, the unit transportation cost Pt at each time t ∈ T is equal to
E(Pt). Notice that the considered unit price corresponds to the ship-
ping of one good pallet with 100-200 Kg weight on a distance up to 500
Km.

5. Fixed transportation costs Qt (in Euros) to buy the full capacity Kt on
the track: they are generated to maintain a predefined ratio θ between
the total variable cost E(Pt) ·Kt and the fixed cost Qt. The instances
are grouped into 2 classes characterized by θ = 0.2 and 0.5. Similar
results were obtained for θ = 0.1, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9, 1. The idea
of a predefined ratio between the total variable cost and the fixed cost
has been inspired by [37].

6. Unit inventory cost h (in Euros): 0, 1, . . . , 10 in Case 1) and specific
intervals, provided in the following, in cases 2) and 3). From a practi-
cal point of view, the considered unit inventory costs approximatively
correspond to the 5% of the value of a pallet of 100 Kg.

t 0 1 2 3 4 5 6 7 8 9
αt 9 15 6 5 9 8 3 5 1 1
βt 10 20 10 10 20 20 10 20 10 20

Table 1: Values of αt and βt in the Beta distribution B (αt, βt)

t 0 1 2 3 4 5 6 7 8 9
E(Pt) 95.23 94.78 94.25 93.83 93.60 93.35 92.80 92.50 91.49 91.13

Table 2: Expected value of the unit transportation costs Pt

Notice that, since the support of the uncertain demand and costs are
discrete, in our approach we solve the full stochastic programming problem
with the complete scenario tree structure. No scenario reduction techniques
are adopted.

6.1. Solving the multi-stage stochastic programming models

In this subsection, we provide statistics concerning the performance of
a state-of-the-art solver (CPLEX) to find an optimal solution of the multi-
stage stochastic programming models formulated in Sections 3 and 4 for the
cases 1), 2) and 3). In particular, Tables 3-4-5 show the number of sim-
plex iterations and the CPU time (in seconds) in the cases 1), 2) and 3),

20



respectively, required by CPLEX to find an optimal solution of the corre-
sponding multi-stage stochastic programming model, when the number of
stages increases.

three-stage four-stage
simplex iterations 0 1373
CPU time (s) 0.23 80.40

Table 3: Case 1) Summary statistics

two-stage three-stage four-stage five-stage six-stage
simplex iterations 0 0 65 488 3033
CPU time (s) 0.01 0.01 0.09 0.65 36.56

Table 4: Case 2) Summary statistics

three- four- five- six- seven- eight- nine-
stage stage stage stage stage stage stage

simplex it. 0 16 52 217 888 2943 9695
CPU time (s) 0.01 0.03 0.06 0.26 1.91 23.68 221.56

Table 5: Case 3) Summary statistics

These results show that in Case 1) an optimal solution of the model
(2), which is NP-hard, can be obtained just up to the four-stage stochastic
programming model, while CPLEX runs out of memory starting from the
five-stage case. Therefore, heuristic algorithms, like the rolling horizon ap-
proach, are required. More interesting, even the polynomially solvable cases
2) and 3) can be solved just up to the six-stage and the nine-stage stochastic
programming models, respectively. This gives additional value to the optimal
policies provided in Section 4, that are able to solve any H-stage stochastic
model in cases 2) and 3) in O(H) time.

6.2. Analysis of the (W + 1)-stage stochastic programming model

Since the previous model, with a reduced time horizon W < H, is em-
bedded in the rolling horizon approach, we now show a sensitivity analysis
of the optimal solution and of the total cost of this model with respect to
the reduced time horizon W . Our aim is to understand for which values of
the unit inventory cost h the optimal value of the first-stage variable and the
total cost of this model are significantly affected by the value of the reduced
time horizon W .
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Case 1): stochastic demand and unit transportation costs.

Table 6 shows the optimal value of the first-stage variable y∗0 and the total
cost in Case 1) for different values of the unit inventory cost h = 0, . . . , 10,
when the predefined ratio θ between the expected total variable cost E(Pt)·Kt

and the fixed costQt is 0.2 and 0.5. We do not show the values of the variables
yt(ω) for t > 0 because they are different in different scenarios ω ∈ Ω. We
just consider the cases with W = 2 (three-stage) and W = 3 (four-stage),
as the optimal solution cannot be computed for larger numbers of stages (as
previously shown in Table 3).

W h y∗0 Total cost (θ = 0.2) Total cost (θ = 0.5)
2 0 5 7166.28 3426.52
2 1 6 7171.15 3431.39
2 2 6 7175.24 3435.48
2 3 6 7179.32 3439.56
2 4 6 7183.41 3443.65
2 5 6 7187.49 3447.73
2 6 6 7191.58 3451.82
2 7 6 7195.66 3455.90
2 8 6 7199.75 3459.99
2 9 6 7203.83 3464.07
2 10 6 7207.92 3468.16
3 0 6 5971.76 2946.92
3 1 6 5979.11 2954.28
3 2 6 5986.46 2961.63
3 3 6 5993.82 2968.98
3 4 6 6001.17 2976.33
3 5 6 6008.52 2983.69
3 6 6 6015.87 2991.04
3 7 6 6023.23 2998.39
3 8 6 6030.58 3005.74
3 9 6 6037.93 3013.10
3 10 6 6045.28 3020.45

Table 6: Case 1) Optimal value of the first-stage variable y∗0 and of the total cost with
θ = 0.2 and 0.5

The results show that, in all cases, the value of the optimal first-stage
variable y∗0 is to send a quantity equal to the capacity K0, with exception of
the case with W = 2 and h = 0 only, in which a lower quantity is sent at
time 0. Moreover, the three-stage (W = 2) stochastic programming model
is significantly more costly than the four-stage one (W = 3). In particular,
the average percent increase of the total cost of the model with W = 2 with
respect to the model with W = 3 is about 19% and 15% for θ = 0.2 and
0.5, respectively. As a managerial insight, this implies that a manager should
consider models with larger time horizon, as they allow to significantly reduce
the costs. These effects are evident especially for low values of the ratio θ.
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Case 2) deterministic demand (uncapacitated).

Table 7 and Figure 2 show the optimal values of the variables y0 and
yt(ω), t > 0, and the total cost in Case 2), having deterministic demand
L = 10, for different values of the inventory cost h, when the reduced time
horizon W increases from 1 to 5.

W h y0, yt(ω) 6= 0, t > 0 Total cost
1 [0,∞) y0 = L, ω = 1, . . . , 11 E(P0) · L = 952.36
2 [0, 0.4511) y1(ω) = L, ω = 1, . . . , 121 (E(P1) + h) · L
2 [0.4511,∞) y0 = L, ω = 1, . . . , 121 E(P0) · L = 952.368
3 [0, 0.4934) y2(ω) = L, ω = 1, . . . , 1331 (E(P2) + 2h) · L
3 [0.4934,∞) y0 = L, ω = 1, . . . , 1331 E(P0) · L = 952.36
4 [0, 0.4167) y3(ω) = L ω = 1, . . . , 14641 (E(P3) + 3h) · L
4 [0.4167, 0.4934) y2(ω) = L ω = 1, . . . , 14641 (E(P2) + 2h) · L
4 [0.4934,∞) y0 = L ω = 1, . . . , 14641 E(P0) · L = 952.36
5 [0, 0.2299) y4(ω) = L ω = 1, . . . , 161051 (E(P4) + 4h) · L
5 [0.0.2299, 0.4167) y3(ω) = L ω = 1, . . . , 161051 (E(P3) + 3h) · L
5 [0.4167, 0.4934) y2(ω) = L ω = 1, . . . , 161051 (E(P2) + 2h) · L
5 [0.4934,∞) y0 = L ω = 1, . . . , 161051 E(P0) · L = 952.36

Table 7: Case 2) Optimal value of the variable y0 and yt(ω), t > 0, and of the total cost
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Figure 2: Case 2) Total cost against increasing values of h for different values of W

The results show that, in the simpler two-stage stochastic programming
model (W = 1), the unique solution, irrespectively to the inventory cost val-
ues, is to ship the total quantity L at time 0, i.e. y0 = L, with a total expected
cost E(P0) · L = 952.368, the highest one (see Table 7). For the three-stage
stochastic programming model (W = 2), y0 = L only for h ≥ 0.4511, while
for h < 0.4511 it is more convenient to wait until the second stage. In the
four-stage stochastic programming model (W = 3), the total quantity L is
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shipped at time 0, i.e. y0 = L, if E(P0) < E(Pt) + ht,∀ t = 1, . . . , H − 1,
which is verified for h ≥ 0.4934. On the contrary, when h < 0.4934, it is
more convenient to wait until the third stage, with a total expected cost
(94.2500 + 2h)L. The demand is never shipped at the second stage since this
requires that E(P1) + h < E(P2) + 2h, which is satisfied for h > 0.5357, but
in such a range the total quantity L is shipped at time 0.

Similarly, in the five-stage stochastic programming model (W = 4), the
total quantity L is shipped at time 0, i.e. y0 = L, for h ≥ 0.4934. On
the contrary, when 0.4167 ≤ h < 0.4934, it is more convenient to wait until
the third stage, with a total expected cost of L(94.2500 + 2h) and, when
h < 0.4167, it is more convenient to wait until the fourth stage, with a total
expected cost 10(93.8333 + 3h).

Similar arguments can be applied to the six-stage stochastic programming
model (W = 5).

In conclusion, this analysis, based on different values of the reduced time
horizon W , allows us to deduce that the same total cost is obtained for
h ≥ 0.4934. On the other hand, for h < 0.4934, the higher is the reduced
time horizon W , the lower is the total cost to be paid. This gives a measure
of the value of having more stages to ship the demand. As a managerial
insight, this implies that for the manager, in case of low values of the ratio θ,
it is more convenient to solve models with larger time horizon, as they allow
to significantly reduce the costs.

Note that all the results confirm the optimal policy derived in Theorem
2.

Case 3) deterministic unit transportation cost (uncapacitated).

Table 8 and Figure 3 show the optimal values of the variables y0 and yt(ω),
t > 0, and the total cost in Case 3), having deterministic unit transportation
costs, for different values of the inventory cost h, when the reduced time
horizon W increases from 2 to 5. The case with W = 1 is infeasible because
it does not allow to satisfy the different demands in different scenarios.

The results show that, in the case with W = 2, Lmin is sent at time t = 0
and the remaining L(ω) − Lmin at time 1 if P0 ≤ P1 + h, which is satisfied
for h ≥ 0.4511. Otherwise, the stochastic demand L(ω) is sent at time 1.
Analogous arguments apply for the cases with larger reduced time horizons
W = 3, . . . , 5. The results show that, for h ≥ 0.5357, the optimal total costs
are the same, irrespectively of the number of stages considered. On the other
hand, for h < 0.5357, the larger is the reduced time horizon W , the lower is
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W h y0, yt(ω) 6= 0, t > 0 Total cost
2 [0, 0.4511) y1(ω) = L(ω), ω = 1, . . . , 5 E(L)(P1 + h)
2 [0.4511,∞) y0 = Lmin, y1 = L(ω)− Lmin P0 · Lmin + (P1 + h)(E(L)− y0)
3 [0, 0.4934) y2(ω) = L(ω), ω = 1, . . . , 5 E(L)(P2 + 2h)
3 [0.4934, 0.5357) y0 = Lmin, y2 = L(ω)− Lmin, ω = 1, . . . , 5 P0 · Lmin + (P2 + 2h)(E(L)− y0)
3 [0.5357,∞) y0 = Lmin, y1 = L(ω)− Lmin, ω = 1, . . . , 5 P0 · Lmin + (P1 + h)(E(L)− y0)
4 [0, 0.4167) y3(ω) = L(ω), ω = 1, . . . , 5 E(L)(P3 + 3h)
4 [0.4167, 0.4934) y2(ω) = L(ω), ω = 1, . . . , 5 E(L)(P2 + 2h)
4 [0.4934, 0.5357) y0 = Lmin, y2 = L(ω)− Lmin, ω = 1, . . . , 5 P0 · Lmin + (P2 + 2h)(E(L)− y0)
4 [0.5357,∞) y0 = Lmin, y1 = L(ω)− Lmin, ω = 1, . . . , 5 P0 · Lmin + (P1 + h)(E(L)− y0)
5 [0, 0.2299) y4(ω) = L(ω), ω = 1, . . . , 5 E(L)(P4 + 4h)
5 [0.2299, 0.4167) y3(ω) = L(ω), ω = 1, . . . , 5 E(L)(P3 + 3h)
5 [0.4167, 0.4934) y2(ω) = L(ω), ω = 1, . . . , 5 E(L)(P2 + 2h)
5 [0.4934, 0.5357) y0 = Lmin, y2 = L(ω)− Lmin, ω = 1, . . . , 5 P0 · Lmin + (P2 + 2h)(E(L)− y0)
5 [0.5357,∞) y0 = Lmin, y1 = L(ω)− Lmin, ω = 1, . . . , 5 P0 · Lmin + (P1 + h)(E(L)− y0)

Table 8: Case 3) Optimal value of the variables y0 and yt(ω), t > 0, and of the total cost
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Figure 3: Case 3) Total cost against increasing values of h for different values of W

the total cost to be paid.
As a managerial insight, this implies that for the manager, in case of low

values of the ratio θ, it is more convenient to solve models with larger time
horizon, as they allow to significantly reduce the costs. On the contrary, for
large values of ratio, the manager should choose a three-stage model, as it
has the same cost of models with greater time horizon.

Note that all the computational results shown in Table 8 confirm the
optimal policy provided in Theorem 3.
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6.3. The rolling horizon approach

In this subsection, we evaluate the average performance of the rolling
horizon approach in a given set of instances.

In order to do this, we solve the original multi-stage problem by building
a series of models with reduced time horizon, which are easier to solve. This
means that we solve a model with reduced time horizon, we store its first
stage solution and step forward in time; then, we solve the problem starting
from the next stage again and we store its first stage solution. The process
is repeated until we reach the end of the original time horizon H. The
strategy that we use is to reduce the time horizon from [t,H] to [t, t + W ],
where W is a suitable reduced time horizon and t = 0, . . . , H −W . For our
numerical analysis we create a multi-stage stochastic programming model
with finite horizon, where uncertainties are captured using a scenario tree.
Notice that, at each step of this procedure, we also need to make decisions
over our planning horizon t′ = t, . . . , t + W , but the decisions we make at
time t′ > t are purely for the purpose of making a better decision at time t.

Case 1) stochastic demand and unit transportation costs.

Table 9 and Figure 4 report numerical results of the rolling horizon
approach in Case 1) for W = 2, in instances with deadline H = 3, in the
cases with θ = 0.2 and 0.5. The optimal policy and total cost of the four-stage
problem (H = 3) are also reported for comparison.

The results show that the rolling horizon approach gives an average per-
cent cost increase with respect to the optimal total cost of about 51% and
74% in the cases with θ = 0.2 and 0.5, respectively. This is mainly due to the
fact that, in the optimal policy, the quantity sent at time 1 is scenario depen-
dent, while it is constant over all scenarios in the rolling horizon approach,
as shown in the top part of Table 9. However, the percent cost increase of
the rolling horizon is not very affected by the value of the inventory cost h.
Comparing these results with the corresponding worst-case analysis provided
in Section 5 (Theorem 4 where we showed that there is not a finite worst-case
performance bound), we can conclude that in Case 1) the rolling horizon
approach can be very suboptimal. As a managerial insight, these results
imply that the manager should carefully evaluate the average performance
of the rolling horizon approach in the typical set of instances considered by
the company. This would avoid a very bad performance provided by a blind
application of the heuristic approach.
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Rolling horizon approach with W = 2

W h y
(W+1)S
0 y

(W+1)S
1 (ω) y

(W+1)S
2 (ω) Total cost (θ = 0.2) Total cost (θ = 0.5)

2 0 5 3 L(ω)− 8 8985.51 5233.92
2 1 6 2 L(ω)− 8 9082.74 5148.40
2 2 6 2 L(ω)− 8 9084.72 5156.57
2 3 6 2 L(ω)− 8 9086.69 5164.74
2 4 6 2 L(ω)− 8 9088.66 5172.91
2 5 6 2 L(ω)− 8 9090.63 5181.08
2 6 6 2 L(ω)− 8 9092.60 5189.25
2 7 6 2 L(ω)− 8 9094.57 5197.42
2 8 6 2 L(ω)− 8 9096.55 5205.59
2 9 6 2 L(ω)− 8 9098.52 5213.76
2 10 6 2 L(ω)− 8 9100.49 5221.93

Optimal policy
H h y∗0 y∗1(ω) y∗2(ω) Total cost (θ = 0.2) Total cost (θ = 0.5)
3 0 6 − − 5971.76 2946.92
3 1 6 − − 5979.11 2954.28
3 2 6 − − 5986.46 2961.63
3 3 6 − − 5993.82 2968.98
3 4 6 − − 6001.17 2976.33
3 5 6 − − 6008.52 2983.69
3 6 6 − − 6015.87 2991.04
3 7 6 − − 6023.23 2998.39
3 8 6 − − 6030.58 3005.74
3 9 6 − − 6037.93 3013.10
3 10 6 − − 6045.28 3020.45

Table 9: Case 1) Policies and total costs against different values of the inventory cost h
for the rolling horizon approach with W = 2 and for the optimal policy, in instances with
deadline H = 3, in the cases with θ = 0.2 and 0.5
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Figure 4: Case 1) Total cost against increasing value of the inventory cost h for the rolling
horizon approach with W = 2 and for the optimal policy in instances with deadline H = 3,
in the cases with θ = 0.2 and 0.5
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Table 10 and Figure 5 report optimal policies and total costs in Case
1) for the rolling horizon approach with W = 2 and 3 in instances with
deadline H = 5. Since the optimal policy is not available, we compare the
results obtained by the rolling horizon approach for θ = 0.2 and 0.5.

W h y
(W+1)S
0 y

(W+1)S
1 (ω) y

(W+1)S
2 (ω) y

(W+1)S
3 (ω) y

(W+1)S
4 (ω) Total cost Total cost

(θ = 0.2) (θ = 0.5)

2 0 5 3 0 0 L(ω)− 8 11467.95 3426.52
2 1 6 2 0 0 L(ω)− 8 11470.32 3431.39
2 2 6 2 0 0 L(ω)− 8 11471.89 3435.48
2 3 6 2 0 0 L(ω)− 8 11473.46 3439.56
2 4 6 2 0 0 L(ω)− 8 11475.03 3443.65
2 5 6 2 0 0 L(ω)− 8 11476.60 3447.73
2 6 6 2 0 0 L(ω)− 8 11478.17 3451.82
2 7 6 2 0 0 L(ω)− 8 11479.74 3455.90
2 8 6 2 0 0 L(ω)− 8 11481.31 3459.99
2 9 6 2 0 0 L(ω)− 8 11482.88 3464.07
2 10 6 2 0 0 L(ω)− 8 11484.45 3468.16
3 0 6 0 0 0 L(ω)− 6 8155.05 2946.92
3 1 6 0 0 0 L(ω)− 6 8158.62 2954.28
3 2 6 0 0 0 L(ω)− 6 8162.20 2961.63
3 3 6 0 0 0 L(ω)− 6 8165.77 2968.98
3 4 6 0 0 0 L(ω)− 6 8169.34 2976.33
3 5 6 0 0 0 L(ω)− 6 8172.91 2983.69
3 6 6 0 0 0 L(ω)− 6 8176.48 2991.04
3 7 6 0 0 0 L(ω)− 6 8180.05 2998.39
3 8 6 0 0 0 L(ω)− 6 8183.62 3005.74
3 9 6 0 0 0 L(ω)− 6 8187.19 3013.10
3 10 6 0 0 0 L(ω)− 6 8190.76 3020.45

Table 10: Case 1) Policies and total costs against different values of the inventory cost h
for the rolling horizon approach with W = 2 and 3 in instances with deadline H = 5, in
the cases with θ = 0.2 and 0.5

The results show the value of using a problem with a larger number of
stages in the rolling horizon approach. In fact, the average percent cost
increase in the total cost of the rolling horizon approach with W = 2 with
respect to W = 3 is about 40% and 15% in the case with θ = 0.2 and
0.5, respectively. However, the percent cost increase of the rolling horizon
approach is not very affected by the value of the inventory cost h.

As a managerial insight, this implies that for the manager it is more con-
venient to solve models with larger time horizon, as they allow to significantly
reduce the costs. These effects are evident especially for low values of the
ratio θ.
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Figure 5: Case 1) Total cost against increasing values of the inventory cost h for the
rolling horizon approach with W = 2 and 3 in instances with deadline H = 5, in the cases
with with θ = 0.2 and 0.5

Case 2) deterministic demand (uncapacitated).

Table 11 and Figure 6 show the numerical results obtained by applying
the rolling horizon approach in Case 2) for increasing values of the inventory
cost h in instances with deadline H = 5. The optimal policy and total cost
of the six-stage problem (H = 5) are also reported for comparison.

Rolling horizon approach with W = 1, 2, 3, 4

W h y
(W+1)S
0 y

(W+1)S
1 (ω) y

(W+1)S
2 (ω) y

(W+1)S
3 (ω) y

(W+1)S
4 (ω) Total cost

1 [0,∞) L 0 0 0 0 E(P0) · L
2 [0, 0.2299) 0 0 0 0 L (E(P4) + 4h) · L
2 [0.2299, 0.4167) 0 0 0 L 0 (E(P3) + 3h) · L
2 [0.4167,0.4511) 0 0 L 0 0 (E(P2) + 2h) · L
2 [0.4511,∞) L 0 0 0 0 E(P0) · L
3 /4 [0, 0.2299) 0 0 0 0 L (E(P4) + 4h) · L
3 /4 [0.2299, 0.4167) 0 0 0 L 0 (E(P3) + 3h) · L
3 /4 [0.4167,0.4934) 0 0 L 0 0 (E(P2) + 2h) · L
3 /4 [0.4934,∞) L 0 0 0 0 E(P0) · L
Optimal policy
H h y∗0 y∗1(ω) y∗2(ω) y∗3(ω) y∗4(ω) Total cost
5 [0, 0.2299) 0 0 0 0 L (E(P4) + 4h) · L
5 [0.2299, 0.4167) 0 0 0 L 0 (E(P3) + 3h) · L
5 [0.4167, 0.4934) 0 0 L 0 0 (E(P2) + 2h) · L
5 [0.4934,∞) L 0 0 0 0 E(P0) · L

Table 11: Case 2) Policies and total costs against different values of the inventory cost h
for the rolling horizon approach with W = 1, 2, 3, 4 and for the optimal policy, in instances
with deadline H = 5

The results show that in the simpler rolling horizon approach with W =
1, the policy, irrespectively to the inventory cost values, is to ship the total
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Figure 6: Case 2) Total cost against increasing value of the inventory cost h for the rolling
horizon approach with W = 1, 2, 3, 4 and for the optimal policy in instances with deadline
H = 5

quantity L at time 0, i.e. y2S
0 = L with a total cost E(P0)L. In the rolling

horizon approach with W = 2, L is sent at time 0 if E(P0) ≤ E(P1) + h,
i.e. 95.2368 ≤ 94.7857 + h, which is satisfied for h ≥ 0.4511. Otherwise, if
h ≤ 0.4511, 0 units are sent at time 0. After storing the solution y3S

0 = 0
and solving the new three-stage stochastic programming model starting at
time 1, L could be sent at time 1 if E(P1) + h ≤ E(P2) + 2h, which is
verified for h ≥ 0.535714. However, this is not consistent with h ≤ 0.4511.
Consequently, y3S

1 (ω) = 0. Then, a new three-stage stochastic programming
model is solved: L is sent at time 2 if E(P2)+2h ≤ E(P3)+3h, which is verified
for h ≥ 0.4167. Consequently, in the range [0.4167, 0.4511), y3S

2 (ω) = L. If
h ≤ 0.4167, y3S

2 (ω) = 0 and a new three-stage stochastic programming model
starting at time 3 is solved: L is sent at time 3 if E(P3) + 3h ≤ E(P4) + 4h,
which is verified for h ≥ 0.2299. Consequently, in the range [0.2299, 0.4167),
y3S

3 (ω) = L. Finally, if h ≤ 0.2299 the demand L is sent at time 4. With
similar arguments, the policies of the rolling horizon approach with W = 3, 4
can be explained. Notice that these policies are optimal.

Figure 6 clearly shows that the ratio between the cost of the rolling
horizon approach and the optimal cost is always finite, as shown by the
worst-case analysis (see Theorems 5 and 7), and that the maximum percent
cost increase is obtained for h = 0, as in the worst-case analysis.
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As a managerial insight, we can conclude that the manager should pay
particular attention to the case of low inventory cost h, where the total cost
can be kept low by applying a rolling horizon approach with at least 4 stages.

Case 3) deterministic unit transportation cost (uncapacitated).

Table 12 and Figure 7 report numerical results of the rolling horizon
approach with W = 2, 3, 4 in the instances with deadline H = 5 for increasing
values of the inventory cost h. The optimal policy and total cost are also
reported for comparison. With similar arguments of the previous section, the
policies of the rolling horizon approach can be explained.

Rolling horizon approach with W = 2, 3, 4

W h y
(W+1)S
0 y

(W+1)S
1 (ω) y

(W+1)S
2 (ω) y

(W+1)S
3 (ω) y

(W+1)S
4 (ω) Total cost

2 [0, 0.2299) 0 0 0 0 L(ω) (P4+4h)E(L)
2 [0.2299, 0.4167) 0 0 0 Lmin L(ω)−Lmin Lmin(P3 + 3h)+(P4 + 4h)(E(L)−Lmin)
2 [0.4167, 0.4511) 0 0 Lmin 0 L(ω)−Lmin Lmin(P2 + 2h)+(P4 + 4h)(E(L)−Lmin)
2 [0.4511,∞) Lmin 0 0 0 L(ω)−Lmin LminP0+(P4 + 4h)(E(L)−Lmin)
3 [0, 0.2299) 0 0 0 0 L(ω) (P4+4h)E(L)
3 [0.2299, 0.4167) 0 0 0 Lmin L(ω)−Lmin Lmin(P3 + 3h)+(P4 + 4h)(E(L)−Lmin)
3 [0.4167, 0.4934) 0 0 Lmin 0 L(ω)−Lmin Lmin(P2 + 2h)+(P4 + 4h)(E(L)−Lmin)
3 [0.4934,∞) Lmin 0 0 0 L(ω)−Lmin LminP0+(P4 + 4h)(E(L)−Lmin)
4 [0, 0.2299) 0 0 0 0 L(ω) (E(P4)+4h)E(L)
4 [0.2299, 0.4167) 0 0 0 Lmin L(ω)−Lmin Lmin(P3 + 3h)+(P4 + 4h)(E(L)−Lmin)
4 [0.4167, 0.4934) 0 0 Lmin 0 L(ω)−Lmin Lmin(P2 + 2h)+(P4 + 4h)(E(L)−Lmin)
4 [0.4934,∞) Lmin 0 0 0 L(ω)−Lmin LminP0+(P4 + 4h)(E(L)−Lmin)

Optimal policy
H h y∗0 y∗1(ω) y2∗ (ω) y∗3(ω) y∗4(ω) Total cost
5 [0, 0.2299) 0 0 0 0 L(ω) (P4 + 4h)E(L)
5 [0.2299, 0.4167) 0 0 0 L(ω) 0 (P3 + 3h)E(L)
5 [0.4167, 0.4934) 0 0 L(ω) 0 0 (P2 + 2h)E(L)
5 [0.4934, 0.5357) Lmin 0 L(ω)−Lmin 0 0 P0 · Lmin+(P2 + 2h)(E(L)− Lmin)
5 [0.5357,∞) Lmin L(ω)−Lmin 0 0 0 P0 · Lmin+(P1 + h)(E(L)− Lmin)

Table 12: Case 3) Policies and total costs against different values of the inventory cost h
for the rolling horizon approach with W = 2, 3, 4 and for the optimal policy, in instances
with deadline H = 5

Figure 7 clearly shows that the ratio between the total cost of the rolling
horizon approach and the optimal total cost increases with the inventory cost
h. It can be easily checked that the ratio between these two costs tends to
H − 1 = 4 for h→∞, as shown in the worst-case analysis.

As a managerial insight, we can conclude that the manager should pay
particular attention to the case of high inventory cost h. Moreover, the worst-
case results provided before give her a measure of the maximum extra-cost
she could incur by applying the rolling horizon approach with respect to the
optimal cost.
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Figure 7: Case 3) Total cost against increasing value of the inventory cost h for the rolling
horizon approach with W = 2, 3, 4 and for the optimal policy in instances with deadline
H = 5

7. Conclusions

The paper presents a worst-case analysis of rolling horizon approach for
the Stochastic multi-stage fixed charge transportation problem. Theoretical
results showed that the rolling horizon approach can be very suboptimal in
the worst case if it is used to solve the general case. Finite bounds exist
for the polynomially solvable cases. Interesting results were also obtained by
the computational experiment we carried out. First, we found that both the
NP-hard problem and the polynomially solvable cases are very difficult to be
solved by state-of-the-art solvers, when the complete scenario tree is used.
In fact, we were able to solve the problems only up to 9 stages. Therefore,
it is really important to design heuristic algorithms to solve the NP-hard
problem and to be able to design an exact polynomial time algorithm to
solve the particular cases. As a managerial insight, these results imply that
the manager should carefully evaluate the average performance of the rolling
horizon approach in the typical set of instances considered by the company.
This would avoid a very bad performance provided by a blind application of
the heuristic approach. Worst-case analysis of the rolling horizon approach on
other multi-stage optimization problems under uncertainty will be addressed
in future works.
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[16] Görtz, S., Klose, A., 2009. Analysis of some greedy algorithms for the
single-sink fixed-charge transportation problem. Journal of Heuristics
15 (4), 331–349.

[17] Gray, P., 1971. Technical note - exact solution of the fixed-charge trans-
portation problem. Operations Research 19 (6), 1529–1538.
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